生物化学知识要点
生物化学重点知识
生物化学重点知识生物化学是生物学与化学的交叉领域,研究生物体内的化学反应和生物分子之间的相互作用。
在生物化学的学习过程中,有一些重点知识是必须要掌握的,下面将对一些重点知识进行详细介绍。
一、生物大分子生物大分子是构成生物体的主要分子,包括蛋白质、核酸、多糖和脂质。
其中,蛋白质是生物体内最为重要的大分子之一,具有结构和功能的双重性。
蛋白质的结构由氨基酸组成,氨基酸通过肽键连接而成。
蛋白质的功能多种多样,包括参与代谢反应、传递信号、构建细胞结构等。
另外,核酸是生物体内贮存和传递遗传信息的分子,包括DNA和RNA两类。
DNA是遗传信息的载体,其双螺旋结构能够稳定保存大量的遗传信息。
而RNA主要参与蛋白质的合成过程,包括转录和翻译。
多糖是生物体内的能量储备和结构支持物质,如淀粉、糖原和纤维素等。
多糖的结构复杂多样,具有不同的功能和生物活性。
脂质是生物体内最不溶于水的大分子,包括脂肪酸、甘油和磷脂等。
脂质在细胞膜的构建和代谢调节中起着重要作用。
二、酶和酶促反应酶是生物体内催化化学反应的蛋白质,具有高度的特异性和效率。
酶可以加速生物体内代谢反应的进行,并且在反应结束后不被消耗。
酶的催化活性受到温度、pH值等环境因素的影响。
酶促反应是在酶的催化下进行的生物体内化学反应。
酶促反应遵循米氏动力学,包括亲和力、酶底物复合物和酶活性等步骤。
酶促反应在维持生物体内稳态和平衡中起着不可替代的作用。
三、代谢途径代谢是生物体内所有化学反应的总称,包括合成代谢和分解代谢两个方面。
在代谢中,有一些重要的途径是需要重点掌握的。
糖代谢途径是生物体内最主要的能量来源,包括糖原异生途径和糖酵解途径。
细胞通过这些途径产生ATP能量,供给细胞代谢和功能活动。
脂肪酸代谢途径是细胞内脂质代谢的关键过程,包括脂质合成和脂质分解。
脂肪酸代谢可以提供额外的能量供应,同时也参与胆固醇合成等生物学过程。
氨基酸代谢途径是蛋白质合成和代谢的基础,主要包括氨基酸转氨、氨基酸降解和尿素循环等步骤。
生物化学重点
第一章蛋白质的结构和功能第八章核苷酸代谢第二章核酸的结构与功能第九章物质代谢的联系第三章酶第十章 DNA的生物合成第四章糖代谢第十一章 RNA的生物合成第五章脂类代谢第十二章蛋白质的生物合成第六章生物氧化维生素第十三章基因表达的调控第七章氨基酸代谢第十七章肝的生物化学蛋白质的结构与功能1.蛋白质的含氮量很接近,平均为16%。
2.酸性氨基酸:天冬氨酸、谷氨酸。
碱性氨基酸:赖氨酸、精氨酸、组氨酸。
3. 氨基酸的理化性质:(1)氨基酸的两性解离性质;(2)分子中含有共轭双键的氨基酸具有紫外吸收性质。
吸收峰280nm;(3)氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物4. 在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。
此时环境的pH值称为该氨基酸的等电点(pI)5.肽的相关概念(1)寡肽:10个以内氨基酸组成的肽链。
(2)多肽:大于10分子氨基酸组成的肽链。
(3)蛋白质:大于50分子氨基酸组成的肽链。
(4)氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。
6.肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。
7. 蛋白质分子四级结构的比较。
一级结构二级结构三级结构四级结构定义从N-端至C-端的氨基酸的排列顺序蛋白质主链的局部空间结构、不涉及氨基酸残基侧链构象整条肽链中所有原子在三维空间的排布位置各亚基间的空间排布表现形式-α-螺旋、β-折叠(片层)、β-转角、无规卷曲结构域、模体(超二级结构)亚基聚合维系键肽键(主要)二硫键(次要) 氢键非共价键(疏水键、盐键、氢键、范德华力)亚基间的非共价键。
8. 蛋白质一级结构与空间结构的关系:一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。
9. 蛋白质空间结构与功能的关系:蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。
10. 变构效应:蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象11. 蛋白质重要的理化性质及相关概念①.蛋白质的等电点:当蛋白质在某一pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的pH值称为蛋白质的等电点。
生物化学复习提要
生物化学复习提要糖类提要一、定义糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡喃糖、糖苷、手性二、结构1.链式:Glc、Man、Gal、Fru、Rib、dRib2.环式:顺时针编号,D型末端羟甲基向下,α型半缩醛羟基与末端羟甲基在两侧。
3.构象:椅式稳定,β稳定,因其较大基团均为平键。
三、反应与酸:莫里斯试剂、西里万诺夫试剂。
与碱:弱碱互变,强碱分解。
氧化:三种产物。
还原:葡萄糖生成山梨醇。
酯化成苷:有α和β两种糖苷键。
成沙:可根据其形状与熔点鉴定糖。
四、衍生物氨基糖、糖醛酸、糖苷五、寡糖蔗糖、乳糖、麦芽糖和纤维二糖的结构六、多糖淀粉、糖原、纤维素的结构七、计算比旋计算,注意单位。
脂类提要一、概念脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂三、单纯脂1.脂肪酸的俗名、系统名和缩写、双键的定位2.油脂的结构和化学性质(1)水解和皂化值 (2)加成反应碘值 (3)酸败3.蜡是由高级脂肪酸和长链油脂族一元醇或固醇构成的酯。
四、磷脂(复合脂)(一)甘油磷脂类(二)鞘氨醇磷脂五、非皂化脂(一)萜类是异戊二烯的衍生物(二)类固醇都含有环戊烷多氢菲结构固醇类:主要有动物固醇、植物固醇、酵母固醇固醇衍生物类:胆汁酸、强心苷和蟾毒、性激素和维生素D(三)前列腺素六、结合脂1.糖脂:它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。
2.脂蛋白血浆脂蛋白根据其密度由小到大分为五种:蛋白质提要一、概念简单蛋白、结合蛋白、基本氨基酸、等电点、甲醛滴定法、Edman降解、一级结构、肽键、构型与构象、二面角、二级结构、超二级结构、结构域、三级结构、四级结构、亚基、别构蛋白、分子病、水化层、双电层、蛋白质的变性与复性、盐析与盐溶二、氨基酸分类、基本氨基酸的结构、分类、名称、符号、化学反应、鉴定、蛋白质的水解三、蛋白质的结构1.一级结构结构特点、测定步骤、常用方法、酶2.二级结构四种结构特点、数据、超二级结构3.三级结构主要靠疏水键维持4.四级结构变构现象5.结构与功能的适应、结构变化对功能的影响、典型蛋白质四、蛋白质的性质五、分子量的测定方法、酸碱性、溶解性、变性、颜色反应酶学一、概念辅因子、全酶、活力、活力单位、比活、转化数、活性中心、同工酶、米氏常数、激活剂、抑制剂、竞争性抑制、非竞争性抑制、反竞争性抑制、别构酶、正协同效应、Hill系数、诱导酶、多酶体系二、酶的命名与分类:6大类三、酶的活力:定义、换算四、酶的动力学及影响因素:米氏方程、米氏常数的意义及作图方法、Bi-Bi反应机制、pH、温度、激活剂、抑制剂、三种可逆抑制的特点五、酶的作用机制:酶与底物的结合、降低活化能的因素六、酶的调节:活性调节(变构调节、共价修饰、酶原激活)和数量调节核酸一、概念核苷酸、核苷、超螺旋、发夹结构、帽子结构、DNA的变性、退火、分子杂交、限制性内切酶二、核苷酸:碱基、核苷、核苷酸的结构、命名、核苷酸的功能三、DNA:DNA一级结构与书写、二级结构种类、B-DNA结构要点、超螺旋与其功能四、RNA:与DNA的区别、分类、tRNA的二、三级结构、mRNA的结构、rRNA的种类与核糖体五、性质:紫外吸收用途、变性与杂交、密度大小维生素一、概念维生素、抗坏血酸二、分类、特点三、脂溶性维生素:A、D、E、K,名称、功能、缺乏后果四、水溶性维生素:B族、V-C,名称、功能、与辅酶关系、缺乏后果激素一、概念激素、内分泌、激素受体、细胞内受体、第二信使、级联放大二、分类与特点三、作用机制:四类,第二信使的产生与功能四、重要激素:肾上腺素(五步级联放大)、与血糖有关的四种激素(肾上腺素、胰高血糖素、肾上腺皮质激素、胰岛素)对血糖的调节、其他各类激素的代表抗生素一、概念:抗生素、耐药性、β-内酰胺、半合成抗生素二、作用机制:5种,各种的具体机制及代表三、重要抗生素:β-内酰胺类抗生素机制及用途、其他各类的代表。
生物化学重点知识点
生物化学重点知识点生物化学是研究生物大分子的结构、组成、功能和相互作用的科学。
下面是一些生物化学的重点知识点:1.生物大分子:生物大分子包括蛋白质、核酸、多糖和脂质。
它们是生物体内最重要的分子,发挥着各种生命活动的功能。
2.氨基酸:氨基酸是蛋白质的基本组成部分。
有20种氨基酸,它们通过肽键连接形成多肽链。
氨基酸的顺序和空间结构决定了蛋白质的功能。
3.蛋白质结构:蛋白质的结构可分为四个层次:一级结构是氨基酸的顺序;二级结构是氢键的形成,如α-螺旋和β-折叠;三级结构是各个二级结构的空间排列;四级结构是多个蛋白质链的组装。
4.酶:酶是生物催化剂,能够加速化学反应的速率。
酶通过与底物形成亲和性复合物,降低活化能,使反应在生物条件下发生。
5.代谢途径:生物体的代谢途径包括糖酵解、有氧呼吸、脂肪酸合成、脂肪酸氧化和蛋白质合成等。
这些途径产生能量和所需的中间代谢产物。
6.核酸:核酸是遗传信息的携带者,包括DNA和RNA。
DNA是双链结构,RNA是单链结构。
DNA通过转录生成mRNA,再通过翻译生成蛋白质。
7.遗传密码:遗传密码是DNA碱基序列与蛋白质氨基酸序列之间的对应关系。
这种对应关系由密码子决定,每个密码子对应一种氨基酸。
8.代谢调控:生物体能够根据环境的变化来调控代谢途径。
这种调控发生在基因、酶活性和底物浓度等方面,以维持体内的稳态。
9.脂质:脂质是生物体内的重要功能分子,包括脂肪、磷脂和类固醇。
脂质在细胞膜结构和信号传导中起重要作用。
10.蛋白质折叠和疾病:蛋白质的错误折叠会导致一系列疾病,包括神经退行性疾病和癌症。
了解蛋白质折叠的机制有助于理解疾病的发生并开发新的治疗方法。
以上是生物化学的一些重点知识点。
了解这些知识可以帮助我们更好地理解生命的本质和生物体内各种生物化学过程的发生。
生物化学重点知识
第二章蛋白质的结构与功能一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章核酸的结构与功能一、名词解释1.核苷酸:核苷分子中戊糖的自由羟基与磷酸通过磷酸酯键连接而形成的化合物。
生物化学考试复习要点总结
一、蛋白质的结构与功能1.蛋白质的含氮量平均为16%.2.氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。
3.酸性氨基酸:天冬氨酸、谷氨酸;碱性氨基酸:赖氨酸、精氨酸、组氨酸。
4.半胱氨酸巯基是GSH的主要功能基团。
5.一级结构的主要化学键是肽键。
6.维系蛋白质二级结构的因素是氢键7.并不是所有的蛋白质都有四级结构。
8.溶液pH>pI时蛋白质带负电,溶液pH<pl时蛋白质带正电。
9.蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。
二、核酸的结构和功能1. RNA和DNA水解后的产物。
2.核苷酸是核酸的基本单位。
3.核酸一级结构的化学键是3′,5′-磷酸二酯键。
4. DNA的二级结构的特点。
主要化学键为氢键。
碱基互补配对原则。
A与T, c 与G.5. Tm为熔点,与碱基组成有关6. tRNA二级结构为三叶草型、三级结构为倒L型。
7.ATP是体内能量的直接供应者。
cAMP、cGMP为细胞间信息传递的第二信使。
三酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。
2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念:必须基因集中存在,并构成一定的空间结构,直接参与酶促反应的区域叫酶的活性中心3.B族维生素与辅酶对应关系。
4. Km含义;Km值一般由一个数乘以测量单位所表示的特定量的大小. 对于不能由一个数乘以测量单位所表示的量,可参照约定参考标尺,或参照测量程序,或两者都参照的方式表示。
5.竞争性抑制特点。
某些与酶作用底物相识的物质,能与底物分子共同竞争酶的活性中心。
酶与这种物质结合后,就不能再与底物相结合,这种作用称酶的竞争性抑制作用。
抑制是可逆的,抑制作用的大小与抑制剂和底物之间的相对浓度有关。
四糖代谢1.糖酵解限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP:2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
生物化学必看知识点总结优秀
引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。
掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。
本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。
正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。
(完整版)生物化学知识点重点整理
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
生物化学重点知识点总结
生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学知识点总结
生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学.其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达.生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题1生物化学的发展史分为哪几个阶段生物化学的发展主要包括三个阶段:①静态生物化学阶段20世纪之前:是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段20世纪初至20世纪中叶:是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段20世纪中叶以后:这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系.2组成生物体的元素有多少种第一类元素和第二类元素各包含哪些元素组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素.第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素.第二章蛋白质1. 名词解释1蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物2氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点3蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点4N端与C端:N端也称N末端指多肽链中含有游离α-氨基的一端,C端也称C末端指多肽链中含有α-羧基的一端5肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽6氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基7肽单元肽单位:多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转8结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域.结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离区别于蛋白质亚基③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同9分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病10蛋白质的变构效应:蛋白质或亚基因与某小分子物质相互作用而发生构象变化,导致蛋白质或亚基功能的变化,称为蛋白质的变构效应酶的变构效应称为别构效应11蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应12蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构.造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解14蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性2. 问答题1组成生物体的氨基酸数量是多少氨基酸的结构通式、氨基酸的等电点及计算公式组成生物的氨基酸有22种,组成人体和大多数生物的为20种,结构通式如右图.氨基酸的等电点指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点,计算公式如下:中性氨基酸)''(2121pKpKpI+=一氨基二羧基氨基酸)''(2121pKpKpI+=二氨基一羧基氨基酸)''(2132pKpKpI+=2氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类并举例分类名称结构缩写丙氨酸AlaA缬氨酸ValV非极性氨基酸疏水,8种非极性氨基酸疏水,8种亮氨酸LeuL异亮氨酸IleI脯氨酸ProP甲硫氨酸也称蛋氨酸MetM苯丙氨酸PheF色氨酸TrpW极性氨基酸亲水,12种甘氨酸中性氨基酸,不带电GlyG丝氨酸中性氨基酸,不带电SerS苏氨酸中性氨基酸,不带电ThrT半胱氨酸中性氨基酸,不带电CysC酪氨酸中性氨基酸,不带电TyrY极性氨基酸亲水,12种天冬酰胺中性氨基酸,不带电AsnN谷氨酰胺中性氨基酸,不带电GlnQ天冬氨酸酸性氨基酸,带负电AspD谷氨酸酸性氨基酸,带负电GluE极性氨基酸亲水,12种赖氨酸碱性氨基酸,带正电LysK精氨酸碱性氨基酸,带正电ArgR组氨酸碱性氨基酸,带正电HisH3蛋白质中氮含量是多少,如何测定粗蛋白的氮含量各种蛋白质的氮含量很接近,平均为16%.生物样品中,每得得1g氮就相当于100/16=6.25g蛋白质.通常采用定氮法测量蛋白质含量,其中较为经典的是凯氏定氮法粗蛋白测定的经典方法4蛋白质的二级结构有哪几种形式其要点包括什么蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲四种.①α-螺旋要点:多肽链主链围绕中心轴形成右手螺旋,侧链伸向螺旋外侧;每圈螺旋含个氨基酸,螺距为;每个肽键的亚胺氢和第四个肽键的羰基氧形成的氢键保持螺旋稳定,氢键与螺旋长轴基本平行②β-折叠要点:多肽链充分伸展,相邻肽单元之间折叠形成锯齿状结构,侧链位于锯齿的上下方;两段以上的β-折叠结构平行排列,两链间可以顺向平行,也可以反向平行;两链间肽键之间形成氢键,以稳固β-折叠,氢键与螺旋长轴垂直③β-转角要点:肽链内形成180°回折;含4个氨基酸残基,第一个氨基酸残基与第四个氨基酸残基形成氢键;第二个氨基酸残基常为Pro脯氨酸④无规卷曲要点:没有确定规律性的肽链结构;是蛋白质分子的一些没有规律的松散的肽链构象,对蛋白质分子的生物功能有重要作用,可使蛋白质在功能上具有可塑性5一个螺旋片段含有180个氨基酸残基,该片段中共有多少圈螺旋计算该片段的轴长螺旋数为180/=50,轴长为×50=27nm6维持蛋白质一级结构的作用力有哪些维持空间结构的作用力有哪些维持蛋白质一级结构的作用力主要的化学键:肽键,有些蛋白质还包括二硫键维持空间结构的作用力:氢键、疏水键、离子键、范德华力等统称次级键非化学键和二硫键7简述蛋白质结构与功能的关系蛋白质的一级结构:一级结构是空间构象的基础;同源蛋白质在不同生物体内的作用相同或相似的蛋白质的一级结构的种属差异揭示了进化的历程,如细胞色素C;一级结构的变化引起分子生物学功能的减退、丧失,造成生理功能的变化,甚至引起疾病;肽链的局部断裂是蛋白质的前体激活的重要步骤蛋白质的空间结构:变构蛋白可以通过空间结构的变化使其能够更充分、更协调地发挥其功能,完成复杂的生物功能;蛋白质的变性与复性与其空间结构关系密切;蛋白质的构象改变可影响其功能,严重时导致疾病的发生蛋白质构象病,如疯牛病8简述蛋白质的常见分类方式根据分子形状分类:球状蛋白质、纤维状蛋白质、膜蛋白质根据化学组成分类:简单蛋白质、结合蛋白质结合蛋白质=简单蛋白质+非蛋白质组分辅基根据功能分类:酶、调节蛋白、贮存蛋白、转运蛋白、运动蛋白、防御蛋白和毒蛋白、受体蛋白、支架蛋白、结构蛋白、异常蛋白9简述蛋白质的主要性质①两性解离和等电点:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团.当蛋白质溶液处于某一pH时,蛋白质解离成正负离子的趋势相等,即成为兼性离子,净电荷为0,此时溶液的pH为蛋白质的等电点②蛋白质的胶体性质:蛋白质属生物大分子,其分子直径可达1-100nm之间,为胶粒范围之内,因而具有胶体的性质③蛋白质的变性、沉淀和凝固:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,称为变性.若变性程度较轻,除去变性因素后蛋白质仍可恢复或部分恢复其原有的构象及功能,称为复性.在一定条件下,蛋白疏水侧链暴露在外,肽链因互相缠绕继而聚集,因而从溶液中析出,称为蛋白质的沉淀,变性的蛋白易于沉淀,有时蛋白质发生沉淀,但并不变性.蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易溶解于强酸和强碱中,称为蛋白质的凝固作用④蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有波长的特征性吸收峰,其吸收率和蛋白质浓度成正比用来测含量⑤蛋白质的显色反应:经水解产生的氨基酸可发生于茚三酮的反应;蛋白质和多肽分子中的肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色称为双缩脲反应,用以检测水解程度第三章核酸1. 名词解释1核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物,在大多数情况下,核苷是由核糖或脱氧核糖的C1β-羟基与嘧啶碱或嘌呤碱的N1或N9进行缩合生成的化学键称为β,N糖苷键2核苷酸:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核苷酸两类,由于与磷酸基团羧基缩合的位置不同,分别生成2’-核苷酸、3’-核苷酸和5’-核苷酸最常见为5’-核苷酸3核酸的一级结构:核苷酸通过3’,5’-磷酸二酯键连接成核酸即多聚核苷酸,DNA的一级结构就是指DNA分值中脱氧核糖核苷酸的排列顺序及连接方式,RNA的一级结构就是指RNA分子中核糖核苷酸的排列顺序及连接方式4DNA的复性与变性:核酸的变性指核酸双螺旋区的多聚核苷酸链间的氢键断裂,形成单链结构的过程,使之是失去部分或全部生物活性,但其变性并不涉及磷酸二酯键的断裂,所以其一级结构并不改变.能够引起核酸变性的因素很多,升温、酸碱度改变、甲醛和尿素都可引起核酸变性.注意,DNA的变性过程是突变性的.复性指变性核酸的互补链在适当的条件下重新地和成双螺旋结构的过程5分子杂交:在退火条件下,不同来源的DNA互补链形成双链,或DNA单链和RNA单链的互补区域形成DNA-RNA杂合双链的过程称为分子杂交6增色效应:核酸变性后,260nm处的紫外吸收明显增加,这种现象称为增色效应7减色效应:核酸复性后,紫外吸收降低,这种现象称为减色效应8基因与基因组:基因指遗传学中DNA分子中最小的功能单位,某物种所含有的全部遗传物质称为该生物体的基因组,基因组的大小与生物的复杂性有关9Tm熔解温度:通常把加热变形使DNA的双螺旋结构失去一半时的温度或紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度或熔点10Chargaff定律:①所有的DNA分子中A=T,G=C,即A/T=G/C=1②嘌呤的总数等于嘧啶的总数相等即A+T=G+C③含氮基与含酮羰基的碱基总数相等A+C=G+T④同一种生物的所有体细胞DNA 的碱基组成相同,与年龄、健康状况、外界环境无关,可作为该物种的特征,用不对称比率A+T/G+C衡量⑤亲缘越近的生物,其DNA碱基组成越相近,即不对称比率越相近11探针:在核酸杂交的分析过程中,常将已知顺序的核苷酸片段用放射性同位素或荧光标记,这种带有一定标记的已知顺序的核酸片段称为探针2. 问答题1某DNA样品含腺嘌呤%按摩尔碱基计,计算其余碱基的百分含量由已知A=%,所以T=A=%,因此G+C=%,又G=C,所以G=C=%2DNA和RNA在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么①化学组成:DNA的基本单位是脱氧核糖核苷酸,每一分子脱氧核糖核苷酸包含一分子磷酸,一分子脱氧核糖和一分子含氮碱基,DNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T四种;RNA的基本单位是核糖核苷酸,每一分子核糖核苷酸包含一分子磷酸、一分子核糖和一分子含氮碱基,RNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、尿嘧啶U四种.②分子结构:DNA为双链分子,其中大多数是是链状结构大分子,也有少部分呈环状;RNA为单链分子.③细胞内分布:DNA90%以上分布于细胞核,其余分布于核外如线粒体、叶绿体、质粒等;RNA 在细胞核和细胞液中都有分布.④生理功能:DNA分子包含有生物物种的所有遗传信息;RNA主要负责DNA遗传信息的翻译和表达,分子量要比DNA小得多,某些病毒RNA也可作为遗传信息的载体3简述DNA双螺旋结构模型的要点及生物学意义DNA双螺旋结构的要点:①DNA分子由两条多聚脱氧核糖核苷酸链DNA单链组成.两条链沿着同一根轴平行盘绕,形成右手双螺旋结构.螺旋中两条链的方向相反,其中一条链的方向为5’→3’ ,另一条链的方向3’→5’.②碱基位于螺旋的内侧,磷酸和脱氧核糖位于螺旋外侧,碱基环平面与轴垂直,糖基环平面与碱基环平面呈90°角.③螺旋横截面的直径为2nm,每条链相邻碱基平面之间的距离为,每10个核酸形成一个螺旋,其螺距高度为.④维持双螺旋的力是链间的碱基对所形成的氢键,碱基的互相结合具有严格的配对规律,嘌呤碱基的总数等于嘧啶碱基的总数生物学意义:双螺旋结构模型提供了DNA复制的机理,解释了遗传物质自我复制的机制.模型是两条链,而且碱基互补.复制之前,氢键断裂,氢键断裂,两条链彼此分开,每条链作为一个模板复制除一条新的互补链,这样就得到了两对链,解决了遗传复制中样板的分子基础4DNA的三级结构在原核生物和真核生物中各有什么特征绝大多数原核生物的DNA都是共价封闭的环状双螺旋,如果再进一步盘绕则形成麻花状的超螺旋三级结构.真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体,属于DNA的三级结构5细胞内含哪几种主要的RNA其结构和功能是什么细胞内的主要RNA是mRNA、tRNA和rRNA.mRNA:单链RNA,功能是将DNA的遗传信息传递到蛋白质合成基地——核糖核蛋白体tRNA:单链核酸,但在分子中的某些局部部位也可形成双螺旋结构,保守性最强.二级结构由于局部双螺旋的形成而呈现三叶草形,三级结构由三叶草形折叠而成,呈倒L型.功能是将氨基酸活化搬运到核糖体,参与蛋白质的合成rRNA:细胞中含量最多RNA总量的80%,与蛋白质组成核蛋白体,作为蛋白质生物合成的场所.在原核生物中,有5S、16S、23S,16S 的rRNA参与构成蛋白体的小亚基,5S和23S的rRNA参与构成核蛋白体的大亚基;在真核生物中,rRNA有四种5S、、18S、28S,其中18S参与构成核蛋白体小亚基,其余参与构成核蛋白体大亚基6简述tRNA的二级结构要点tRNA的二级结构呈三叶草形,包含以下区域:①氨基酸接受区:包含tRNA的3’-末端和5’-末端,3’-末端的最后三个核苷酸残基都是CCA,A为核苷,氨基酸可与之形成酯,该去区在蛋白质合成中起携带氨基酸的作用②反密码区:与氨基酸接受区相对的一般含有七个核苷酸残基的区域,中间的三个核苷酸残基称为反密码子③二氢尿嘧啶区:该区域含有二氢尿嘧啶④T ψC区:该区与二氢尿嘧啶区相对,假尿嘧啶核苷-胸腺嘧啶核糖核苷组成环TψC由7个核苷酸组成,通过由5对碱基组成的双螺旋区TψC臂与tRNA其余部分相连,除个别例外,几乎所有的tRNA在此环中都含有TψC⑤可变区:位于反密码去与TψC 之间,不同的tRNA在该区域中变化较大7简述核酸的主要性质①一般理化性质:固体DNA为白色纤维状固体,RNA为白色粉末状固体,均溶于水,不溶于一般的有机溶剂,在70%乙醇中形成沉淀,具有很强的旋光性,DNA粘度较大,RNA粘度小得多②两性和等电点:由于核酸分子中既具有酸性基团,有具有碱性基团,因而核酸具有两性性质.DNA的等电点为4至,RNA的等电点2至RNA存在核苷酸内的分子内氢键,促进电离③紫外吸收:核酸的吸收峰为260nm左右的紫外线④核酸的水解:核酸的水解有碱水解和酶水解两种方式,前者通过在碱性条件下没有选择性地断裂磷酸二酯键完成,后者可采用DNA水解酶或RNA水解酶,可以有选择性地切断磷酸二酯键限制性核酸内切酶或者没有选择性地切断⑤核酸的变性:核酸的变性本质上是氢键的断裂,变成单链结构.DNA的热变性过程是突变的,在很窄的温度区间内完成,其熔解温度满足Tm—=100G+C;RNA由于只有局部的双螺旋区,所以变性行为引起的性质变化不明显⑥核酸的复性:在适当条件下,变性核酸的互补链能够重新结合成双螺旋结构,DNA的生物活性只能得到部分恢复,且出现减色效应,将热变性的DNA骤然冷却时,DNA不可能复性,缓慢冷却可以复性,分子量越大复性越困难,浓度越大,复性越困难⑦核酸的分子杂交:在退火条件下,不同来源的DNA互补链能够形成双链或者DNA单链和RNA单链的互补区形成DNA-RNA 杂合双链⑧含氮碱基的性质:存在酮式-烯醇式或氨式-亚胺式的互变异构,具有芳环、氨、酮、烯醇等相应的化学性质,并且具有弱碱性第四章糖1. 名词解释糖:糖指多羟基醛或者多羟基酮及其衍生物或缩聚物的总称,俗称碳水化合物2. 问答题1简述糖的功能及分类并举例说明糖的功能:糖是生物体的能源物质,是细胞的结构组分,具有细胞识别、机体免疫、信息传递的作用.糖的分类:根据大小分为单糖大约20种、寡糖2-10种、多糖和糖缀合物.单糖按照其中碳原子的数目分为丙糖醛糖如甘油醛,酮糖如二羟丙酮、丁糖醛糖如赤藓糖,酮糖如赤藓酮糖、戊糖醛糖如核糖,酮糖如核酮糖、己糖醛糖如葡萄糖、半乳糖、甘露糖,酮糖如果糖、山梨糖、庚糖景天酮糖.寡糖按照所含糖基多少分为二糖蔗糖、麦芽糖、乳糖、三糖棉籽糖…六糖.多糖分为均多糖淀粉、糖原、甲壳素、纤维素和杂多糖半纤维素、粘多糖.糖缀合物分为糖蛋白和糖脂两类2说明麦芽糖组成淀粉的基本单位、纤维二糖组成纤维素的基本单位所含单糖的种类、糖苷键的类型.一分子麦芽糖中含有两分子α-葡萄糖1-C和4-C上的羟基均在环平面下方,糖苷键为1-4糖苷键;一分子纤维二糖中含有两分子β-葡萄糖1-C和4-C上的羟基均在环平面上方,糖苷键为1-4糖苷键3列举出四种多糖的名称均多糖由一种单糖聚合而成:淀粉有直链淀粉和支链淀粉两种,后者存在1-6糖苷键,两者均是植物细胞的能源储存形式、糖原动物及细菌的储能物质,贮存于动物的肝脏和肌肉中,结构于支链淀粉类似,遇碘显红紫色、纤维素葡萄糖β1-4糖苷键连接而成的无分支的同多糖,形成植物细胞细胞壁、甲壳素2-N-乙酰-D-氨基葡萄糖β1-4糖苷,基本单位为β-葡萄糖的2-C上经过氨基修饰后的产物杂多糖由几种不同的单糖聚合而成:半纤维素存在于植物细胞壁中的所有杂多糖的总称、粘多糖糖胺聚糖.是含氨基己糖的杂多糖的总称,表现为一定的粘性和酸性,如透明质酸和肝素、药物多糖中药的有效成分、其他杂多糖如琼脂和果胶第五章脂类及生物膜1. 名词解释脂:指由酸和醇发生脱水酯化反应形成的化合物,包括某些不溶于水的大分子脂肪酸和大分子的醇类,分为简单脂不与脂肪酸结合的脂,如固醇类、萜类、前列腺素和结合脂与脂肪酸结合的脂,如三酰甘油酯、磷脂酰甘油酯、鞘脂、蜡和脂蛋白2. 问答题1简述脂的功能.①脂是生物细胞重要的储能物质,因为其具有热值高、不溶于水、易于聚集的特点②位于体表的脂类具有机械性的保护作用③脂类磷脂酰甘油酯是组成细胞膜的主要成分④简单的脂类在体内是维生素及激素的前体物质2简述生物膜的流动镶嵌模型生物膜分为细胞膜和细胞器膜,其共同特点是单层的生物膜细胞膜是流动的磷脂双分子层构成的连续体,蛋白质无规则地分布在磷脂双分子层中.脂类的流动性使得生物膜具有一定的流动性,方便蛋白质的运动,也使得细胞可变形;膜的流动性与脂的种类和温度有关.蛋白质是选择性透过的运输通道,同时也是细胞间信息传递、识别的受体.细胞器膜的结构与细胞膜类似,但由于功能的分化而多为双层膜,内层膜出现扩大现象,成为新陈代谢的部位.第6章酶1. 名词解释1酶:酶是一类具有高效性和专一性的生物催化剂2单酶单纯蛋白酶:除了蛋白质外,不含有其他物质的酶,如脲酶等一般水解酶3全酶结合蛋白酶:含酶蛋白脱辅酶,决定反应底物的种类,即酶的专一性和非蛋白小分子物质传递氢、电子、基团,决定反应的类型、性质的酶.酶蛋白与辅助因子单独存在时,没有催化活力,两部分结合称为全酶4辅酶:与酶蛋白结合较松、容易脱离酶蛋白、可用透析法除去的小分子有机物或金属离子等辅助因子,如辅酶I和辅酶II 5辅基:与酶蛋白结合较为紧密、不能通过透析除去,需要经过一定的化学处理才能与蛋白分开的小分子物质,如细胞色素氧化酶中的铁卟啉※辅酶可辅基之间没有严格的界限,只是辅酶和辅基与酶蛋白结合的牢固程度不同。
生物化学最核心的知识点总结
生物化学最核心的知识点总结1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。
抑制作用大小与抑制剂和底物的浓度比以及酶对它们的亲和力有关。
此类抑制作用最大速度Vmax不变,表观Km值升高。
2)非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶的活性中心以外的必需基团结合。
不影响酶在结合抑制剂后与底物的结合。
该抑制作用的强弱只与抑制剂的浓度有关。
此类抑制作用最大速度Vmax下降,表观Km值不变。
3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。
此类抑制作用最大速度Vmax和表观Km值均下降。
2.线粒体内生成的NADPH可直接参加氧化磷酸化过程,但在胞浆中生成的NADPH不能自由透过线粒体内膜,故线粒体外NADPH所带的氢必须通过某种转运机制才能进入线粒体,然后再经呼吸链进行氧化磷酸化过程。
这种转运机制主要有α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭两种机制。
(1)α-磷酸甘油穿梭:这种穿梭途径主要存在于脑和骨骼肌中,胞浆中的NADH在磷酸甘油脱氢酶催化下,使磷酸二羟丙酮还原成α-磷酸甘油,后者通过线粒体外膜,再经位于线粒体内膜近胞浆侧的磷酸甘油脱氢酶催化下氧化生成磷酸二羟丙酮和FADH2,磷酸二羟丙酮可穿出线粒体外膜至胞浆,参与下一轮穿梭,而FADH2则进入琥珀酸氧化呼吸链,生成2分子ATP(2)苹果酸-天冬氨酸穿梭:这种穿梭途径主要存在于肝和心肌中,胞浆中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原为苹果酸,后者通过线粒体外膜上的α-酮戊二酸转运蛋白进入线粒体,又在线粒体内苹果酸脱氢酶的作用下重新生成草酰乙酸和NADH。
NADH进入NADH氧化呼吸链,生成3分子ATP。
可见,在不同组织,通过不同穿梭机制,胞浆中的NADH进入线粒体的过程不一样,参与氧化呼吸链的途径不一样,生成的ATP数目不一样。
3.1)作为酶活性中心的催化基团参加反应;2)作为连接酶与底物的桥梁,便于酶对底物起作用;3)为稳定酶的空间构象所必需;4)中和阴离子,降低反应的静电斥力。
生物化学专业知识要点整理
生物化学专业知识要点整理生物化学是研究生物体内分子结构、组成、代谢和功能的一门学科,它涉及到生物体内各种生物大分子的结构、性质和功能等方面的内容。
本文将对生物化学专业的一些重要知识要点进行整理,以帮助读者更好地理解和掌握这门学科。
一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子,它具有多种功能,包括酶催化、结构支持、运输传递、免疫防御等。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(立体构象)和四级结构(多个蛋白质亚基的组装)。
2. 核酸:核酸是遗传信息的携带者,包括DNA和RNA两类。
DNA是双链结构,RNA是单链结构。
DNA的功能是存储和传递遗传信息,RNA参与蛋白质的合成。
3. 碳水化合物:碳水化合物是生物体内重要的能量来源,也参与到细胞识别和信号传导等过程中。
常见的碳水化合物有单糖、双糖和多糖,如葡萄糖、蔗糖和淀粉等。
4. 脂质:脂质是生物体内重要的结构和能量储存物质,包括甘油三酯、磷脂和固醇等。
脂质在细胞膜的形成和维持、能量代谢等方面发挥重要作用。
二、酶的性质和功能1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和效率。
酶的活性受到温度、pH值和底物浓度等因素的影响。
2. 酶的功能:酶在生物体内参与几乎所有的代谢过程,包括消化、呼吸、光合作用等。
常见的酶包括氧化还原酶、水解酶、脱羧酶等。
三、能量代谢1. ATP:三磷酸腺苷是生物体内最重要的能量储存和释放分子,其通过磷酸键的形成和断裂实现能量的转换。
2. 糖酵解:糖酵解是生物体内糖类分子的分解过程,通过一系列的反应将葡萄糖转化为乳酸或乙醇释放能量。
3. 女性酸循环:女性酸循环是生物体内氧化葡萄糖、脂肪和氨基酸产生能量的过程,其产生的还原剂NADH和FADH2通过呼吸链参与ATP的合成。
4. 光合作用:光合作用是植物和一些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程,它是地球上最重要的能量来源。
生物化学知识点总结
生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
生物化学知识点总结
第一章1、掌握蛋白质的元素组成、基本组成单位,氨基酸成肽的连接方式;熟悉氨基酸的通式与结构特点。
元素组成:碳、氢、氧、氮、硫(C、H、O、N、S )以及磷、铁、铜、锌、碘、硒组成单位:氨基酸连接方式:脱水缩合通式:结构特点:不同的氨基酸其侧链(R)结构各异。
2、GSH由哪三个氨基酸残基组成?有何生理功能?组成:谷氨酸、半胱氨酸、甘氨酸生理功能:在谷胱甘肽过氧化物酶的催化下,GSH科还原细胞被产生的H2O23、蛋白质一、二、三、四级结构的定义及维系这些结构稳定的作用键?一级结构:蛋白质多肽链中氨基酸残基的排列顺序。
作用键:肽键二级结构:多肽链的主链骨架中若肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象。
作用键:氢键三级结构:多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。
作用键:次级键四级结构:由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象。
作用键:氢键、离子键4、蛋白质二级结构的基本形式?并试述α-螺旋的结构特点。
基本形式:α-螺旋、β-折叠、β-转角和无规卷曲。
结构特点:①螺旋的走向为顺时针方向,右手螺旋。
②形成氢键,一稳固α-螺旋结构。
5、何为蛋白质的变性?蛋白质变性后理化性质有何改变?变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物学活性的丧失。
改变:溶解度降低、溶液的粘滞度增高、不容易结晶、易被酶消化。
6、蛋白质在溶液中稳定的因素、等电点及定量方法。
因素:水化膜、电荷等电点:在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
7、距离说明蛋白质一级结构与功能的关系。
蛋白质的一级结构决定蛋白质空间结构,进而决定蛋白质的生物学功能。
第二章核酸的结构和功能1、掌握核酸的分子组成以及核苷酸之间的连接方式。
检验师生物化学知识点
检验师生物化学知识点
1. 蛋白质化学:包括蛋白质的结构、性质、分类和功能。
了解氨基酸的结构和性质,以及蛋白质的一级、二级、三级和四级结构。
熟悉蛋白质的理化性质,如溶解性、电泳行为和沉淀反应。
2. 酶学:酶的定义、分类和催化机制。
了解酶的命名法和国际系统分类法。
掌握酶促反应动力学,包括米-曼氏方程和酶活性的调节。
3. 糖代谢:了解碳水化合物的分类和结构。
掌握糖酵解、糖有氧氧化、糖原合成和分解的过程及关键酶。
熟悉糖异生和血糖调节的机制。
4. 脂质代谢:包括脂质的分类、结构和功能。
了解脂肪酸的β-氧化、脂肪酸合成和磷脂的合成与降解过程。
5. 核苷酸代谢:了解核苷酸的结构和功能。
掌握嘌呤核苷酸和嘧啶核苷酸的合成与分解途径。
6. 肝功能检查:包括肝功能试验的目的和意义。
熟悉血清酶学指标(如谷丙转氨酶、谷草转氨酶等)、胆红素、蛋白质和脂质代谢指标在肝功能评估中的应用。
7. 肾功能检查:了解肾功能试验的目的和意义。
掌握血清肌酐、尿素氮、尿酸等指标在肾功能评估中的应用。
8. 分子生物学技术:包括聚合酶链式反应(PCR)、实时荧光定量 PCR、基因测序等技术的原理和应用。
以上是检验师生物化学的一些重要知识点,涵盖了蛋白质、酶、糖、脂质、核苷酸等方面的内容。
这些知识点对于理解生物体的代谢过程、疾病的发生机制以及实验室检测的原理和结果解释都非常重要。
生物化学知识点
生物化学知识点生物化学是研究生物体内分子组成、结构和功能的学科。
其研究内容主要包括生物分子的合成、降解和转化过程,以及生物体内的能量转换、代谢调节和信号传导等方面。
以下是生物化学中的一些重要的知识点。
1. 无机物和有机物:无机物主要包括水、无机盐等,它们是构成生物体的基础物质。
而有机物则包括碳水化合物、脂类、蛋白质和核酸等,它们是构成生物体的重要有机分子。
2. 碳水化合物:碳水化合物是生物体内的重要能源来源,也是细胞壁的主要组成成分。
其中最常见的碳水化合物是葡萄糖,它通过细胞呼吸与氧气反应产生能量。
3. 脂类:脂类是生物体内的重要能源存储物质,它们包括脂肪、磷脂和类固醇等。
脂肪在细胞中形成脂滴,能够存储大量的能量。
磷脂是细胞膜的主要组成分子,它具有双层结构,起到了维持细胞完整性和选择性通透性的作用。
4. 蛋白质:蛋白质是生物体内最重要的有机分子之一,它们是构成细胞的基本结构单位。
蛋白质具有多种功能,包括酶、激素、抗体和传递物质等功能。
蛋白质的结构包括四级结构,即原始结构、二级结构(α-螺旋和β-折叠)、三级结构和四级结构(多个蛋白质链的组装形成的复合物)。
5. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA。
DNA负责储存遗传信息,而RNA负责将DNA的信息转录成蛋白质的氨基酸序列。
核酸的结构是由磷酸、五碳糖和氮碱基组成的。
6. 代谢:代谢是生物体内的一系列化学反应过程,包括合成反应和降解反应。
合成反应是生物体利用外界物质合成新的有机物,降解反应是将有机物分解为小分子并释放能量。
代谢过程是由酶催化的。
7. 酶:酶是生物体内的催化剂,它们能够加速化学反应,但自身不参与反应。
酶可使活化能降低,从而加速反应速率。
酶的活性受到温度、pH值和底物浓度等因素的影响。
8. 能量转换:生物体内的能量转换主要通过细胞呼吸和光合作用实现。
细胞呼吸是将有机物通过氧化反应转化为二氧化碳和水,并释放出能量。
光合作用是植物利用太阳能将二氧化碳和水合成为有机物,并释放出氧气。
生物化学重点总结
第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键.等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点.蛋白质的一级结构:是指多肽链中氨基酸的排列顺序.三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链R的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸.3,紫外吸收法280 nm定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸, 苯丙氨酸,或酪氨酸.5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构.DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构.三、填空题1,核酸可分为 DNA 和 RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸 ,由戊糖、含氮碱基和磷酸 3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同4,叙述DNA双螺旋结构模式的要点.DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触.腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键A=T,鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键G≡C,碱基平面与线性分子的长轴相垂直.一条链的走向是5’→3’,另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持.第三章酶酶:由活细胞合成的、对其特异底物具有高效催化作用的特殊蛋白质.酶原:无活性的酶的前身物质称为酶原酶原激活:酶原受某种因素作用后,转变成具有活性的酶的过程Km值:是酶促反应速度为最大反应速度一半时的底物浓度,是酶的特征性常数.竞争性抑制作用:抑制剂与酶的正常底物结构相似,抑制剂与底物分子竞争地结合酶的活性中心,从而阻碍酶与底物结合形成中间产物,这种抑制作用称为竞争性抑制作用非竞争性抑制作用:抑制剂与酶活性中心外的其他位点可逆的结合,使酶的空间结构改变,使酶催化活性降低,此种结合不影响酶与底物分子的结合,同时酶与底物的结合也不影响酶与抑制剂的结合.底物与抑制剂之间没有竞争关系,这种抑制作用称为非竞争性抑制作用填空题1,酶是活细胞产生的具有催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂.个别核糖核酸RNA也具有酶一样的催化活性,称为核酶.5,由细胞合成和分泌的尚不具有催化活性的酶的前体,叫做酶原9,可逆性抑制作用包括竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用三种四,简答题1,以酶原的激活为例说明结构与功能的关系.在一定条件下,酶原受某种因素作用后,分子结构发生变化,暴露或形成活性中心,转变成具有活性的酶,这一过程叫做酶原的激活.酶原激活过程说明了蛋白质结构与功能密切相关,结构改变,功能也随之改变,结构破坏,功能丧失.7,酶促反应高效率的机制是什么酶高效催化作用的机制可能与以下几种因素有关:①邻近效应与定向排列:在两个以上底物参与的反应中,底物之间必须以正确的方向互相碰撞,才有可能发生反应.②多元催化:同一种酶兼有酸碱催化作用,这种多功能基团的协同作用可极大的提高酶的催化效率.③表面效应;酶活性中心内部多种疏水性氨基酸,常常形成疏水性“口袋”以容纳并结合底物.一种酶的催化反应不限于上述某一种因素,而常常是多种催化作用的综合机制,这是酶促反应高效的重要原因.第四章糖代谢名词解释1,糖酵解:在不需要氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解4,三羧酸循环TAC:乙酰辅酶A与草酰乙酸缩合生成柠檬酸,历经4次脱氢及2次脱羧反应,又生成草酰乙酸,此过程是由含有三个羧基的柠檬酸作为起始物的循环反应,故称为三羧酸循环7,糖异生:由非糖物质转变为葡萄糖或糖原的过程称为糖异生9,血糖:血液中的葡萄糖称为血糖.其正常水平为~ mmol/L二、填空题2,人体内主要通过磷酸戊糖途径生成核糖,它是核苷酸的组成成分3,在三羧酸循环中,催化氧化脱羧的酶是异柠檬酸脱氢酶和α-酮戊二酸脱氢酶4,在糖酵解途径中,产物正反馈作用的步骤为 1,6-双磷酸果糖对磷酸果糖激酶- 1 的正反馈调节9, 1 mol 葡萄糖氧化生CO2和 H2O时净生成 30或32 mol ATP15,糖异生的原料有甘油、乳酸和生糖氨基酸19, 糖有氧氧化的反应过程可分为三个阶段,即糖酵解途径、丙酮酸进入线粒体氧化脱羧成乙酰CoA,乙酰CoA进入三羧酸循环及氧化磷酸化.四、简答1,糖酵解的主要生理意义是什么①是机体在缺氧条件下供应能量的重要方式;②是某些组织细胞的主要供能方式;③糖酵解的产物为某些物质合成提供原料;④红细胞中经糖酵解途径生成的2,3-BPG可调节血红蛋白的带氧功能2糖有氧氧化的主要生理意义是什么①是机体获得能量的主要方式;②三羧酸循环是三大营养物质彻底氧化分解的共同途径;③三羧酸循环是三大物质代谢互相联系、互相转化的枢纽20,简述乳酸循环的生理意义肌肉组织中不存在葡萄糖-6-磷酸酶,因此不能将肌糖原分解为葡萄糖.肌肉组织中糖异生酶类活性也较低,没有足够的能力进行糖异生作用.当氧供应不足时,肌肉组织糖酵解加强,必然导致乳酸生成增多,通过乳酸循环将有助于乳酸的再利用,并防止因乳酸堆积导致中毒.第五章脂类代谢名词解释1,必需脂肪酸:亚油酸、亚麻酸、花生四烯酸等维持机体生命活动所必需,但体内不能合成,必须由食物提供的脂肪酸,称为必需脂肪酸2,脂肪动员:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸,并释放入血供全身各组织氧化利用的过程称为脂肪动员3,脂肪酸β-氧化:脂肪酸的β-氧化是从脂酰基的β-原子开始,进行脱氢、加水、再脱氢及硫解四步连续的反应,将脂酰基断裂生成一分子乙酰CoA和比原来少两个碳原子的脂酰CoA的过程.4,酮体:酮体包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸在肝内分解产生的特有正常中间产物.二、填空题1,乙酰辅酶A是合成脂肪酸的主要原料,脂肪酸的合成是在细胞液内进行,反应中所需的NADPH来自磷酸戊糖途径.2,脂肪酸β-氧化过程中的第一次脱氢由FAD 接受,第二次脱氢由NAD+接受. 4,脂肪酸β-氧化过是在细胞的线粒体中而脂肪的合成是在细胞的内质网中进行的.5,脂肪酸β-氧化的过程包括脱氢、水化、再脱氢和硫解四个连续反应步骤9,血脂的主要来源有食物物中脂类、体内合成和脂库中脂肪动员的释放. 10,血脂的主要去路有氧化供能、进入脂库中储存构成生物膜和转变为其他物质15,酮体合成的原料为乙酰辅酶A20,脂肪动员的产物为甘油和脂肪酸23,酮体是在肝内生成,肝外组织利用.和 7 分子NADH+H, 8 28,软脂酸的β-氧化,共进行 7次,生成 7 分子FADH2乙酰CoA,净生成129 分子ATP.四、简答题1,何谓酮体酮体是怎样生成的,又是如何氧化利用的酮体的生成包括乙酰乙酸、β-羟丁酸和丙酮. 酮体的生成部位在肝细胞线粒体,合成原料为脂肪酸β-氧化生成的乙酰CoA,2分子乙酰CoA缩合生成乙酰乙酸CoA,乙酰乙酸CoA再与1分子乙酰CoA缩合生成NMGCoA,催化此反应的 NMGCoA 合成酶是酮体合成的限速酶,NMGCoA 裂解生成乙酰乙酸和乙酰CoA ,乙酰乙酸还原生成β-羟丁酸或脱羧生成丙酮.肝能生成酮体,但不能利用酮体. 肝外组织的乙酰乙酸经过乙酰乙酸硫激酶或琥珀酰CoA 转硫酶及硫解酶的催化下,转变成乙酰CoA并进入三磷酸循环而被氧化利用,丙酮可经肾、肺排出.2,简述硬脂酸的氧化过程及彻底氧化的能量计算.必考硬脂酸的氧化可分为活化、进入线粒体、β-氧化及乙酰CoA的彻底氧化四个阶段.①,硬脂酸在胞液中进行,由脂酰CoA合成酶催化形成脂酰CoA.②,活化的硬脂酰CoA经CAT I 及 CAT II的催化,以肉碱为载体,由胞液进入线粒体基质.CAT I 是脂肪酸β-氧化的限速酶.③,脂酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体的催化下,从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢和硫解四步连续反应,脂酰基断裂生成一分子乙酰CoA和一分子比原来少二个碳原子的脂酰CoA.如此反复进行,直到脂酰CoA 全部生成乙酰CoA.④乙酰CoA通过三磷酸循环彻底氧化成CO2和H2O,并释放出能量.能量计算:硬脂酸18C -2ATP 硬脂酰CoA 8次β氧化 9乙酰CoA +8FADH2+NADH +H+8 FADH2 X ATP∕FADH2= 12 ATP8 NADH + H+ X ATP ∕NADH + H+ = 20 ATP9 CH3CO~SCoA X 10 ATP∕CH3CO~SCoA =90 ATP故一分子硬脂酸彻底氧化生成CO2 和 H2O 净生成90 + 32-2=120 ATP第六章生物氧化名词解释1,生物氧化:营养物质在体内氧化分解为CO2和H2O,并逐步释放能量的过程成为生物氧化5,呼吸链:位于线粒体内膜上起生物氧化作用的一系列递氢体或递电子体,它们按一定的顺序排列在内膜上,与细胞摄取氧的呼吸过程有关,故称呼吸链三、填空题1,由递氢体和递电子体按一定的顺序组成的整个体系位于线粒体内膜,通常称为呼吸链.2,生物氧化的主要产物是H2OCO2ATP.6,线粒体内两条重要的呼吸链为 NADH 呼吸链和琥珀酸呼吸链,两条链的汇合点是CoQ13,NADH 在细胞内的线粒体和胞液内产生,在线粒体内氧化并产生ATP14,NADH 呼吸链中氧化磷酸化发生的部位在NADH→CoQ之间,Cytb →CytC之间 Cytaa3→O2之间四,简答题3,试述呼吸链的组成成分及功能并写出体内两条主要呼吸链的传递链呼吸链的组成成分:①NAD+为辅酶的脱氢类,其作用为递氢体作用;②黄素蛋白,其辅酶为FMN或FAD,其作用为递氢体;③铁硫蛋白,其作用为递电子体;④CoQ其作用是递氢体;⑤细胞色素体系包括b-c1-c –aa3,其功能为递电子体.NADH氧化呼吸链顺序为:SH2→NAD+→FMN-Fe-S → COQ →Cytb-c1-caa3→O2. FADH2氧化呼吸链顺序为SH2→FAD-Fe-S →CoQ →Cytb-c1-c-aa3 →O2第七章氨基酸代谢名词解释2.联合脱氨基作用:由转氨酶催化的转氨基作用和L-谷氨酸脱氢酶催化的谷氨酸氧化脱氨基作用联合进行.9.必需氨基酸:体内不能合成必需由食物提供的氨基酸.填空题5,氨基酸的脱氨基方式有:转氨基、氧化脱氨基、联合脱氨基和嘌呤核苷酸循环8,血氨的去路有:合成尿素、合成谷氨酰胺、转为非必需氨基酸16,生成一碳单位的氨基酸有组氨酸、甘氨酸、丝氨酸、蛋氨酸.17,一碳单位主要形式有 -CH=NH、-CHO、-CH、-CH2、-CH3.简答题1,简述血氨的来源和去路.答:来源:氨基酸脱氨基、肠道吸收、肾产生.去路:合成尿素、重新合成氨基酸合成其它含氮化合物.8,何谓鸟氨酸循环有何生理意义鸟氨酸循环是指鸟氨酸与氨基甲酰磷酸反应生成瓜氨酸,瓜氨酸再与另一分子氨生成精氨酸,精氨酸在肝精氨酸酶的催化下水解生成尿素和鸟氨酸.鸟氨酸可再重复上述过程,如此循环一次,2分子氨和1分子CO2变成1分子尿素.在鸟氨酸循环的过程中,精氨酸代琥珀酸合成酶为限速酶,此步反应是一个耗能反应.鸟氨酸循环在线粒体和胞浆中进行.生理意义:肝脏通过鸟氨酸循环将有毒的氨转变成无毒的尿素,经肾排除体外.这是肝的一个重要生理功能,其意义在于解除氨毒.第九章物质代谢的联系与调节名词解释1.限速酶或调解酶:关键酶都是一些催化单向反应的酶,通常是催化整条途径的第一步反应,也可催化整条途径的反应速率最慢的一个反应,起着限制或调控整个代谢进行调速的作用.填空题4.饥饿时机体血液中浓度升高的物质是脂肪酸、葡萄糖 .5,大脑平时及饥饿时的主要供能物质是血糖、酮体 .6,线粒体中分布的多酶体系主要有三羧酸循环、脂肪酸β-氧化、氧化磷酸化 .简答题1.物质代谢的特点.答:整体性;代谢的调节性;各组织器官物质代谢各具特色;各种物质代谢均具有共同的代谢池;ATP是机体能量的共同形式;NADPH是合成代谢所需的还原当量.第十章 DNA的生物合成名词解释2.半保留复制:半保留复制指DNA复制过程,双螺旋解开成单链各自作为模板合成与其互补的子链,从一个亲代DNA双螺旋复制出两个与亲代完全相同的子代DNA,子代DNA中的一条DNA链来自亲代,另一条链是新合成的复制方式.5.冈崎片段:指复制中随从链上合成的不连续DNA片段.填空题2,所有的冈崎片段链的增长都是按 5'→3' 方向进行的.3.前导链的合成是连续的 ,合成方向和复制叉移动的方向相同;随从链的合成是不连续的 ,合成方向和复制叉移动的方向相反.8.能引起DNA分子损伤的主要理化因素有紫外线、电离辐射、化学诱变剂 . 3.DNA半保留复制的意义是什么答:生物的遗传特性就蕴藏在DNA分子的一级结构,即碱基排列顺序中,而子细胞的DNA分子是经半保留复制方式得到的,其一级结构与母细胞DNA分子完全相同.因此,通过半保留复制,生物就能保证其遗传特性代代相传,保持相对稳定,这是遗传保守性的分子基础.第十一章 RNA 的生物合成转录名词解释1,转录:以DNA一条单链为模板,四种NTP为原料,在DNA指导的RNA聚合酶作用下,按照碱基互补原则合成RNA链的过程,称为转录.4,模板链:转录时,结构基因的DNA双链中仅一条链为转录的模板,另一条链无转录功能,故前者叫做转录的模板链.5,编码链:转录时,结构基因的DNA双链中有一条链不作为转录的模板,无转录功能.因该DNA链的走行方向和碱基排列顺序与转录生成的RNA链基本相同,只是前者碱基中的T在后者为U而已,故称其为编码连.15,外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA 的核酸序列.16,内显子:隔断基因的线性表达而在剪接过程中被除去的核酸序列.三、填空题1,RNA的转录过程的特点是不对称转录2,具有指导转录作用的DNA 链称为模板链 ,与之互补的另一条DNA 链称为编码连5,真核生物 mRNA 的5’帽子结构是 m7GpppG- ,其3’末端有polyA结构四、简答题1,简述DNA复制与RNA 转录合成的主要区别2,简述原核生物中RNA转录合成的基本过程原核生物中RNA转录合成的基本过程:1)转录的起始:首先由RNA聚合酶的σ亚基辨认启动子,并促使RNA聚合酶全酶与启动子结合,然后RNA聚合酶使DNA 局部解链.接着,RNA 聚合酶催化第一个磷酸二脂键形成.2)转录的延伸:RNA 链的延伸过程中由核心酶催化.3)转录的终止:有两种方式.自动终止和依赖ρ因子的终止.第十二章蛋白质的合成名词解释1,翻译:是细胞内以mRNA为模板,按照mRNA分子中由核苷酸组成的密码信息合成蛋白质的过程.5,遗传密码或三联密码:mRNA 分子中每三个相邻的核苷酸组成一组,形成三联体,在蛋白质生物合成时,代表一种氨基酸信息,称为遗传密码或密码子13,进位或注册:根据mRNA 下一组遗传密码指导,使相应氨基酰-tRNA进入并结合到核糖体A位的过程称为进位.填空题1,翻译的直接模板是mRNA ;间接模板是DNA2,蛋白质合成的原料是氨基酸 ,细胞中合成蛋白质的场所是核蛋白体. 4,mRNA是指导翻译的直接模板, 蛋白质是基因表达的最终产物.10,原核生物的起始密码子只能辨认甲酰化的甲硫氨酸.简答题1,论述遗传密码的特点.模板从mRNA5’端的起始密码开始.到3’端称为开放读码框架.在框架内每3个碱基组成一个密码子,体现一个氨基酸的信息.遗传密码共64个,其中,61个密码分别代表各种氨基酸.3个为肽链合成的终止信号.遗传密码特点:1,连续性;2,密码的简并性;3,摆动性;4,通用性3,简述蛋白质生物合成的基本过程.蛋白质生物合成的基本过程:1)氨基酸的活化与转运:由氨基酰tRNA合成酶催化,ATP供能,使氨基酸的羧基活化并与相应的tRNA连接.2)核糖体循环:为蛋白质合成的中心环节,通常将其分为肽链合成的开始、延长和终止三个阶段.3)翻译后的加工:指从核糖体上释放出来的多肽链,经过一定的加工和修饰转变成具有一定构象和功能的蛋白质的过程.第十三章肝的生物化学名词解释2,生物转化作用:来自体内外的非营养物质在肝进行氧化、还原、水解和结合反应,这一过程称为肝的生物转化作用3,胆汁酸:存在于胆汁中一大类胆烷酸的总称,以钠盐或钾盐的形式存在,即胆汁酸盐,简称胆盐6,胆汁酸肠肝循环:是胆汁酸随胆汁排入肠腔后,通过重吸收门静脉又回到肝,在肝内转变为结合型的胆汁酸,经肠道再次排入肠腔的过程.填空题1,生物转化的第一相反应包括氧化、还原和水解反应 ,第二相反应是结合反应.5,胆色素是铁卟啉化合物在体内分解代谢的产物,包括胆色素等多种化合物,其代谢障碍会导致黄疸.简答题2,何谓生物转化作用有何生理意义肝对进入体内的非营养物质在肝进行氧化、还原、水解和结合反应,这一过程称为肝的生物转化作用意义:生物转化的生理意义在于它将体内的非营养物质进行转化,使生物活性物质的生物学活性降低或消失,或使有毒物质的毒性降低或消失.更重要的是生物转化可将这些物质的溶解性增高,变为易于从胆汁或尿液中排出体外的物质.生物化学解答题1计算一分子软脂酸C15H31COOH彻底氧化成CO2和H2O, 产生多少ATP12分氧化过程:脂肪酸β-氧化,经脱氢、水化、再脱氢、硫解四步反应,产生乙酰CoA和比原来脂酰辅酶A少两个碳原子的脂酰CoA.新生成的脂酰辅酶A再经上述四个反应,最终全部转化为乙酰CoA.乙酰CoA再进入三羧酸循环TCA循环,最后形成二氧化碳和水.步骤:7次-氧化分解产生5×7=35分子ATP;2分8分子乙酰CoA可得12×8=96分子ATP; 2分一分子软脂酸C15H31COOH彻底氧化分解可生成:()[]()ATP m ol 1288122732=⨯+-⨯+2分2 DNA 双螺旋结构有什么基本特点这些特点能解释哪些最重要的生命现象 答案要点:a. 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟.2分b. 磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T 配对,之间形成2个氢键,G-C 配对,之间形成3个氢键碱基配对原则,Chargaff 定律.2分c. 螺旋直径2nm,相邻碱基平面垂直距离,螺旋结构每隔10个碱基对重复一次,间隔为.2分该模型揭示了DNA 作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA 复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础.该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石.3什么是遗传密码简述其基本特点1.遗传密码子codon :存在于信使RNA 中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位.密码子确定哪一种氨基酸参入蛋白质多肽链的特定位置上;共有64个密码子,其中61个是氨基酸的密码子,3个是作为终止密码子1分.2,其特点有:①方向性:编码方向是5ˊ→3ˊ.②无标点性:密码子连续排列,既无间隔又无重叠.③简并性:除了Met和Trp各只有一个密码子之外,其余每种氨基酸都有2—6个密码子.④通用性:不同生物共用一套密码.⑤摆动性:在密码子与反密码子相互识别的过程中密码子的第一个核苷酸起决定性作用,而第二个、尤其是第三个核苷酸能够在一定范围内进行变动.4影响酶促反应的因素有哪些pH、温度、紫外线、重金属盐、抑制剂、激活剂等通过影响酶的活性来影响酶促反应的速率,1紫外线、重金属盐、抑制剂都会降低酶的活性,使酶促反应的速度降低,2激活剂会促进酶活性来加快反应速度,3pH和温度的变化情况不同,既可以降低酶的活性,也可以提高,所以它们既可以加快酶促反应的速度,也可以减慢;4酶的浓度、底物的浓度等不会影响酶活性,但可以影响酶促反应的速率.酶的浓度、底物的浓度越大,酶促反应的速度也快.5简述DNA复制的基本规律. 6分1半保留复制:复制时,母链的双链DNA解开成两股单链,各自作为模板指导子代合成新的互补链.子代细胞的DNA双链,其中一股单链从亲代完整地接受过来,另一股单链则完全重新合成.由于碱基互补,两个子细胞的DNA双链,都和亲代母链DNA碱基序列一致.这种复制方式称为半保留复制分. 2双向复制:复制时,DNA从起始点origin向两个方向解链,形成两个延伸方向相反的复制叉,称为双向复制.原核生物是单个起始点的双向复制,真核生物是多个起始点的双向复制分.3半不连续性复制: DNA双螺旋的两条链是反平行的,而DNA合成的方向只能是5ˊ→3ˊ .在DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,叫作前导链;而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段冈崎片段合成,称之为滞后链.领头链连续复制而随从链不连续复制,就是复制的半不连续复制.分.4复制的高保真性: DNA复制的精确度极高,误差率很低,高保真性的机制分.6简述基因突变有哪几种形式6分1. 转换:发生在同型碱基之间,即嘌呤代替另一嘌呤,或嘧啶代替另一嘧啶分.2.颠换:发生在异型碱基之间,即嘌呤变嘧啶或嘧啶变嘌呤分.3. 缺失:一个碱基或一段核苷酸链从DNA大分子上消失分.4.插入:原来没有的一个碱基或一段核苷酸链插入到DNA大分子中间分.7请列举细胞内乙酰CoA的代谢去向,乙酰CoA可进入哪些代谢途径请列出.。
生化课本知识点总结归纳
生化课本知识点总结归纳1. 蛋白质蛋白质是生命活动中功能最为丰富的一类大分子化合物,是细胞的主要结构和功能单位。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、抗体、激素、载体等。
在生化课本中,学生需要了解蛋白质的组成、结构和功能,以及蛋白质的合成、降解和修饰等过程。
2. 核酸核酸是生物体内的重要大分子化合物,包括DNA和RNA。
在生化课本中,学生需要了解核酸的结构、功能和代谢途径。
此外,还需要了解DNA的复制、转录和翻译等过程,以及RNA的功能和合成过程。
3. 碳水化合物碳水化合物是生物体内的主要能量来源,也是细胞壁的主要组成成分之一。
在生化课本中,学生需要了解碳水化合物的结构、分类、代谢途径和生物学意义等知识点。
4. 脂质脂质是生物体内的重要大分子化合物,包括脂肪、磷脂和固醇等。
在生化课本中,学生需要了解脂质的结构、分类、功能和代谢途径,以及脂质在生物体内的生物学意义。
5. 酶酶是生物体内的重要催化剂,可以加快化学反应的速率,降低活化能。
在生化课本中,学生需要了解酶的结构、功能、酶促反应机制、酶与底物的结合方式、酶的特性和分类等知识点。
6. 代谢途径代谢途径是生物体内大量生化反应的有机组织,包括糖代谢途径、脂质代谢途径、蛋白质代谢途径和核酸代谢途径等。
在生化课本中,学生需要了解代谢途径的整体组织结构和相互关系,以及代谢途径中各种酶的作用和调节机制等知识点。
综上所述,生化课本的知识点涉及的内容非常丰富,需要学生具备扎实的化学和生物学基础,才能更好地理解和掌握其中的知识。
通过对生化知识点的总结归纳,可以帮助学生更好地理解生物化学的基本概念和原理,从而更好地应用于相关领域的学习和研究中。
生物化学知识点总整理
生物化学知识点总整理生物化学是研究生命体内分子结构、组成及其相互作用的化学学科。
它涵盖了许多重要的生物分子和反应过程,对于理解生命活动的分子基础和生物学功能至关重要。
下面是生物化学的一些重要知识点的总整理。
1.生物大分子:生物体内的大分子包括蛋白质、核酸、多糖和脂质等。
它们是生命的基础,参与了生物体内许多重要的结构和功能。
2.蛋白质:蛋白质是生物体内最重要的大分子之一、它们由氨基酸链组成,具有三级结构:一级结构是氨基酸的线性排列顺序,二级结构是通过氢键和范德华力形成的局部空间结构,三级结构是整个蛋白质折叠成特定的形状。
3.核酸:核酸是生物体内编码和传递遗传信息的分子。
DNA和RNA是两种最重要的核酸。
DNA通过碱基配对和双螺旋结构来存储和传递遗传信息,RNA则参与了蛋白质的合成过程中。
4.酶:酶是生物体内催化化学反应的蛋白质,可以加速反应速率。
酶与底物结合形成复合物,通过降低活化能来促进反应的进行。
5.代谢途径:生物体内的代谢活动通过一系列的化学反应途径进行。
这些途径包括糖酵解、柠檬酸循环、呼吸链和光合作用等。
代谢途径提供能量和合成生物分子所需的原料。
7.柠檬酸循环:柠檬酸循环是将葡萄糖代谢产生的乙酰辅酶A进一步氧化,产生更多的ATP、NADH和FADH28.呼吸链:呼吸链是将NADH和FADH2的电子逐步传递给氧气,生成水,并产生ATP的过程。
它包括细胞色素和膜蛋白等。
9.光合作用:光合作用是植物细胞中通过光能将水和二氧化碳转化为葡萄糖和氧气的过程。
光合作用产生的葡萄糖可以作为能量和碳源。
10.脂质:脂质是不溶于水的有机分子,包括脂肪酸、甘油和脂类等。
脂质在生物体内具有重要的结构和功能,如构成细胞膜、提供能量储存等。
11.生物膜:生物膜是由脂质和蛋白质共同组成的结构,包围着细胞和细胞器。
生物膜具有选择性渗透性,参与了许多生物活动,如物质输运、信号转导等。
12.分子遗传学:分子遗传学研究基因的组成和结构,以及基因的表达调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章蛋白质化学第一节蛋白质通论一、蛋白质的生物学意义概括起来,蛋白质主要有以下功能:1.催化功能2.调节功能3. 运动功能4. 运输和跨膜转运功能5. 保护和防御功能6. 信息传递与识别功能7. 贮存功能8. 结构功能二、蛋白质的分类(一)按分子形状分类1.球状蛋白2.纤维状蛋白(二)按分子组成分类简单蛋白:清蛋白、球蛋白、组蛋白、精蛋白、谷蛋白、醇溶蛋白和硬蛋白。
缀合蛋白:核蛋白、脂蛋白、糖蛋白、磷蛋白、血红素蛋白、黄素蛋白和金属蛋白。
三、蛋白质的元素组成与分子量1. 元素组成蛋白质平均含碳50%,氢7%,氧23%,氮16%。
其中氮的含量较为恒定,而且在糖和脂类中不含氮,所以常通过测量样品中氮的含量来测定蛋白质含量。
如常用的凯氏定氮法:蛋白质含量=蛋白氮×6.25(即100/16)。
2.蛋白质的分子量蛋白质的分子量变化范围很大,从6000到100万或更大。
四、蛋白质的水解蛋白质的水解主要有三种方法:1.酸水解2.碱水解3.酶水解第二节氨基酸一、氨基酸的结构与分类(一)基本氨基酸组成蛋白质的20种氨基酸称为基本氨基酸,基本氨基酸都符合通式,都有单字母和三字母缩写符号。
一般结构特征:I. 它们中除脯氨酸外都是α-氨基酸,即在α-碳原子上有一个氨基。
II. 不同的氨基酸,其R侧链不同,对氨基酸的理化性质和在结构中的影响也不同。
III. 天然氨基酸都是L-构型的,即羧基在上,氨基在左端。
若氨基在右为D-构型(与标准甘油醛的构型参照得出的)。
A.按照氨基酸侧链的极性分类:非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种带正电荷:Arg, Lys, His带负电荷:Asp, GluB.按照氨基酸侧链的化学结构,分为三类:脂肪族氨基酸、芳香族氨基酸和杂环氨基酸。
1.脂肪族氨基酸共15种。
侧链只是烃链:Gly, Ala, Val, Leu, Ile。
侧链含有羟基:Ser, Thr侧链含硫原子:Cys, Met 侧链含有羧基:Asp(D), Glu(E)侧链含酰胺基:Asn(N), Gln(Q)侧链显碱性:Arg(R), Lys(K)2.芳香族氨基酸包括苯丙氨酸(Phe,F)、色氨酸(Trp,W)和酪氨酸(Tyr,Y)三种。
3.杂环氨基酸包括组氨酸(His)和脯氨酸(Pro)种。
(B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。
)C.照酸碱性分类:酸性氨基酸:Asp, Glu碱性氨基酸:Arg, Lys, His中性氨基酸:15种还有两种新发现的氨基酸: 硒代半胱氨酸(Sci 2002.5.24)吡咯赖氨酸小结:2酸—3碱—3芳香—2含S—2含OH—2酰胺甘Gly(最特殊,唯一无旋光性)、丙Ala(顾名思义)//苯丙Phe(顾名思义)、酪Tyr(有β-苯酚基)、色Trp(β-吲哚基P66)// 甲硫Met(γ-甲硫基)、半胱Cys(β-巯基)、丝Ser(β-羟基)、苏Thr(β-羟基)// 天冬Asp(酸性氨基酸,β-羧基)、天冬酰氨Asn(β-酰氨)、谷Glu(酸性氨基酸,γ-羧基)、谷氨酰氨Gln(γ-酰氨)// 精Arg (δ-胍基P66)、赖Lys(ε-氨基)、组His(β-咪唑基P66)//缬Val、亮Leu、异亮Ile:都是烷烃链// 脯Pro(亚氨基)。
(二)不常见的蛋白质氨基酸某些蛋白质中含有一些不常见的氨基酸,它们是基本氨基酸在蛋白质合成以后经羟化、羧化、甲基化等修饰衍生而来的。
也叫稀有氨基酸或特殊氨基酸。
其中羟脯氨酸和羟赖氨酸在胶原和弹性蛋白中含量较多。
在甲状腺素中还有3,5-二碘酪氨酸。
凝血酶原种含有γ-羧基谷氨酸。
(三)非蛋白质氨基酸自然界中还有150多种不参与构成蛋白质的氨基酸,它们大多是基本氨基酸的衍生物,也有一些是D-氨基酸或β、γ、δ-氨基酸,多数以游离态存在。
这些氨基酸中有些是重要的代谢物前体或中间产物,如瓜氨酸和鸟氨酸是合成精氨酸的中间产物,β-丙氨酸是遍多酸(泛酸,辅酶A前体)的前体,γ-氨基丁酸是传递神经冲动的化学介质。
荧光素含有D-半胱氨酸,青霉素中D-赖氨酸。
二、氨基酸的性质(一)物理性质1、水溶性α-氨基酸都是白色晶体,每种氨基酸都有特殊的结晶形状,可以用来鉴别各种氨基酸。
一般都溶于水,不溶于有机溶剂。
(除胱氨酸和酪氨酸外,都能溶于水中;脯氨酸和羟脯氨酸能溶于乙醇或乙醚中)2、旋光性除甘氨酸外,α-氨基酸都有旋光性。
3、光谱性质三个带苯环的氨基酸有紫外吸收,通常蛋白质的紫外吸收主要是后两个氨基酸决定的,一般在280nm,可以定量测定蛋白质.(二)酸碱性质(129)氨基酸分子中既含有氨基又含有羧基,所以氨基酸是两性电解质.在水溶液和结晶态中都以偶极离子的形式存在。
氨基酸在溶液中的解离方向和解离的程度取决于溶液的PH值。
当氨基酸分子所带的净电荷为零时的pH称为氨基酸的等电点(pI)。
等电点的值是它在等电点前后的两个pK’值的算术平均值。
pI=(pK1 + pK2)/2注意:pI时净电荷为零,但不是不带电荷;此时其溶解度最小,最容易沉淀析出。
pH>pI时,氨基酸带负电荷,-COOH解离成-COO-,向正极移动。
pH=pI时,氨基酸净电荷为零,溶解度最小pH<pI时,氨基酸带正电荷,-NH2解离成-N+H3,向负极移动。
(三)化学性质1.氨基的反应(1)与亚硝酸作用氨基酸在室温下与亚硝酸反应,脱氨,生成羟基羧酸和氮气。
常用于蛋白质的化学修饰、水解程度测定及氨基酸的定量。
这也是Van slyke法测定氨基氮的理论基础。
(2与甲醛反应氨基还可以与甲醛反应,生成羟甲基化合物。
由于氨基酸在溶液中以偶极离子形式存在,所以不能用酸碱滴定测定含量。
与甲醛反应后,氨基酸不再是偶极离子,其滴定终点可用一般的酸碱指示剂指示,因而可以滴定,这叫甲醛滴定法,可用于测定氨基酸。
(3)与DNFB反应-Sanger反应氨基酸与2,4-二硝基氟苯(DNFB)在弱碱性溶液中作用生成二硝基苯基氨基酸(DNP氨基酸)。
这一反应是定量转变的,产物黄色,也叫桑格尔试剂,现在应用于蛋白质N-末端测定。
(4)与异硫氰酸苯酯(PITC)反应-Edman反应α-氨基与PITC(异硫氰酸苯酯)在弱碱性条件下形成相应的苯氨基硫甲酰衍生物(PTC-AA),这个反应首先是Edman用来鉴定蛋白质的N-末端氨基酸,在蛋白质的氨基酸顺序分析方面占有重要地位,是氨基酸自动序列分析仪的工作原理。
(5)磺酰化氨基酸与5-(二甲胺基)萘-1-磺酰氯(DNS-Cl,丹磺酰氯)反应,生成DNS-氨基酸。
产物在酸性条件下(6NHCl)100℃也不破坏,因此可用于氨基酸末端分析。
DNS-氨基酸有强荧光,激发波长在360nm左右,比较灵敏,可用于微量分析。
2.羧基的反应羧基可与碱作用生成盐;羧基可与醇生成酯,此反应常用于多肽合成中的羧基保护。
3茚三酮反应氨基酸与茚三酮在微酸性溶液中加热,引起脱氨、脱羧反应,最后生成蓝紫色物质(570nm)。
而脯氨酸生成黄色化合物(440nm)。
常用于氨基酸的定性定量分析.也可通过二氧化碳测定氨基酸含量。
4. 以下反应常用于氨基酸的检验:酪氨酸、组氨酸能与重氮化合物反应(Pauly反应),可用于定性、定量测定。
组氨酸生成棕红色的化合物,酪氨酸为桔黄色。
精氨酸在氢氧化钠中与1-萘酚和次溴酸钠反应(Sakoguchi反应),生成深红色,称为坂口反应。
用于胍基的鉴定。
酪氨酸与硝酸、亚硝酸、硝酸汞和亚硝酸汞反应(Millon反应),生成白色沉淀,加热后变红,称为米伦反应,是鉴定酚基的特性反应。
色氨酸中加入乙醛酸后再缓慢加入浓硫酸,在界面会出现紫色环,用于鉴定吲哚基。
(glyoxalate反应)酪氨酸在碱性条件下与福林试剂反应(Folin)反应,生成蓝色化合物。
第三节蛋白质的一级结构一、肽键和肽一个氨基酸的羧基与另一个氨基酸的氨基缩水形成的共价键,称为肽键。
在蛋白质分子中,氨基酸借肽键连接起来,形成肽链。
最简单的肽由两个氨基酸组成,称为二肽。
含有三、四、五个氨基酸的肽分别称为三肽、四肽、五肽等。
//肽链中的氨基酸由于形成肽键时脱水,已不是完整的氨基酸,所以称为残基。
//肽的命名是根据组成肽的氨基酸残基来确定的。
一般从肽的氨基端开始,称为某氨基酰某氨基酰…某氨基酸。
肽的书写也是从氨基端开始。
即有方向性,从N端C端。
//有主侧链之分,主链完全一样,仅R不同。
//除了蛋白质部分水解可以产生各种简单的多肽以外,自然界中还有长短不等的小肽,它们具有特殊的生理功能.这些天然肽中的非蛋白质氨基酸可以使其免遭蛋白酶水解。
//许多激素也是多肽,如催产素、加压素、舒缓激肽等。
三、一级结构的测定(168)(一)一级结构(即化学结构、共价结构)蛋白质的一级结构是指肽链的氨基酸组成及其排列顺序。
氨基酸序列是蛋白质分子结构的基础,它决定蛋白质的高级结构。
一级结构可用氨基酸的三字母符号或单字母符号表示,从N-末端向C-末端书写。
采用三字母符号时,氨基酸之间用连字符(-)隔开。
例如,牛胰核糖核酸酶,124个氨基酸;胰岛素,51个氨基酸。
(二)测定步骤测定蛋白质的一级结构,要求样品必须是均一的(纯度大于97%)而且是已知分子量的蛋白质。
一般的测定步骤是:1.通过末端分析确定蛋白质分子由几条肽链构成。
2. 将每条肽链分开,并分离提纯。
3. 肽链的一部分样品进行完全水解,测定其氨基酸组成和比例。
4. 肽链的另一部分样品进行N末端和C末端的鉴定。
5. 拆开肽链内部的二硫键。
6. 肽链用酶促或化学的部分水解方法降解成一套大小不等的肽段,并将各个肽段分离出来。
7. 测定每个肽段的氨基酸顺序。
8. 从第二步得到的肽链样品再用另一种部分水解方法水解成另一套肽段,其断裂点与第五步不同。
分离肽段并测序。
比较两套肽段的氨基酸顺序,根据其重叠部分拼凑出整个肽链的氨基酸顺序。
9. 测定原来的多肽链中二硫键和酰胺基的位置。
(三)常用方法 1. 末端分析(1)N末端2,4-二硝基氟苯(DNFB) 丹磺酰氯法异硫氰酸苯酯(PITC)法酶学方法即氨肽酶法测定(2)C末端硼氢化锂肼解法羧肽酶法第四节蛋白质的高级结构一、蛋白质的三维构象,也称空间结构或高级结构,是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链的走向。
高级结构是蛋白质表现其生物功能或活性所必须的,包括二级、三级和四级结构。
二、结构蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。
一级结构为线状结构,二、三、四级结构为空间结构。
1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。
蛋白质的一级结构决定其空间结构。