第七章 晶体的点阵结构和晶体的性质

合集下载

晶体的点阵结构和晶体的性质

晶体的点阵结构和晶体的性质

NaCl
石盐又称岩盐,化学成分为NaCl,晶体都属等轴晶系的卤化物。 单晶体呈立方体,在立方体晶面上常有阶梯状凹陷,集合体常呈 粒状或块状。纯净的石盐无色透明,含杂质时呈浅灰、黄、红、 黑等色,玻璃光泽。三组立方体解理完全。摩氏硬度2.5,比重 2.17。易溶于水。味咸。 石盐是典型的化学沉积成因的矿物。在盐湖或泻湖中与钾石 盐和石膏共生。石盐可作为食品调料和防腐剂,是重要的化工原 料。
翡翠: 化学分子式为NaAl[Si2O6]。属单斜晶 系。晶体形态为短柱状、纤维状微晶集合体。 翡翠的颜色千变万化,多为绿、红、紫、蓝、 黄、灰、黑、无色等
尖晶石: 宝石级尖晶石则主要是指镁铝尖晶石, 化学分子式为MgAl2O4,是一种镁铝氧化物。 属等轴晶系。晶体形态为八面体及八面体与 菱形十二面体的聚形。颜色丰富多彩,有无 色、粉红色、红色、紫红色、浅紫色、蓝紫 2 色、蓝色、黄色、褐色等。
7
孔雀石
孔雀石的化学组成Cu2[CO3](OH)2,晶体属单斜晶系的碳酸盐矿物。 因颜色类似蓝孔雀羽毛的颜色而得名。晶体为柱状、针状或纤维 状,通常呈钟乳状、肾状、被膜状或土状集合体。呈绿色,玻璃 光泽,半透明。摩氏硬度3.5-4,比重4-4.5。遇盐酸起泡。 产于铜矿床氧化带中,是含铜硫化物氧化的次生产物,常与 蓝铜矿、赤铜矿、褐铁矿等共生,可用作寻找原生铜矿的标志。 孔雀石可用于炼铜,质纯色美者可做为装饰品及工艺品原料,其 粉末可做绿色颜料(称石绿)。俄罗斯乌拉尔、中国海南岛石碌 等地盛产孔雀石。
8
• 因此,结晶物质的分布非常广泛,可以这样说, 自然界的固体物质中绝大多数都是结晶物质。 整个岩石矿物界(除极少数例外),工业产品 中的金属,合金,硅酸盐制品(玻璃除外), 大多数的无机化合物和有机化合物,甚至是植 物纤维,这些都是结晶物质。 • 如上所述,晶体有的具有整齐外形,如食盐及 石英,有的不具有整齐外形,如金属及很多化 学沉淀物。一切结晶物质共通的特性是什么呢? 对于这个问题,人们很早就从晶体外形的 规律 性中推测到晶体内部构造中的规律性了。但这 种推测一直到1912年用X射线研究晶体的方法 发现以后,才在实验上得到证实。

晶体的点阵结构范文

晶体的点阵结构范文

晶体的点阵结构范文晶体是由原子、分子或离子经过排列而形成的具有一定规律性的固体结构。

晶体的点阵结构描述了晶体中原子、分子或离子的排列规律,是了解晶体性质和行为的重要基础。

本文将介绍晶体点阵结构的概念、特点和常见的点阵结构类型。

1.晶体点阵结构的概念:晶体点阵结构指的是晶体中原子、分子或离子的排列方式。

晶体的点阵结构可以描述为离散点阵或连续点阵。

离散点阵指的是由原子、分子或离子形成的具有一定规律性的排列,如钻石晶体中由碳原子组成的体心立方密堆积结构。

连续点阵指的是由电子云的密度分布形成的具有周期性的结构,如金属中的自由电子云。

2.晶体点阵结构的特点:(1)周期性:晶体中的点阵结构呈现出周期性,即具有重复的排列。

点阵在各个方向上都有重复的模式,这是晶体独特的特点。

(2)紧密性:晶体点阵结构具有高度的紧密性,即原子、分子或离子之间的间距相对较小,利于紧密堆积。

(3)对称性:晶体点阵结构具有一定的对称性,即在一些特定方向和位置上,晶体内部呈现出相同的排列方式。

3.常见的点阵结构类型:(1)立方晶系:立方晶系是最简单的晶体点阵结构,包括体心立方、面心立方和简单立方。

体心立方的例子包括钠、铁等金属;面心立方的例子包括铜、铝等金属;简单立方的例子包括钙、镁等金属。

(2)正交晶系:正交晶系中的点阵结构呈现出一种拉伸的形状,包括简单正交、体层正交和面层正交。

简单正交的例子包括钠氯化物(NaCl);体层正交的例子包括二氧化锰(MnO2)。

(3)四方晶系:四方晶系中的点阵结构具有四方对称性,包括二硫化锌(ZnS)和硫化钡(BaS)等。

(4)六方晶系:六方晶系中的点阵结构具有六方对称性,包括氧化铝(Al2O3)和金红石(Al2O3)等。

(5)三斜晶系:三斜晶系是最复杂的晶体点阵结构,无规律可循,包括二氧化硅(SiO2)和五硼酸镁(MgB5O9)等。

总结:晶体的点阵结构是指描述晶体中原子、分子或离子排列方式的规则性结构。

第七章晶体的点阵结构和晶体的性质

第七章晶体的点阵结构和晶体的性质

第七章晶体的点阵结构和晶体的性质第七章晶体的点阵结构和晶体的性质⼀、概念及问答题1、由于晶体内部原⼦或分⼦按周期性规律排列,使晶体具有哪些共同的性质?答:a. 均匀性,⼀块晶体内部各个部分的宏观性质是相同的。

b. 各向异性,在晶体中不同的⽅向上具有不同的物理性质。

c. ⾃发地形成多⾯体外形,晶体在⽣长过程中⾃发地形成晶⾯,晶⾯相交成为晶棱,晶棱会聚成项点,从⽽出现具有多⾯体外形的特点。

2、点阵答:点阵是⼀组⽆限的点,连结其中任意两点可得⼀向量,将各个点按此向量平移能使它复原,凡满⾜这条件的⼀组点称为点阵。

点阵中的每个点具有完全相同的周围环境。

3、晶体的结构基元点阵结构中每个点阵点所代表的具体内容,包括原⼦或分⼦的种类和数量及其在空间按⼀定⽅式排列的结构,称为晶体的结构基元。

结构基元与点阵点是⼀⼀对应的。

4、晶体结构在晶体点阵中各点阵点的位置上,按同⼀种⽅式安置结构基元,就得整个晶体的结构,所以地晶体结构⽰意表⽰为:晶体结构=点阵+结构基元5、直线点阵根据晶体结构的周期性,将沿着晶棱⽅向周期地重复排列的结构基元,抽象出⼀组分布在同⼀直线上等距离的点列,称为直线点阵。

6、晶胞按照晶体内部结构的周期性,划分出⼀个个⼤⼩和形状完全⼀样的平⾏六⾯体,以代表晶体结构的基本重复单位,叫晶胞。

晶胞的形状⼀定是平⾏六⾯体。

晶胞是构成晶体结构的基础,其化学成分即晶胞内各个原⼦的个数⽐与晶体的化学式⼀样,⼀个晶胞中包含⼀个结构基元,为素晶胞,包今两个或两个以上结构基元为复晶胞,分别与点阵中素单位与复单位相对应。

7、晶体中⼀般分哪⼏个晶系?根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它⾃⼰的特征对称元素,按特征对称元素的有⽆为标准划分晶系。

⼀般分为7个晶系,有⽴⽅晶系、六⽅晶系、四⽅晶系、三⽅晶系、正交晶系、单斜晶系和三斜晶系。

8、CsCl 是体⼼⽴⽅点阵还是简单⽴⽅点阵?是简单⽴⽅点阵。

在CsCl 晶体中,结构基元是由⼀个Cs +和⼀个Cl -构成,点阵点可以选Cs +的位置,也可以选Cl -的位置,还可以选在其他任意位置,但不能同时将Cs +和Cl -作为点阵点,因为这样选取不符合点阵的定义,同时也不能将晶体CsCl误认为是体⼼⽴⽅点阵,因为每个点阵点代表⼀个Cs +和⼀个Cl -。

晶体的结构和性质课件

晶体的结构和性质课件

晶体的化学性质
晶体在特定条件下可以发 生化学反应,参与催化和 合成等重要化学过程。
晶体的力学性质
晶体的力学性质决定了晶 体的强度和变形特性,在 工程领域有重要应用。
晶体的应用
1
半导体材料
晶体在半导体领域有广泛应用,包
晶体管和集成电路
2
括集成电路和太阳能电池。
晶体管和集成电路的发明使得电子
技术得以飞速发展。
晶体的结构和性质
本课件介绍了晶体的结构和性质。包括晶体的概念和分类,晶体的周期性结 构和晶胞,晶体的点阵和空间群,晶体的物理、化学和力学性质,以及晶体 的应用。
晶体的概念和分类
Hale Waihona Puke 晶体的定义晶体是具有周期性结构的固体材料,由原 子、离子或分子按照一定规律排列而成。
晶体的分类
晶体可以根据化学成分、晶体形态和晶体 结构等特征进行分类。
3
晶体振荡器和滤波器
晶体振荡器和滤波器是电子设备中
医用晶体材料
4
关键的频率控制元件。
晶体材料在医学领域用于制作医疗 设备,如X光片和超声传感器。
结束语
晶体在现代科技中扮演着重要的角色,推动了许多领域的发展。展望未来,晶体的应用前景仍然 广阔。
晶体的结构
晶体的周期性结构
晶体具有高度有序的周期性 结构,使其具有特定的物理 和化学性质。
晶体的晶胞和晶格
晶体的结构是由晶胞和晶格 组成的,晶胞是最小重复单 元。
晶体的点阵和空间群
晶体的点阵和空间群描述了 晶体的几何特征和对称性。
晶体的性质
晶体的物理性质
晶体具有独特的光学、热 学和电学性质,可以应用 于光学器件、导热材料和 电子元件。

晶体结构——精选推荐

晶体结构——精选推荐

第七章晶体结构第一节晶体的点阵结构一、晶体及其特性晶体是原子(离子、分子)或基团(分子片段)在空间按一定规律周期性重复地排列构成的固体物质。

晶体中原子或基团的排列具有三维空间的周期性,这是晶体结构的最基本的特征,它使晶体具有下列共同的性质:(1)自发的形成多面体外形晶体在生长过程中自发的形成晶面,晶面相交成为晶棱,晶棱会聚成顶点,从而出现具有几何多面体外形的特点。

晶体在理想环境中应长成凸多面体。

其晶面数(F)、晶棱数(E)、顶点数(V)相互之间的关系符合公式:F+V=E+2 八面体有8个面,12条棱,6个顶点,并且在晶体形成过程中,各晶面生长的速度是不同的,这对晶体的多面体外形有很大影响:生长速度快的晶面在晶体生长的时候,相对变小,甚至消失,生长速度小的晶面在晶体生长过程中相对增大。

这就是布拉维法则。

(2)均匀性:晶体中原子周期性的排布,由于周期极小,故一块晶体各部分的宏观性质完全相同。

如密度、化学组成等。

(3)各向异性:由于晶体内部三维的结构基元在不同方向上原子、分子的排列与取向不同,故晶体在不同方向的性质各不相同。

如石墨晶体在与它的层状结构中各层相平行方向上的电导率约为与各层相垂直方向上电导率的410倍。

(4)晶体有明显确定的熔点二、晶体的同素异构由于形成环境不同,同一种原子或基团形成的晶体,可能存在不同的晶体结构,这种现象称为晶体的同素异构。

如:金刚石、石墨和C60是碳的同素异形体。

三、晶体的点阵结构理论1、基本概念(1)点阵:伸展的聚乙烯分子具有一维周期性,重复单位为2个C原子,4个H 原子。

如果我们不管其重复单位的内容,将它抽象成几何学上的点,那么这些点在空间的排布就能表示晶体结构中原子的排布规律。

这些没有大小、没有质量、不可分辨的点在空间排布形成的图形称为点阵。

构成点阵的点称为点阵点。

点阵点所代表的重复单位的具体内容称为结构基元。

用点阵来研究晶体的几何结构的理论称为点阵理论。

(2)直线点阵:根据晶体结构的周期性,将沿着晶棱方向周期的重复排列的结构单元,抽象出一组分布在同一直线上等距离的点列,称直线点阵。

第七章 晶体的点阵结构和晶体的性质

第七章  晶体的点阵结构和晶体的性质
邻的晶面的面间距都相等。 对正交晶系
900
dh*k*l*
dhk l
dh*k*l*
(a)
(b)
t/min
图7.4 晶体(a)与非晶体(b)的步冷曲线
辽宁石油化工大学
结构化学2
7.2 晶体结构的周期性和点阵
NaCl 晶体结构
辽宁石油化工大学
结构化学2
7.2 晶体结构的周期性和点阵
一、晶体结构的点阵理论 1. 结构基元与点阵
晶体的周期性结构使得人们可以把它抽象成
“点阵”来研究。将晶体中重复出现的最小单元
辽宁石油化工大学
结构化学2
7.1 晶体的结构和性质
辽宁石油化工大学
一、晶体的定义
由原子、分子或离子等微粒在空间按一定 规律、周期性重复排列所构成的固体物质。
图7.1 晶态结构示意图
图7.2 非晶态结构示意图
辽宁石油化工大学
结构化学2
7.1 晶体的结构和性质
二、 晶体结构的特征
固体物质按原子 ( 分子、离子 ) 在
Mn
(立方简单)
Li Na K Cr Mo W…...
(立方体心)
以上每一个原子都是一个结构基元,都可以抽象成一个点阵点.
实例:Ni Pd Pt Cu Ag Au ……
立方面心是一种常见的
金属晶体结构,其中每
个原子都是一个结构基 元,都可被抽象成一个 点阵点.
CsCl型晶体结构
CsCl型晶体中A、B是不同的原子,不能都被抽象为点阵 点. 否则,将得到错误的立方体心点阵!这是一种常见的错误:
将晶体中重复出现的最小单元作为结构基元,用 一个数学上的点来代表, 称为点阵点,整个晶体就被 抽象成一组点,称为点阵。

晶体的点阵结构和晶体的性质

晶体的点阵结构和晶体的性质
或分子的位置。
空间填充性
晶体点阵结构具有空间填充性, 即原子或分子的排列方式能够填
满整个空间,不留空隙。
点阵结构分类
01
02
03
04
根据点阵结构的特点,可以将 晶体分为简单晶体、复杂晶体
和准晶体等类型。
简单晶体是指点阵结构比较简 单,只包含一种原子或分子,
如氯化钠、石英等。
复杂晶体是指点阵结构比较复 杂,包含多种原子或分子,如
晶体的点阵结构和 晶体的性质
contents
目录
• 晶体点阵结构的基本概念 • 晶体点阵结构的性质 • 晶体点阵结构与性质的关系 • 不同类型晶体的点阵结构和性质 • 晶体点阵结构的应用
01
CATALOGUE
晶体点阵结构的基本概念
点阵结构定义
01
晶体点阵结构是指晶体中原子或 分子的排列方式,这种排列方式 具有一定的周期性和对称性。
02
在晶体中,原子或分子的排列形 成了一个个格子,这些格子按照 一定的规律排列,形成了点阵结 构。
点阵结构特点
周期性
晶体点阵结构具有周期性,即每 个原子或分子的位置都是固定的 ,且相邻原子或分子的位置之间
存在一定的规律性。
对称性
晶体点阵结构具有对称性,即可 以通过某些对称操作(如旋转、 平移、镜像反射等)将一个原子 或分子的位置变换为另一个原子
超硬材料、高温超导材料等。
晶体点阵结构的研究有助于理解 材料的力学、热学、光学等性质 ,为新材料的研发和应用提供理
论支持。
在化学中的应用
晶体点阵结构是确定分子结构和化学键的重要依据,有助于理解分子的 性质和反应机理。
通过研究晶体点阵结构,可以揭示化学反应的微观机制,为新化合物的 合成和反应条件的优化提供指导。

《结构化学》第七章

《结构化学》第七章
原子的个数。
注:分数坐标与选取晶胞的原点有关
Nankai University
Cl-: 0,0,0; 1/2,1/2,0; 0,1/2,1/2; 1/2,0,1/2 Na+: 1/2,0,0; 0,1/2,0; 0,0,1/2; 1/2,1/2,1/2
Nankai University
S= : 0,0,0; 2/3,1/3,1/2; Zn++: 0,0,5/8; 2/3,1/3,1/8
宏观晶体的晶面指标 对于宏观晶体的外形晶面进行标记时,习惯
上把原点设在晶体的中心,根据晶体的所属晶系 确定晶轴的方向,两个平行的晶面一个为(hkl), 另一个为 (h kl )
Nankai University
晶面间距:任三个晶轴上截数为整数的一族晶 面中,相邻晶面间的垂直距离
立方晶系: 正交晶系:
X
OP= xa+yb+zc
x, y, z为P原子的分数坐标。x, y, z
为三个晶轴方向单位矢量的个数
Y
(是分数)(晶轴不一定互相垂直)。 x, y, z一定为分数
• 凡不到一个周期的原子的坐标都必须标记,分数坐标, 即坐标都为分数,这样的晶胞并置形成晶体;
• 这里的分量不一定是垂直投影。 • 一个晶胞内原子分数坐标的个数,等于该晶胞内所包括
数学抽象
晶体
点阵
点阵结构
点阵点
结构基元
直线点阵
晶棱
平面点阵
晶面
空间点阵
晶体
正当单位
正当晶胞
7种形状 14种布拉威格子
7个晶系 14种布拉威晶格
Nankai University
7.1.4 晶胞 晶胞:点阵结构中划分出的平行六面体叫晶胞, 它代表晶体结构的基本重复单位。

(完整版)结构化学 第七章

(完整版)结构化学 第七章

D16 2h

p
21 n
21 m
21 aC 52hP21 c空间群属单斜晶系
7个晶系
14种空间点阵型式 32个点群(宏观对称性) 230个空间群(微观对称性)
§7.4 晶体的X射线衍射
当X射线与原子中束缚较紧的内层电子相撞时,光子把能 量全部转给电子,电子将在其平衡位置发生受迫振动, 不断被加速或被减速,而且振动频度与入射X射线的相同。 这个电子本身又变成了一个新电磁波源,向四周辐射电 磁波,形成X射线波。这些散射波之间符合振动方向相同, 频率相同,位相差恒定的光的干涉条件, 可以发生干涉 作用,故称之为相干散射。
金刚石滑移面(d)与对角线滑移面(n)的滑移方向相同, 只是 滑移量不同而已。
1/2a
++
+
0
1
2
+a +
(b)
轴线滑移面a
5
4
a
3
aa
2

1
(a) 轴线滑移面 a
b
b
(b) 对角滑移面 n (c) 菱形滑移面d
虚线圈表示不存在
虚线圈表示在镜面下方 虚线圈表示在镜面下方
§ 7.2.3 晶胞
1. 晶胞: 晶体结构的基本重复单元称为晶胞
32个点群符号的说明:(见P276 表8.2.4)
SchÖnflies记号 国际记号 简化记号 对应的三个位
C4v
4mm
4mm
c a a+b
D2h
222 m m m 2/mmm a b c
Oh
432
m3m
a a+b+c a+b
mm
在某一方向出现的旋转轴或反轴是指与这一方向平行的旋 转轴或反轴, 而在某一方向出现的镜面则是指与该方向垂 直的镜面, 如果在某一方向同时出现旋转轴或反轴与镜面 时, 国际记号中用分数形式来表示,将n或n 记在分子位置, 将m记在分母位置。

结构化学 第七章练习题

结构化学 第七章练习题

第七章 晶体的点阵结构和晶体的性质1. (东北师大98)简答(1)讨论晶体的周期性结构用什么理论,(2)在A 1,A 2,A 3型密堆积中,哪种空间利用率低。

解:(1) 用点阵理论(2) 空间利用率:A 1(74.05%), A 2(68.02%), A 3(74.05%) 2.东北师大98(1)用0.579Ǻ的X 衍射得某立方晶体衍射指标为111的衍射角为5.1度,计算该晶体的晶胞参数a.(2)钨属于立方体心结构, 每个晶胞可以摊到几个钨原子, 分数坐标为什么?若钨的晶胞的大小为a=3.165Ǻ, 求其原子半径。

解:(1) 2 d hkl sin θ = λ222222222222sin () () 44sin h k l a h k l aλλθθ=++=++a=5.641 Ǻ(2) 每个晶胞可以摊到2个钨原子,分数坐标为(0, 0, 0)(1/2, 1/2, 1/2) ,W 原子半径: 4 1.37r r === Ǻ 3. 东北师大99已知CsCl 晶体中正负离子半径分别为1.69 Ǻ 和1.81 Ǻ ,试确定该晶体的配位数和结构形式。

解:0.732 < r +/r -=0.9337 <1.0, 配位数为8,配位多面体为立方体,体心为Cs+, 顶点为Cl 。

晶体的结构形式为简单立方。

4.东北师大2000某金属单晶为立方P 晶格, 在戴维逊-革末实验中测得该晶体(100)晶面上的一级反射型衍射的布拉格角为30。

,若已知晶格常数a=250pm ,求金属半径和加速电子电压。

解:立方P, r=a/2=125 pm, d hkld 100=250/1=250 pm,2d h*k*l* sin θ=n λ 2d hkl sin θ=λ 2×250×sin30。

=λ λ=250 pm2k =E 2p ev p m==h p λ== 5.(清华)S 8分子可形成单斜S 和正交S, 用X 射线衍射法(CuK 2线)测得某正交晶体的参数a=1048pm,b=1292pm,c=2455pm, λ=1.542 Ǻ, 已知密度为2.07g/cm 3,原子质量S=32, 求(a)每个晶胞中S 8的分子数目,(b)计算224衍射的Bragg 角θ。

第七章 晶体的点阵结构和晶体的性质习题

第七章 晶体的点阵结构和晶体的性质习题

第七章晶体的点阵结构与晶体的性质习题一、填空题1.从CsCl晶体中能抽出________点阵,结构基元是________,所属晶系的特征对称元素是________。

2.属于立方晶系的点阵类型有________________,属于四方晶系的点阵类型有___________。

3.晶体宏观外形中的对称元素可有________,________,________,______四种类型;晶体微观结构中的对称元素可有________,________,________,________,________,________,______七种类型;晶体中对称轴的轴次(n)受晶体点阵结构的制约,仅限于n=_________;晶体宏观外形中的对称元素进行一切可能的组合,可得________个晶体学点群;分属于________个晶系,这些晶系总共有________种空间点阵型式,晶体微观结构中的对称元素组合可得________个空间群。

4.晶体中可能存在的全部宏观对称元素是:。

5.晶体的宏观对称操作集合构成____________个晶体学点群;晶体的微观对称操作集合构成____________个空间群。

6.没有四方F和四方C,因为四方F可以化为___________,四方C可以化为_________。

7.(312)晶面在a,b,c轴上的截距分别为______,______,______。

8.金属钠具有立方体心点阵结构,其(110)晶面间距为303pm,其(111)晶面间距则为________。

9.从某晶体中找到C3,3C2,σh,3σd等对称元素,该晶体属________晶系是_____点群。

10.晶体按对称性分,共有______________个晶系。

11.晶体的空间点阵型式共有____________种。

12.晶体的点对称性共有___________种点群。

13.晶体的衍射方向可用以测定晶体的______________数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章晶体的点阵结构和晶体的性质§7.1.晶体结构的周期性和点阵7.1.1晶体结构特征世界上的固态物质可分为二类,一类是晶态,一类是非晶态。

自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。

人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。

另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。

晶体结构最基本的特征是周期性。

晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。

由于这样的内部结构,晶体具有以下性质:1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。

晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、分子按相同的结构排列而成。

气体、液体和非晶态的玻璃体也有均匀性,但那些体系中原子无规律地杂乱排列,体系中原子的无序分布导致宏观上统计结果的均匀性。

2、各向异性:晶体在不同的方向上具有不同的物理性质,如不同的方向具有不同的电导率,不同的折光率和不同的机械强度等。

晶体的这种特征,是由晶体内部原子的周期性排列所决定的。

在周期性排列的微观结构单元之中,不同方向的原子或分子的排列情况是不同的,这种差异通过成千上万次叠加,在宏观体现出各向异性。

而玻璃体等非晶态物质,微观结构的差异,由于无序分布而平均化了,所以非晶态物质是各向同性的。

例如玻璃的折光率是各向等同的,我们隔着玻璃观察物体就不会产生视差变形。

3、各种晶体生长中会自发形成确定的多面体外形。

晶体在生长过程中自发形成晶面,晶面相交成为晶棱,晶棱聚成顶点,使晶体具有某种多面体外形的特点。

熔融的玻璃体冷却时,随着温度降低,粘度变大,流动性变小,逐渐固化成表面光滑的无定形物,工匠因此可将玻璃体制成各种形状的物品,它与晶体有棱、有角、有晶面的情况完全不同。

4、晶体有确定的熔点而非晶态没有。

晶体加热至熔点开始熔化,熔化过程中温度保持不变,熔化成液态后温度才继续上升。

而非晶态玻璃体熔化时,随着温度升高,粘度逐渐变小,成流动性较大的液体。

5、晶体具有对称性。

晶体的外观与内部微观结构都具有特定的对称性,以后几节会专门介绍。

7.1.2点阵和结构单元我们先观察二维周期排列的一些原子、分子。

(a)为金属Cu的一层平面排列,每个Cu原子可抽取一个点阵点。

在二维平面中,可将点阵点连接成平面格子。

我们研究的晶体含有各种原子、分子,它们按某种规律排列成基本结构单元,我们可按结构基元抽象为点阵点。

我们先观察二维周期排列的一些原子、分子。

(a)为金属Cu的一层平面排列,每个Cu原子可抽取一个点阵点。

在二维平面中,可将点阵点连接成平面格子。

六方格子包含了六重旋转轴的对称性,每个点阵点周围有6个点阵点相邻,但六方格子的基本单位必须取平行四边形。

讨论二维点阵结构后,进一步分析晶体结构。

晶体结构是在三维空间伸展的点阵结构。

由晶体结构抽取的空间点阵中,一定可以找出与3个基本周期对应的3个互不平行的矢量a、b、c。

与空间点阵相应的平移群是:=m a+n b+p c m,n,p=0, ±1,±2……Tmnp平移a、b、c矢量将点阵点相互连结起来,可将空间点阵划分为空间格子,空间格子将晶体结构截成一个包含相同内容的单位,这个基本单位叫晶胞。

7.1.3点阵单位晶胞是晶体组成的基本单元。

晶胞有二个要素:一是晶胞的大小、型式,另一是晶胞的内容。

晶胞的大小、型式由a、b、c三个晶轴及它们间的夹角α.β.γ所确定。

晶胞的内容由组成晶胞的原子或分子及它们在晶胞中的位置所决定。

图为CsCl的晶体结构。

Cl与Cs的1:1存在。

+Cl-取一点阵点,我们可将点阵点取若CSCl-的位置。

根据Cl-的排列,我们可取出一个a=b=c,α=β=γ=90º的立方晶胞,其中8个Cl原子位于晶胞顶点,但每个顶点实际为8个晶胞共有,所以晶胞中含8×1/8=1个Cl原子。

Cs原子位于晶胞中心。

晶胞中只有1个点阵点。

故为素晶胞。

图7-6为8个CsCl晶胞。

右上角为一个单胞。

图CsCl晶体结构1.直线点阵(一维点阵)在直线上等距离排列的点——直线点阵 由聚乙炔、直线排列的等径圆球可以抽取出直线点阵。

· ·· · · · · ·|←—a —→||←———b ———→| |←————c ————→|沿向量c b a 、、等平移都能使图形复原。

直线点阵中连接任意两相邻阵点的向量称素向量(又称基本向量)。

上图中a 为素向量,cb 、称为复向量。

直线点阵中有无穷多个平移操作可使其复原,用数学语言描述则为2,1,0m (a m T m ±±== …)m T对向量的加法构成一个群————平移群。

3.平面点阵所有点阵点分布在一个平面上。

其中f e c b a、、、、都是素向量,d 为复向量。

平移群:)21,0n ,m (b n a m T n ,m ±±=+=4.空间点阵(三维点阵)所有阵点分布在三维空间上平移群。

)2,1,0p ,n ,m (c p b n a m T p ,n ,m ±±=++= 5.正当单位(正当格子)对平面点阵按选择的素向量a 和b 用两组互不平行的平行线组(过点阵点,等间距),把平面点阵划分成一个个的平行四边行,可得到平面格子。

由于素向量的选取有多种形式,所以一个平面点阵可得到多种平面格子。

平面格子中的每一个平行四边形称为一个单位。

四边形顶点上的阵点,对每个单位的贡献为1/4四边形边上的阵点,对每个单位的贡献为1/2四边形内的阵点,对每个单位的贡献为1。

只含一个阵点的单位——素单位(素格子)含有两个或两个以上阵点的单位一复单位(复格子)注意:素单位肯定是由素向量构成,但素向量不一定构成素单位。

为了研究问题方便,有时要选取正当单位。

在考虑对称性尽量高的前提下,选取含点阵点尽量少的单位——正当单位(正当格子)正当单位可以是素单位,也可以是复单位。

平面正当格子有四种类型五种形式(见书中图5—1.4)为什么正方形正当格子没有带芯的?注意:平面正当格子中只有矩形格子有素格子和复格子(带芯格子)之分,这是因为其它三种形状的格子的话,必定能取出同类形状的更小的素格子来。

由空间点阵按选择的向量c ,b ,a 把三维点阵划分成一个个的平行六面体,可得到空间格子,空间格子中的每个平行六面体称为空间格子的一个单位,也有素单位(素格子)、复单位(复格子)、正当单位(正当格子)之分。

空间点阵的正当单位有七种形状,十四种型式(见书中图5—2.6)6.晶胞及晶胞的两个基本要素。

空间点阵是晶体结构的数学抽象,晶体具有点阵结构。

空间点阵中可以划分出一个个的平行六面体一空间格子,空间格子在实际晶体中可以切出一个个平行六面体的实体,这些包括了实际内容的实体,叫晶胞,即晶胞是晶体结构中的基本重复单位。

晶胞一定是平行六面体,它们堆积起来不能构成晶体。

晶胞也有素晶胞,复晶胞和正当晶胞立分,只含一个结构基元的晶胞称为素晶胞。

正当晶胞可以是素晶胞,也可以是复晶胞,即在照顾对称性的前提下,选取体积最小的晶胞,以后如不加说明,都是指正当晶胞。

晶胞的两要素: (1)晶胞的大小和形状,用晶胞参数表示。

(2)晶胞中各原子的位置,用原子的分数坐标表示。

晶胞参数:选取晶体所对应点阵的三个素向量c ,b ,a 为晶体的坐标轴X,Y,Z ————称为晶轴。

晶轴确定之后,三个素向量的大小,a 、b 、c 及这些向量之间的夹角α、β、γ就确定了晶体的形状和大小, α、β、γ、a 、b 、c 为晶胞参数。

晶胞中任一原子的位置可用向量c Z b Y a X OP ++=表示1Z ,Y ,X ≤∴称(X,Y,Z)为P 原子的分数坐标。

具体实例见书中P484的CsClCl -(0,0,0),Cs +)21,21,21(7.晶面与晶面指标:一个空间点阵中可以从不同的运向划分出不同的平而点阵组,每一组中的各点阵面都是互相平行的,且距离相等。

(见书中图5—1.13)各组平面点阵对应于实际晶体中不同方向的晶面(注意晶面并非专指晶体表面)用“晶面指标”来描述这些不同方向的晶面。

晶面指标:晶体在三个晶轴上的倒易截数的互质整数比,首先看一个晶面在三个晶轴上的截距(或截长)由图,可以看出1l 2k 3h ='='='、、1l 2k 3h ='='='、、称为该晶面在三个晶轴上的截数若晶面和晶轴平行,则截面为无穷大,为避免出现无穷大,取截数的倒数:l 1k 1h 1'''、、称为倒量截数,将这些地倒易截数化为一组互整数比***l :k :h l 1:k 1:h 1=''')l k h (***称为该晶面的晶面指标,要注意以下几点:①一个晶面指标)l k h (***代表一组互相平行的晶面。

②晶面指标的数值反映了这组晶面间的距离大小和阵点的疏密程度。

晶面指标越大,晶面间距越小,晶面所对应的平面点阵上的阵点密度越小。

③由晶面指标)l k h (***可求出这组晶面在三个晶轴上的截数和截长截数 *h nh =' *k nk =' *l nl ='截长 a n ' b k ' c l '要求看懂书中图5—1.15和图5—1.16中的晶面指标。

并会确定晶面的晶面指标。

§7.2.晶体结构的对称性晶体的对称性晶体的对称性分宏观对称性和微观对称性,这里只讨论宏观对称性。

晶体在外形上呈现出的对称性为晶体的宏观对称性。

7.2.1.对称元素和对称操作从宏观上看晶体是一有限图形,所以其对称元素至少通过公共点,即都是点对称、具有点群的性质,晶体的宏观对称元素共4种,相应的对称操作有4类. 对称元素 对称操作旋轴 n 旋转L (α)基转角n 2π=α反映面成镜面 m 反映M对称中心 i 倒反I反轴 n 旋转倒反L(α) I(要注意晶体宏观对称性与分子对称性中所用名称与符号的差异,见书中表5--2.1)7.2.2.宏观对称元素的限制①晶体的空间点阵结构中,任何对称轴(包括旋转轴和反轴)都必须与一组直线点阵平行,除-重轴外,任何对称轴还必与一组平面点阵垂直;任何对称面必与一组平行的平面点阵平行,而与一组直线点阵垂直。

②晶体中对称轴(旋转轴和反轴的轴次只能是1,2,3,4,6) 注意:①晶体中没有5次或立于7次的旋转轴②晶体的反轴中只有4是可独立存在的,其它反轴6321、、、都不会独立存在,即有这些反轴时,必有其它对称元素存在,可有乐元素的组合来表示例如: i 1= m 2= i 33+= m 36+=所有在晶体宏观对称性中只有8种独立的对称元素。

相关文档
最新文档