高一上学期数学期中试卷及答案

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分(共58分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个合题目要求的.1.设集合{}{}21,2,1,0,1,2A x x B =-<<=--,则A B = ()A .{}1,0-B .{}0C .{}0,1D .{}1,0,1-2.已知1,12是方程20x bx a -+=的两个根,则a 的值为()A .12-B .2C .12D .2-3.“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知幂函数ay x =的图象过点(9,3),则a 等于()A .3B .2C .32D .125.已知0.20.50.23,3,log 5a b c ===,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .c b a <<D .a c b <<6.方程2ln 50x x +-=的解所在区间为()A .(4,5)B .(3,4)C .(2,3)D .(1,2)7.已知函数()22xf x =-,则函数()y f x =的图象可能是()A .B .C .D .8.已知函数()f x 为定义在R 上的奇函数,且在[0,1)为减函数,在[1,+)∞为增函数,且(2)0f =,则不等式(1)()0x f x +≥的解集为()A .(,2][0,1][2,)-∞-+∞B .(,1][0,1][2,+)-∞-∞C .(,2][1,0][1,)-∞--+∞ D .(,2][1,0][2,)-∞--+∞ 二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列叙述正确的是()A .2,230x R x x ∃∈-->B .命题“,12x R y ∃∈<≤”的否定是“,1x R y ∀∈≤或2y >”C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .命题“2,0x R x ∀∈>”的否定是真命题10.已知集合{}1,2,3A =,集合{},B x y x A y A =-∈∈,则()A .{}1,2,3AB = B .{}1,0,1,2,3A B =-C .0B∈D .1B-∈11.下列说法不正确的是()A .函数1()f x x=在定义域内是减函数B .若函数()g x 是奇函数,则一定有(0)0g =C .已知函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[3,1]--D .若函数()f x 的定义域为[2,2]-,则(21)f x -的定义域为13[,22-非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.函数22,1()23,1x x f x x x ⎧-≤=⎨+>⎩,则((2))f f -的值是▲.13.计算:0ln 2lg 252lg 2eπ+-+=▲.14.x R ∀∈,用函数()m x 表示函数()f x 、()g x 中的最小者,记为{}()min (),()m x f x g x =.若()min m x ={}21,(1)x x -+--,则()m x 的最大值为▲.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆.求实数m 的取值范围.16.(本题满分15分)已知函数2()23()f x x ax a R =-+∈.(1)若函数()f x 在(,2]-∞上是减函数,求a 的取值范围;(2)当[1,1]x ∈-时,讨论函数()f x 的最小值.17.(本题满分15分)已知函数()af x x x=+,且(1)2f =.(1)求a ;(2)根据定义证明函数()f x 在区间(1,)+∞上单调递增;(3)在区间(1,)+∞上,若函数()f x 满足(2)(21)f a f a +>-,求实数a 的取值范围.18.(本题满分17分)已知函数()ln(1)ln(1)f x x x =--+,记集合A 为()f x 的定义域.(1)求集合A ;(2)判断函数()f x 的奇偶性;(3)当x A ∈时,求函数221()(2x xg x +=的值域.19.(本题满分17分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当(0,14]t ∈时,曲线是二次函数图象的一部分,当[14,45]t ∈时,曲线是函数log (5)83a y t =-+,(0a >且1a ≠)图象的一部分.根据专家研究,当注意力指数p 大于80时听课效果最佳.(1)试求()p f t =的函数关系式;(2)老师在什么时段内讲解核心内容能使学生听课效果最佳?请说明理由.2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题答案1234567891011A C A DBCBDABDCDABC12.713.114.015.解:(1)当{}1,22m B x x =-=-<<∵{}13A x x =<<∴{}23A B x x =-<< (2)∵A B⊆2113m m ≤⎧⎨-≥⎩,122m m ⎧≤⎪⎨⎪≤-⎩∴2m ≤-∴(,2]m ∈-∞-16.(1)对称轴:x a =∵为减函数∴2a ≥∴[2,)a ∈+∞(2)①当1a <-时,在[1,1]-,则min ()(1)24f x f a =-=+②当11a -≤≤,在[1,1]-有最低点,2min ()()3f x f a a ==-+③1a >时,在[1,1]-,min ()(1)24f x f a ==-+17.(1)∵(1)2f =∴21a=+∴1a =(2)1()f x x x=+12,(1,)x x ∀∈+∞,且12x x <,则12()()f x f x --121211x x x x =+--211212x x x x x x -=-+12121()(1)x x x x =--∵1212,(1,)x x x x <∈+∞∴121212110,01,10x x x x x x -<<<->∴12()()0f x f x -<,即12()()f x f x <故()f x 在(1,)+∞(3)∵在(1,)+∞,(2)(1)f a f a +>-∴211121a a a a +>⎧⎪->⎨⎪+>-⎩,12a a >-⎧⎪>⎨⎪⎩任意成立∴2a >18.(1)1010x x ->⎧⎨+>⎩,11x x <⎧⎨>-⎩,{}11A x x =-<<(2)1()ln()1xf x x-=+可知定义域关于原点对称111()ln(ln(ln ()111x x xf x f x x x x+---====-+++故()f x 为奇函数.(3)令22t x x =+,对称轴1x =-t 在(1,1)-上,故(1,3)t ∈-又1()2ty =在R 上递减故221()(2x xg x +=的值域是:1(,2)8.19.(1)当(0,14]t ∈,设2()f t at bt c =++代入顶点(12,82)1481(,,)可得:21()[12)824f t t =--+当[14,45]t ∈,由log (5)83(01)a y t a a =-+>≠且代入(14,81),13a =,故:1()log (5)833f t t =-+综上2131(12)82,((0,14])4()log (5)83,([14,45])t t p f t t t ⎧--+∈⎪==⎨-+∈⎪⎩(2)当014t <≤,21()(12)82804f t t =--+>∴1214t -<≤当[14,45]t ∈,13()log (5)8380f t t =-+>∴1432t ≤<∴在(1232)-这段时间安排核心内容效果最佳.。

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023-2024学年天津市南开区高一(上)期中数学试卷【答案版】

2023-2024学年天津市南开区高一(上)期中数学试卷【答案版】

2023-2024学年天津市南开区高一(上)期中数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项只有一项是符合题目要求的)1.下列给出的对象能构成集合的有()①某校2023年入学的全体高一年级新生;②√2的所有近似值;③某个班级中学习成绩较好的所有学生;④不等式3x﹣10<0的所有正整数;A.1个B.2个C.3个D.4个2.设命题p:∃n∈N,n2>2n,则p的否定为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∃n∈N,n2=2n D.∀n∈N,n2≤2n3.已知集合M={a|65−a∈N+,且a∈Z},则M等于()A.{2,3}B.{1,2,3,4}C.{1,2,3,6}D.{﹣1,2,3,4} 4.已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b﹣d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.下列各组函数不是同一函数的是()A.f(x)=4x﹣1,g(x)=2(x−1)2B.f(x)=x(x≠0),g(x)=x 2xC.f(x)=1|x|,g(x)=1√x2D.f(x)=|x﹣2|,g(t)={t−2,t≥22−t,t<26.已知奇函数y=f(x)为R上的减函数,且在区间[﹣4,3]上的最大值为8,最小值为﹣6,则f(﹣3)+f(4)的值为()A.﹣1B.﹣2C.1D.27.已知有限集M,N,定义集合M﹣N={x|x∈M,且x∉N},|M|表示集合M中的元素个数.若M={﹣1,0,1,3},N={1,3,5},则|(M﹣N)∪(N﹣M)|=()A.3B.4C.5D.6(多选)8.若a>0,b>0,与不等式﹣b<1x<a不等价的是()A.−1b <x<0或0<x<1aB.−1a<x<1bC .x <−1a 或x >1bD .x <−1b 或x >1a9.从盛装20升纯酒精的容器里倒出1升酒精,然后用水加满,再倒出1升酒精溶液,再用水加满,照这样的方法继续下去,如果第k 次时共倒出了纯酒精x 升,则倒出第k +1次时,共倒出了纯酒精f (x )的表达式是( ) A .f(x)=1920x +1 B .f(x)=120x +1 C .f(x)=1920(x +1) D .f(x)=120x 10.已知函数f (x )={−3x ,x ≥02x −x 2,x <0,若 f (2﹣a 2)>f (﹣|a |),则实数a 的取值范围是( )A .(﹣2,﹣1)∪(1,2)B .(−2,−√2)∪(√2,2)C .(﹣2,0)∪(0,2)D .(﹣1,0)∪(0,1)二、填空题:(本大题共5个小题,每小题3分,共15分.)11.已知幂函数f (x )=(k +4)x α的图象过点(8,2),则k α= . 12.函数y =1√7−6x−x 2的定义域为 .13.设集合A ={2,a +2,2a 2+a },若3∈A ,则a = . 14.函数y =(12)x 4+14x 的值域为 .15.已知函数f (x )=9x ﹣m •3x +m +6,若方程f (﹣x )+f (x )=0有解,则实数m 的取值范围是 . 三、解答题:(本大题共5个小题,共55分。

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

延庆区2024-2025学年第一学期期中试卷高一数学(答案在最后)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2,1,0,1B =--,则A B = ()A.{}0,1 B.{}1,0- C.{}2,1,0,1,2-- D.{}1,0,1-【答案】D 【解析】【分析】根据给定条件,利用交集的定义求解即得.【详解】集合{}1,0,1,2A =-,{}2,1,0,1B =--,所以{}1,0,1A B ⋂=-.故选:D2.若集合[]3,1A =-,()2,3B =-,则A B = ()A.(]2,1- B.[)2,1- C.(]3,3- D.[)3,3-【答案】D 【解析】【分析】根据条件,利用集合的运算,即可求解.【详解】因为[]3,1A =-,()2,3B =-,所以A B = [)3,3-,故选:D.3.已知全集{}N 6U x x =∈≤且{}25A x U x =∈≤,则集合U A ð中的元素有()A.2个B.4个C.5个D.7个【答案】B 【解析】【分析】利用列举法表示集合U ,解不等式化简集合A ,再求出U A ð即可得解.【详解】依题意,{0,1,2,3,4,5,6}U =,解不等式25x ≤,得x ≤≤,则{0,1,2}A =,所以{3,4,5,6}U A =ð,集合U A ð中的元素有4个.故选:B4.已知集合A 满足{}1A ⊆{}1,2,3,4,则A 有()A.2个 B.4个C.5个D.7个【答案】D 【解析】【分析】根据给定条件,求出集合{}2,3,4的真子集个数即可得解.【详解】集合A 满足{}1A⊆{}1,2,3,4,则集合A 可视为集合{1}与集合{}2,3,4的每个真子集的并集,而集合{}2,3,4的真子集个数为3217-=,所以A 有7个.故选:D5.若22P a a =-和24Q a =-,则P 和Q 的大小关系为()A.P Q >B.P Q< C.P Q≥ D.P Q≤【答案】C 【解析】【分析】根据条件,通过作差法,得到2(2)P Q a -=-,即可求解.【详解】因为22P a a =-,24Q a =-,所以2222(24)44(2)0P Q a a a a a a -=---=-+=-≥,当且仅当2a =时取等号,所以P Q ≥,故选:C.6.设,,a b c ∈R ,且a b <,c d <,则()A.22a b <B.d c a b> C.ac bd< D.33a b <【答案】D 【解析】【分析】举例说明判断ABC ;利用不等式的性质判断D.【详解】对于A ,取2,2a b =-=,满足a b <,而224a b ==,A 错误;对于B ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而21d ca b=-<-=,B 错误;对于C ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而24ac bd =->-=,C 错误;对于D ,由不等式性质知,由a b <,得33a b <,D 正确.故选:D7.下列函数中,既是偶函数又在区间(),0-∞上单调递增的是()A.21y x =B.1y x =+C.2y x =-,(),0x ∈-∞D.y x=【答案】A 【解析】【分析】利用奇偶函数的判断方法及基本函数的单调性,对各个选项逐一分析判断,即可求解.【详解】对于选项A ,因为221y x x-==,定义域为(,0)(0,)-∞+∞ ,关于原点对称,又2211()()()f x f x x x -===-,所以21y x=是偶函数,又由幂函数的性质知21y x =在区间()0,∞+上单调递减,所以21y x =在区间(),0-∞上单调递增,故选项A 正确,对于选项B ,因为1y x =+图象不关于y 轴对称,即1y x =+不是偶函数,所以选项B 错误,对于选项C ,因为2y x =-,(),0x ∈-∞的定义域不关于原点对称,即2y x =-,(),0x ∈-∞是非奇非偶函数,所以选项C 错误,对于选项D ,当(),0x ∈-∞时,y x x ==-在区间(),0-∞上单调递减,所以选项D 错误,故选:A.8.已知函数()f x 的定义域为R ,则“()f x 为奇函数”是“(0)=0f ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:因函数的定义域是,故“是奇函数”是“”的充分条件;反之,若(0)0f =,则函数不一定是奇函数,“f (x )为奇函数”不是必要条件.应选A.考点:充分必要条件.9.已知函数2()2f x x ax =++有两个零点,在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,则实数a 的取值范围是()A.(,)-∞-⋃+∞B.(,3)(3,)-∞-⋃+∞C.(,4](3,)-∞-+∞D.(,4][2,)-∞-+∞ 【答案】C 【解析】【分析】求出函数()f x 的单调区间,再结合集合的包含关系及零点存在性定理列式求解即得.【详解】函数2()2f x x ax =++在(,]2a -∞-上单调递减,在[,)2a-+∞上单调递增,由在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,得(,](1,2)2a ∞---⊆且(1)0(2)0f f ->⎧⎨<⎩或[,)(1,22)a--+∞⊆且(1)0(2)0f f -<⎧⎨>⎩,则2230620a a a ⎧-≥⎪⎪->⎨⎪+<⎪⎩或1230620aa a ⎧-≤⎪⎪-<⎨⎪+>⎪⎩,解得4a ≤-或3a >,所以实数a 的取值范围是(,4](3,)-∞-+∞ .故选:C10.x ∀∈R ,设()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,则()f x 的最大值为()A.1B.2C.3D.4【答案】B 【解析】【分析】作出函数()f x 的图象,利用图象求出其最大值.【详解】在同一坐标系内作出直线41y x =+,1y x =+,24y x =-+,由()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,得()f x 的图象为下图中实线构成的折线图,则()f x 的最大值即为()f x 的图象最高点对应的纵坐标值,观察图象知,()f x 的图象最高点是直线1y x =+与24y x =-+的交点,由124y x y x =+⎧⎨=-+⎩,得12x y =⎧⎨=⎩,因此()f x 的图象最高点是(1,2),所以()f x 的最大值为2.故选:B第II 卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.函数()124f x x =+______.【答案】(2,)-+∞【解析】【分析】利用函数有意义列式求出定义域.【详解】依题意,240x +>,解得2x >-,所以函数()124f x x =+的定义域是(2,)-+∞.故答案为:(2,)-+∞12.已知奇函数()f x 满足()()53f f -<-,则()5f ______()3f .【答案】大于【解析】【分析】利用奇函数的性质,结合不等式的性质求解即得.【详解】由奇函数()f x 满足()()53f f -<-,得()()53f f -<-,所以()()53f f >.故答案为:大于13.已知(],A a =-∞,(),3B =-∞,且x A ∈是x B ∈的必要不充分条件,则a 的取值范围是______【答案】3a ≥【解析】【分析】根据条件得到BA ,再利用集合间的关系,即可求解.【详解】因为x A ∈是x B ∈的必要不充分条件,则B A ,又(],A a =-∞,(),3B =-∞,所以3a ≥,故答案为:3a ≥.14.已知0x <,则812y x x=++的最大值是______,当且仅当x =______时,等号成立.【答案】①.7-②.2-【解析】【分析】根据给定条件,借助配凑的方法,利用基本不等式求出最大值及对应x 的值.【详解】由0x <,得0x ->,则81(2)17y x x =--+≤---,当且仅当82x x-=-,即2x =-时取等号,所以当2x =-时,812y x x=++取得最大值7-.故答案为:7-;2-15.已知函数2()2||1f x x x =--,给出下列四个结论:①函数()f x 是偶函数;②函数()f x 的增区间为[1,)+∞;③不等式()1f x x <-的解集是(1,3)-;④当3x >-时,令3()()g x f x x =+,则()g x 的最小值为4-.其中所有正确结论的序号是______.【答案】①④【解析】【分析】利用偶函数的定义判断①;求出函数的单调递增区间判断②;分段求出不等式的解集判断③;利用基本不等式分段求出最小值判断④.【详解】函数2()2||1f x x x =--的定义域为R ,对于①,22()()2||12||1()f x x x x x f x -=----=--=,函数()f x 是偶函数,①正确;对于②,2221,0()21,0x x x f x x x x ⎧+-≤=⎨-->⎩,函数()f x 的增区间为[1,0],[1,)-+∞,②错误;对于③,不等式()1f x x <-,则20211x x x x ≤⎧⎨+-<-⎩或20211x x x x >⎧⎨--<-⎩,解得10x -<<或03x <<,所以不等式()1f x x <-的解集是(1,0)(0,3)- ,③错误;对于④,依题意,2221,303()21,03x x x x g x x x x x ⎧+--<≤⎪⎪+=⎨--⎪>⎪+⎩,当30x -<≤时,2()(3)4443g x x x =++-≥=+,当且仅当233x x +=+,即3x =-时取等号;当0x >时,14()(3)88283x g x x =++-≥=+,当且仅当1433x x +=+,即3x =时取等号,而84)2)]0--=-+=>,即84->,所以()g x的最小值为4-,④正确.故所有正确结论的序号是①④.故答案为:①④【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.求下列方程(组)的解集..:(1)2560x x +-=(2)3ax =(3)10x +-=(4)2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩【答案】(1){6,1}-(2)当0a =时,解集为∅;当0a ≠时,方程解集为3a 禳镲睚镲铪.(3){3-(4){(0,1),(2,0)}-【解析】【分析】(1)解一元二次方程即可得解集.(2)对a 分类讨论即可得方程的解集.(3(0)t t =≥,把原方程化为一元二次方程,结合t 的取值范围即可得到原方程的解集.(4)利用代入消元法即可得到方程组的解集.【小问1详解】由2560x x +-=得,(6)(1)0x x +-=,解得126,1x x =-=,故方程的解集为{6,1}-.【小问2详解】当0a =时,方程无解,解集为∅,当0a ≠时,解方程得3x a =,方程解集为3a ⎧⎫⎨⎬⎩⎭.【小问3详解】(0)t t =≥,则方程可化为2210t t +-=,解方程得,1211t t =-+=-,22(13x t ==-=-{3-.【小问4详解】由2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩得,2240x x +=,解得120,2x x ==-,方程组的解为1101x y =⎧⎨=⎩,2220x y =-⎧⎨=⎩,故方程组解集为{(0,1),(2,0)}-.17.求下列不等式(组)的解集..:(1)2430x x -+≥(2)23210x x -++>(3)2112x x +≥+(4)221132340x x x ⎧+<⎪⎨⎪-+>⎩【答案】(1){|1x x ≤或}3x ≥(2)1|13x x ⎧⎫-<<⎨⎬⎩⎭(3){|2x x <-或 (4){}|21x x -<<【解析】【分析】(1)根据条件,因式分解得到(3)(1)0x x --≥,再利用一元二次不等式的解法,即可求解;(2)根据条件,变形得到23210x x --<,再因式分解得(31)(1)0x x +-<,即可求解;(3)先变形成102x x -≥+,再等价于(1)(2)0x x -+≥且2x ≠-,即可求解;(4)先利用绝对值不等式的解法,求2113x +<的解,再求22340x x -+>的解,再求交集,即可求解.【小问1详解】由2430x x -+≥,得到(3)(1)0x x --≥,所以1x ≤或3x ≥,故不等式2430x x -+≥的解集为{|1x x ≤或}3x ≥.【小问2详解】由23210x x -++>,即23210x x --<,得到(31)(1)0x x +-<,所以113-<<x ,故不等式23210x x -++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭.【小问3详解】由2112x x +≥+,得到102x x -≥+,等价于(1)(2)0x x -+≥且2x ≠-,所以2x <-或1x ≥,故不等式2112x x +≥+的解集为{|2x x <-或}1≥x .【小问4详解】由2113x +<,得到3213x -<+<,即2<<1x -,对22340x x -+>,因为9442230∆=-⨯⨯=-<,所以22340x x -+>的解集为R ,故不等式组221132340x x x ⎧+<⎪⎨⎪-+>⎩的解集为{}|21x x -<<.18.已知关于x 的方程220x x m +-=,m ∈R .(1)当1m =时,若方程的两根为1x 与2x ,求下列各式的值:①2212x x +;②12||x x -;③1222x x +;(2)若该方程的两根同号,求实数m 的取值范围.【答案】(1)①6;②;③4;(2)10m -<<.【解析】【分析】(1)把1m =代入,利用韦达定理列式,再逐一变形计算各个式子的值.(2)利用判别式及韦达定理列出不等式组求解.【小问1详解】当1m =时,方程2210x x +-=,224(1)80∆=-⨯-=>,则12122,1x x x x +=-=-,①222121212()26x x x x x x =-++=;②12||x x ==-=;③1212122()224x x x x x x ++==.【小问2详解】由方程的两根同号,得1212Δ440200m x x x x m =+>⎧⎪+=-<⎨⎪=->⎩,解得10m -<<,所以实数m 的取值范围是10m -<<.19.已知函数()21f x m x=+过点()1,2-.(1)求函数()f x 的解析式及定义域;(2)判断函数()f x 的奇偶性并证明;(3)令()()1g x f x =-,求()g x 的解析式,并证明()g x 的图像关于1x =对称.【答案】(1)()211f x x=+,定义域为{}|0x x ≠(2)偶函数,证明见解析(3)()211(1)(1)g x x x =+≠-,证明见解析【解析】【分析】(1)根据条件可得1m =,即可得()211f x x=+,由解析式可直接求出定义域,即可求解;(2)利用奇偶函数的判断方法,即可求解;(3)利用()211f x x=+,即可得()211(1)(1)g x x x =+≠-,再任取一点(,)P x y ,通过证明其关于1x =对称的点也在()g x 的图象上,即可求解.【小问1详解】因为函数()21f x m x =+过点()1,2-,则21m =+,得到1m =,所以()211f x x =+,定义域为{}|0x x ≠.【小问2详解】函数()f x 为偶函数,证明如下,因为()211f x x =+的定义域为{}|0x x ≠,关于原点对称,又()221111()()f x f x x x -=+=+=-,所以()f x 为偶函数.【小问3详解】因为()()2111(1)(1)g x f x x x =-=+≠-,设(,)P x y 是()g x 图象上任意一点,(,)P x y 关于1x =的对称点为(2,)P x y '-,因为()211(1)(1)g x x x =+≠-,所以()2221112111()(21)(1)(1)g x g x x x x -=+=+=+=----,即点(2,)P x y '-也在()g x 图象上,所以()g x 的图像关于1x =对称.20.已知函数()223f x x mx =++.(1)当1m =,[]2,2x ∈-时,求函数()f x 的值域;(2)若函数()f x 在[]22-,上是单调函数,求实数m 的取值范围;(3)当2m =时,比较()0f 与()()226f a a a -+-∈R 的次小.【答案】(1)[2,11](2)(,2][2,)-∞-+∞ (3)()2(0)26f f a a <-+-【解析】【分析】(1)利用二次函数的对称轴可求函数的单调性,求出最大值和最小值即可得到函数的值域.(2)讨论函数的单调性,利用定义域和对称轴的关系可求得参数的取值范围.(3)计算226a a -+-的取值范围,利用二次函数的单调性和对称轴可比较大小.【小问1详解】当1m =时,()223f x x x =++,对称轴为直线1x =-,()f x 在(2,1)--上为减函数,在(1,2)-上为增函数,min max ()(1)1232,()(2)44311f x f f x f =-=-+===++=,故函数()f x 的值域为[2,11].【小问2详解】函数()223f x x mx =++,对称轴为直线x m =-,当函数()f x 在[]22-,上是单调增函数时,2m -≤-,2m ≥,当函数()f x 在[]22-,上是单调减函数时,2m -≥,2m ≤-,综上得,实数m 的取值范围为(,2][2,)-∞-+∞ .【小问3详解】当2m =时,()243f x x x =++,对称轴为直线2x =-,()f x 在(,2)-∞-上为减函数,在(2,)-+∞上为增函数,且()0(4)f f =-,∵2226(1)55a a a -+-=---≤-,∴()226(5)(4)(0)f a a f f f -+-≥->-=,故()2(0)26f f a a <-+-.21.设集合(){}123,,,R,1,2,3k A a a x x x x k ==∈=,对于集合A 中的任意元素()123,,a x x x =和()123,,b y y y =及实数λ,定义:当且仅当()1,2,3i i x y i ==时a b =()112233,,a b x y x y x y +=+++;()123,,a x x x λλλλ=.若A 的子集{}123,,B a a a =满足:当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,则称B 为A 的完美子集.(1)集合()()(){}11,0,0,0,2,0,0,0,3B =,()()(){}21,2,3,2,3,4,3,4,5B =,分别判断这两个集合是否为A 的完美子集,并说明理由;(2)集合()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,若B 不是A 的完美子集,求m 的值.【答案】(1)1B 是A 的完美子集,2B 不是A 的完美子集,理由见解析;(2)12m =.【解析】【分析】(1)根据完美子集定义去计算验证是否当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=即可得解;(2)先计算112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,接着由()1122330,0,0a a a λλλ++=得方程()()123042m λλλ+-=+,解该方程得12m =或1230λλλ+=+,再结合元素互异性分类讨论12m =和1230λλλ+=+这两种情况即可得解.【小问1详解】1B 是A 的完美子集,2B 不是A 的完美子集,理由如下:对于()()(){}11,0,0,0,2,0,0,0,3B =,因为()()()1231,0,0,0,2,0,0,0,3a a a ===,所以()()()()112233123123,0,00,2,00,0,3,2,3a a a λλλλλλλλλ++=+=+,所以当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,所以1B 是A 的完美子集;对于()()(){}21,2,3,2,3,4,3,4,5B =,因为()()()1231,2,3,2,3,4,3,4,5a a a ===,所以()()()112233*********,2,32,3,43,4,5a a a λλλλλλλλλλλλ=++++()123123123,2323344,5λλλλλλλλλ=++++++,令1231231321232302*********λλλλλλλλλλλλ++=⎧⎪++=⇒==-⎨⎪++=⎩,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当132222λλλ==-=-时,()1122330,0,0a a a λλλ++=,所以2B 不是A 的完美子集.【小问2详解】因为()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,所以()()()1232,,2,,2,2,,2,2a m m m a m m m a m m m =-=--=,所以112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,因为B 不是A 的完美子集,所以存在()()123,,0,0,0λλλ≠,使得1122330a a a λλλ+=+,即存在()()123,,0,0,0λλλ≠使得()()()123123123202202220m m m m m m m m m λλλλλλλλλ⎧++=⎪++-=⎨⎪-+-+=⎩,解方程组得()()123042m λλλ+-=+,由集合互异性可得2m m ≠且22m m ≠-,故0m ≠且2m ≠-,所以解()()123042m λλλ+-=+得12m =或1230λλλ+=+,且由12320m m m λλλ++=得12320λλλ++=,若12m =,则有123123123110221302233022λλλλλλλλλ⎧++=⎪⎪⎪+-=⇒⎨⎪⎪--+=⎪⎩1235573λλλ=-=-,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当12355573λλλ=--==时,()1122330,0,0a a a λλλ++=,所以B 不是A 的完美子集,符合题意;当1230λλλ+=+且12m ≠时,则由12320λλλ++=得1230,λλλ==-,所以由()123022m m m λλλ+-=+得()320m λ--=,又2m ≠-得30λ=,故20λ=,不符合题意;综上m 的值为12.【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”,明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”,归纳“举例”提供的解题方法,归纳“举例”提供的分类情况;(3)类比新定义中的概念、原理、方法去解决题中需要解决的问题.。

2023-2024学年湖南省长沙一中高一(上)期中数学试卷【答案版】

2023-2024学年湖南省长沙一中高一(上)期中数学试卷【答案版】

2023-2024学年湖南省长沙一中高一(上)期中数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|xx−1≤0},则∁R A =( ) A .(﹣∞,0)∪(1,+∞) B .(﹣∞,0]∪[1,+∞)C .(﹣∞,0)∪[1,+∞)D .[0,1)2.若对数函数f (x )经过点(4,2),则它的反函数g (x )的解析式为( ) A .g (x )=2x B .g(x)=(12)x C .g (x )=4xD .g (x )=x 23.设x ∈R ,则“√x +1≤2”是“|x ﹣1|<2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( ) A .若a >b ,则a |c |>b |c | B .若a >b ,则1a2<1b 2C .若a c 2>b c 2,则a >bD .若a 2>b 2,则a >b5.已知a ,b ∈R ,且2a ﹣b ﹣2=0,则9a +13b 的最小值为()A .2B .4C .6D .86.心理学家有时用函数L (t )=250(1﹣e ﹣kt)来测定人们在时间t (min )内能够记忆的单词量L ,其中k 表示记忆率.心理学家测定某学生在10min 内能够记忆50个单词,则该学生在30min 从能记忆的单词个数为( ) A .150B .128C .122D .617.已知函数f (x )的定义域为R ,满足f (x +1)=f (1﹣x ),当x 1,x 2∈(1,+∞),且x 1≠x 2时,f(x 1)−f(x 2)x 1−x 2<0恒成立,设a =f (﹣1),b =f (0),c =f (e )(其中e =2.71828…),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .b >a >cD .b >c >a8.已知函数f(x)={−x 2+ax ,(x ≤1)ax −1,(x >1),若存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是( ) A .a >2B .a <2C .﹣2<a <2D .a >2或a <﹣2二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列大小关系正确的是( ) A .π2.5>π3.4B .(15)23<(12)23C .0.50.3<0.52.3D .0.81.5<0.9−7210.下列函数中,最小值为2的函数是( ) A .y =lnx +1lnxB .y =e x +e ﹣xC .y =x 2+3√x 2+2D .y =x +2√x +211.以下计算正确的是( ) A .log 39+log 42=0 B .√(log 23)2−4log 23+4=2+log 213C .25log 53=9D .(log 225+log 215)(log 58+log 512)=212.以数学家约翰•卡尔•弗里德里希•高斯的名字命名的“高斯函数”为y =[x ],其中[x ]表示不超过x 的最大整数,例如[3.2]=3,[﹣1.5]=﹣2,则( ) A .∀x ∈R ,[x ]﹣[x ﹣1]=1B .不等式[x ]2﹣[x ]≤2的解集为{x |﹣1≤x <3}C .当|x |≥1,[|x|]+3[|x|]的最小值为2√3 D .方程x 2=4[x ]+3的解集为{√15} 三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f (x )=a x ﹣1+2,a >0 且a ≠1,则f (x )必过定点 .14.已知函数f(x)={2−x +b ,x ≥0g(x),x <0,为R 上的奇函数,则f (﹣1)= .15.已知关于x 的不等式log 2x <ax +2恰有一个整数解,则实数a 的取值范围是 .16.我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数,有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )﹣b 为奇函数.(1)请你利用这个结论求得函数f (x )=x 3+3x 2的对称中心为 .(2)已知函数g(x)=−x+2x+1−x 3−3x 2与一次函数y =k (x +1)﹣3有两个交点M (x 1,y 1),N (x 2,y2),则x1+y1+x2+y2=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知幂函数f(x)=(2m2﹣m﹣2)x m﹣1在定义域内单调递增.(1)求f(x)的解析式;(2)求关于x的不等式f(x+1)<f(x2﹣2x+3)的解集.18.(12分)设a∈R,函数f(x)=2x−a2x+a(a>0).(1)若函数y=f(x)是奇函数,求a的值;(2)请判断函数y=f(x)的单调性,并用定义证明.19.(12分)已知A={x|log2(x﹣1)<1},B={x|x2+mx+n<0}.(1)若m=﹣6,n=8,求A∩B,A∪B;(2)若A∪B={x|1<x<4},求m的取值范围.20.(12分)佩戴口罩能起到一定预防新冠肺炎的作用,某科技企业为了满足口罩的需求,决定开发生产口罩的新机器.生产这种机器的月固定成本为400万元,每生产x台,另需投入成本p(x)(万元),当月产量不足70台时,p(x)=12x2+40x(万元);当月产量不小于70台时,p(x)=101x+6400x−2060(万元).若每台机器售价100万元,且该机器能全部卖完.(1)求月利润y(万元)关于月产量x(台)的函数关系式;(2)月产量为多少台时,该企业能获得最大月利润?并求出其利润.21.(12分)已知二次函数f(x)=x2+2ax+2.(1)若∃x∈[0,2],使等式f(2x)=0成立,求实数a的取值范围.(2)解关于x的不等式(a+1)x2+x>f(x)(其中a∈R).22.(12分)对于函数f1(x),f2(x),如果存在一对实数a,b,使得f(x)=af1(x)+bf2(x),那么称f (x)为f1(x),f2(x)的亲子函数,(a,b)称为f(x)关于f1(x)和f2(x)的亲子指标.(1)已知f1(x)=2x﹣3,f2(x)=x+1,试判断f(x)=5x﹣5是否为f1(x),f2(x)的亲子函数,若是,求出其亲子指标;若不是,说明理由.(2)已知f1(x)=3x,f2(x)=9x,F(x)为f1(x),f2(x)的亲子函数,亲子指标为(﹣2m﹣2,m),是否存在实数m,使函数F(x)在x∈[0,log3154]上的最小值为﹣5,若存在,求实数m的值,若不存在,说明理由.2023-2024学年湖南省长沙一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|xx−1≤0},则∁R A=()A.(﹣∞,0)∪(1,+∞)B.(﹣∞,0]∪[1,+∞)C.(﹣∞,0)∪[1,+∞)D.[0,1)解:因为A={x|xx−1≤0}={x|0≤x<1},则∁R A={x|x≥1或x<0}.故选:C.2.若对数函数f(x)经过点(4,2),则它的反函数g(x)的解析式为()A.g(x)=2x B.g(x)=(12)xC.g(x)=4x D.g(x)=x2解:设f(x)=log a x(a>0,a≠1),对数函数f(x)经过点(4,2),则log a4=2,解得a=2,故f(x)=log2x,则反函数fg(x)=2x.故选:A.3.设x∈R,则“√x+1≤2”是“|x﹣1|<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:解不等式√x+1≤2可得:﹣1≤x≤3,解不等式|x﹣1|<2可得:﹣1<x<3,则(﹣1,3)⫋[﹣1,3],所以“√x+1≤2”是“|x﹣1|<2”的必要不充分条件.故选:B.4.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R,则下列命题正确的是()A.若a>b,则a|c|>b|c|B.若a>b,则1a2<1b2C.若ac2>bc2,则a>b D.若a2>b2,则a>b解:当c=0时,A显然错误;当a=2,b=﹣2时,B显然错误;由a c2>b c 2,由不等式的性质可知,a >b ,C 正确;当a =﹣2,b =1时,D 显然错误. 故选:C .5.已知a ,b ∈R ,且2a ﹣b ﹣2=0,则9a +13b 的最小值为()A .2B .4C .6D .8解:由2a ﹣b ﹣2=0,知2a ﹣b =2, 所以9a +13b=32a +13b≥2√32a ⋅13b=2√32a−b =2√32=6,当且仅当9a =13b ,即a =12,b =﹣1时,等号成立, 所以9a +13b 的最小值为6.故选:C .6.心理学家有时用函数L (t )=250(1﹣e﹣kt)来测定人们在时间t (min )内能够记忆的单词量L ,其中k 表示记忆率.心理学家测定某学生在10min 内能够记忆50个单词,则该学生在30min 从能记忆的单词个数为( ) A .150B .128C .122D .61解:由题可得L (10)=250(1﹣2e﹣10k)=50,则2e −10k =45,所以L(30)=250(1−2e −30k )=250[1−(2e −10k )3]=250×[1−(45)3]=122, 即该学生在30min 从能记忆的单词个数为122. 故选:C .7.已知函数f (x )的定义域为R ,满足f (x +1)=f (1﹣x ),当x 1,x 2∈(1,+∞),且x 1≠x 2时,f(x 1)−f(x 2)x 1−x 2<0恒成立,设a =f (﹣1),b =f (0),c =f (e )(其中e =2.71828…),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .b >a >cD .b >c >a解:因为函数f (x )的定义域为R ,且满足f (x +1)=f (1﹣x ), 所以函数y =f (x )的图象关于x =1对于, 又因为当x 1,x 2∈(1,+∞),且x 1≠x 2时,f(x 1)−f(x 2)x 1−x 2<0恒成立,所以函数y =f (x )在(1,+∞)上单调递减,又因为a =f (﹣1)=f (3),b =f (0)=f (2),c =f (e ), 2<e <3,所以f (2)>f (e )>f (3),即b >c >a . 故选:D .8.已知函数f(x)={−x 2+ax ,(x ≤1)ax −1,(x >1),若存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是( ) A .a >2B .a <2C .﹣2<a <2D .a >2或a <﹣2解:存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立, 可得f (x )在R 上不单调.可考虑f (x )在R 上单调,若f (x )在R 上递增,可得a >0,且a2≥1,﹣1+a ≤a ﹣1,解得a ≥2;若f (x )在R 上递减,可得a <0,则f (x )在(﹣∞,1]上先增后减,不成立, 所以当a <2时,f (x )在R 上不单调. 故选:B .二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列大小关系正确的是( ) A .π2.5>π3.4 B .(15)23<(12)23 C .0.50.3<0.52.3D .0.81.5<0.9−72解:y =πx 在R 上单调递增,故π2.5<π3.4,故A 错误; y =x 23在(0,+∞)上单调递增,故(15)23<(12)23,故B 正确; y =0.5x 在R 上单调递减,故0.50.3>0.52.3,故C 错误; 0.81.5<0.80=1,0.9−72>0.90=1,故D 正确. 故选:BD .10.下列函数中,最小值为2的函数是( ) A .y =lnx +1lnxB .y =e x +e ﹣xC .y =x 2+3√x 2+2D .y =x +2√x +2解:当lnx <0时,A 显然错误;因为e x >0,则y =e x +e ﹣x ≥2√e x ⋅e −x =2,当且仅当x =0时取等号,B 正确;令t =√2+x 2,则t ≥√2,故y=2√2+x2=√2+x2√2+x2=t+1t单调递增,故y≥√22=3√22,C错误;y=x+2√x+2=(√x+1)2+1,因为1+√x≥1,故y≥2,D正确.故选:BD.11.以下计算正确的是()A.log39+log42=0B.√(log23)2−4log23+4=2+log213C.25log53=9D.(log225+log215)(log58+log512)=2解:log39+log42=2log33+12log22=52,故A错误;√(log23)2−4log23+4=√(log23−2)2=2﹣log23=2+log213,故B正确;25log53=5log59=9,故C正确;(log225+log215)(log58+log512)=log25•log54=2log25•log52=2,故D正确.故选:BCD.12.以数学家约翰•卡尔•弗里德里希•高斯的名字命名的“高斯函数”为y=[x],其中[x]表示不超过x的最大整数,例如[3.2]=3,[﹣1.5]=﹣2,则()A.∀x∈R,[x]﹣[x﹣1]=1B.不等式[x]2﹣[x]≤2的解集为{x|﹣1≤x<3}C.当|x|≥1,[|x|]+3[|x|]的最小值为2√3D.方程x2=4[x]+3的解集为{√15}解:对于A:设x的整数部分为a,小数部分为b,则[x]=a,[x﹣1]=a﹣1,得[x]﹣[x﹣1]=1,故A正确;对于B:因为[x]2﹣[x]≤2,解得﹣1≤[x]≤2,所以﹣1≤x<3,故B正确;对于C:当|x|≥1时,[|x|]≥1,所以[|x|]+3[|x|]≥2√[|x|]3[|x|]=2√3,当且仅当[|x|]=3[|x|]=√3时,等号成立,这与[|x|]是正整数矛盾,故C错误;对于D:由x2=4[x]+3知,x2为整数且4[x]+3≥0,所以[x]≥−34,可知[x]≥0,可得x≥0,因为[x]2≤x2<([x]+1)2,即[x]2≤4[x]+3<([x]+1)2,由[x]2≤4[x]+3,解得2−√7≤[x]≤2+√7≈4.6,可得0≤[x]≤4;由4[x]+3<([x]+1)2,解得[x]>1+√3或[x]<1−√3(舍),可知3≤[x]≤4,即[x]=3或[x]=4,当[x ]=3时,x 2=4[x ]+3=15,可得x =√15, 当[x ]=4时,x 2=4[x ]+3=19,可得x =√19,所以方程x 2=4[x ]+3的解集为{√15,√19},故D 错误. 故选:AB .三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f (x )=a x ﹣1+2,a >0 且a ≠1,则f (x )必过定点 (1,3) .解:由指数函数y =a x (a >0,a ≠1)的图象恒过(0,1)点 而要得到函数y =a x ﹣2+2(a >0,a ≠1)的图象,可将指数函数y =a x (a >0,a ≠1)的图象向右平移1个单位,再向上平移2个单位. 则(0,1)点平移后得到(1,3)点. 点P 的坐标是(1,3). 故答案为:(1,3).14.已知函数f(x)={2−x +b ,x ≥0g(x),x <0,为R 上的奇函数,则f (﹣1)= 12 .解:∵f(x)={2−x +b ,x ≥0g(x),x <0,为R 上的奇函数,∴f (0)=20+b =1+b =0, ∴b =﹣1;∴当x ≥0时,f (x )=2﹣x ﹣1,∴f (1)=12−1=−12, ∴f (﹣1)=﹣f (1)=12. 故答案为:12.15.已知关于x 的不等式log 2x <ax +2恰有一个整数解,则实数a 的取值范围是 (﹣2,−12] . 解:设f (x )=log 2x ,g (x )=ax +2,易知函数g (x )=ax +2恒过定点(0,2), 画出两个函数的图象,如图所示:若不等式log 2x <ax +2恰有一个整数解,则a <0,且{f(1)<g(1)f(2)≥g(2),即{0<a +21≥2a +2,解得﹣2<a ≤−12,即实数a 的取值范围是(﹣2,−12].故答案为:(﹣2,−12].16.我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数,有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )﹣b 为奇函数.(1)请你利用这个结论求得函数f (x )=x 3+3x 2的对称中心为 (﹣1,2). .(2)已知函数g(x)=−x+2x+1−x 3−3x 2与一次函数y =k (x +1)﹣3有两个交点M (x 1,y 1),N (x 2,y 2),则x 1+y 1+x 2+y 2= ﹣8 .解:(1)设点(a ,b )为函数f (x )=x 3+3x 2图象的对称中心,令g (x )=f (x +a )﹣b =(x +a )3+3(x +a )2﹣b ,则g (x )为奇函数,所以g (﹣x )=﹣g (x ),即(﹣x +a )3+3(﹣x +a )2﹣b =﹣(x +a )3﹣3(x +a )2+b , 可得,3(a +1)x 2+a 3+3a 2﹣b =0, 所以{a +1=0a 3+3a 2−b =0,解得{a =−1b =2, 所以函数f (x )=x 3+3x 2的对称中心为(﹣1,2).(2)若函数y =f (x )的图象关于点P (a ,b )成中心对称图形则函数y =f (x +a )﹣b 为奇函数, 所以f (﹣x +a )﹣b =﹣f (x +a )+b ,即f (﹣x +a )+f (x +a )=2b ,所以函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件可转化为f (﹣x +a )+f (x +a )=2b ,因为g(−1+x)=−(−1+x)+2−1+x+1−(−1+x)3−3(−1+x)2=3−xx−x 3+3x −2,g (−1−x)=−(−1−x)+2−1−x+1−(−1−x)3−3(−1−x)2=3+x −x+x 3−3x −2, 所以g (﹣1+x )+g (﹣1﹣x )=﹣6,即g(x)=−x+2x+1−x 3−3x 2对称中心为(﹣1,﹣3),因为函数y =k (x +1)﹣3的图像是恒过点(﹣1,﹣3)的直线, 所以交点M (x 1,y 1),N (x 2,y 2)的中点为(﹣1,﹣3), 所以x 1+x 22=−1,y 1+y 22=−3,即x 1+y 1+x 2+y 2=﹣2﹣6=﹣8.故答案为:(﹣1,2);﹣8.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知幂函数f (x )=(2m 2﹣m ﹣2)x m﹣1在定义域内单调递增.(1)求f (x )的解析式;(2)求关于x 的不等式f (x +1)<f (x 2﹣2x +3)的解集. 解:(1)由题意,令2m 2﹣m ﹣2=1,解得m =﹣1或m =32, 当m =﹣1时,f (x )=x ﹣2,不满足在定义域内单调递增;当m =32时,f (x )=x 12,满足在定义域内单调递增;f (x )的解析式为f (x )=x 12.(2)∵f (x )=x 12在[0,+∞)上单调递增,∴{x +1≥0x 2−2x +3≥0x +1<x 2−2x +3,解得x ∈[﹣1,1)∪(2,+∞).即关于x 的不等式f (x +1)<f (x 2﹣2x +3)的解集为[﹣1,1)∪(2,+∞).18.(12分)设a ∈R ,函数f(x)=2x−a 2x +a(a >0).(1)若函数y =f (x )是奇函数,求a 的值; (2)请判断函数y =f (x )的单调性,并用定义证明. 解:(1)若函数y =f (x )为奇函数,则f (﹣x )=﹣f (x ),f(−x)=2−x −a 2−x +a =1−a⋅2x 1+a⋅2x ,则1−a⋅2x 1+a⋅2x =a−2x 2x +a, 解得a =±1,由a >0,得a =1;(2)由(1)知f(x)=2x−12x +1=1−22x +1,函数为单调递增函数,证明如下:设x 1<x 2,f(x 1)−f(x 2)=2x1−12x 1+1−2x2−12x 2+1=2(2x1−2x2)(2x 1+1)(2x2+1), 因为x 1<x 2,所以2x 1<2x 2,即2x 1−2x 2<0且2x 1+1>0,2x 2+1>0, 所以f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), 所以函数y =f (x )在R 上为增函数.19.(12分)已知A ={x |log 2(x ﹣1)<1},B ={x |x 2+mx +n <0}. (1)若m =﹣6,n =8,求A ∩B ,A ∪B ; (2)若A ∪B ={x |1<x <4},求m 的取值范围. 解:(1)因为A ={x |log 2(x ﹣1)<1}={x |1<x <3}, 当m =﹣6,n =8时,B ={x |x 2﹣6x +8<0}={x |2<x <4},故A ∩B ={x |2<x <3},A ∪B ={x |1<x <4};(2)因为A ={x |1<x <3},B ={x |x 2+mx +n <0},且A ∪B ={x |1<x <4}, 所以4是方程x 2+mx +n =0的根,设另一个根为x 1, 则1≤x 1<3,所以5≤x 1+4=﹣m <7,解得﹣7<m ≤﹣5, 即m 的取值范围为(﹣7,﹣5].20.(12分)佩戴口罩能起到一定预防新冠肺炎的作用,某科技企业为了满足口罩的需求,决定开发生产口罩的新机器.生产这种机器的月固定成本为400万元,每生产x 台,另需投入成本p (x )(万元),当月产量不足70台时,p (x )=12x 2+40x (万元);当月产量不小于70台时,p (x )=101x +6400x−2060(万元).若每台机器售价100万元,且该机器能全部卖完. (1)求月利润y (万元)关于月产量x (台)的函数关系式; (2)月产量为多少台时,该企业能获得最大月利润?并求出其利润. 解:(1)当0<x <70时,y =100x ﹣(12x 2+40)﹣400=−12x 2+60x ﹣400,当x ≥70时,y =100x ﹣(101x +6400x −2060)﹣400=1660﹣(x +6400x). 所以利润y (万元)关于月产量x (台)的函数关系式为 y ={−12x 2+60x −400,0<x <70且x ∈N ∗1660−(x +6400x),x ≥70且x ∈N∗;(2)当0<x <70时,y =−12x 2+60x ﹣400=−12(x ﹣60)2+1400, 当x =60时,y 取得最大值为1400万元; 当x ≥70时,y =1660﹣(x +6400x )≤1660﹣2√x ⋅6400x=1500, 当且仅当x =6400x,即x =80时y 取最大值1500. 综上,当月产量为80台时,该企业能获得最大月利润,最大月利润为1500万元. 21.(12分)已知二次函数f (x )=x 2+2ax +2.(1)若∃x ∈[0,2],使等式f (2x )=0成立,求实数a 的取值范围. (2)解关于x 的不等式(a +1)x 2+x >f (x )(其中a ∈R ). 解:(1)x ∈[0,2]时,2x ∈[1,4], 所以f (2x )=(2x )2+2a •2x +2, 令t =2x ∈[1,4],设g(t)=t2+2at+2=0,可得2a=﹣t−2t,令y=﹣t−2t,则t在[1,√2]上单调递增,在(√2,4]单调递减,所以y max=−√222=−2√2,y min=min{﹣3,−92}=−92,所以a∈[−94,−√2].(2)不等式(a+1)x2+x>f(x),整理可得(ax+1)(x﹣2)>0,①当a=0时,不等式可得x﹣2>0,解得x>2;当a≠0,方程(ax+1)(x﹣2)=0,可得x=−1a或x=2,②当a>0时,(x+1a)(x﹣2)>0,又因为−1a<x<2,可得不等式的解集为{x|x<−1a或x>2};③当a<0时,则不等式为(x+1a)(x﹣2)<0,(i)当−1a=2,即a=−12,不等式为(x﹣2)2<0,则解集为∅;(ii)当−1a>2,即a<−12,则(x+1a)(x﹣2)<0,解集为{x|2<x<−1a};(iii)当−1a<2,即−12<a<0,则(x+1a)(x﹣2)<0,解集为{x|−1a<x<2}.综上所述:当a=0时,不等式解集为{x|x>2};a>0时,不等式的解集为{x|x<−1a或x>2};a=−12时,不等式的解集为∅;a<−12时,不等式的解集为{x|2<x<−1a};−12<a<0时,不等式的解集为{x|−1a<x<2}.22.(12分)对于函数f1(x),f2(x),如果存在一对实数a,b,使得f(x)=af1(x)+bf2(x),那么称f (x)为f1(x),f2(x)的亲子函数,(a,b)称为f(x)关于f1(x)和f2(x)的亲子指标.(1)已知f1(x)=2x﹣3,f2(x)=x+1,试判断f(x)=5x﹣5是否为f1(x),f2(x)的亲子函数,若是,求出其亲子指标;若不是,说明理由.(2)已知f1(x)=3x,f2(x)=9x,F(x)为f1(x),f2(x)的亲子函数,亲子指标为(﹣2m﹣2,m),是否存在实数m,使函数F(x)在x∈[0,log3154]上的最小值为﹣5,若存在,求实数m的值,若不存在,说明理由.解:(1)f (x )=5x ﹣5是f 1(x ),f 2(x )的亲子函数. 设存在一对实数a ,b ,使得f (x )=af 1(x )+bf 2(x ), 即5x ﹣5=a (2x ﹣3)+b (x +1)=(2a +b )x ﹣3a +b , ∴{2a +b =5−3a +b =−5,解得{a =2b =1,∴亲子指标(2,1).(2)由题意知:F (x )=(﹣2m ﹣2)3x +m 9x ,x ∈[0,log 3154], 令t =3x ,t ∈[1,154],则g (t )=mt 2﹣(2m +2)t ,∵F (x )在x ∈[0,log 3154]上的最小值为﹣5, ∴g (t )=mt 2﹣(2m +2)t 在[1,154]上的最小值为﹣5,当m =0时,g (t )=﹣2t 在[1,154]上的最小值为−152,不符合题意,故m ≠0; 当m <0时,g (t )是开口向下,对称轴为t =1+1m <1, ∴g (t )在[1,154]上单调递减,g (t )min =g (154)=m (154)2﹣(2m +2)×154=−5, 解得m =821(舍去); 当m >411时,g (t )是开口向上,对称轴为t =1+1m <154, ∴g (t )在[1,1+1m ]上单调递减,在[1+1m ,154]上单调递增,∴g (t )min =g (1+1m)=m (1+1m)2﹣(2m +2)×(1+1m)=﹣5, 即m 2﹣3m +1=0,解得m =3±√52; 当0<m ≤411时,g (t )是开口向上,对称轴为t =1+1m ≥154, ∴g (t )在[1,154]上单调递减,g (t )min =g (154)=m (154)2﹣(2m +2)×154=−5, 解得m =821>411(舍去); 综上所述,存在实数m =3±√52,使函数F (x )在x ∈[0,log 3154]上的最小值为﹣5.。

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。

第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

高一(上)期中数学试卷(含答案)

高一(上)期中数学试卷(含答案)

一、单选题。

(本大题共8小题,共40高一(上)期中数学试卷分。

在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。

湖北省宜昌市协作体2024-2025学年高一上学期期中考试数学试题含答案

湖北省宜昌市协作体2024-2025学年高一上学期期中考试数学试题含答案

宜昌市协作体高一期中考试数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“20,560x x x ∃>-+=”的否定是()A.20,560x x x ∀-+≠B.20,560x x x ∃>-+≠C.20,560x x x ∃-+≠D.20,560x x x ∀>-+≠2.已知集合{}3,1202A x x B xx ⎧⎫=<=->⎨⎬⎩⎭∣,则()A.12A B x x ⎧⎫⋃=<⎨⎬⎩⎭ B.A B ⋂=∅C.12A B x x ⎧⎫⋂=<⎨⎬⎩⎭D.A B ⋃=R3.函数y x=的定义域为()A.[]1,0- B.(](),10,∞∞--⋃+C.][(),10,∞∞--⋃+ D.[)1,0-4.设奇函数()f x 的定义域为[]5,5-,当[]5,0x ∈-时,函数()f x 的图象如图所示,则不等式()0f x <的解集为()A.()5,2--B.()0,2C.()()5,20,2--⋃ D.()()2,02,5-⋃5.下列选项中的两个函数表示同一函数的是()A.()2f x x -=与()2g x x=-B.()2f x x =与()22x g x x=C.()f x =与()πg x x =-D.()0,0,1,0x f x x =⎧=⎨≠⎩与()00,0,,0x g x x x =⎧=⎨≠⎩6.红灯笼,象征着阖家团圆,红红火火,挂灯笼是我国的一种传统文化.小明在春节前购进一种红灯笼,灯笼每对的进价为30元,若该灯笼每对售价50元时,每天可售出100对,售价每提高1元,则每天少售出1对.市场监管部门规定其销售单价不得高于每对68元,则该种灯笼一天获得的最大利润为()A.2816元B.3116元C.3276元D.3600元7.对于实数x ,规定[]x 表示不大于x 的最大整数,如[][]π3, 2.13=-=-,那么不等式[]24[]1670x x -+<成立的一个充分不必要条件是()A.[]1,3x ∈ B.17,22x ⎛⎫∈⎪⎝⎭C.[)1,4x ∈ D.[]0,4x ∈8.已知定义在[)0,∞+上的函数()f x 满足对[)1212,0,,x x x x ∞∀∈+≠,都有()()21212f x f x x x ->-,若()12024f =,则不等式()()202421013f x x ->-的解集为()A.()2023,∞+ B.()2024,∞+ C.()2025,∞+ D.()1012,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列所给命题中,是真命题的是()A.若a b >,则2a b >B.对2,10x x x ∀∈-+>RC.a ∃∈R ,使得()21f x ax x x=+-是奇函数D.偶数不能被3整除10.已知关于x 的不等式260x x a -+的解集中最多有1个整数,则整数a 的值可以是()A.8B.9C.10D.1111.若()(),11x f x f x ∀∈+=-R ,当1x 时,()24f x x x =-,则下列说法正确的是()A.()f x 的图象关于直线1x =对称B.()f x 的单调递增区间是()()0,12,∞⋃+C.()f x 的最小值为4-D.方程()0f x =的解集为()2,4-三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}21,2,1,A B k ⎧⎫==⎨⎬⎩⎭,若A B ⊆,则实数k 的值为__________.13.已知()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式为()f x =__________.14.2x a a +对任意的[]1,4x ∈恒成立,则实数a 的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合{26},{22}A xx B x m x m =-<<=-<<+∣∣.(1)若x B ∈成立的一个必要条件是x A ∈,求实数m 的取值范围;(2)若A B ⋂=∅,求实数m 的取值范围.16.(本小题满分15分)三叉戟是希腊神话中海神波塞冬的武器,而函数()2bf x ax x=+的图象恰如其形,因而得名三叉戟函数,因为牛顿最早研究了这个函数的图象,所以也称它为牛顿三叉戟.已知函数()2bf x ax x=+的图象经过点()2,8,且()20f -=.(1)求函数()f x 的解析式;(2)用定义法证明:()f x 在(),0∞-上单调递减.17.(本小题满分15分)为宣传村镇特点,助力乡村振兴,设计专业的大学生小王应某村委会要求,设计一个长为y 米,宽为x 米的矩形广告牌,使得该广告牌的面积等于一个长为()45x y ++米,宽为1米的矩形的面积.(1)求y 关于x 的函数;(2)若村委会要求广告牌的面积最小,小王应如何设计该广告牌?18.(本小题满分17分)设二次函数()()()223,f x ax b x a b =+-+∈R .(1)若关于x 的不等式()0f x >的解集为{}1xx ≠∣,求,a b 的值;(2)若()13f =,①0,0a b >>,求12aa b+的最小值,并指出取最小值时,a b 的值;②求函数()f x 在区间[]1,3上的最小值.19.(本小题满分17分)若函数()f x 在区间[],a b 上的值域恰为11,b a⎡⎤⎢⎥⎣⎦,则称区间[],a b 为()f x 的一个“倒域区间”.已知定义在[]2,2-上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)若关于x 的方程()g x mx m =--在()0,2上恰有两个不相等的根,求m 的取值范围;(3)求函数()g x 在定义域内的所有“倒域区间”.宜昌市协作体高一期中考试•数学参考答案、提示及评分细则1.D因为20,560x x x ∃>-+=,所以其否定为20,560x x x ∀>-+≠.故选D.2.C 因为集合{}31,12022A x x B xx x x ⎧⎫⎧⎫=<=->=<⎨⎬⎨⎬⎩⎭⎩⎭∣,所以13,22A B x x A B x x ⎧⎫⎧⎫⋂=<⋃=<⎨⎨⎬⎩⎭⎩⎭.故选C.3.B 由20,0x x x ⎧+⎨≠⎩解得0x >或1x -.故选B.4.D因为函数()f x 是奇函数,所以()f x 在[]5,5-上的图象关于坐标原点对称,由()f x 在[]5,0x ∈-上的图象,知它在[]0,5上的图象如图所示,则不等式()0f x <的解集为()()2,02,5-⋃.故选D.5.D 由同一个函数的定义域相同可排除A ,B ;由同一函数的解析式相同可排除C.故选D.6.B 设红灯笼每对售价提高x 元,一天获得利润为y 元.由题意得()()225030*********(40)3y x x x x x =+--=-++=--+600.因为销售单价不高于每对68元,所以18x ,所以当18x =时,即该种灯笼的销售单价为68元时,一天获得利润最大,最大值为3116元.故选B.7.A由[]24[]1670x x -+<,得[]()[]()21270x x --<,解得[]1722x <<,因此[]1x =或[]2x =或[]3x =,又因为[]x 表示不大于x 的最大整数,所以14x <.只有选项A 满足要求.故选A.8.C 因为()()21212f x f x x x ->-,所以()()221121220f x x f x x x x ⎡⎤⎡⎤---⎣⎦⎣⎦>-,不妨设210x x >,则210x x ->,所以()()2211220f x x f x x ⎡⎤⎡⎤--->⎣⎦⎣⎦.令()()2g x f x x =-,则()g x 为[)0,∞+上的增函数,因为()()202421013f x x ->-,所以()()2024220242022f x x --->,因为()12024f =,所以()()1122022g f =-=,所以()()20241g x g ->,所以2025x >,即不等式的解集为()2025,∞+.故选C.9.BC 对于A ,1123>成立,但21123⎛⎫> ⎪⎝⎭不成立,A 错误;对于22133B,10244x x x ⎛⎫-+=-+> ⎪⎝⎭,B 正确;对于C ,当0a =时,()1f x x x=-是奇函数,C 正确;对于D ,6是偶数,能被3整除,D 错误.故选BC.10.BCD设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的不等式260x x a -+的解集中最多有1个整数时,需满足()30f 或()()20,30,f f ⎧>⎪⎨<⎪⎩即9a 或222620,3630,a a ⎧-⨯+>⎨-⨯+<⎩解得8a >,又因为,a ∈Z 所以9a =或10或11满足题意.故选BCD.11.AC 由()(),11x f x f x ∀∈+=-R 可知()(),2x f x f x ∀∈=-R ,可知()f x 关于直线1x =对称.当1x 时,()224(2)4f x x x x =-=--,当1x <时,()2221,2(22)44x f x x x ->-=---=-,所以()f x =224,1,4,1,x x x x x ⎧-⎨-<⎩作出()f x 的图象,所以()f x 的单调递增区间是()0,1和()()min 2,,()4,0f x f x ∞+=-=的解集为{}2,4-,故AC 正确,BD 错误.故选AC.12.1 集合{}21,2,1,,,A B A B k ⎧⎫==⊆∴⎨⎬⎩⎭由子集的概念可知22k =,解得1k =.13.32x +或34x --设()()0f x kx b k =+≠,由题意可知()()()298f f x k kx b b k x kb b x =++=++=+,所以29,8,k kb b ⎧=⎨+=⎩解得3,2k b =⎧⎨=⎩或3,4,k b =-⎧⎨=-⎩所以()32f x x =+或()34f x x =--.14.][(),21,∞∞--⋃+2x a a -+,2a a +,设()[]1,4f x x =∈,可知()f x 在[]1,4上单调递减,所以()max 8()124f x f ====,所以22a a +,解得2a -或1a ,故实数a 的取值范围为][(),21,∞∞--⋃+.15.解:(1)x A ∈ 是x B ∈的一个必要条件,B A ∴⊆,显然B ≠∅,26m ∴+,且22m --,解得04m ,即m 的取值范围为{}04mm ∣.(2)若A B ⋂=∅,26m ∴-,或22m +-,解得8m ,或4m -,即m 的取值范围为{4m m -∣,或8}m .16.(1)解:由题意可知48,240,2b a b a ⎧+=⎪⎪⎨⎪-=⎪⎩解得1,8a b ==,故()()280f x x x x=+≠.(2)证明:()12,,0x x ∞∀∈-,且12x x <,则()()222212121212128888f x f x x x x x x x x x ⎛⎫-=+-+=-+- ⎪⎝⎭()()()211212128x x x x x x x x -=-++()()1212128x x x x x x ⎡⎤=-+-⎢⎥⎣⎦()121212128x x x x x x x x -⎡⎤=⋅+-⎣⎦.由()12,,0x x ∞∈-且12x x <,得1212120,0,0x x x x x x >-<+<,所以()121212120,80x x x x x x x x -<+-<,所以()1212121280x x x x x x x x -⎡⎤⋅+->⎣⎦,则()()120f x f x ->,即()()12f x f x >,故()f x 在(),0∞-上单调递减.17.解:(1)由题意可知,()450,0xy x y x y =++>>,所以()145x y x -=+,又0,450y x >+>,所以1x >,所以()4511x y x x +=>-.(2)法一:由455xy x y =+++,得50xy --,51-(舍去),所以25xy ,当且仅当5,102x y ==时,取得等号.故小王设计的广告牌是长为10米,宽为52米的矩形,满足村委会要求.法二:()24594113132511x x s xy x x x +===-+++=--,当且仅当()9411x x -=-,即52x =时等号成立,此时10y =,故小王设计的广告牌是长为10米,宽为52米的矩形,满足村委会要求.18.解:(1)由()0f x >的解集为{}1xx ≠∣,得方程()0f x =有两个相等的根1,且0a >,由根与系数的关系可得311,211,ab a ⎧⨯=⎪⎪⎨-⎪+=-⎪⎩解得30,4.a b =>⎧⎨=-⎩(2)由()13f =得2a b +=,①0,0a b >>,所以()1211212222a a b a a b a b a b a b+=⋅⋅++=++1522+=当且仅当22b a a b =,即24,33a b ==时取等号,故当24,33a b ==时,12a a b +取得最小值是52.②由于2a b +=,得2a b =-,则()23f x ax ax =-+,函数()23f x ax ax =-+的图象的对称轴为12x =,当0a >时,()f x 在区间[]1,3上单调递增,则()f x 的最小值为()13f =;当0a <时,()f x 在区间[]1,3上单调递减,则()f x 的最小值为()363f a =+.19.解:(1)当[)2,0x ∈-时,则(]0,2x -∈,由奇函数的定义可得()()()22()22g x g x x x x x ⎡⎤=--=---+-=+⎣⎦,所以()222,02,2,20.x x x g x x x x ⎧-+=⎨+-<⎩.(2)方程()g x mx m =--即()220x m x m -+-=,设()()22,02h x x m x m x =-+-<<,由题意知()()200,230,Δ(2)40,202,2h m h m m m m ⎧=->⎪=->⎪⎪⎨=++>⎪+⎪<<⎪⎩解得40m <<.(3)因为()g x 在区间[],a b 上的值域恰为11,b a⎡⎤⎢⎥⎣⎦,其中a b ≠且0,0a b ≠≠,所以,11,a b b a<⎧⎪⎨<⎪⎩则,0,a b ab <⎧⎨>⎩所以02a b <<或20a b -<<.①当02a b <<时,因为函数()g x 在[]0,1上单调递增,在[]1,2上单调递减,故当[]0,2x ∈时,()max ()11g x g ==,则11a,所以12a <,所以12a b <,则()()2212,12,12,g b b b bg a a a a a b ⎧=-+=⎪⎪⎪=-+=⎨⎪<⎪⎪⎩解得1,1,2a b =⎧⎪⎨+=⎪⎩所以()g x 在[]1,2内的“倒域区间”为151,2⎡+⎢⎥⎣⎦;②当20a b -<<时,()g x 在[]2,1--上单调递减,在[]1,0-上单调递增,故当[]2,0x ∈-时,()min ()11g x g =-=-,所以11b-,所以21b -<-,所以21a b -<-,则()()2212,12,21,g a a a ag b b b b a b ⎧=+=⎪⎪⎪=+=⎨⎪-<-⎪⎪⎩解得15,21,a b ⎧=-⎪⎨⎪=-⎩所以()g x 在[]2,1--内的“倒域区间”为15,12⎡⎤---⎢⎥⎣⎦.综上所述,函数()g x 在定义域内的“倒域区间”为151,2⎡+⎢⎥⎣⎦和15,12⎡⎤---⎢⎥⎣⎦.。

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

塘沽一中2024—2025学年度第一学期高一年级期中考试数学学科试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间100分钟,试卷共4页。

卷Ⅰ答案用2B 铅笔填涂在答题纸上对应区域,卷Ⅱ答案用黑色字迹的笔答在答题纸规定区域内。

第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知集合,,则( )A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.如果a ,b ,c ,,则正确的是( )A.若,则B.若,,则C.若,则D.若,,则4.设a ,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,且在上单调递减的是( )A. B. C. D.6.已知,,,则( )A. B. C. D.7.已知函数的部分图象如下图所示,则的解析式可能为( ){}|2A x x =<}2,1,0,1,{,23B =--()R A B = ð{}3{}2;3}0,1,2,3{}2,1,{0,1,2--0x ∃>2310x x -->0x ∀>2310x x --≤0x ∀≤2310x x --≤0x ∃>2310x x --≤0x ∃≤2310x x --≤R d ∈a b >11a b<a b >c d >a c b d ->-22ac bc >a b>a b >c d >ac bd>R b ∈22a b =1133ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()0,+∞2y x =1y x =+231y x =+21y x =32log 3a =0.23b =23log 2c =a b c>>b a c >>c b a>>b c a>>()f x ()f xA. B. C. D.8.函数的零点所在区间为( )A. B. C. D.9.已知国内某人工智能机器人制造厂在2023年机器人产量为300万台,根据市场调研和发展前景得知各行各业对人工智能机器人的需求日益增加,为满足市场需求,该工厂决定以后每一年的生产量都比上一年提高,那么该工厂到哪一年人工智能机器人的产量才能达到900万台(参考数据:,)( )A.2029年B.2030年C.2031年D.2032年10.设正实数x ,y 满足,则( )A.的最大值是B.的最小值为4C.最小值为2D.最小值为211.对任意的函数,都有,,且当时,,若关于x 的方程;在区间内恰有10个不等实根,则实数a 的取值范围是( )A. B. C. D.12.已知函数的定义域是,对,都有,且当时,,且,则下列说法中正确的个数为( )①②函数在上单调递增③④满足不等式的x 的取值范围为()e e 43x xf x x --=-()e e 34x xf x x--=-()e e 48x xf x x -+=-()1x f x x =-()1ln 3xf x x ⎛⎫=- ⎪⎝⎭()0,1()1,2()2,e ()e,320%lg 20.30≈lg 30.48≈22x y +=xy 14112x y+224x y +212x y x+R x ∈()f x ()()f x f x -=()()2f x f x =+[]1,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭()log 0a f x x -=[]10,10-()3,5()5,7[]5,7[]3,5()f x ()0,+∞x ∀()0,y ∈+∞()()()f x y f x f y ⋅=+1x >()0f x >113f ⎛⎫=- ⎪⎝⎭()10f =()f x ()0,+∞()()()()1111123202220230232022220222023f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()22f x f x --≥92,4⎛⎤ ⎥⎝⎦A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每小题5分,双空题答对一个给3分,共30分)13.已知函数,则函数的定义域为____________.14.____________。

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京市2024~2025学年第一学期期中考试高一学科:数学(答案在最后)2024年10月(考试时间120分钟满分150分)提示:试卷答案请一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色签字笔作答.一、选择题(本大题共12小题,每小题3分,共36分)1.已知集合{}1,0,1,2,3U =-,{}13,N A x x x =-<<∈,则U A =ð()A.{}1,3-B.{}1,2C.{}1,0,3- D.{}0,1,2【答案】A 【解析】【分析】首先求解集合A ,再根据补集的定义即可得出答案.【详解】因为{}{}13,N 0,1,2A x x x =-<<∈=,{}1,0,1,2,3U =-,所以{}1,3U A =-ð.故选:A.2.下列函数中是偶函数的是()A.4(0)y x x =<B.221y x =+C.31y x =- D.1y x =+【答案】B 【解析】【分析】根据奇偶性的定义对各个选项逐一判断即可得出答案.【详解】解:对于A ,因为函数4(0)y x x =<的定义域不关于原点对称,所函数不具有奇偶性,故A 不符题意;对于B ,函数()221y f x x ==+的定义域为R ,()()221f x f x x -==+,所以函数为偶函数,故B 符合题意;对于C ,函数()31y f x x ==-的定义域为R ,()()31f x x f x -=--≠,所以函数不是偶函数,故C 不符题意;对于D ,函数()1y f x x ==+的定义域为R ,因为()()1012f f -=≠=,所以函数不是偶函数,故D 不符题意.故选:B.3.已知,,a b c ∈R ,且a b >,则下列不等式正确的是()A.ac bc >B.22a b >C.33a b > D.11a b<【答案】C 【解析】【分析】根据特值法可排除A ,B ,D ,根据3y x =在R 上单调递增,可判断C 项.【详解】当0c =时,ac bc =,故A 错误;当1a =-,2b =-时,22a b <,故B 错误;因为3y x =在R 上单调递增,且a b >,所以33a b >,故C 正确;当1a =,1b =-时,11a b>,故D 错误.综上,正确的为C .故选:C .4.函数3xy =的大致图象是()A. B.C. D.【答案】B 【解析】【分析】根据函数的值域,以及指数函数的图象特征,即可判断选项.【详解】0x ≥,所以31x≥,排除AC ,且3,033,0x xx x x -⎧≥=⎨<⎩,排除D.故选:B5.若奇函数()f x 在区间[]3,7上是增函数,且最小值为5,则它在区间[]7,3--上是()A.增函数且有最大值5-B.增函数且有最小值5-C.减函数且有最大值5-D.减函数且有最小值5-【答案】A 【解析】【分析】根据奇偶函数的性质直接得出结果.【详解】因为函数()f x 在区间[3,7]上是增函数,且有最小值5,所以(3)5f =,又()f x 为奇函数,所以函数()f x 在区间[7,3]--上是增函数,且有最大值(3)(3)5f f -=-=-.故选:A6.随着我国经济的不断发展,2023年年底某地区农民人均年收入为7000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2030年年底该地区的农民人均年收入为()A.70001.067⨯⨯元B.770001.06⨯元C.70001.068⨯⨯元D.870001.06⨯元【答案】B 【解析】【分析】根据指数增长模型计算即可.【详解】设经过x 年,该地区的农民人均年收入为y 元,根据题意可得7000 1.06x y =⨯,从2023年年底到2030年年底共经过了7年,所以2030年年底该地区的农民人均年收入为770001.06⨯元.故选:B.7.已知0a >,则41a a++的最小值为()A.1-B.3C.4D.5【答案】D【解析】【分析】根据基本不等式求解即可.【详解】因为0a >,根据基本不等式可得441115a a a a ++=++≥+=,当且仅当4a a=,即2a =时,等号成立;所以41a a++的最小值为5,故选:D.8.如图,已知全集U =R ,集合{}2340A x x x =-->,{}0B x x =>,则图中阴影部分表示的集合为()A.{}0x x ≤ B.{}1x x ≥- C.{}10x x -≤≤ D.{}04x x x 或【答案】C 【解析】【分析】解不等式化简集合A ,再结合韦恩图求出阴影部分表示的集合.【详解】依题意,集合{|1A x x =<-或}4x >,而{}0B x x =>,则|1{A B x x =<- 或}0x >,由韦恩图知,图中阴影部分表示的集合为(){|10}U A B x x =-≤≤ ð.故选:C.9.“01a <≤”是“关于x 的不等式2210ax ax -+≥对R x ∀∈恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先求不等式恒成立时a 的取值范围,再根据集合的关系,即可判断.【详解】不等式2210ax ax -+≥对R x ∀∈恒成立,当0a =时,10≥恒成立,当0a ≠时,2Δ440a a a >⎧⎨=-≤⎩,得01a <≤,所以01a ≤≤,所以“01a <≤”是“关于x 的不等式2210ax ax -+≥对R x ∀∈恒成立”的充分不必要条件.故选:A10.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A.(]0,3 B.[)2,+∞ C.()0,∞+ D.[]2,3【答案】D 【解析】【分析】由题意可知函数()f x 在R 上递减,结合分段函数单调性列式求解即可.【详解】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得:23a ≤≤,所以a 的取值范围是[]2,3.故选:D.11.函数()221,21,2x x f x x x ⎧-<-=⎨-≥-⎩的值域为()A.31,4⎛⎫--⎪⎝⎭B.[)1,-+∞C.(),-∞+∞ D.31,4⎡⎫--⎪⎢⎣⎭【答案】C 【解析】【分析】由指数函数与二次函数的图象与性质即可得到函数的值域【详解】当2x -<时,()21xf x =-因为函数2x y =在(),2-∞-上单调递增,所以函数21x y =+在(),2-∞-上单调递增,又20x >所以()31,4f x ⎛⎫∈--⎪⎝⎭;当2x ≥-时,()()[]21,1,f x x f x =-∈-+∞,所以,()f x 的值域为[)1,-+∞.故选:B.12.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M N ⋃=Q ,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴德金分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是()A .M 没有最大元素,N 有一个最小元素B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】本题目考察对新概念的理解,举具体的实例证明成立即可,A,B,D 都能举出特定的例子,排除法则说明C 选项错误【详解】若{},0M x Q x =∈<,{},0N x Q x =∈≥;则M 没有最大元素,N 有一个最小元素0;故A 正确;若{,M x Q x =∈<,{,N x Q x =∈≥;则M 没有最大元素,N 也没有最小元素;故B 正确;若{},0M x Q x =∈≤,{},0N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;M 有一个最大元素,N 有一个最小元素不可能,故C 不正确.故选:C二、填空题(本大题共10个小题,每小题4分,共40分)13.函数()0f x -=的定义域为______.【答案】11,,222⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】根据函数的形式,列不等式,即可求解.【详解】函数的定义域需满足 ㌴㌴ ,得2x <且12x ≠,所以函数的定义域为11,,222∞⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:11,,222∞⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭14.关于a 的不等式的220a -<解集是______.【答案】{a a <<【解析】【分析】因式分解后,即可求解不等式.【详解】(2200a a a -<⇔+-<,得a <<,所以不等式的解集为{a a <<.故答案为:{a a <<15.计算:()33log 927+-=______.【答案】19681-【解析】【分析】根据对数公式和指数运算公式,即可求解.【详解】()33log 92721968319681+-=-=-.故答案为:19681-16.命题“∀x >0,x 2+2x -3>0”的否定是______.【答案】∃x 0>0,x 02+2x 0-3≤0【解析】【分析】根据含有量词的命题的否定即可得到结论.【详解】命题为全称命题,则命题“∀x >0,x 2+2x -3>0”的否定是为∃x 0>0,x 02+2x 0-3≤0,故答案为∃x 0>0,x 02+2x 0-3≤0.【点睛】本题主要考查含有量词的命题的否定,比较基础.17.已知()21g x x =-,当[]2,6x ∈时,函数()g x 的最小值是______,最大值是______.【答案】①.25##0.4②.2【解析】【分析】先判断函数单调性,再根据单调性求最值.【详解】[]12,2,6x x ∀∈,且12x x <,()()()()()211212122221111x x g x g x x x x x --=-=----,因为[]2,6x ∈,12x x <,所以21120,10,10x x x x ->->->,所以()()120g x g x ->,即()()12g x g x >,所以()g x 在[]2,6上为减函数,则()()()()min max 26,225g x g g x g ====,故答案为:25,2.18.如图是一份纸制作的矩形的宣传单,其排版面积(矩形ABCD )为P ,两边都留有宽为a 的空白,顶部和底部都留有宽为2a 的空白.若2cm a =,2800cm P =,则当AB =______时,才能使纸的用量最少,最少的纸的用量是______.【答案】①.20cm②.21152cm 【解析】【分析】首先设cm AB x =,再根据条件,用x 表示用纸的用量,列式后再用基本不等式,即可求解.【详解】设cm AB x =,纸的用量为S ,则800cm AD x=,所以()()8008002448S x a a x x x ⎛⎫⎛⎫=++=++⎪ ⎪⎝⎭⎝⎭,232003200832883281152cm x x x x=++≥+⋅,当32008x x=时,即20cm x =,所以当20cm AB =时,最少的纸的用量为21152cm .故答案为:20cm ;21152cm 19.函数()2f x x x =-+的单调递增区间是______.【答案】1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦【解析】【分析】首先去绝对值,将函数写成分段函数的形式,再结合二次函数的单调性,即可求解.【详解】()22,0,0x x x f x x x x ⎧-+≥=⎨--<⎩,当0x ≥时,221124y x x x ⎛⎫=-+=--+ ⎪⎝⎭,10,2⎡⎤⎢⎥⎣⎦是函数的单调递增区间,当0x <时,221124y x x x ⎛⎫=--=-++ ⎪⎝⎭,1,2⎛⎤-∞- ⎥⎝⎦是函数的单调递增区间,所以函数的单调递增区间是1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦.故答案为:1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦20.函数10.52x y =+的值域是______.【答案】10,2⎛⎫⎪⎝⎭【解析】【分析】利用指数函数的值域可得0.522x +>,再利用不等式的性质即可求解.【详解】因为函数10.52xy =+定义域为R ,又0.50x >,所以0.522x +>,所以1100.522x <<+,即10,2y ⎛⎫∈ ⎪⎝⎭,故答案为:10,2⎛⎫⎪⎝⎭.21.已知函数()243f x x x =-+,()32g x mx m =+-,若对任意[]10,4x ∈,总存在[]20,4x ∈,使()()11220f x x g x +-=成立,则实数m 的取值范围为______.【答案】(][),44,-∞-⋃+∞【解析】【分析】由题意可得两个函数的值域的包含关系,进而可列关于m 的不等式,求解即可.【详解】因为对任意[]10,4x ∈,总存在[]20,4x ∈,使()()11220f x x g x +-=成立,即()()2112g x f x x =+成立,设()()()2222312h x f x x x x x -+=-+=+=,因为[]0,4x ∈,所以()[]2,11h x ∈,当0m =时,()3g x =,不符合题意;当0m >时,可得()[]32,23g x m m ∈-+,则3222311m m -≤⎧⎨+≥⎩,解得4≥m ;当0m <时,可得()[]23,32g x m m ∈+-,则2323211m m +≤⎧⎨-≥⎩,解得4m ≤-;综上所述,实数m 的取值范围为(][),44,-∞-⋃+∞.故答案为:(][),44,-∞-⋃+∞.22.已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图象的m 个交点为()()()1122,,,,,,m m x y x y x y ⋅⋅⋅,则()()()1122m m x y x y x y ++++⋅⋅⋅++的值是______.【答案】m【解析】【分析】首先判断两个函数的对称性,再根据对称性,确定交点的对称性,即可求解.【详解】由条件()()2f x f x -=-得,()()2f x f x -+=,所以()y f x =关于点()0,1对称,111x y x x +==+关于点()0,1对称,所以函数1x y x+=与()y f x =图象的m 个交点有2m 对关于点()0,1对称,所以123...0m x x x x ++++=,12...22m m y y y m +++=⨯=,所以()()()1122m m x y x y x y m ++++⋅⋅⋅++=.故答案为:m三、解答题:本大题有5小题,共74分.解答应写出文字说明,证明过程或演算步骤.23.记全集U =R ,集合{}221,A x a x a a =-≤≤+∈R ,{}37B x x x =≤≥或.(1)若2a =,求A B ⋂,U B ð;(2)若A B ⋃=R ,求a 的取值范围;(3)若A B A = ,求a 的取值范围.【答案】(1){}|03A B x x ⋂=≤≤,{}|37U B x x =<<ð(2){}|35a a ≤≤(3){|1a a ≤或}9a ≥【解析】【分析】(1)根据交集和补集的运算即可求解;(2)根据题意可得到有关a 的一个方程组,求解即可;(3)分A =∅和A ≠∅两种情况求解即可.【小问1详解】若2a =,则{}05A x x =≤≤,又{3B x x =≤或7}x ≥,则{}|03A B x x ⋂=≤≤,{}|37U B x x =<<ð;【小问2详解】集合{}221,A x a x a a =-≤≤+∈R ,{3B x x =≤或7}x ≥,A B ⋃=R ,所以23217a a -≤⎧⎨+≥⎩,解得35a ≤≤,所以a 的取值范围为{}|35a a ≤≤;【小问3详解】因为A B A = ,则A B ⊆,{}221,A x a x a a =-≤≤+∈R ,{3B x x =≤或7}x ≥,当A =∅时,221a a ->+,解得3a <-;当A ≠∅时,221213a a a -≤+⎧⎨+≤⎩或22127a a a -≤+⎧⎨-≥⎩,解得31a -≤≤或9a ≥,综上,若A B A = ,求a 的取值范围为{|1a a ≤或}9a ≥.24.已知函数()22f x x mx =-(1)当[]0,1x ∈,()f x 的最大值为3,求实数m 的值.(2)当11t -≤≤时,若不等式()22f t t >-恒成立,求实数m 的取值范围.【答案】(1)1m =-(2)51|22m m ⎧⎫-<<⎨⎬⎩⎭【解析】【分析】(1)根据二次函数的性质,分情况讨论即可;(2)先根据不等式得到()22220t m t -++>在[]1,1t ∈-上恒成立,令()()2222h t t m t =-++,分析该函数对称轴与区间的关系,只需让区间上最小值大于零即可.【小问1详解】已知()()2222f x x mx x m m =-=--,当0m ≤时,函数()f x 在[]0,1x ∈上递增,所以()()max 1123f x f m ==-=,解得1m =-;当1m ≥时,函数()f x 在[]0,1x ∈上递减,所以()()max 003f x f ==≠,矛盾;当01m <<时,函数()f x 在[)0,x m ∈上递减,在[],1m 上递增,所以()()max 003f x f ==≠或()()max 1123f x f m ==-=,解得1m =-,均不符合题意;综上1m =-;【小问2详解】当11t -≤≤时,若不等式()22f t t >-恒成立,即2222t mt t ->-在[]1,1t ∈-上恒成立,即()22220t m t -++>在[]1,1t ∈-上恒成立,令()()2222h t t m t =-++,该函数对称轴为1t m =+,①当11m +≥,即0m ≥时,函数()h t 在[]1,1t ∈-上递减,只需让()()min 10h t h =>即可,则()()112220h m =-++>,解得12m <,即102m ≤<;②当111m -<+<,即20m -<<时,此时()()()()()2min 1122120h t h m m m m =+=+-+++>,解得11m -<<-,即20m -<<;③当11m +≤-,即2m ≤-时,函数()h t 在[]1,1t ∈-上递增,此时()()112220h m -=+++>,解得52m >-,即522m -<≤-;综上m 的取值范围为51|22m m ⎧⎫-<<⎨⎬⎩⎭.25.为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过123m 的部分3元/3m 超过123m 但不超过183m 的部分6元/3m 超过183m 的部分9元/3m (1)求出每月用水量和水费之间的函数关系;(2)若某户居民某月交纳的水费为54元,则此月此户居民的用水量为多少?【答案】(1)3,012636,1218990,18x x y x x x x ⎧⎪=-<⎨⎪->⎩(2)153m 【解析】【分析】(1)先分别求出每一段的函数解析式,再写成分段函数的形式即可;(2)由(1)分012x ,1218x <,18x >三种情况讨论即可的解.【小问1详解】解:当012x 时,3y x =,当1218x <时,3126(12)636y x x =⨯+⨯-=-,当18x >时,312669(18)990y x x =⨯+⨯+⨯-=-,y ∴关于x 的函数解析式为:3,012636,1218990,18x x y x x x x ⎧⎪=-<⎨⎪->⎩;【小问2详解】解:当012x 时,354y x ==,解得18x =舍去,当1218x <时,63654y x =-=,解得15x =,当18x >时,99054y x =-=,解得16x =舍去,综上所述,若某户居民某月交纳的水费为54元,则此月此户居民的用水量为153m .26.已知函数()21ax b f x x +=+是定义在 上的奇函数,且1225f ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的解析式以及零点.(2)判断并用函数单调性的定义证明()f x 在 t 的单调性.(3)根据前面所得的结论在所给出的平面直角坐标系上,作出()f x 在定义域 上的准确示意图.【答案】(1)()21x f x x =-+,零点为0(2)函数()21x f x x =-+在[]1,0x ∈-上单调递减,证明见详解;(3)图象见详解.【解析】【分析】(1)根据奇函数的性质和1225f ⎛⎫=-⎪⎝⎭可解得a ,b 的值,即可得函数的解析式;令()0f x =可解得函数的零点;(2)利用函数单调性的定义证明即可;(3)根据函数的性质画出函数的图象即可.【小问1详解】因为函数()21ax b f x x +=+是定义在 上的奇函数,所以()00f =,解得0b =,又1225f ⎛⎫=- ⎪⎝⎭,即21225112a =-⎛⎫+ ⎪⎝⎭,解得1a =-,所以()21x f x x =-+,令()0f x =得201x x -=+,解得0x =,即函数的零点为0;【小问2详解】函数()21x f x x =-+在[]1,0x ∈-上单调递减;证明:设1210x x -≤<≤,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-+=++++,因为1210x x -≤<≤,所以120x x -<,1210x x -<,㌴㌴ ,所以 ㌴ ㌴,即()()12f x f x >,所以函数()21x f x x =-+在[]1,0x ∈-上单调递减;【小问3详解】函数()f x 的图像如下:27.设集合A 为非空数集,定义{}|,,A x x a b a b A +==+∈,{}|,,A x x a b a b A -==-∈.(1)若{}1,1A =-,写出集合A +、A -;(2)若{}1234,,,A x x x x =,1234x x x x <<<,且A A -=,求证:1423x x x x +=+;(3)若{}|02021,N A x x x ⊆≤≤∈,且AA +-=∅ ,求集合A 元素个数的最大值.【答案】(1){}2,0,2A +=-,{}0,2A =(2)证明见解析(3)1348【解析】【分析】(1)根据定义{}|,,A x x a b a b A +==+∈,{}|,,A x x a b a b A -==-∈,直接求解即可,(2)由题意利用集合A 中的元素间的关系及可证明,(3)由题意建立集合间的关系,并列出不等式求k 的范围,即可求出最大值.【小问1详解】由题意,得{}2,0,2A +=-,{}0,2A =,【小问2详解】证明:因为{}1234,,,A x x x x =,1234x x x x <<<,且A A -=,所以集合A -也有四个元素,且都为非负数,因为12||0x x A --=∈,又因为A A -=,所以0A ∈且10x =,所以集合A -中其他元素为220x x -=,330x x -=,440x x -=,即{}2131410,,,}A x x x x x x -=---,剩下的324321x x x x x x -=-=-,因为1324240x x x x x x =<-<-<,所以322x x x -=,423x x x -=即4231x x x x -=-,即1423x x x x +=+,所以1423x x x x +=+【小问3详解】设{}123,,,,k A a a a a = ,满足题意,其中123k a a a a <<<< ,因为11213123122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+< ,所以21A k +≥-,因为1121311k a a a a a a a a -<-<-<<- ,所以||A k -≥,因为A A +-=∅ ,所以31A A A A k +-+-⋃=+≥-,A A +- 中最小的元素为0,最大的元素为2k a ,所以*21,31214043(N ),1348k k A A a k a k k +-⋃≤+-≤+≤∈≤,实际当{}674,675,676,,2020A = ,时满足题意,证明如下:设{},1,2,2021A m m m =++ ,N m ∈,则{}2,21,22,4040A m m m +=++ ,{}0,1,2,2020A m -=- ,由题意得20202m m -<,即16733m >,故m 的最小值为674.即{}674,675,676,,2021A = 时,满足题意,综上所述,集合A 中元素的个数为202167411348-+=(个).【点睛】关键点点睛:本题第三问的关键是能够结合题意得到*21,31214043(N ),1348k k A A a k a k k +-⋃≤+-≤+≤∈≤,进而证明{}674,675,676,,2021A = 符合题意.。

2024-2025学年喀什市高一数学第一学期期中质量监测试卷附答案解析

2024-2025学年喀什市高一数学第一学期期中质量监测试卷附答案解析

2024-2025学年喀什市高一数学第一学期期中质量监测试卷时间:120分钟满分:150分一、单选题(每小题5分,共40分)1.下列元素的全体不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10的三角形2.下列关系中正确的是()A.{0}=∅B.{(,)}{(,)}a b b a ⊆C.{0,1}{(0,1)}⊆ D.{0}∅⊆3.下列元素与集合的关系判断正确的是()A.0∈NB.π∈QC.∈QD.-1∉Z4.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = ()A.{0,2}B.{1,2}C.{0}D.{2,1,0,1,2}--5.满足“闭合开关1K ”是“灯泡R 亮”的充要条件的电路图是()A. B. C. D.6.已知a b >,c d >,且c ,d 均不为0,那么下列不等式一定成立的是()A.ad bc >B.ac bd >C .a cb d->- D.a c b d+>+7.若0x >,则40x x+>的最小值为()A.0B.1C.2D.48.一元二次不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为()A.30k -<<B.30k -≤<C.3k <- D.0k <二、多选题(每小题5分,共20题,全部选对得5分,选对但不全的得2分,有选错得得0分)9.已知集合A={2,3},B={x|mx-6=0},若B ⊆A ,则实数m 可以是()A.3或2B.1C.0D.-110.下列说法中正确的有()A.不等式a b +≥恒成立B.存在a ,使得不等式12a a+≤成立C.若0a >,0b >,则2b a a b+≥ D.若a ,b 为实数,则222a b ab+<11.如图,二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),下列说法正确的是()A.c <0B.b 2﹣4ac <0C.x =3时函数y =ax 2+bx +c 取最小值D.图像的对称轴是直线x =312.取整函数:[]x =不超过x 的最大整数,如[1.2]1=,[2]2=, 1.22[]-=-.取整函数在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照"取整函数"进行计费的.以下关于“取整函数”的性质是真命题的有()A.R x ∀∈,[2]2[]x x =B .R x ∃∈,[2]2[]x x =C.x ∀,R y ∈,[][]x y =,则1x y -<D.R x ∀∈,1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦三、填空题(每小题5分,共20题)13.集合{}04A x x =∈<<N 的子集个数__________.14.“实数的平方大于等于0”用符号表示为__________.15.不等式2101x x -<+的解集是_______.(结果用集合或区间表示)16.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.四、解答题(共70分)17.比较下列各题中两个代数式的大小:(1)226x x ++与(3)(1)x x +-;(2)222xy ++与2(22)x y +-.18.写出下列命题的否定,并判断它们的真假:(1)a ∀∈R ,一元二次方程210x ax --=有实根;(2)每个正方形都是平行四边形;(3)m N N ∃∈;(4)存在一个四边形ABCD ,其内角和不等于360 .19.求下列不等式的解集:(1)2144x x -;(2)214450x x -+≤;(3)26100x x ++>;(4)(2)(3)1x x x x +>-+.20.已知全集{}4,1,0,1,2,4U =--,{}|03M x x =∈≤<Z ,{}220N xx x =--=∣(1)求M N ⋂;(2)求()U M N ð:(3)求()()U UM N ⋃痧.21.已知0x >,0y >,且141x y+=,求x y +的最小值.22.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2,预计安装后该企业每年需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为()20(0)5C x x x =>+,将该企业的净水设备购置费与安装后4年需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最喀什市2024-2025学年第一学期期中质量监测试卷高一数学时间:120分钟满分:150分一、单选题(每小题5分,共40分)1.下列元素的全体不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10的三角形【答案】B 【解析】【分析】根据集合中的元素的三要素即可判断各个选项的正误.【详解】中国古代四大发明可以构成一个集合,故A 正确;地球上的小河流不满足集合元素的确定性,即没有标准说多小的河流算小河流,故B 错误;方程210x -=的实数解是1x =±,可以构成一个集合,故C 正确;周长为10的所有三角形可以构成一个集合,故D 正确;故选:B.2.下列关系中正确的是()A.{0}=∅B.{(,)}{(,)}a b b a ⊆C.{0,1}{(0,1)}⊆D.{0}∅⊆【答案】D 【解析】【分析】由集合中元素的属性逐个判断即可.【详解】对于A ,{}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误;对于B ,(,),(,)a b b a 当a b ≠表示不同的点,故(){}(){},,,a b b a 在a b ≠时不相等,故错误;对于C ,{}0,1的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误;对于D ,空集为任何一个集合的子集,故{}0∅⊆正确;故选:D3.下列元素与集合的关系判断正确的是()A.0∈NB.π∈QC.∈QD.-1∉Z【答案】A 【解析】【分析】根据元素和集合的关系逐一判断即可.【详解】0是自然数,π是无理数,不是有理数,1-是整数,根据元素和集合的关系可知,只有A 正确;故选:A4.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = ()A.{0,2}B.{1,2}C.{0}D.{2,1,0,1,2}--【答案】A 【解析】【分析】由交集定义计算.【详解】根据集合交集中元素的特征,可得{0,2}A B ⋂=,故选:A.【点睛】本题考查集合的交集运算,属于简单题.5.满足“闭合开关1K ”是“灯泡R 亮”的充要条件的电路图是()A. B. C. D.【答案】C 【解析】【分析】根据物理知识,结合充分条件、必要条件的概念分析可得答案.【详解】对于A ,“闭合开关1K ”是“灯泡R 亮”的充分不必要条件;对于B ,“闭合开关1K ”是“灯泡R 亮”的必要不充分条件;对于C ,“闭合开关1K ”是“灯泡R 亮”的充要条件;对于D ,“闭合开关1K ”是“灯泡R 亮”的既不充分也不必要条件.故选:C.【点睛】本题考查了充分条件和必要条件,属于基础题.6.已知a b >,c d >,且c ,d 均不为0,那么下列不等式一定成立的是()A.ad bc >B.ac bd >C.a c b d ->-D.a c b d+>+【答案】D 【解析】【分析】通过举出反例可以判断ABC 是错误的.【详解】解:当2,1,1,1a b c d ====-时,ad bc <,A 错误;当2,1,1,2a b c d ==-=-=-时,ac bd <,B 错误;当2,1,1,1a b c d ====-时,a c b d -<-,C 错误;根据不等式两边同时加上一个数,不等号的方向不发生改变,可得D 正确.故选:D.7.若0x >,则40x x+>的最小值为()A.0B.1C.2D.4【答案】D 【解析】【分析】由基本不等式求解.【详解】∵0x >,∴44x x +≥=,当且仅当4x x =,即2x =时等号成立,故选:D .8.一元二次不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为()A.30k -<<B.30k -≤<C.3k <-D.0k <【答案】A 【解析】【分析】根据一元二次不等式恒成立可得20k <且0∆<,列式运算求解即可.【详解】因为一元二次不等式23208kx kx +-<对一切实数x 都成立,则220Δ30k k k <⎧⎨=+<⎩,解得30k -<<,所以k 的取值范围为30k -<<.故选:A.二、多选题(每小题5分,共20题,全部选对得5分,选对但不全的得2分,有选错得得0分)9.已知集合A={2,3},B={x|mx-6=0},若B ⊆A ,则实数m 可以是()A.3或2B.1C.0D.-1【答案】AC 【解析】【分析】本题先根据题意判断B 是A 的子集,有3种可能性,再分情况讨论即可.【详解】当m=0时,方程mx-6=0无解,B=⌀,满足B ⊆A ;当m ≠0时,B=6m ,因为B ⊆A ,所以6m=2或6m=3,解得m=3或m=2.【点睛】本题考查集合的基本关系求参数,是基础题.10.下列说法中正确的有()A.不等式a b ab +≥恒成立B.存在a ,使得不等式12a a+≤成立C.若0a >,0b >,则2b aa b+≥ D.若a ,b 为实数,则222a b ab+<【答案】BC 【解析】【分析】根据基本不等式的知识对选项进行分析,从而确定正确答案.【详解】A 选项,对于不等式a b ab +≥,1a b ==-时,a b ab +<,所以A 选项错误.B 选项,当1a =-时,122a a+=-<,所以B 选项正确.C 选项,0a >,0b >,则2b a a b +≥=,当且仅当,b aa b a b==时等号成立,所以C 选项正确.D 选项,当1a b ==时,222a b ab +=,所以D 选项错误.故选:BC11.如图,二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),下列说法正确的是()A.c <0B.b 2﹣4ac <0C.x =3时函数y =ax 2+bx +c 取最小值D.图像的对称轴是直线x =3【答案】CD 【解析】【分析】由20ax bx c ++=的两根分别为1,5,结合韦达定理以及二次函数的性质判断即可.【详解】因为二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),所以20ax bx c ++=的两根分别为1,5.由图可知,0a >,由韦达定理可知150ca=⨯>,即0c >,故A 错误;由图可知,该二次函数与x 轴有两个交点,即240b ac ∆=->,故B 错误;由韦达定理可知,6b a -=,即该二次函数的对称轴为32b x a=-=,即在x =3时函数y =ax 2+bx +c 取最小值,故CD 正确;故选:CD12.取整函数:[]x =不超过x 的最大整数,如[1.2]1=,[2]2=, 1.22[]-=-.取整函数在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照"取整函数"进行计费的.以下关于“取整函数”的性质是真命题的有()A.R x ∀∈,[2]2[]x x =B.R x ∃∈,[2]2[]x x =C.x ∀,R y ∈,[][]x y =,则1x y -<D.R x ∀∈,1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦【答案】BCD 【解析】【分析】判断特称命题正确,只要举出例子即可,判断全称命题错误,也只要举出例子即可.可以用特殊值法,举例判断.【详解】对于A ,根据新定义“取整函数”的意义知[2]2[]x x =不一定成立,如x 取1.5,[2]3x =,2[]2x =,故A 错误;对于B ,x 取1,[2]2x =,2[]2x =,B 正确;对于C ,设(,01)x n a n Z a =+∈≤<,(,01)y m b m Z b =+∈≤<,若[][]x y =,则n m =,因此1x y a b a -=-≤<,故C 正确;对于D ,设(,01)x n a n a =+∈≤<Z ,当00.5a ≤<时,[21]2x n x ⎡⎤++=⎢⎥⎣⎦,[2]2x n =,所以1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦,当0.51a ≤<时,1[]12x x n n ⎡⎤++=++⎢⎥⎣⎦,[2][22]21x n a n =+=+,所以1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦,即D 正确.故选:BCD.三、填空题(每小题5分,共20题)13.集合{}04A x x =∈<<N 的子集个数__________.【答案】8【解析】【分析】分析可知集合{}1,2,3A =,进而可求子集的个数.【详解】因为集合{}{} 041,2,3A x x =∈<<=N ,共3个元素,所以集合A 的子集个数为328=.故答案为:8.14.“实数的平方大于等于0”用符号表示为__________.【答案】2R,0x x ∀∈≥【解析】【分析】根据全称量词命题的知识确定正确答案.【详解】“实数的平方大于等于0”用符号表示为:2R,0x x ∀∈≥.故答案为:2R,0x x ∀∈≥.15.不等式2101x x -<+的解集是_______.(结果用集合或区间表示)【答案】1(1,)2-【解析】【分析】不等式2101x x -<+的解集,即为不等式()()2110x x -+<的解集,根据一元二次不等式的解法即可得解.【详解】解:不等式2101x x -<+的解集,即为不等式()()2110x x -+<的解集,解得112x -<<,所以不等式2101x x -<+的解集是1(1,)2-.故答案为:1(1,)2-.16.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.【答案】254【解析】【分析】设直角三角形的斜边为c ,直角边分别为a ,b ,根据勾股定理,以及基本不等式的性质进行求解即可.【详解】设直角三角形的斜边为c ,直角边分别为a ,b ,由题意知c 5=,则22a b 25+=,则三角形的面积1S ab 2=,2225a b 2ab =+≥,25ab 2∴≤,则三角形的面积112525S ab 2224=≤⨯=,当且仅当a=b=522取等即这个直角三角形面积的最大值等于254,故答案为254.【点睛】本题主要考查基本不等式的应用,考查三角形面积的计算,利用基本不等式的性质结合勾股定理,三角形的面积公式是解决本题的关键.四、解答题(共70分)17.比较下列各题中两个代数式的大小:(1)226x x ++与(3)(1)x x +-;(2)222x y ++与2(22)x y +-.【答案】(1)226(3)(1)x x x x ++>+-(2)()222222x y x y ++>+-【解析】【分析】利用作差法求解即可.【小问1详解】因为()22226(3)(1)262390x x x x x x x x ++-+-=++-+-=>,所以226(3)(1)x x x x ++>+-;【小问2详解】因为()()()222222221210x y x y x y ++-+-=-+-+>,所以()222222x y x y ++>+-.18.写出下列命题的否定,并判断它们的真假:(1)a ∀∈R ,一元二次方程210x ax --=有实根;(2)每个正方形都是平行四边形;(3)m N N ∃∈;(4)存在一个四边形ABCD ,其内角和不等于360 .【答案】(1)a R ∃∈,一元二次方程210x ax --=没有实根,假命题.(2)存在一个正方形不是平行四边形,假命题.(3)m N N ∀∈,假命题.(4)任意四边形ABCD ,其内角和等于360°,真命题.【解析】【分析】根据特称命题,全称命题的否定的书写规律来写,并逐一判断真假.【详解】(1)a R ∃∈,一元二次方程210x ax --=没有实根,假命题,因为240a ∆+>=,方程恒有根;(2)存在一个正方形不是平行四边形,假命题,因为任何正方形都是平行四边形;(3)m N N ∀∈,假命题,因为0m N =∈1N =∈;(4)任意四边形ABCD ,其内角和等于360 ,真命题.【点睛】本题考查特称命题,全称命题的否定,是基础题.19.求下列不等式的解集:(1)2144x x -;(2)214450x x -+≤;(3)26100x x ++>;(4)(2)(3)1x x x x +>-+.【答案】(1)7|24x x ⎧⎫-≤≤⎨⎩⎭(2){|59}x x ≤≤(3)R (4){|1x x >或12x <-}.【解析】【分析】(1)由题得24140x x +-≤,再写出不等式的解集;(2)先因式分解,再写出不等式的解集;(3)配方即得不等式的解集;(4)化简得2210x x -->,再写出不等式的解集.【详解】解:(1)由2144x x -得24140x x +-≤.方程24140x x +-=的根为1,21211157,,2884x x x -±-±====-.∴原不等式的解集为7|24x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)21445(5)(9)0x x x x -+=--,∴原不等式的解集为{|59}x x ≤≤;(3)22610(3)11x x x ++=++> ,∴原不等式的解集为R ;(4)将(2)(3)1x x x x +>-+化为2210x x -->,即(21)(1)0x x +->.∴原不等式的解集为{|1x x >或12x <-}.【点睛】本题主要考查不含参的一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平.20.已知全集{}4,1,0,1,2,4U =--,{}|03M x x =∈≤<Z ,{}220N x x x =--=∣(1)求M N ⋂;(2)求()U M N ð:(3)求()()U U M N ⋃痧.【答案】(1){}2(2){}4,4-(3){}4,1,0,1,4--【解析】【分析】先明确集合M ,N ,根据集合的运算法则求相关集合即可.【小问1详解】{}{}|030,1,2M x x =∈≤<=Z ,{}{}2201,2N xx x =--==-∣,所以{}2M N = .【小问2详解】因为{}1,0,1,2M N ⋃=-,所以(){}U 4,4M N ⋃=-ð.【小问3详解】因为{}U 4,1,4M =--ð,{}U 4,0,1,4N =-ð,所以()(){}U U 4,1,0,1,4M N =--⋃痧.21.已知0x >,0y >,且141x y+=,求x y +的最小值.【答案】9【解析】【分析】根据()14x y x y x y ⎛⎫+=++ ⎪⎝⎭结合基本不等式求解即可.【详解】()144559y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4y x x y=,即26y x ==时,取等号,所以x y +的最小值为9.22.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2,预计安装后该企业每年需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为()20(0)5C x x x =>+,将该企业的净水设备购置费与安装后4年需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最小?【答案】(1)[11,20](2)设备占地面积为215m 时,y 的值最小【解析】【分析】(1)由题意得800.2(0)5y x x x =+>+,解不等式7.2y ≤即可得解.(2)将800.2(0)5y x x x =+>+变形为580155x y x +=+-+,再利用基本不等式即可求解.【小问1详解】由题意得800.2(0)5y x x x =+>+,令7.2y ≤即800.27.25x x ++≤,整理得2312200x x -+≤即()()01120x x ≤--,所以解得1120x ≤≤,所以设备占地面积x 的取值范围为[]11,20.【小问2详解】805800.21117555x y x x x +=+=+--=-=++≥,当且仅当58055x x +=+即15x =时等号成立,所以设备占地面积为215m 时, y 的值最。

重庆市教育集团2024-2025学年高一上学期期中考试数学试题含答案

重庆市教育集团2024-2025学年高一上学期期中考试数学试题含答案

重庆2024-2025学年度上期期中考试高2027届数学试题(答案在最后)本试卷分为I 卷和Ⅱ卷,考试时间120分钟,满分150分.请将答案工整地书写在答题卡上.一、单选题:本题共8个小题,每小题5分,共40分.在每个小题所给出的四个选项中,只有一个选项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.若函数 ீॄ 的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,那么函数 ீॄ 的图象可能是()A. B.C. D.【答案】C 【解析】【分析】根据各选项一一判断其定义域与值域,即可得解.【详解】对于A :函数的定义域为{}|01x x ≤≤,但是值域不是{}|01y y ≤≤,故A 错误;对于B :函数的定义域不是{}|01x x ≤≤,值域为{}|01y y ≤≤,故B 错误;对于C :函数的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,故C 正确;对于D :不满足函数的定义,不是一个函数的图象,故D 错误.故选:C3.集合{010}A x x =∈≤<Z∣有()个非空子集.A.512B.511C.1024D.1023【答案】D 【解析】【分析】确定集合A 中含有的元素个数,即可求得答案.【详解】集合{}{010}0,1,2,3,4,5,6,7,8,9A x x =∈≤<=Z∣含有10个元素,故其有10211023-=个非空子集,故选:D4.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取1x =-、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取1x =-,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B .5.“321x ≤+”的一个充分不必要条件是()A.102x <<B.112x -<≤C.1x <-或12x ≥D.1x >【答案】D 【解析】【分析】求出不等式321x ≤+的解,逐个选项判断,即可得答案.【详解】解321x ≤+,即3201x -≤+,即1201x x -≤+,即()()211010x x x ⎧-+≥⎨+≠⎩,解得12x ≥或1x <-,由于102x <<,112x -<≤均推不出12x ≥或1x <-,故A ,B 选项不合题意;C 中条件和“321x ≤+”等价,不合题意,1x >时,一定有12x ≥或1x <-成立,反之不成立,故1x >是“321x ≤+”的一个充分不必要条件,故选:D6.已知正实数x ,y 满足122x y+=,则2x y +的最小值为()A.1B.2C.4D.8【答案】C 【解析】【分析】利用基本不等式“1”的妙用即可求解.【详解】因为x ,y 为正实数,且122x y+=,所以()11222222422y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22x y ==时取等号.故选:C7.若函数()f x 的定义域为[0,3],则函数()221()1f xg x x -=-的定义域为()A.(1,1)(1,8]- B.[1,1)(1,8]- C.[2,1)(1,1)(1,2]--⋃-⋃ D.[2,1)(1,2]-- 【答案】D 【解析】【分析】根据定义域满足的不等式关系,即可列不等式组求解.【详解】由于函数()f x 的定义域为[0,3],所以()221()1f xg x x -=-的定义域需要满足:2201310x x ⎧≤-≤⎨-≠⎩,解得12x <≤或21x -≤<-,故定义域为:[2,1)(1,2]-- 故选:D8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共3个小题,每小题6分,共18分.每个小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列选项中表示正确的是()A.∅⊆∅B.R Qð C.0=∅D.{1,2,3}{3,2,1}=【答案】ABD 【解析】【分析】根据空集的性质判断A ,根据补集的定义及元素与集合的关系判断B ,根据空集的定义判断C ,根据集合相等的定义判断D.【详解】因为∅是任何集合的子集,所以∅⊆∅,A 正确;为无理数,又R Q ðR Q ð,B 正确;0是一个元素,∅为不含任何元素的集合,C 错误;集合{1,2,3}与集合{3,2,1}的元素相同,所以{1,2,3}{3,2,1}=,D 正确;故选:ABD.10.下列说法正确的是()A.若a b >,则11b b a a +>+B.函数()f x =()g x =是相同函数C.函数1()f x x=的单调减区间是(,0)(0,)-∞+∞ D.若4x y +=,则22x y +的最小值是8【答案】BD 【解析】【分析】举反例说明A 是错误的;求两个函数的定义域,判断B 的真假;辨析函数单调区间的写法说明C 是错误的;利用基本(均值)不等式求22x y +的最小值,判断D 的真假.【详解】对A :令3a =-,4b =-,则满足a b >,但不满足11b b a a +>+,故A 错误;对B :由210x -≥⇒11x -≤≤,由1010x x -≥⎧⎨+≥⎩⇒11x -≤≤,所以两个函数的定义域都是[]1,1-,且此时()g x ===,与()f x 解析式相同,所以它们表示同一个函数,故B 正确;对C :函数1()f x x=的单调减区间是(,0)-∞,(0,)+∞,两个单调区间不能用“ ”连接,故C 错误;对D :由4x y +=⇒()216x y +=⇒22621x y xy ++=⇒()22216xy x y =-+,又因为222x y xy +≥(当且仅当x y =时取“=”)所以()2222216xy x y xy =-+≤+⇒22x y +≥8(当且仅当2x y ==时取“=”).故D 正确.故选:BD11.不等式202320242025()(1)(2)0x a x x ---<(其中a ∈R )的解集可以是()A.{02x x <<且}1x ≠ B.{12}xx <<∣C.∅ D.{1x x <或12x <<或}3x >【答案】ABC 【解析】【分析】A 选项,0a =时满足要求;B 选项,1a =时满足要求;C 选项,2a =满足要求;D 选项,由于解集中出现了3x >,故3a =,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;【详解】A 选项,若0a =,202320242025(1)(2)0x x x --<,由穿针引线法可知,不等式解集为{02x x <<且}1x ≠,A 正确;B 选项,当1a =时,24047025(1)(2)0x x --<,解得12x <<,B 正确;C 选项,当2a =时,42024048(1)(2)0x x --<,解集为∅,C 正确;D 选项,由于解集中出现了3x >,故3a =,此时202320242025(3)(1)(2)0x x x ---<,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;故选:ABC三、填空题:本题共3个小题,每个小题5分,共15分.12.已知函数()f x 满足:2()2()21f x f x x x +-=+-,则(2)f =_______;()f x =_______.【答案】①.13②.22133x x --【解析】【分析】由已知条件可得到关于(),()f x f x -的方程组,由此可解得()f x 的解析式,再令2x =,即可求得(2)f .【详解】由已知可得,()()22()2()21()2()21f x f x x x f x f x x x ⎧+-=+-⎪⎨-+=-+--⎪⎩,解得()22133f x x x =--,则()211242333f =⨯--=.故答案为:13;22133x x --.13.国庆节期间,重庆复旦中学全体学生进行了选修课报名,据统计,高一某班共45名同学在语文类、数学类和物理类三类选修课具有报名意向,其中有21人想报名语文类选修课,有29人想报名数学类选修课,有28人想报名物理类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,没有三类选修课都想报名的同学,则只想报名物理选修课的同学有_______人.【答案】5【解析】【分析】设只想报名物理选修课的同学有x 人,求得同时想报名语文和物理选修课的有13x -人,只想报名语文选修课的同学有2x -人,只想报名数学选修课的同学有4人,由题意画出Venn 图,再由该班共有人数,列出方程,即可求解.【详解】设只想报名物理选修课的同学有x 人,因为有28人想报名物理类选修课,所以同时想报名语文和物理选修课的有281513x x --=-人,因为有21人想报名语文类选修课,则只想报名语文选修课的同学有()2110132x x ---=-人,因为有29人想报名数学类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,则只想报名数学选修课的同学有2910154--=人,又没有三类选修课都想报名的同学,由题意画出Venn 图,如图所示:因为该班共45名同学,所以2131541045x x x -+-++++=,解得5x =,所以只想报名物理选修课的同学有5人.故答案为:5.14.已知函数26()1x ax f x x ++=+,a 为实数,若对于(0,),()2x f x ∀∈+∞≥恒成立,则实数a 的取值范围是_______.【答案】[)2-+∞,【解析】【分析】可以把问题转化成二次函数在(0,)+∞上大于等于0的问题来解决.结合函数与y 轴的交点,则0∆≤或对称轴在x 轴或x 轴左侧,即可求出a 的取值范围.【详解】由2621x ax x ++≥+,0x >得()2621x ax x ++≥+⇒()2240x a x +-+≥,0x >.设()()224g x x a x =+-+,0x >.因为()040g =>,所以()0g x ≥,0x >⇔0∆≤或202a --≤.由0∆≤⇒()22160a --≤⇒26a -≤≤;由202a --≤⇒2a ≥.所以a 的取值范围为:[][)[)2,62,2,-⋃+∞=-+∞.故答案为:[)2-+∞,四、解答题:本小题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合{N05},{03},{||11}A x x B x x C x x =∈<<=<<=-<∣∣∣.(1)求集合,A B B C ;(2)求()R A C ð.【答案】(1){}1,2A B = ;{}|03B C x x ⋃=<<(2)()()0,11,2U 【解析】【分析】(1)根据交集和并集的概念,即可求解;(2)根据补集和交集的概念,即可求解.【小问1详解】集合{}{N05}1,2,3,4A x x =∈<<=∣,{03}B x x =<<∣,不等式11x -<,即111x -<-<,解得02x <<,集合{}|02C x x =<<,所以{}1,2A B = ,{}|03B C x x ⋃=<<.【小问2详解】{}1,2,3,4A =,则()()()()()R ,11,22,33,44,A =-∞+∞ ð,所以()()()R 0,11,2A C ⋂= ð.16.已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)求()1f ,()()2ff -的值;(2)画出这个函数的图象,并写出()f x 的最大值;(3)解不等式()2f x <.【答案】(1)()11f =,()()20ff -=;(2)图象见解析,最大值为4(3){|2x x <}4x >【解析】【分析】(1)根据自变量的取值,代入分段函数解析式即可;(2)根据图象最高点即可写出最大值;(3)对x 范围讨论,解出之后求并集即可.【小问1详解】由已知得,()2111f ==,()2220f -=-+=,则()()()200ff f -==【小问2详解】由图象可知,最大值为4.【小问3详解】当1x ≤-时,由()2f x <可得,22x +<,解得0x <,所以1x ≤-;当12x -<≤时,由()2f x <可得,22x <,解得22x -<<,所以12x -<<当2x >时,由()2f x <可得,62x -+<,解得4x >,所以4x >.综上所述,2x <或4x >不等式()2f x <的解集为{|2x x <}4x >.17.已知二次函数()f x 过坐标原点,有(1)(3)f f -=,且()f x 在R 上的值域为(,1]-∞.(1)求函数()f x 的解析式;(2)求解关于x 的不等式2()a ax f x ->,其中a 为实数.【答案】(1)()()211f x x =--+;(2)答案见解析.【解析】【分析】(1)由条件可设其解析式为()()211f x a x =-+,再由条件求a 可得结论;(2)不等式可化为()()20x x a -->,分别在2a >,2a =,2a <条件下求不等式的解集.【小问1详解】因为(1)(3)f f -=,所以二次函数()f x 的图象为对称轴为1x =的抛物线,因为()f x 在R 上的值域为(,1]-∞,所以二次函数的图象为开口向下的抛物线,且顶点纵坐标为1,所以可设其解析式为()()211f x a x =-+,且0a <,因为二次函数()f x 的图象过坐标原点,所以()20110a -+=,所以1a =-,所以()()211f x x =--+,【小问2详解】不等式2()a ax f x ->,可化为222a ax x x ->-+,即()()20x x a -->,当2a >时,x a >或2x <,当2a =时,2x ≠,当2a <时,x a <或2x >,所以当2a >时,不等式2()a ax f x ->的解集为{x x a >或}2x <,当2a =时,不等式2()a ax f x ->的解集为{}2x x ≠,当2a <时,不等式2()a ax f x ->的解集为{2x x >或}x a <.18.已知函数2(),(2)5a f x x f x=+=(1)求实数a 值;(2)判断函数()f x 在(1,)+∞上的单调性,并用单调性的定义证明;(3)求函数()f x 的单调区间.【答案】(1)2a =(2)单调递增,证明见解析(3)增区间是()1,+∞,单调递减区间是(),0-∞和()0,1【解析】【分析】(1)代入()2f ,即可求解;(2)根据函数单调性的定义,作差()()12f x f x -,即可证明;(3)根据(2)的过程和结果,再分区间讨论.【小问1详解】由条件可知,()2452a f =+=,得2a =;【小问2详解】()22f x x x=+,设121x x <<,()()222212121212122222f x f x x x x x x x x x ⎛⎫-=+--=-+- ⎪⎝⎭,()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,因为121x x <<,所以120x x -<,122x x +>,且121x x >,则12202x x <<,所以121220x x x x +->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(1,)+∞上单调递增;【小问3详解】由(2)可知,()()12f x f x -()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,当1201x x <<<时,120x x -<,1202x x <+<,1201x x <<,则1222x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(0,1)上单调递减,当120x x <<,120x x -<,120x x +<,120x x >,则1220x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(,0)-∞上单调递减,综上可知,函数的增区间是()1,+∞,单调递减区间是(),0-∞和()0,1.19.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,24⎛⎤-- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,换元后结合二次函数的图象,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,所以k x =-,令20,2t x t =≥=-,所以22k t t =--在[)0,t ∈+∞上有两个不等实跟,函数()22p x t t =--在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,()()19012,24p p p ⎛⎫==-=- ⎪⎝⎭,故实数k 的取值范围是9,24⎛⎤-- ⎥⎝⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学试卷期中考试
一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)
1. 集合M={1,2,3}的非空真子集的个数是( )
A .6 B.4 C.8 D.7
2. 方程0)12(2
=+++m x m mx ,有两个不等实根,则实数m 的取值范围是( )
A .
41-
>m B.41-<m C.41≥m D. 0
,41
≠->m m
3.若函数)1,0)((log ≠>+=a a b x y a 的图像过两点)0,1(-和)1,0(,则( )
A .2,2==b a B. 2,2==b a C. 1,2==b a D. 2,2==b a 4.给出以下判断:
(1)若命题p 是真命题,则命题“p 且q ”一定是真命题. (2)若命题“p 且q ”为真命题,则命题p 一定是真命题. (3)若命题p 是真命题,则命题“p 或q ”一定是真命题 (4)若命题“p 或q ” 为真命题,则命题p 一定是真命题。

(5)命题p 与“非p ”一定是一真一假. 其中正确命题的个数是( )
A .2 B.3 C.4 D.5
5.设
,93)(+=x
x f 则)(1
x f -的定义域是( )
A .),0(+∞ B.),9(+∞ C.),10(+∞ D.),(+∞-∞ 6.设R x ∈,则2>x 的一个必要不充分条件是( )
A .1>x B. 1<x C.3>x D. 3<x
7.函数
[]3,0,342∈+-=x x x y 的值域是( ) A.[]3,0 B.[]0,1- C.[]3,1- D.[]2,0 8.设)()2(,32)(x f x g x x f =++=,则)(x g 等于(
A.12+x
B. 12-x
C. 32-x
D.72+x
9.已知函数)(x f 是定义在R 上的偶函数,当0≤x 时,函数)(x f 单调递增,则有( )
A.)4()2()1(f f f <<
B.)4()2()1(f f f >>
C. )2()4()1(f f f >>
D. )4()1()2(f f f >>
10.若函数2)1(2)(2
+-+=x a x x f 在区间]4,(-∞内递减,那么实数a 的取值范围是
( )
A.3-≤a
B. 3-≥a
C.5≤a
D.3≥a
11.函数
)26(log 2
6.0x x y -+=的单调增区间是( ) A. ]41,(-∞ B. ),41[+∞ C.]41,23(- D. )
2,4
1[
12.若函数
32)1()(2
++-=mx x m x f 为偶函数,则)(x f 在)5,2(上( ) .A 是增函数 B 是减函数
.C 有增有减 .D 不能确定增减性
卷Ⅱ(非选择题 共90分)
注意事项:1.答卷Ⅱ前考生务必将自己的姓名、班级、考号填在试卷密封线内规定的地方。

2.答卷Ⅱ时用兰黑色钢笔或圆珠笔直接填写在试卷规定的地方
二、填空题(每题4分,共16分)
13.设方程012=+-mx x 的两根为βα,,且10<<α,21<<β,则实数m 的取值范围是_______
14.已知函数)(x f 的定义域为[]2,0,则)1(2-x f 的定义域为_______________ 15.若)(x f y =与)(1x f y -=是定义在区间),0(+∞上的一对互为反函数,且)(x f 在
),0(+∞上单调递增,则)1(1-f 和)3(1
-f
的大小关系是 ___________
16.已知)(x f 是偶函数,那么=--+)2
11
(
)21(f f ___________
三 解答题(共74分)要求每题都要写出必要的解题过程。

17.(12分)已知)(x f y =是定义在),(+∞-∞上的偶函数,当0≥x 时,
32)(2--=x x x f
(1) 用分段函数形式写出=y )(x f 的解析式;(2)用对称性画出函数的图象; (3)写出)(x f y =的单调区间;(4)求出函数的最值。

18.(12分)已知函数)0,1(log )(>>-+=b a b
x b
x x f a
(1)求)(x f 的定义域。

(2)判断)(x f 的单调性并用定义证明。

19.(12分) 求下列函数的反函数(1)252-+=x x y (2)⎩⎨⎧<+≥+=)
0(22)0(22x x x x y
20.(12分)已知集合},2)3(log |{2
1-≥-=x x A 集合},12|
{>-=a
x a
x B 若φ=B A ,求实数a 的取值范围。

21.(12分)已知函数2
1
42
+-
+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值
22(14分)有甲、乙两种商品,经营销售这两种商品所获得的利润依次是p 和q (万元),它们与投入资金x (万元)的关系有经验公式:x p 51=
,x q 5
3
=。

今有3万元资金投入甲、乙两种商品,为获得最大利润,对甲、乙两种商品投入分别应为多少?能获得多大的利润?
高一数学答案
一选择题:ADABB,ACBBA,DB
二填空题:(13)2
52<<m (14)[-1,3-]⋃[1,3](15))3()1(11--<f f
(16)0.
三解答题:17(1)
⎪⎩⎪⎨⎧<-+≥--=)
0(32)0(32)(22
x x x x x x x f
(3)减区间是]1,0[],1,(--∞ 增区间是),1[],0,1[+∞- (4)最大值是-4,没有最大值。

18.(1)函数的定义域是),()(+∞--∞b b
(2)在)(b --∞及),(+∞b 上均是减函数
19(1))2(2
5
2)(1≠-+=-x x x x f (2)
⎪⎩⎪
⎨⎧<-≥-=-)2(2
2
)2(2)(1x x x x x f 20.解;)3,1[-=A
;
-1a ,A ),a 3a,,0≤==<有由(则若φB B a 3a ,A ),a,3a ,0≥==>,有由(则若φB B a 成立此时则若φφ===B B a A ,,0
所以]a 的取值范围是
),3[}0{]1-+∞-∞ ,(
21.6-=a 或3
10=
a 22.对甲投入0.75万元,对乙投入2.25万元,利润最大为1.05万元。

相关文档
最新文档