2015年邯郸中考模数学
2015年河北省邯郸市武安七中中考数学模拟试卷
2015年河北省邯郸市武安七中中考数学模拟试卷一、选择题(每小题中的选项只有一个是正确的,每小题2分,共24分)m3.(2分)(2010•安次区一模)自2010年1月1日起,移动电话在本地拨打长途电话时,将取消现行叠加收取的本地通话费;在国内漫游状态下拨打国际及台港澳电话,取消现行叠加收取的漫游主叫通话费.据有关电信企业测算,这些措施每年可为手机用户减负逾60亿4.(2分)(2009•来宾)不等式组:的解集是()5.(2分)(2006•济南)某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒B6.(2分)(2006•淮安)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()7.(2分)(2010•安次区一模)如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是()(,8.(2分)(2009•绵阳)一个钢管放在V形架内,如图是其截面图,O为钢管的圆心.如果钢管的半径为25cm,∠MPN=60°,则OP=()cmcmcm9.(2分)(2011•通州区二模)如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为()m B mm10.(2分)(2005•深圳)函数y=(k≠0)的图象过点(2,﹣2),则此函数的图象在平面11.(2分)(2012•青羊区一模)抛物线y=x2+x+p(p≠0)与x轴相交,其中一个交点的横坐12.(2分)(2010•安次区一模)有一列数A1,A2,A3,A4,A5,…,A n,其中A1=5×2+1,二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.(3分)(2015•武安市校级模拟)若a﹣b=1,ab=2,则(a+1)(b﹣1)=.14.(3分)(2010•安次区一模)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量本.15.(3分)(2009•深圳)小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12S22.(填“>”、“<”、“=”)16.(3分)(2009•莆田)如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.17.(3分)(2009•台州)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为(结果保留π).18.(3分)(2011•兰州)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为.三、解答题(本大题共8个小题;共78分.解答应写出文字明、证明过程或演算步骤)19.(8分)(2009•朝阳)先化简,再求值:,其中x=+1.20.(8分)(2015•武安市校级模拟)如图,⊙O的半径为2,直径CD经过弦AB的中点G,∠ADC=75°.(1)填空:cos∠ACB=;(2)求OG的长.21.(9分)(2011•通州区二模)作为一项惠农强农应对国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已取得成效,在气温较低的季节,电冰箱也有一定的销量.我市某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图所示:根据图提供的信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价;(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价;(3)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.22.(9分)(2015•武安市校级模拟)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.23.(10分)(2010•安次区一模)阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA又∵,,∴∴解决问题:(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,a n,合理猜想其内切圆半径公式(不需说明理由).24.(10分)(2010•安次区一模)(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC 于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;(3)在(2)中,若BD=2,DC=3,求AD的长.25.(12分)(2014•郑州一模)某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.(1)设一块绿化区的长边为xm,写出工程总造价y与x的函数关系式(写出x的取值范围).(2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考值:)26.(12分)(2015•广东模拟)如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,点P从点B开始沿BC边以每秒1cm的速度向点C运动,点Q从点C开始沿CA边以每秒2 cm的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、P停止运动,设它们运动的时间为x cm.(1)当x=秒时,射线DE经过点C;(2)当点Q运动时,设四边形ABPQ的面积为ycm2,求y与x的函数关系式(不用写出自变量取值范围);(3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x的值;若不存在,请说明理由.2015年河北省邯郸市武安七中中考数学模拟试卷参考答案一、选择题(每小题中的选项只有一个是正确的,每小题2分,共24分)1.A 2.D 3.C 4.A 5.A 6.B 7.B 8.A 9.B 10.D 11.D 12.A二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.0 14.20 15.<16.AC=BD或AB⊥BC 17.2π18.()n-1三、解答题(本大题共8个小题;共78分.解答应写出文字明、证明过程或演算步骤)19.20.21.22.23.24.25.26.2。
2015河北中考数学试题及答案word
2015河北中考数学试题及答案word一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填涂在答题卡上。
)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 若a > 0且b < 0,下列哪个不等式成立?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B(以下选择题略,每题格式相同)二、填空题(本题共5小题,每小题3分,共15分。
请将答案填写在答题卡上。
)1. 圆的周长公式为C = 2πr,若半径r = 4,则周长C = _______。
答案:8π2. 若一个直角三角形的两条直角边分别为3和4,则斜边长为_______。
答案:5(以下填空题略,每题格式相同)三、解答题(本题共4小题,共55分。
请在答题卡上作答,要求写出必要的计算过程和推理过程。
)1. 解方程:2x + 5 = 11。
答案:首先移项得:2x = 11 - 5然后合并同类项得:2x = 6最后解得:x = 32. 已知三角形ABC中,∠A = 90°,AB = 5,AC = 12,求BC的长度。
答案:根据勾股定理,BC² = AC² - AB²BC² = 12² - 5² = 144 - 25 = 119BC = √119(以下解答题略,每题格式相同)四、综合题(本题共1小题,15分。
请在答题卡上作答,要求写出详细的解题步骤和答案。
)1. 某工厂生产一批产品,已知该产品的成本为每件20元,销售价格为每件40元。
若工厂希望获得的利润不低于2000元,求至少需要生产多少件产品。
答案:设工厂需要生产x件产品,则利润为:(40 - 20) * x = 20 * x 根据题意,20 * x ≥ 2000解得:x ≥ 100因此,工厂至少需要生产100件产品。
2015年中考真题数学(河北卷)(无答案)
2015年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题.卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、选择题(本大题共16个小题,1〜10小题,每小题3分;11〜16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:3-2×(-1)=A.5B.1C.-1D.62.下列说法正确的是A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后.再按图l-3打出一个圆形小孔,则展开铺平后的图案是A. B. C. D.4.下列运算正确的是A.11122-⎛⎫=-⎪⎝⎭B.6×107=6000000C.(2a)2=2a2D.a3·a2=a55.图中的三视图所对应的几何体是A. B.C. D.6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是..点O的是A.△ABEB.△ACFC.△AB DD.△ADE7.A.段①B.段②C.段③D.段④8.如图,AB//EF,CD⊥EF,∠BAC=50°,则∠ACD=A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是A. B.C. D.10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是A. B.C. D.11.利用加减消元法解方程组2510536x yx y+=⎧⎨-=⎩,①②,下列做法正确的是A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×212.若关于x的方程x2+2x+a=0不存在...实数根,则a的取值范围是A.a<lB.a>1C.a≤1D.a≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是A.12B.13C.15D.1614.如图,直线l:233=--y x与直线y=a(a为常数)的交点在第四象限,则a可能在A.1<a<2B.-2<a<0C.-3≤a≤-2D.-10<a<-415.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是A.②③B.②⑤C.①③④D.④⑤16.图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.若|a |=20150,则a =____.18.若a =2b ≠0,则222--a b a ab的值为____.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=____°.20.如图,∠BO C =9°,点A 在OB 上,且OA =1.按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =____.三.解答题(共大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x =x 2-5x +1.(1)求所捂的二次三项式:(2)若1=x ,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. 已知:如图,在四边形ABCD 中,BC=AD,AB=____.求证:四边形ABCD是____四过形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明:证明:(3)用文宇叙述所证命题的逆命题为____________________.23(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多放入几个小球?24.(本小题满分11分)某厂生产A,B两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表并求得A 产品三次单价的平均数和方差:5.9=A x :2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150=-+-+-=A s . (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了____%; (2)求B 产品三次单价的方差,并比较哪种产品的单价波动小:(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m %(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1.求m 的值.25.(本小题满分11分)如图,已知点O (0,0),A (-5,0),B (2,1),抛物线l :y =-(x -h )2+1(h 为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标:(2)设点C 的级坐标为y c ,求y c 的最大值,此时l 上有两点(x 1,y 1),(x 2,y 2),其中x 1>x 2≥0,比较y 1与y 1的大小;(3)当线段OA 被l 只分为两部..分.,且这两部分的比是1:4时,求h 的值.26.(本小题满分14分)平面上,矩形ABCD 与直径为QP 的半圆K 如图摆放,分别延长DA 和QP 交于点O ,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:(3)如图,当点P恰好落在BC边上时.求α及S阴影.拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究当半圆K与矩形ABCD的边相切时,求sin α的值.。
河北省邯郸市初中数学毕业生升学模拟考试试题(二)
河北省邯郸市2015届初中数学毕业生升学模拟考试试题(二)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,最大的数是A .3-B .-2C .0D .12.下列运算正确的是A. 33a a a ⋅=B. ()33ab a b =C. ()236aa =D. 842a a a ÷=3.下列几何体中,主视图是三角形的是A .B .C .D .4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .58B .13C .15DACBO12图1D .385.如图1,点B ,O ,D 在同一直线上,若∠1=15°,∠2=105°,则∠AOC 的度数是 A.75° B.90° C.105°D.125°6.在平面直角坐标系中,点P (-2,3)关于y 轴的对称点的坐标A .(-2,-3)B .(2,-3)C .(-2,3)D .(2,3) 7.把多项式24a a -分解因式,结果正确的是A .()4a a -B .(2)(2)a a +-C .(2)(2)a a a +-D .2(2)4a --8.如图2是一个正六边形,图中空白部分的面积等于20,则阴影部分的面积等于 A .10B .210C .20D .2209.如图3,反比例函数y =kx的图象经过点M ,则此反比例 函数的解析式为 A .y =-12xB .y =-2xC .y =12xD .y =2x10.已知a 和b 是有理数,若a +b =0,ab ≠0,则在a 和b 之间一定A .存在负整数图3图2B .存在正整数C .存在负分数D .不存在正分数11.如图4,AB 是半圆的直径,点O 是圆心,点C 是AB 延长线的一点,CD 与半圆相切于点D .若AB =6,CD =4,则sin ∠C 的值为A .43 B .53C .54D .3212.若实数x ,y满足4x -,则以x ,y 的值为两边长的等腰三角形的周长是A .12B .16C .16或20D .2013.如图5,P 为边长为2的正三角形内任意一点,过P 点分别做三边的垂线,垂足分别为D ,E ,F ,则PD+PE+PF 的值为A .23 B .3C .2D .3214.某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是A .甲、丙B .甲、丁C .乙、丁D .丙、丁图5图415.如图6,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是A .8B .9C .8或9D .无法确定16.如图7,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,以3cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA --AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s),则下列最能反映y 与x 之间函数关系的图象是图6图7②BCD③C①④图92015年邯郸市初中毕业生升学模拟考试(二)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若实数a 满足12=+a a ,则2015222+--a a = . 18.如图8,射线AB ,CD 分别与直线l 相交于点G 、H ,若∠1=∠2,∠C =65°,则∠A 的度数是 .19.如图9,等腰△ABC 纸片(AB =AC )按图中所示方法,恰好能折成一个四边形,首先使点A与点B 重合,然后使点C 与点D 重合,则等腰△ABC 中∠B 的度数是 .20.有一个数学游戏,其规则是:对一个“数串”中任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,产生一个新“数串”,这称为一次操作.例如:对于数串2,7,6,第一次操作后产生的新数串为2,5,7,-1,6;对产生的新数串进行同样的操作,第二次操作后产生的新数串为2,3,5,2,7,-8,-1,7,6;……对数串3,1,6也进行这样的操作,第30次操作后所产生的那个新数串中所.有.数的和...是________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)图8 ACB DGH 1 2 lA21.(本小题满分10分)(1)对于a ,b 定义一种新运算“☆”:a ☆ b = 2a -b ,例如:5 ☆ 3 = 2×5-3 = 7.若(x ☆ 5)<-2,求x 的取值范围;(2)先化简再求值:44222+--x x x x ÷42-x x,其中x 的值是(1)中的正整数解.22.(本小题满分10分)某公司共20名员工,员工基本工资的平均数为2200元.现就其各岗位每人的基本工资情况和各岗位人数,绘制了下列尚不完整的统计图表:各岗位每人的基本工资情况统计表请回答下列问题:(1)将各岗位人数统计图补充完整; (2)求该公司服务员每人的基本工资;(3)该公司所有员工基本工资的中位数是________元,众数是_______元;你认为用基本工资的平均数和中位数来代表该公司员工基本工资的一般水平,哪一个更恰当?请说明理由.(4)该公司一名员工向经理辞职了,若其他员工的基本工资不变,那么基本工资的平均数就降低了.你认为辞职的可能是哪个岗位上的员工呢?说明理由.岗位经理 技师 领班 助理 清洁工 服务员23.(本小题满分11分)如图10,点A ,B ,C 在一个已知圆上,通过一个基本的尺规作图作出的射线AP 交已知圆于点D ,直线OF 垂直平分AC ,交AD 于点O ,交AC 于点E ,交已知圆于点F .(1)若∠BAC = 50°,则∠BAD 的度数为 ,∠AOF 的度数为 ; (2)若点O 恰为线段AD 的中点.① 求证:线段AD 是已知圆的直径; ② 若∠BAC = 80°,AD =6,求弧DC 的长; ③ 连接BD ,CD ,若△AOE 的面积为S ,则四边形ACDB 的面积为 .(用含S 的代数式表示)图10如图11,抛物线y=ax2 + c经过点A(0,2)和点B(-1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.图1125.(本小题满分11分)如图12-1和12-2,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .过点A 作AF ⊥AE ,过点C 作CF ∥AD ,两直线交于点F . (1)在图12-1中,证明:△ACF ≌△ABE ;(2)在图12-2中,∠ACB 的平分线交AB 于点M ,交AD 于点N .① 求证:四边形ANCF 是平行四边形; ② 求证:ME =MA ;③ 四边形ANCF 是不是菱形?若是,请证明; 若不是,请简要说明理由.图12-1BFC图12-2为了创建全国卫生城,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍;已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟;(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中为x,y均为正整数.①当当②求y与x的函数关系式.探究:在(3)的条件下,设总运费为w(元).①求w与x的函数关系式,直接写出w的最小值;②当x≥10且y≥10时,甲车每趟的运费打7折,乙车每趟的运费打9折,直接写出w的最小值.2015 邯郸市中考二模数学试题参考答案及评分标准一.选择题二、填空题17.201318.115 ° 19.72° 20.100 三、解答题21. (1) 解:2x -5<-2 …………………………………………………… 2分x <23 …………………………………………………………… 3分(2) 解:原式=x x x x x x )2)(2()2()2(2-+⋅--………………………………………… 5分=x+2, …………………………………………… 7分 ∵x <23且x 为正整数解 ∴x =1, ……………………………………………………………… 8分 ∴当x =1时,原式= x +2=3 ………………………………………………………10分 22.(1)5人(图略 )……………………………………………………………… 1分 (2)解:(2200×20-10000-4000×2-2400×2-1600×5-1000×2)÷8=1400(元) ……………………………………………………………… 3分 (3)1500;1400. ……………………………………………………………… 5分 答:中位数能代表该公司员工的基本工资水平.理由:因为平均数受极端值的影响,不能真实反映员工的基本工资水平,所以中位数能代表该公司员工的基本工资水平. …………………………………………………………… 7分 (4)辞职的可能是技师或领班.理由:因为向经理辞职,所以该员工职位肯定比经理低;又因为基本工资的平均数降低了,所以该员工的基本工资比基本工资的平均数高,所以辞职的可能是技师或领班. … 10分23. (1)25°; 65°………………………………………………………………… 2分 (2)①证明:连接CD ,∵直线OF 垂直平分AC ,交AC 于点E , ∴∠AEO =90° , AE=CE , ∵AO=OD , AE=CE ,∴OE∥CD∴∠AEO=∠ACD=90°∴线段AD 是已知圆的直径……………………………………………………………… 6分 ②解:连接OC由作图可知,AP 是∠BAC 的平分线 ∴∠CAD =21∠CAB =40°, ∵弧CD 所对的圆周角为∠CAD 、圆心角为∠COD ∴∠COD =2∠CAD =80° ∴弧CD 的长=34180380ππ=⋅………………………………………………………… 9分 ③ 8S …………………………………………………………………… 11分24.解:(1)∵抛物线y =ax 2+ c 经过点A (0,2)和点B (-1,0); ∴ ⎩⎨⎧=+=02c a c解得: ⎩⎨⎧=-=2,2c a∴此抛物线的解析式为222+-=x y ……………………………………………… 4分(2)∵此抛物线平移后顶点坐标为(2,1)∴抛物线的解析式为y=-22)2-x (+1 令y=0, 即-22)2-x (+1=0 解得 222x 1+= 22-2x 2=∵点C 在点D 的左边 ∴C(22-2,0) D (222+,0)…………………………………………………… 9分 (3)2<n<6 …………………………………………………………………… 11分25.(1)证明:∵∠BAC =90°,AB=AC , ∴∠B =∠ACB =45°, ∵AD ⊥BC∴∠DAC =21∠CAB =45° ∵CF ∥AD∴∠DAC =∠AC F=45°, ∴∠B =∠AC F=45° ∵AF ⊥AE ∴∠E AF =90° ∵∠E AF=∠E AC +∠C AF =90° ∠BAC=∠E AC +∠BAE=90° ∴∠C AF=∠BAE ∵AB=AC ,∴△ACF ≌△ABE ; …………………………………………………………… 3分(2)①证明:∵∠BAC =90°,AB=AC ,AD ⊥BC ∴∠BAD =45°,∵AE 平分∠BAD , ∴∠BAE =21∠DAB =22.5°, ∵△ACF ≌△ABE ; ∴∠BAE =∠CAF =22.5°, ∵∠ACB 的平分线交AB 于点M ∴∠ACM =21∠ACB =22.5°, ∵∠ ACM =∠CAF =22.5° ∴AF∥CN∵AD∥FC∴四边形ANCF 是平行四边形;……………………………………………………… 6分 ②证明:∵∠BAC =90°,∠BAE =22.5°, ∴∠EAC=67.5°, ∵∠BCA=45°, ∴∠AEC =67.5°,∵∠EAC =∠AEC =67.5°, ∴CA=CE∵∠ACB 的平分线交AB 于点M ∴∠ACM =∠ECM ∵MC=MC∴ △ACM ≌△ECM∴AM=EM …………………………………………………………………… 9分 ③答:不是.理由:∵∠CAF =22.5°,∠ACF =45° ∴FA≠FC∴四边形ANCF 不是菱形 ………………………………………………………… 11分 26.(1)解:设甲、乙两车每趟的运费分别为m 元、n 元,由题意得⎩⎨⎧=+=-4800)(12200n m n m解得: ⎩⎨⎧==100300n m答:甲、乙两车每趟的运费分别为300元、100元 . ………………………………… 2分(2)解:设单独租用甲车运完此堆垃圾,需运a 趟, 由题意得12(aa211+)=1 解得 a =18经检验a =18是原方程的解答:单独租用甲车运完此堆垃圾,需运18趟. …………………………………………5分(3)① 16; 13 . …………………………………………………………………… 7分 ②解:13618=+yxy=36-2x …………………………………………………………………… 9分探究:①w=300x +100y=300x +100(36-2x)=100x +3600 (0<x <18,且x 为正整数)w 的最小值3700元. …………………………………………………………………… 11分②解:w=300×0.7x +100×0.9y=300×0.7x+100×0.9(36-2x) =30x +3240 ∵x ≥10且y ≥10∴10≤x ≤13,且x 为正整数w 的最小值3540元. …………………………………………………………………… 13分。
2015年河北省中考数学试卷
2015年河北省初中毕业生升学文化课考试一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A. 5 B. 1 C.﹣1 D. 62.(3分)(2015•河北)下列说法正确的是()A. 1的相反数是﹣1 B. 1的倒数是﹣1C. 1的立方根是±1 D.﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣ B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a55.(3分)(2015•河北)如图所示的三视图所对应的几何体是()6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A. 120° B. 130° C. 140° D. 150°9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×212.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A. B. C. D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A. 1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以 B.甲、乙都不可以C.甲不可以、乙可以 D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a= .18.(3分)(2015•河北)若a=2b≠0,则的值为.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= .求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表并求得了产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%.(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O 按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影.拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x 的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.参考答案1.A 2.A 3.C 4.D 5.B 6.B 7.C 8.C 9.D 10.C 11.D 12.B 13.B 14.D 15.B 16.A 17.±118.19.24°20.921.解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.22.解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD 求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;23.解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.26.(解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴P A的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在R t△RKE中,RE=RK•sin60°=,∴S△PRK=•RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在R t△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在R t△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.第11 页共11 页。
2015河北数学中考试卷+答案
2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( )A.(12)-1=-12B.6×107=6 000 000C.(2a)2=2a2D.a3·a2=a55.图中的三视图所对应的几何体是( )6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··点O的是( )A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是( )11.利用加减消元法解方程组{2x+5x=-10,①5x-3x=6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×212.若关于x的方程x2+2x+a=0不存在...实数根,则a的取值范围是( )A.a<1B.a>1C.a≤1D.a≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a为常数)的交点在第四象限,则a可能在( ) A.1<a<2 B.-2<a<0 C.-3≤a≤-2 D.-10<a<-415.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= .的值为.18.若a=2b≠0,则x2-x2x2-ab19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=°.20.如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件)3.5 4 3并求得了A产品三次单价的平均数和方差:x A=5.9;x A2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150.(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%;(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为 6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sin α的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.)-1=2,本选项错误;4.D A.(12B.6×107=60 000 000,本选项错误;C.(2a)2=4a2,本选项错误;D.a3·a2=a3+2=a5,本选项正确,故选D.5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF的顶点F不在圆O上,∴圆O不是△ACF的外接圆,∴点O不是△ACF的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C.8.C 延长AC交直线EF于点G,∵AB∥EF,∴∠BAC=∠CGD=50°,∵∠ACD是△CDG的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=x(k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.x11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2 二、填空题 17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b≠0,∴原式=(x +x )(x -x )x (x -x )=x +x x =2x +x 2x =32.19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°. 20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……, 则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9.三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分) =x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分) =6.(10分)22.解析 (1)CD.(1分) 平行.(2分)(2)证明:连结BD.(3分)在△ABD 和△CDB 中, ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB.(7分)∴四边形ABCD 是平行四边形.(8分) (3)平行四边形的对边相等.(10分) 23.解析 (1)y=4x 大+210.(3分) (2)①当x 大=6时,y=4×6+210=234.∴y=3x 小+234;(7分) ②依题意,得3x 小+234≤260, 解得x 小≤823,(9分)∵x 小为自然数,∴x 小最大为8,即最多能放入8个小球.(10分)评析 一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答. 24.解析 (1)如图所示.(2分)25.(4分)(2)x B =13(3.5+4+3)=3.5,x B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)23=16.(7分) ∵16<43150, ∴B 产品的单价波动小.(8分) (3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0, ∴第四次单价大于3. 又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+x %)+3.52×2-1=254,(10分) ∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分) 对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1, ∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分) 26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt△OAB 中,AO=AB,得∠DOQ=∠ABO=45°, ∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP≥OP,当OP 过点A,即α=60°时等号成立. ∴AP≥OP -OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分) PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH⊥AD 于点H,过点R 作RE⊥KQ 于点E.在Rt△OPH 中,PH=AB=1,OP=2,∴∠POH=30°, ∴α=60°-30°=30°.(7分) 由AD∥BC 知,∠RPQ=∠POH=30°. ∴∠RKQ=2×30°=60°. ∴S 扇形RKQ =60π(12)2360=π24.在Rt△RKE 中,RE=RK·sin 60°=√34, ∴S △RKP =12PK·RE=√316.∴S阴影=π24+√316.(8分) 拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM, ∴△AON∽△BMN, ∴xx xx =xxxx ,即1-xx xx =1x ,∴BN=xx +1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF⊥AD 于点F.图2BQ=AF=√xx 2-Q x 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x≤2√2-1.(11分)[注:如果考生答“x≤2√2-1或x<2√2-1”均不扣分] 探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG⊥OO'于点G.11图3 Rt△OSK 中,OS=√xx 2-S x 2=√(52)2-(32)2=2. Rt△OSO'中,SO'=OS·tan 60°=2√3,KO'=2√3-32.Rt△KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt△OGK 中,sin α=xx xx =√3-3452=4√3-310.②半圆K 与AD 切于点T,如图4,图4 同理可得sin α=xx xx =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。
2015年邯郸市二模数学试卷分析
2015年邯郸市初中毕业生升学模拟考试(二)数学试卷分析德政镇中学一、本次试卷试题特点本次试题以选择题、填空题、解答题等题型为依托,全面地考查了数学思想和方法、数学能力和创新能力。
给考生设置了开展创造性思维活动的良好环境和空间,这是激发学生学习兴趣、启迪思维、实现积极主动探究的前提和途径,也是培养学生形成良好的数学思维习惯、思想方法、提高数学素质的基础途径,有利于学生中考数学解题能力的培养。
二、试题基本结构试卷沿袭2014年的试卷结构,考试时间为120分钟;满分120分。
试题由第Ⅰ卷和第Ⅱ卷组成,其中:第Ⅰ卷是客观性试题,是四选一型的单项选择题,1-6小题每题2分,7-16小题每题3分,共42分,答题时使用答题卡;第Ⅱ卷是主观性试题,包括填空题17-20题,每题3分和解答题(6题共66分),共78分,答题时,填空题只要求写出结果,不必写出计算或推证过程;解答题要写出相应的文字说明、演算步骤或推理过程。
三、我校学生答题情况我校九年级共参加考试106人,平均分为85,及格率为25%,优秀率为15%,最高分为106分,最低分12分。
下面从及格率、优秀率、存在问题几方面分析如下:第一题选择题由易到难,注重考查学生四基。
学生虽然基础扎实,但得分不是太高,1-7很少出错。
第8小题考查了学生对基础图形的计算能力,同时考查了学生的灵活性。
学生约有一半出错。
第10小题很多学生弄清题意而错选了答案。
13题是正三角形问题,学生没有从特殊情况入手去考虑问题,得分率也不高。
第14题是逻辑推理问题,应该由答案推到条件较易理解,学生出错也不少。
15小题是线段上两点截得的四条整数线段的和是29,求整个线段的长,如果将分得的三条线段分别设为x、y、z,学生就好做多了,出错较多。
16题考查了函数图像问题,学生也想到了,没想到的是两个动点不是同时停止运动,出错也不少。
第二题填空前两个较为容易,学生得分不低。
第三个考查了学生的动手能力,计算能力,折叠三角形纸片计算角的度数,学生失误较多,说明学生空间想象能力较差,动手能力不好。
河北省邯郸市2015届初中毕业生升学模拟考试(二)数学试题(扫描版)
2015 邯郸市中考二模数学试题参考答案及评分标准一.选择题 题号1 2 3 4 5 6 7 8 答案A C C AB D A A 题号9 10 11 12 13 14 15 16 答案 B C B D B D C D一、选择题二、填空题17.2013 18.115 ° 19.72° 20.100三、解答题21. (1) 解:2x -5<-2 ……………………………………………………2分 x <23 …………………………………………………………… 3分 (2) 解:原式=x x x x x x )2)(2()2()2(2-+⋅--………………………………………… 5分 =x+2, …………………………………………… 7分 ∵x <23且x 为正整数解 ∴x =1, ……………………………………………………………… 8分 ∴当x =1时,原式= x +2=3 ………………………………………………………10分22.(1)5人(图略 )……………………………………………………………… 1分(2)解:(2200×20-10000-4000×2-2400×2-1600×5-1000×2)÷8=1400(元) ……………………………………………………………… 3分(3)1500;1400. ……………………………………………………………… 5分 答:中位数能代表该公司员工的基本工资水平.理由:因为平均数受极端值的影响,不能真实反映员工的基本工资水平,所以中位数能代表该公司员工的基本工资水平. …………………………………………………………… 7分(4)辞职的可能是技师或领班.理由:因为向经理辞职,所以该员工职位肯定比经理低;又因为基本工资的平均数降低了,所以该员工的基本工资比基本工资的平均数高,所以辞职的可能是技师或领班. … 10分23. (1)25°; 65°………………………………………………………………… 2分(2)①证明:连接CD ,∵直线OF 垂直平分AC ,交AC 于点E ,∴∠AEO =90° , AE=CE ,∵AO=OD , AE=CE ,∴OE ∥CD∴∠AEO=∠ACD=90°∴线段AD 是已知圆的直径……………………………………………………………… 6分②解:连接OC由作图可知,AP 是∠BAC 的平分线∴∠CAD =21∠CAB =40°, ∵弧CD 所对的圆周角为∠CAD 、圆心角为∠COD∴∠COD =2∠CAD =80°∴弧CD 的长=34180380ππ=⋅………………………………………………………… 9分 ③ 8S ……………………………………………………………………11分 24.解:(1)∵抛物线y =ax 2 + c 经过点A (0,2)和点B (-1,0);∴ ⎩⎨⎧=+=02c a c解得: ⎩⎨⎧=-=2,2c a∴此抛物线的解析式为222+-=x y ………………………………………………4分 (2)∵此抛物线平移后顶点坐标为(2,1)∴抛物线的解析式为y=-22)2-x (+1令y=0, 即-22)2-x (+1=0解得 222x 1+= 22-2x 2=∵点C 在点D 的左边∴C(22-2,0) D (222+,0) ……………………………………………………9分 (3)2<n<6 …………………………………………………………………… 11分25.(1)证明:∵∠BAC =90°,AB=AC ,∴∠B =∠ACB =45°,∵AD ⊥BC∴∠DAC =21∠CAB =45°∵CF ∥AD∴∠DAC =∠AC F=45°,∴∠B =∠AC F=45°∵AF ⊥AE ∴∠E AF =90°∵∠E AF=∠E AC +∠C AF =90°∠BAC=∠E AC +∠BAE=90°∴∠C AF=∠BAE∵AB=AC ,∴△ACF ≌△ABE ; …………………………………………………………… 3分(2)①证明:∵∠BAC =90°,AB=AC ,AD ⊥BC∴∠BAD =45°,∵AE 平分∠BAD ,∴∠BAE =21∠DAB =22.5°,∵△ACF ≌△ABE ;∴∠BAE =∠CAF =22.5°,∵∠ACB 的平分线交AB 于点M∴∠ACM =21∠ACB =22.5°,∵∠ ACM =∠CAF =22.5°∴AF ∥CN∵AD ∥FC∴四边形ANCF 是平行四边形;……………………………………………………… 6分 ②证明:∵∠BAC =90°,∠BAE =22.5°,∴∠EAC=67.5°,∵∠BCA=45°,∴∠AEC =67.5°,∵∠EAC =∠AEC =67.5°,∴CA=CE∵∠ACB 的平分线交AB 于点M∴∠ACM =∠ECM∵MC=MC∴ △ACM ≌△ECM∴AM=EM …………………………………………………………………… 9分 ③答:不是.理由:∵∠CAF =22.5°,∠ACF =45°∴F A≠FC∴四边形ANCF 不是菱形 …………………………………………………………11分26.(1)解:设甲、乙两车每趟的运费分别为m 元、n 元,由题意得⎩⎨⎧=+=-4800)(12200n m n m解得: ⎩⎨⎧==100300n m答:甲、乙两车每趟的运费分别为300元、100元 . ………………………………… 2分(2)解:设单独租用甲车运完此堆垃圾,需运a 趟, 由题意得 12(aa 211+)=1 解得 a =18经检验a =18是原方程的解答:单独租用甲车运完此堆垃圾,需运18趟. …………………………………………5分(3)① 16; 13 . …………………………………………………………………… 7分 ②解:13618=+yxy=36-2x …………………………………………………………………… 9分探究:①w=300x +100y=300x +100(36-2x)=100x +3600 (0<x <18,且x 为正整数)w 的最小值3700元. …………………………………………………………………… 11分②解:w=300×0.7x +100×0.9y=300×0.7x+100×0.9(36-2x)=30x +3240∵x ≥10且y ≥10∴10≤x ≤13,且x 为正整数w 的最小值3540元. …………………………………………………………………… 13分。
2015年河北省邯郸市中考一模数学试卷(解析版)
2015年河北省邯郸市中考数学一模试卷一、选择题(共16小题,每小题2分,满分42分)1.(2分)﹣3的绝对值是()A.3B.﹣3C.D.2.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17 3.(2分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104 4.(2分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°5.(2分)估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(2分)如图是某几何体的三视图,该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥7.(3分)下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2 8.(3分)下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.9.(3分)如图,△ABC的顶点都在正方形网格的格点上,则cos C的值为()A.B.C.D.10.(3分)方程的解为()A.x=B.x=C.x=﹣2D.无解11.(3分)某篮球队12名队员的年龄如表所示:则这12名队员年龄的众数和中位数分别是()A.18,19B.18,19.5C.5,4D.5,4.5 12.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>013.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°14.(3分)如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.B.20C.18D.15.(3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE =CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6B.7C.8D.1016.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y 与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)分解因式:2x2﹣4x+2=.18.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.19.(3分)如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是(结果保留π)20.(3分)如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知代数式:A=,B=.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x﹣3)<6﹣2x的正整数解,求A ﹣B的值.22.(10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布表请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B同学能分在同一组的概率.23.(11分)在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.24.(11分)如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)、(0,2)、(4,2),直线l的解析式为y=kx+5﹣4k(k>0).(1)当直线l经过点B时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点D;(3)直线l与y轴交于点M,点N是线段DM上的一点,且△NBD为等腰三角形,试探究:①当函数y=kx+5﹣4k为正比例函数时,点N的个数有个;②点M在不同位置时,k的取值会相应变化,点N的个数情况可能会改变,请直接写出点N所有不同的个数情况以及相应的k的取值范围.25.(11分)如图1,在△ABC中,∠ACB=90°,AC=BC=,以B为圆心、1为半径作圆,设点P为⊙B上一点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA、PD、PB.(1)求证:AD=BP;(2)若DP与⊙B相切,则∠CPB的度数为;(3)如图2,当B、P、D三点在同一条直线上时,求BD的长;(4)BD的最小值为,此时tan∠CBP=;BD的最大值为,此时tan∠CBP=.26.(13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y=﹣m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为万元;乙方式购买和加工其余农产品所需资金为万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.(2)该公司现有流动资金132万元,若将现有流动资金全部用于经销农产品,①其中甲方式经销农产品x吨,则总经销量p为吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.2015年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分42分)1.(2分)﹣3的绝对值是()A.3B.﹣3C.D.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.(2分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104【解答】解:300 000=3×105,故选:B.4.(2分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°【解答】解:∵AB∥CD,∴∠3=∠1=60°(两直线平行,同位角相等),∵EF⊥AB于E,∴∠2=90°﹣60°=30°,故选:C.5.(2分)估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵4<<5,∴5<<6.故选:D.6.(2分)如图是某几何体的三视图,该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥【解答】解:根据所给出的三视图得出该几何体是三棱柱;故选:B.7.(3分)下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同类项不能合并,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.8.(3分)下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:由图一得甲>40,图二得甲<50则40<甲<50在数轴上表示为故选:C.9.(3分)如图,△ABC的顶点都在正方形网格的格点上,则cos C的值为()A.B.C.D.【解答】解:由勾股定理,得AC==2,cos C===,故选:D.10.(3分)方程的解为()A.x=B.x=C.x=﹣2D.无解【解答】解:去分母得,3(x+1)=x+2,解得x=﹣,经经验x=﹣是原方程的根,所以原方程的解为x=﹣.故选:B.11.(3分)某篮球队12名队员的年龄如表所示:则这12名队员年龄的众数和中位数分别是()A.18,19B.18,19.5C.5,4D.5,4.5【解答】解:18岁出现了5次,次数最多,因而众数是:18;12个数,处于中间位置的都是19,因而中位数是:19.故选:A.12.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A 选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.13.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:D.14.(3分)如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.B.20C.18D.【解答】解:作出正方形ABCD.△AEF中,AE=x,则AF=x,EF=x,正八边形的边长是x.则正方形的边长是(2+)x.根据题意得:x(2+)x=20,解得:x2==10(﹣1).则阴影部分的面积是:2[x(2+)x﹣2×x2]=2(+1)x2=2(+1)×10(﹣1)=20.故选:B.15.(3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE =CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6B.7C.8D.10【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=8.故选:C.16.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y 与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)分解因式:2x2﹣4x+2=2(x﹣1)2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.18.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为4.【解答】解:设C的坐标为(m,n),又A(﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m,CM=n,∴AD=AF+FD=2+m,AB=BN+NA=2+n,∵∠A=∠OMD=90°,∠MOD=∠ODF,∴△OMD∽△DAB,∴=,即=,整理得:4+2m=2m+mn,即mn=4,则k=4.故答案为4.19.(3分)如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是3π(结果保留π)【解答】解;如图,作OD⊥AB于点D,连接AO,BO,CO,延长OD交⊙O 于F,由翻折性质可知,OD=FD=OF,∵OA=OF,∴OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,==3π.∴阴影部分的面积=S扇形AOC故答案为:3π.20.(3分)如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是(8,﹣8).【解答】解:∵23÷3=7…2,∴A23是第8个等边三角形的第2个顶点,第8个等边三角形边长为2×8=16,∴点A23的横坐标为×16=8,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A23的纵坐标为﹣8,∴点A23的坐标为(8,﹣8).故答案为:(8,﹣8).三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知代数式:A=,B=.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x﹣3)<6﹣2x的正整数解,求A ﹣B的值.【解答】(1)证明:∵A=,B=÷﹣,∴A+B=+÷﹣=+•﹣=+﹣==0;(2)解:∵A=,B=÷﹣,∴A﹣B=﹣÷+=﹣+=,解不等式3(x﹣3)<6﹣2x得,x<3.∵x是满足不等式3(x﹣3)<6﹣2x的正整数解,∴x1=1,x2=2(舍去)∴当x=1时,原式==2.22.(10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布表请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B同学能分在同一组的概率.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.所以该校八年级汉字书写优秀的人数为800×0.44=352人;(4)根据题意画树状图如下:共有12种情况,A,B两名同学分在同一组的情况有4种,则他们同一组的概率是=.23.(11分)在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为1;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.【解答】解:(1)如图1,过点N作NG⊥AB于G,∵四边形ABCD是菱形,∴AD∥BC,OD=OB,∴==1,∴BN=DM=AD=1,∵∠DAB=60°,∴∠NBG=60°∴BG=,GN=,∴AN===;故答案为:;(2)①当点A′落在AB边上,则MN为AA′的中垂线,∵∠DAB=60°AM=2,∴AN=AM=1,故答案为:1;②在菱形ABCD中,AC平分∠DAB,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN沿MN翻折得到△A′MN,∴AC⊥MN,AM=A′M,AN=A′N,∴∠AMN=∠ANM=60°,∴AM=AN,∴AM=A′M=AN=A′N,∴四边形AMA′N是菱形;③在菱形ABCD中,AB=AD,∴∠ADB=∠ABD=60°,∴∠BA′M=∠DMA′+∠ADB,∴A′M=AM=2,∠NA′M=∠A=60°,∴∠NA′B=∠DMA′,∴△DMA′∽△BA′N,∴=,∵MD=AD=1,A′M=2,∴=.24.(11分)如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)、(0,2)、(4,2),直线l的解析式为y=kx+5﹣4k(k>0).(1)当直线l经过点B时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点D;(3)直线l与y轴交于点M,点N是线段DM上的一点,且△NBD为等腰三角形,试探究:①当函数y=kx+5﹣4k为正比例函数时,点N的个数有2个;②点M在不同位置时,k的取值会相应变化,点N的个数情况可能会改变,请直接写出点N所有不同的个数情况以及相应的k的取值范围.【解答】解:(1)把B点坐标代入y=kx+5﹣4k可得,5﹣4k=2,解得k=,∴直线l的解析式为y=x+2;(2)由题意可知D点坐标为(4,5),把x=4代入y=kx+5﹣4k可得y=5,∴不论k为何值,直线l总经过点D;(3)①当函数y=kx+5﹣4k为正比例函数时可得5﹣4k=0,解得k=,∴直线解析式为y=x,则BM=2,如图1所示,以D为圆心BD为半径画圆,与DM有一交点,BD的垂直平分线与DM有一交点,故满足条件的点有两个.故答案为:2;②∵k>0,∴5﹣4k<5,当5﹣4k=﹣3时,k=2,此时OM=3,则MB=5,如图2所示,分别以B、D为圆心BD为半径画圆,与DM交于点M和N1,和BD的垂直平分线交DM于点N2,故此时满足条件的N点有3个,当k>2时,此时MB>5,如图3所示,分别以B、D为圆心BD为半径画圆,与DM交于N1、N2两点,BD的垂直平分线交DM于N3,故满足条件的点有3个,∴当k≥2时,满足条件的点有3个,当<k<2时,此时0<OB<5,同理可得出满足条件点有两个,当k=时,此时B、M重合,则满足条件的N点有0个,当0<k<时,即M在线段AB上时,同理可知满足条件的点只有一个,综上可知当k≥2时,有3个;当<k<2时,有两个;当k=时,有0个;当0<k<时,有1个.25.(11分)如图1,在△ABC中,∠ACB=90°,AC=BC=,以B为圆心、1为半径作圆,设点P为⊙B上一点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA、PD、PB.(1)求证:AD=BP;(2)若DP与⊙B相切,则∠CPB的度数为45°或135°;(3)如图2,当B、P、D三点在同一条直线上时,求BD的长;(4)BD的最小值为1,此时tan∠CBP=1;BD的最大值为3,此时tan∠CBP=﹣1.【解答】(1)证明:如图1,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,∵,∴△ACD≌△BCP(SAS)∴AD=BP;(2)解:如图2,∵CP=CD,DP是⊙B的切线,∠PCD=90°,∴∠BPD=90°,∠CDP=∠CPD=45°,∴∠CPB=45°+90°=135°,同理可得:∠CPB=45°故∠CPB=45°或135°;故答案为:故∠CPB=45°或135°;(3)解:∵△CDP为等腰直角三角形,∴∠CDP=∠CPD=45°,∠CPB=135°,由(1)知,△ACD≌△BCP,∴∠CDA=∠CPB=135°,AD=BP=1,∴∠BDA=∠CDA﹣∠CDP=90°,在Rt△ABC中,AB==2,∴BD==;(4)解:如图3,当B、D、A三点在同一条直线上时,BD有最小值,由(1)得△ACD≌△BCP,此时∠PBC=45°时,BD的最小值为1,此时tan∠CBP=1;同理可得:如图4,当B、D、A三点在同一条直线上时,由(1)得△ACD≌△BCP,BD的最大值为:AB+AD=AB+BP=3,此时tan∠CBP=tan135°=﹣1.故答案为:1,1,3,﹣1.26.(13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y=﹣m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为4x万元;乙方式购买和加工其余农产品所需资金为(132﹣6x)万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.(2)该公司现有流动资金132万元,若将现有流动资金全部用于经销农产品,①其中甲方式经销农产品x吨,则总经销量p为﹣x+14吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①甲方式购买和包装x吨农产品所需资金为:4x万元;乙方式购买和加工其余农产品所需资金为:3(20﹣x)+3(20﹣x)+12=(132﹣6x)万元;故答案为:4x,(132﹣6x);②当2≤x<8时,w甲=x(﹣x+14)﹣x=﹣x2+13x;w乙=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w甲+w乙﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w甲=6x﹣x=5x;w乙=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w甲+w乙﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.③当2≤x<8时,﹣x2+7x+48=48,解得x1=7,x2=0(不合题意);当x≥8时,﹣x+48=48,解得x=0.∴当毛利润达到48万元时,甲种方式销售7吨.④由题意可知,当x=8时,利润最小为40万元.(2)设该公司用132万元共购买了m吨农产品,其中甲方式购买x吨,乙方式购买(m﹣x)吨,则购买费用为3m万元,甲方式农产品加工成本为x万元,乙方式农产品加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w甲=6x﹣x=5x;w乙=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w甲+w乙﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买农产品共吨,其中甲方式农产品4吨,乙方式农产品吨,公司能够获得最大毛利润,最大毛利润为64万元.。
2015年河北省中考数学试卷及答案
绝密★启用前河北省2015年初中毕业生升学文化课考试数学 (1)河北省2015年初中毕业生升学文化课考试数学答案解析 (5)河北省2015年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:32(1)-⨯-=( )A.5B.1C.1-D.62.下列说法正确的是( )A.1的相反数是1-B.1的倒数是1-C.1的立方根是1±D.1-是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是 ( )图1图2 图3ABCD4.下列运算正确的是( )A.111()22-=-B.76106000000⨯=C.22(2)2a a=D.325a a a=5.右图中的三视图所对应的几何体是( )A BC D6.如图,,AC BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.ABE△B.ACF△C.ABD△D.ADE△7.在数轴上标注了四段范围,如图,( )A.段①B.段②C.段③D.段④8.如图,AB EF∥,CD EF⊥,50BAC∠=,则ACD∠=( )A.120B.130C.140D.1509.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30和南偏西45方向上.符合条件的示意图是( )A B毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共18页)数学试卷第2页(共18页)数学试卷 第3页(共18页) 数学试卷 第4页(共18页)CD10.一台印刷机每年印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当2x =时,20y =,则y 与x 的函数图象大致是 ( )ABCD 11.利用加减消元法解方程组2510, 536, x y x y +=-⎧⎨-=⎩①②下列做法正确的是( )A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将3(5)⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将(5)2⨯-+⨯①②12.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A .12B .13C .15D .1614.如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( )A .12a <<B .20a -<<C .32a --≤≤D .104a --<<15.如图,点A ,B 为定点,定直线l AB ∥,P 是l 上一动点,点M ,N 分别为,PA PB 的中点,对于下列各值: ①线段MN 的长; ②PAB △的周长;③PMN △的面积;④直线,MN AB 之间的距离; ⑤APB ∠的大小.其中会随点P 的移动而变化的是 ( )A .②③B .②⑤C .①③④D .④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以,乙可以D .甲可以,乙不可以第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 17.若0||2015a =,则a = .18.若20a b =≠,则222a b a ab--的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则312∠+∠-∠=.20.如图,9BOC ∠=,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ; 再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ;数学试卷 第5页(共18页)数学试卷 第6页(共18页)再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = .三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:2351x x x -=-+.(1)求所捂的二次三项式;(2)若1x =,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 .23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米. (1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式(不必写出x 小的范围); ②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产,A B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:,A B 产品单价变化折线图第三次并求得了产品三次单价的平均数和方差:5.9A x =;2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150A S =-+-+-=. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.嘉淇毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015年河北省中考数学试卷与答案解析
2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()B=25.(3分)(2015•河北)如图所示的三视图所对应的几何体是()B6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年). B . C . D (y=,11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是,213.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点B的概率是:=14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()﹣﹣﹣x15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=ABMN=16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()的正方形,图乙可以拼一个边长为二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.18.(3分)(2015•河北)若a=2b≠0,则的值为.==故答案为:19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.﹣﹣22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.,23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?,24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=(=产品,这四次单价的中位数为;,×1=25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.,如图﹣﹣﹣OS==2=2﹣KO,在=,•RE=+,即,BQ=AF=AO=2﹣OS=,﹣,KO﹣====sin60的值为:或。
2015年河北省邯郸市涉县中考数学模拟试卷(3月份)
2015年河北省邯郸市涉县中考数学模拟试卷(3月份)一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1.(2分)(2015•涉县模拟)石家庄某市的最高气温是1℃,最低气温是﹣3℃,该天的温差2.(2分)(2013•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的3.(2分)(2013•遂宁)下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形B C28.(3分)(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()10.(3分)(2013•钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()11.(3分)(2015•涉县模拟)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则BF的长为()12.(3分)(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB 内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()13.(3分)(2015•涉县模拟)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O在格点上,则∠AED的正弦值等于()B C14.(3分)(2015•涉县模拟)如图,直线l与⊙O相交于A、B两点,且与半径OC垂直,垂足为H,已知AB=16cm,sin∠OBH=,则⊙O的半径为()cm15.(3分)(2013•济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()16.(3分)(2013•巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()B C二、填空题(本大题有4小题,每小题3分,共12分)17.(3分)(2015•涉县模拟)大于的最小整数是 .18.(3分)(2013•哈尔滨)不等式组的解集是 .19.(3分)(2015•涉县模拟)如图,开头K 1,K 2和K 3处于断开状态,随机闭合开头K 1、K 2和K 3中的两个,两盏灯同时发光的概率为 .20.(3分)(2015•涉县模拟)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为 .三、解答题(共6个小题,共66分)21.(9分)(2015•涉县模拟)已知方程=1的解是a ,求关于y 的方程y 2+ay=0的解.22.(10分)(2015•涉县模拟)在某班的一次数学考试中,满分为150分,学生得分全为整数,将全班学生成绩从75到150依次分为5组,统计数据如图1.(1)该班共有名学生,将图1补充完整;(2)从图2中,第四组的圆心角度数为°(3)从这个班中随机抽取一名学生,求该生恰属于第二组的概率.23.(10分)(2015•涉县模拟)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C(5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.24.(11分)(2012•乐山)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)25.(12分)(2008•永州)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C 且OA=1,OB=OC=3.(1)求此二次函数的解析式;(2)写出顶点坐标和对称轴方程;(3)点M、N在y=ax2+bx+c的图象上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.26.(14分)(2011•曲靖)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.2015年河北省邯郸市涉县中考数学模拟试卷(3月份)参考答案一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1.C 2.B 3.B 4.C 5.C 6.D 7.B 8.A 9.A 10.D 11.D 12.D 13.A 14.B 15.D 16.C二、填空题(本大题有4小题,每小题3分,共12分)17.3 18.-2≤x<1 19.20.9:4三、解答题(共6个小题,共66分)21.22.50100.8 23.24.25.26.。
2015年邯郸一中考前模拟数学密卷(二)
2015年邯郸一中考前模拟数学密卷(二)一、选择题(每题5分,共12小题)1、设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A 、621+- B 、621-+ C 、621-- D 、621++ 2、如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板P AB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB =2,AN =x ,BM =y ,则能反映y 与x 的函数关系的图象大致是( )3、如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( )4、如图,A 、B 是双曲线()0ky k x=>上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若9AOC S =△,则k 的值是( )A 、9B 、6C 、5D 、925、已知抛物线2y ax bx c =++的图象如图所示,则下列结论:①0abc >;②2a b c ++=;③12a <;④1b >.其中正确的结论是( )A 、①②B 、②③C 、③④D 、②④ 6、在平面直角坐标系中,直线l :31y x =+交x 轴于点A ,交y 轴于点B ,点1A 、2A 、3A 、…在x 轴上,点1B 、2B 、3B 、…在直线l 上. 若△11OB A 、△122A B A 、△233A B A 、…均为等边三角形,则△566A B A 的周长是( )A 、3B 、3C 、963D 、37、如图,一次函数y ax b =+与x 轴、y 轴交于A 、B 两点,与反比例函数ky x=相交于C 、D 两点,分别过C 、D 两点作y 轴、x 轴的垂线,垂足为E 、F ,连接CF 、DE 、EF . 有下列四个结论:①△CEF 与△DEF 的面积相等;②△DCE ≌△CDF ;③AC =BD .其中正确的结论个数是( )A 、0B 、1C 、2D 、38、如图,ABCD 为正方形,O 为AC 、BD 的交点,△DCE 为直角三角形,90CED ∠=︒,30DCE ∠=︒,若622OE +=,则正方形的面积为( ) A 、5 B 、4 C 、3 D 、29、如图,在Rt △ABC 中,90A ∠=︒,AB =3,AC =4,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,且O 点在BC 边上,则图中阴影部分面积=S 阴( ) A 、12 B 、3π C 、354π- D 、150364949π-10.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ) A 、2a ≤- B 、4a ≥ C 、2a ≤-或 4a ≥ D 、24a -≤≤ 11、在下列图形中,各有一边长为4cm 的正方形与一个8cm ×2cm 的长方形相重叠.问哪一个重叠的面积最大 ( )12、有四张正面分别标有数字错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年邯郸市初中毕业生升学模拟考试(二)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2014-的值是A .20141 B .20141- C .2014 D .-2014 2. 下列运算正确的是A .523x x x =⋅B .336()x x =C .5510x x x +=D .336x x x=-3.如图1所示的工件的主视图是A .B .C .D .4.规定:用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定[]110+的值为A .3B . 4C . 5D .6图15.三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角形的周长是 A .2或4B .11或13C .11D .136.不等式组⎩⎨⎧≤->+132,02x x 的解集在数轴上表示正确的是A B C D7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为A .572048720=-+xxB .x+=+48720548720 C .572048720=-x D .-48720x+48720=5 8.如图2,AD 为⊙O 直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断A .甲、乙均正确B .甲、乙均错误C .甲正确,乙错误D .甲错误,乙正确9.一个不透明的口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一只球,取出红球的概率是14.如果袋中的白球有24只,那么袋中的红球有A .4只B .6只C .8只D .10只图210.已知084=--+-m y x x ,当y =2时,m 的值为A .0B .1C .2D .411.如图3,某市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高2m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为A.()m B.()m C.()mD.()m12.如图4,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A 、D 两点表示的数的分别为-5和6,那么,该数轴上上述五个点所表示的整数中,离线段BD 的中点最近的整数是A . 0B .1C .2D .3 13.图5为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三 角形中与△ACD 全等的是A .△ACFB .△ADEC .△ABCD .△BCF14.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:x x y 1021+-=,x y 22=,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为 A .30万元 B .40万元 C .45万元 D .46万元ABC D图4图3图515.如图6,圆柱底面半径为2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为A .12cmB .97cmC .15 cmD .21cm16.如图7,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是A B C D图7图6Q卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17. 已知2a -3b 2=5,则代数式7-4a +6b 2的值为 . 18.19.如图8,Rt △ABO 在直角坐标系中,AB ⊥x 轴于点B ,AO =10,3sin 5AOB =∠,反比例函数(0)ky x x=>的图象经过AO 的中点C ,且与AB 交于点D ,则BD = .20.如图9,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、 ④…,则有一顶点坐标为(36,3)的三角形是 (填 三角形的序号).x图8三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)先化简:12122122--÷+----x x x x x x x ,再从0,1,2,3中选取一个合适的数作为x 的值代入求值(简要说明选这个数的理由).小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图(图10-1和图10-2):(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.图10-1 图10-2如图11,抛物线c bx x y++=221经过A (1-,0),C (2,-3)两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式及顶点坐标;(2)若将此抛物线平移,使其顶点为点D ,需如何平移?写出平移后抛物线的解析式; (3)过点P (m ,0)作x 轴的垂线(1≤m ≤2),分别交平移前后的抛物线于点E ,F ,交直线OC 于点G ,求证:PF =EG .图11-1 图11-2如图12,两个同心圆的圆心为O,两圆的半径分别为5,3,其中A,B两点在大圆上,C,D在小圆上,且∠AOB=∠COD.(1)求证:AC=BD;(2)若∠AOB=120°,求线段AC,弧CD,线段BD,弧AB组成的封闭图形的面积;(3)若AB与小圆相切,分别求AB,CD的长.图12小明家今年种植樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图表.日销售量y (单位:kg )与上市时间x (单位:天)的函数关系如图13所示,樱桃单价w (单位:元/ kg )与上市时间x (单位:天)的函数关系列表所示,第1天到第a 天的单价相同,第a 天之后,单价下降,w 与x 之间是一次函数关系.请解答下列问题:(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y 与上市时间x 的函数解析式; (3)求a 的值;(4)第12天的销售金额是最多的吗?请说明你的观点和依据.图13樱桃单价w 与上市时间x 的关系如图14-1,在锐角△ABC 中,AB = 5,AC =24,∠ACB = 45°. 计算:求BC 的长;操作:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.如图14-2,当点C 1在线段CA 的延长线上时.(1)证明:A 1C 1⊥CC 1;(2)求四边形A 1BCC 1的面积;BAC图14-1BACA 1C 1图14-2探究:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.连结AA 1,CC 1,如图14-3.若△ABA 1的面积为5,求点C 到BC 1的距离;拓展:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1, 如图14-4.(1)若点P 是线段AC 的中点,求线段EP 1长度的最大值与最小值;(2)若点P 是线段AC 上的任一点,直接写出线段EP 1长度的最大值与最小值. ABCC 1A 1图14-3A 图14-4数学二模参考答案及评分标准一.选择题二.填空题17. -3 ; 18. < ; 19. 23; 20. ⑩(写成10也对). 三.解答题 21.解原式=21)1(2122--⋅----x x x x x x ………………………………………… 2分 =11)1(1---x x x =)1(1--x x x=x1-………………………………………… 6分 当x =0,1,2时,原式无意义,所以取3=x ,当3=x 时,原式=31-=33-. ……………………………………9 分 22.解:(1)家长人数是80÷20%=400人; ……………………………………2分(2)表示家长“反对”的圆心角的度数为4008040400--×360=252° ; ………4分(3)中位数是75,众数是78. ……………………………………6分(4)设小明和小亮分别用A 、B 表示,另外两个同学用C 、D 表示,列树状图如下:第一次选择第二次选择∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P (小明和小亮同时被选中)=61. ……………………………………9 分 23.(1)解:把A (1-,0),C (2,-3)代入c bx x y ++=221得:⎪⎩⎪⎨⎧-=++=+-322021c b c b ,解得:⎪⎩⎪⎨⎧-=-=223c b ∴抛物线的解析式为:223212--=x x y , ……………………………………2 分 ∵825)23(212232122--=--=x x x y ∴其顶点坐标为:(23,825-). ……………………………………4 分 (2)、解:向左23个单位长度,再向上平移89个单位长度. 平移后的抛物线解析式为:2212-=x y . ……………………………………7分 ABCDB C D A C D A B D A B C (√) (×) (×) (√) (×) (×) (×) (×) (×) (×) (×) (×)(3)证明:用待定系数法求直线OC 的解析式为y = -23x , 当x=m 时,F y =2212-m ,则PF =-(2212-m )=2-221m , 当x=m 时,E y =223212--m m ,G y =m 23-, 则EG =G y -E y =2-221m , ∴PF =EG . ……………………………………10 分 24.(1)证明:在△AOC 和△BOD 中, ∵∠AOB =∠COD ∴∠AOC =∠BOD ∵OA=OB ,OC=OD ∴△AOC ≌△BOD ,∴ AC =BD . ……………………………………4分 (2)封闭图形的面积=360120×16π=316π. ……………………………………6 分 (3)解:设切点为E ,连接OE , ∵AB 与小圆相切, ∴OE ⊥AB ,AB =2BE 由勾股定理得,BE =4,∴AB =8.9 分 ∵∠AOB =∠COD ,ODOB OC OA =, ∴△AOC ∽△BOD , ∴35==OC OA CD AB ∴CD =524. ……………………………………12分25.解:(1)120 kg ; ……………………………………2 分 (2)①当0≤x ≤12时,函数图象过原点和(12,120)两点,设日销售量y 与上市时间x 的函数解析式为y=kx, 由待定系数法得,120=12k ,∴k =10,即日销售量y 与上市时间x 的函数解析式为y =10x ; ………………………4 分 ②当12≤x ≤20时,函数图象过(20,0)和(12,120)两点, 设日销售量y 与上市时间x 的函数解析式为y=kx+b, 由待定系数法得,⎩⎨⎧=+=+02012012k b k b ,解得⎩⎨⎧==30015-b k ,即日销售量y 与上市时间x 的函数解析式为y = -15x +300;…………………6分 (3)设第a 天之后,樱桃单价w 与上市时间x 的函数解析式为w=kx+b ,由待定系数法得,⎩⎨⎧=+=+2011,249b k b k ,解得⎩⎨⎧==42-2b k ,即樱桃单价w 与上市时间x 的函数解析式为w = -2x +42,当w =32时,x =5,所以a 的值为5. ……………………………………9分 (4)第12天的销售金额不是最多的.当x=12时,日销售量y=120千克,樱桃单价w=18元,销售金额为18×120=2160元; 当x=10时,日销售量y=100千克,樱桃单价w=22元,销售金额为22×100=2200元; ∵2200>2160,∴第12天的销售金额不是最多的. ……………………………………12 分 (注:只要能说明第12天的销售金额不是最多的,均相应给分.例x =11时销售金额也大于第12天的销售金额,或者用函数最值说明也可以.) 26.计算:解:过点A 做A G ⊥BC 于G ,∵∠ACB = 45°∴∠GAC = 45°∴AG =CG ∴在Rt △AGC 中, AG =CG =C∠sin 24=4G∴在Rt △ABG 中,由勾股定理得,BG =3∴BC =BG +CG =4+3=7. ……………………………………2分操作:(1)证明:由旋转的性质可得∠A 1C 1B =∠ACB =45°,BC =B C 1∴∠C C 1B =∠C 1CB =45°∴∠C C 1A 1 =∠C C 1B +∠A 1 C 1B =45°+45°=90°∴A 1C 1⊥CC 1 ……………………………………4分 (2)四边形A 1BCC 1的面积=△C C 1B 的面积+ △A 1C 1B 的面积=21×7×7+21×7×4=277. ……………………………………5分 探究:解:设△BA A 1中A 1B 边为的高为m ;△C 1CB 中BC 1边为的高为n . ∵21×5m=5∴m =2 ∵∠ABC=∠A 1B C 1 ∴∠ C 1BC=∠A 1BA ∵7511==BC AB BC B A ∴△BA A 1∽△ C 1BC∴n m =BC AB =75 ∴n =514∴点C 到BC 1的距离514. ……………………………………8分 拓展:(1)过点P 做P H ⊥B C ,得到:PH =CH =2, ∴BH =BC -CH =7-2=5. 在Rt △BHP中,根据勾股定理得:BP =2252+=29.①△ABC 绕点B 旋转,点P 的对应点P 1在线段BA 的延长线上时,A HEP 1最小,最小值为B P 1-BE=BP -BE =29-25; ②△ABC 绕点B 旋转,点P 的对应点P 1在线段AB 的延长线上时, EP 1最大,最大值为BP 1+ BE =BP + BE =29+25.………………………………11分(2)过点B 作BD ⊥AC ,D 为垂足,∵△ABC 为锐角三角形 ∴点D 在线段AC 上在Rt △BCD 中,BD =BC ×sin45°=227.①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为 227-25② 当P 在AC 上运动至点C ,△ABC 绕点B 旋转, 点P 的对应点P 1在线段AB 的延长线上时, EP 1最大,最大值为25+7=219 . ……………………………………14分。