2016沪科版七年级数学上册3.1《一元一次方程及其解法(3)》(含2016中考题)课件
沪科版七年级上册数学-3.1:一元一次方程及其解法-课件
y=
94-2x 4
x+
94-2x 4
=35
二元一次方程(组)
{ x+y=35 2x+4y=94
下列运用等式性质进行的变形,不正确的是( )
A.若a=b,则a-c=b-c;
B.若a+5=b+5,则a=b;
C.如果
a c
=
b c
,那么a=b;
D.若ac=bc,则a=b.
2x-1 解方程: 3
-
x+1 2
意思是:甲袋中装有黄金8枚(每枚黄金重量相 同),乙袋中装有白银10枚(每枚白银重量相同), 称重两袋相等,两袋相互交换1枚后,甲袋比乙袋 轻了2两(袋子的重量忽略不计)。问黄金、白银 每枚各重多少两?
实际问题
设未知数, 列方程(组)
实际问题
检验
的答案
数学问题 解 方 代入法 程 组 加减法
(消元)
数学问题 的解
利用两块长方体木块测量一张桌子的高度.首先按图① 方式放置,再交换两木块的位置,按图②方式放置.测 量的数据如图,则桌子的高度是多少?
=1
7x-4y=4 ① (1)
5x-4y=-4 ②
解: ①-②,得 2x=4-4, x=0
解: ①-②,得 2x=4+4, x=4
(2)
5 y=2 x ① 2x – 7 y = 3 ②
解: ①-②,得
12y=-3,
y=-
1 4
解: ①+②,得
-2y=3 y =-
23 32
《九章算术》是我国古代数学的经典著作,书中有 一个问题:“今有黄金八枚,白银十枚,称之重适 等,交易其一,金轻二两.问金、银一枚各重几何?”
一次方程与方程组 复习(一)
【沪科版】七年级数学上册教案3.1一元一次方程及其解法教案
第3章一次方程与方程组3.1 一元一次方程及其解法第1课时一元一次方程1.理解一元一次方程的概念.2.掌握等式的基本性质,并会灵活运用等式的性质解一元一次方程.3.体会数学问题源于实际生活,会从实际情境中建立等量关系.重点对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程.难点对等式基本性质的理解与运用.一、创设情境,导入新知问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为______,货车从A 地到B地的行驶时间为______.3.客车与货车行驶时间的关系是________.4.根据上述关系,可列方程为________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、自主合作,感受新知阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知问题1:在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人.参加奥运会的跳水运动员有多少人?解析:此题可能有学生在小学的基础上列出算式得出,如(19+1)÷2.当然上述学生比较少,因为这个算式的建立是不容易的.这样大部分学生的方法是用在小学学过的简易方程,他们也会设出x,建立方程.解:设跳水运动员有x人,则依据题意,得2x -1=19.注意:此处为了不分散主题,暂不分析这个方程得来的思路.问题2:王玲今年12岁,王玲的爸爸今年36岁,问再过几年,她爸爸的年龄是她年龄的2倍?解析:一般情况下,我们是问什么设什么,我们这儿设过x 年后她爸爸的年龄是她年龄的2倍.这样用这儿的两倍关系建立等式,即x 年后她爸爸的年龄=x 年后王玲的年龄×2. 解:设过x 年后她爸爸的年龄是她年龄的2倍,则依题意,得36+x =2(12+x).此处可引导学生将父女两人x 年后的年龄表示出来,以加强互动.探究点一:一元一次方程的有关概念观察以上两个方程,找出其特点:(1)有几个未知数?(2)未知数的次数是几?教师在学生回答的基础上,归纳一元一次方程的概念:只含有一个未知数(元),并且未知数的次数是1,且等式两边都是整式的方程叫做一元一次方程.回顾一元一次方程的解:使得一元一次方程两边都相等的未知数的值叫做方程的解;一元方程的解,也可叫做方程的根.探究点二:等式的基本性质为了能对方程进行求解,我们必须有依据,什么是依据呢?这就是等式的性质.(方程是一个等式)等式的性质:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.即 如果a =b ,那么a +c =b +c ,a -c =b -c.(2)等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.即如果a =b ,那么ac =bc ,a c =b c(c≠0). (3)(对称性)如果a =b ,那么b =a.(4)(传递性)如果a =b ,b =c ,那么a =c.四、应用迁移,运用新知1.一元一次方程的辨别例1 下列方程中是一元一次方程的是( )A .x +3=y +2B .1-3(1-2x)=-2(5-3x)C .x -1=1xD .y 3-2=2y -7解析:A .含有两个未知数,不是一元一次方程,错误;B .化简后含有未知数的项可以消去,不是方程,错误;C .分母中含有字母,不是一元一次方程,错误;D .符合一元一次方程的定义,正确.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.2.利用一元一次方程的概念求字母次数的值例2 方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎪⎨⎪⎧|m|=1,m +1≠0,解得m =1. 方法总结:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.3.一元一次方程的解例3 检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入方程,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解;(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.4.等式的基本性质例4 已知mx =my ,下列结论错误的是( )A .x =yB .a +mx =a +myC .mx -y =my -yD .amx =amy解析:A .等式的两边都除以m ,依据是等式的基本性质2,而A 选项没有说明m≠0,故A 错误;B .符合等式的基本性质1,正确;C .符合等式的基本性质1,正确;D .符合等式的基本性质2,正确.方法总结:在等式的两边同时加上或减去同一个数或字母,等式仍成立,这里的数或字母没有条件限制,但是在等式的两边同时除以同一个数或字母时,这里的数或字母必须不为0.5.利用等式的基本性质解方程例5 见课本P 86例1.方法总结:解方程时,一般先将方程变形为ax =b 的形式,然后再变形为x =c 的形式.五、尝试练习,掌握新知课本P 87练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?本节课我们学习了一元一次方程的概念,知道了什么是一元一次方程,它需要两个基本条件:一是只含一个未知数,二是未知数的次数只能是一次.同时我们学习了解方程的依据,即等式性质,这个性质中,我们要特别注意第二条,同除的数不可以是0,三是我们学会了利用等式性质对方程进行求解.七、深化练习,巩固新知课本P 90习题3.1第1、2题.《·》“课时作业”部分.第2课时 移项解一元一次方程1.理解移项的意义,掌握移项变号的基本原则.2.会利用移项解一元一次方程.重点理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程. 难点理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程.一、复习旧知,导入新知上节课学习了一元一次方程,它们都有这样的特点:一边是含有未知数的项,一边是常数项.这样的方程我们可以用合并同类项的方法解答.问题引入:(1)解方程:2x -52x =6-8. (2)观察下列一元一次方程,与上题的类型有什么区别?2x +7=32-2x怎样才能使它向x =a(a 为常数)的形式转化呢?二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:移项解一元一次方程观察P 86例1解答过程中的第1步:2x -1=19 ①2x =19+1 ②由方程①到方程②,这个变形相当于把①中的“-1”这一项从方程的左边移到了方程的右边.“-1”这项移动后,发生了什么变化?(改变了符号)总结:根据等式性质1的变形,其实就是把方程的一项改变符号,从一边移到另一边,这种变形我们把它叫做移项.一般地,把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x =a”的形式.移项,一般都习惯把含未知数的项移到等式左边.四、应用迁移,运用新知1.移项例1 通过移项将下列方程变形,正确的是( )A.由5x-7=2,得5x=2-7B.由6x-3=x+4,得3-6x=4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-x=-1+9解析:A.由5x-7=2,得5x=2+7,故错误;B.由6x-3=x+4,得6x-x=3+4,故错误;C.正确;D.由x+9=3x-1,得3x-x=9+1,故错误.方法总结:(1)所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在这个方程的一边变换两项的位置;(2)移项时要变号,不变号不能移项.2.用移项解一元一次方程例2 见课本P87例2.例3 解下列方程:(1)-x-4=3x;(2)5x-1=9;(3)-4x-8=4;(4)0.5x-0.7=6.5-1.3x.解析:通过移项、合并、系数化为1的方法解答即可.解:(1)移项得-x-3x=4,合并同类项得-4x=4,系数化成1得x=-1;(2)移项得5x=9+1,合并同类项得5x=10,系数化成1得x=2;(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.五、尝试练习,掌握新知课本P88练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习掌握了移项变号的基本原则,会利用移项解一元一次方程.七、深化练习,巩固新知课本P91习题3.1第3、4(1)(2)、8题.《·》“课时作业”部分.第3课时去括号解一元一次方程1.会用分配律去括号解含括号的一元一次方程.2.经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据.重点运用去括号法则解带有括号的方程.难点解一元一次方程的步骤,去括号注意事项.一、创设情境,导入新知一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是__________.(2)根据题意可列方程为__________.你能解这个方程吗?二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:去括号解一元一次方程问题:小明家来客人了,爸爸给了小明10元钱,让他买1听果奶饮料和4听可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐比1听果奶饮料多0.5元,能不能求出1听果奶饮料是多少钱呢?设置问题串:(1)小明买东西共用去多少元?(2)如何用未知数x表示1听果奶饮料或者1听可乐的价钱?(3)这个问题中有怎样的等量关系?小组充分讨论交流后回答:(1)买东西用去10-3=7(元).(2)若设1听果奶饮料为x元时,则1听可乐为(x+0.5)元;若设1听可乐为x元时,则1听果奶饮料为(x-0.5)元.(3)如:买可乐的钱+买果奶饮料的钱=用去的钱.(学生的思路很广泛,也可列成其他形式,只要合理即可)教师在学生回答的基础上,确定出一个方程:设1听果奶饮料x元,则方程为4(x+0.5)+x=10-3.问题串:(1)这个方程与上节课解过的方程在形式上有什么不同?它们有什么联系?(2)它的主要特点是什么?怎样解这个方程?学生可以讨论出以下结论:方程中含有括号,如果去掉括号,就可以利用移项法则进行解方程了,关键步骤就是去括号.回顾去括号法则:⑴括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号.⑵括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.学生自主学习课本P88例3,让学生体验去括号解方程的过程与方法,深化对解方程过程的认识.注意:(1)方程中有带括号的式子时,根据乘法分配律和去括号法则化简.(2)去括号时不要漏乘括号内的任何一项.(3)若括号前面是“-”号,记住去括号后括号内各项都变号.(4)-x=10不是方程的解,必须把x的系数化为1,才算完成解方程的过程.四、应用迁移,运用新知1.用去括号的方法解方程例1 解下列方程:(1)4x -3(5-x)=6;(2)5(x +8)-5=6(2x -7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)4x -3(5-x)=6,去括号得4x -15+3x =6,移项合并同类项得7x =21,系数化为1得x =3;(2)去括号得5x +40-5=12x -42,移项、合并同类项得-7x =-77,系数化为1得x =11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.2.根据已知方程的解求字母系数的值例2 已知关于x 的方程3(a -x 3)=x 2+3的解为2,求代数式(-a)2-2a +1的值. 解析:此题可将x =2代入方程,得出关于a 的一元一次方程,解方程即可求出a 的值,再把a 的值代入所求代数式计算即可.解:因为x =2是方程3(a -x 3)=x 2+3的解, 所以3(a -23)=1+3,解得a =2, 所以原式=a 2-2a +1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x 的值代入方程,求出a 的值,然后将a 的值代入整式即可解决此类问题.3.应用方程思想求值例3 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6?解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x 2-1)-x 2-(x 2+3x -2)=6,去括号得2x 2-2-x 2-x 2-3x +2=6,移项、合并同类项得-3x =6,系数化为1得x =-2.方法总结:先按要求列出方程,然后去括号,移项(把含未知数的项移到方程左边,不含未知数的项移到方程右边),合并同类项,最后把未知数的系数化为1得到原方程的解.五、尝试练习,掌握新知课本P 89练习第1、2题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了解了去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.七、深化练习,巩固新知课本P 91习题3.1第4(3)(4)、6、9、10题.《·》“课时作业”部分.第4课时去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法.2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的一般步骤.重点用去分母的方法解方程.难点去分母时,不漏乘不含分母的项(即整数项);正确理解分数线的作用,去分母后注意给分子添加括号.一、复习旧知,导入新知1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《·》“预习导学”部分.三、师生互动,理解新知探究点:去分母解一元一次方程1.探索去分母解方程的方法问题:刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又单独绣4天,剩下的工作由甲、乙两人合绣,问再合绣多少天可以完成这件作品?学生活动:观察问题情境,弄清题意,分析问题中的等量关系.教师活动:(1)指定一名学生说出问题中的等量关系;(2)引导学生分析,建立方程模型.师生共同分析:(1)题中的等量关系是:甲完成的工作量+乙完成的工作量=工作总量.(2)设工作总量为1,剩下的工作两人合做需x天完成,则115(x+1)+112(x+4)=1.提出问题:如何解方程115(x+1)+112(x+4)=1?(1)鼓励学生尝试解这个方程,指定两名学生到黑板演示.(2)巡视学生,对不同的解法,只要合理,都给予肯定.(3)给出两种不同的解法.解法一:去括号,得115x +115+112x +412=1. 移项,得:115x +112x =1-115-412. 化简,得:320x =35. 两边同除以320,得x =4. 教师:该方程与前面解过的方程有什么不同?学生:以前学过的方程的系数都为整数,而这一题出现了分数.教师:能否把分数系数化为整数?学生:我们可以根据等式性质2,在方程两边同时乘上一个既是15又是12的倍数60,就可以去掉分母,把分数化为整数.这样使解方程避免计算“分数”的复杂性,使解方程过程简单.解法二:去分母,得4(x +1)+5(x +4)=60.去括号,得4x +4+5x +20=60.移项,得标准形式:9x =36.方程两边同除以9,得x =4.教师:去分母,方程两边同乘以一个什么数合适呢?学生分组讨论,合作交流得出结论:方程两边都乘以所有分母的最小公倍数,从而去掉分母.于是,解方程的基本程序又多了一步“去分母”.(4)引导学生比较两种解法,得出解法二更简便.2.探索解一元一次方程的具体步骤学生自主学习课本P 89例4,让学生体验去括号解方程的过程与方法,深化对解方程过程的认识.问题:你能总结一下解一元一次方程都有哪些步骤吗?(学生回顾总结,小组可以讨论交流.)归纳:(1)去分母——方程两边同乘以各分母的最小公倍数.注意不可漏乘某一项,特别是不含分母的项,分子是代数式要加括号.(2)去括号——应用分配律、去括号法则,注意不漏乘括号内各项,括号前“-”号,括号内各项要变号.(3)移项——一般把含未知数的项移到方程的左边,常数项移到方程的右边,注意移项要变号.(4)化简——一类代数式的加减,要注意只是系数相加减,字母及其指数不变.(5)标准形式的化简——同除以未知数前面的系数,即ax =b ⇒x =b a. 四、应用迁移,运用新知利用去分母解一元一次方程例1 解方程:(1)x -x -25=2x -53-3; (2)x -32-x +13=16. 解析:(1)首先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程;(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45,移项得15x -3x -10x =-25-45-6,合并同类项得2x =-76,把x 的系数化为1得x =-38;(2)去分母得3(x -3)-2(x +1)=1,去括号得3x -9-2x -2=1,移项得3x -2x =1+9+2,合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.例2 (1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数? 解析:根据题意列出方程,然后解方程即可.解:(1)根据题意可得3k +12-k +13=1, 去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6,移项得9k -2k =6+2-3,合并得7k =5,系数化为1得k =57; (2)根据题意可得k +13+3k +12=0, 去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0,移项得2k +9k =-3-2,合并得11k =-5,系数化为1得k =-511. 方法总结:先按要求列出方程,然后按照去分母解一元一次方程的步骤解题.五、尝试练习,掌握新知课本P 90练习第1~3题.《·》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了解含有分母的一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.注意去分母时,不要漏乘不含分母的项,分子是多项式时,去掉分母要加括号.百度文库教学设计七、深化练习,巩固新知课本P91习题3.1第5、7题.《·》“课时作业”部分.教学资料应有尽有。
沪科版七年级数学上册 3.2 一元一次方程及其解法(第3章 一次方程与方程组 自学、复习、上课课件)
感悟新知
例3 解方程:8-3x=x+6.
知2-练
解题秘方:利用移项解一元一次方程的步骤(移项 →合并同类项→系数化为 1)解方程.
解: 移项,得 -3x-x=6 - 8. 合并同类项,得 -4x=-2.
常数, a≠ 0) 的形式,如 果 ax+b=0 是一元一次 方程,那么必有a≠ 0.
感悟新知
例1 下列各式中,哪些是一元一次方程?
知1-练
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2
;
(6) 2x2+5=2(x2-x) .
感悟新知
解:根据题意,可得 |m|-1=1,且 m+2 ≠ 0. 由 |m|-1=1,得 |m|=2,解得 m=± 2. 由 m+2 ≠ 0,得 m ≠ -2,所以 m=2.
切勿忽略未知数的 系数不为0 的条件.
知1-练
感悟新知
知1-练
2-1.已知关于x的方程(m2-1) x2+(m-1) x+7m2=0 是一 元一次方程,则m= ( C )
3. 解方程中去括号的顺序 先去小括号,再去中括号,最后去
大括号,一般是由内向外去括号,也可以由外向内去括号.
感悟新知
知3-讲
特别提醒 1. 去括号的目的是能利用移项解方程,其实质
是乘法分配律 . 2. 解方程中的去括号法则与整式运算中的去括
沪科版七年级数学上册教案《一元一次方程及其解法》
《3.1 一元一次方程及其解法》◆教材分析方程是解决问题的一种重要数学模型,应用非常广泛.本节的教学内容是由实际问题抽象出一元一次方程的模型,探究解一元一次方程的一般步骤,为下一节学习一元一次方程的应用做铺垫.本节将使学生的探究能力、计算能力等得到进一步提升,也为学生进一步解决实际问题和二元一次方程组、三元一次方程组、不等式、分式方程等知识打下坚实基础.◆教学目标【知识与能力目标】1. 理解一元一次方程的概念;2. 掌握等式的基本性质,并会灵活运用等式的性质解一元一次方程;3.理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程;4.会用去括号法则解含括号的一元一次方程;5. 掌握含有以常数为分母的一元一次方程的解法;6. 加深学生对一元一次方程概念的理解,并总结出解一元一次方程的一般步骤.【过程与方法目标】1.经历具体实例的抽象概括过程,形成一元一次方程的模型,进一步培养学生观察、分析、概括和转化的能力;2. 通过探究、交流、反思等活动,进一步体会解一元一次方程的基本步骤,培养学生的化归思想,提升学生的计算能力.【情感态度价值观目标】通过由具体实例抽象概括的思考与学习的过程,培养学生实事求是的态度和独立思考的良好学习习惯.◆教学重难点◆【教学重点】1. 对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程;2. 理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程;3. 运用去括号法则解带有括号的一元一次方程;4. 运用去分母的方法解一元一次方程.【教学难点】1. 对等式基本性质的理解与运用;2. 理解移项的意义,掌握移项变号的基本原则,会利用移项解一元一次方程;3. 运用去括号法则解带有括号的一元一次方程;4. 掌握含有以常数为分母的一元一次方程的解法.◆课前准备◆多媒体课件.◆教学过程一、情境引入问题①在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人.参加奥运会的跳水运动员有多少人?(1)如果设参加奥运会的跳水运动员有x人,则用含有x的代数式表示羽毛球运动员为______人;(2)根据上述关系,可列方程为________.问题②王玲今年12岁,她爸爸36岁,问再过几年,她爸爸年龄是她年龄的2倍?(1)如果设再过x年,则用含有x的代数式表示王玲的年龄为______岁,她爸爸的年龄为______岁;(2)根据上述关系,可列方程为________.【设计意图】通过对实际问题的解决,引出一元一次方程的概念,为进一步探究一元一次方程的解法做铺垫.二、探究新知1.一元一次方程的有关概念.问题:观察以上两个方程,找出其特点:2x-1=19 ①36-x=2(12+x) ②(1)有几个未知数?(2)未知数的次数是几?一元一次方程的概念:只含有一个未知数(元),并且未知数的次数是1,且等式两边都是整式的方程叫做一元一次方程.一元一次方程的解:使得一元一次方程两边都相等的未知数的值叫做方程的解;一元方程的解,也可叫做方程的根.【设计意图】经历探究一元一次方程的概念的过程,使学生掌握一元一次方程的定义以及方程的解的定义.2.等式的基本性质.方程是等式(含未知数的等式),解方程就是根据等式的性质求方程的解的过程.等式的基本性质:性质1等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.即如果a=b,那么a+c=b+c,a-c=b-c.性质2等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.即如果a=b,那么ac=bc,ac =bc(c≠0).性质3如果a=b,那么b=a. (对称性)性质4如果a=b,b=a,那么a=c. (传递性) 例1 解方程:2x-1=19.解:两边都加上1,得2x=19+1,(等式基本性质1)即2x=20.两边都除以2,得x=10.(等式基本性质2)检验:把x=10分别代入原方程的两边,得左边=2×10-1=19,右边=19,即左边=右边.所以x=10是原方程的解.【设计意图】经历探究等式的基本性质的过程,使学生掌握等式的性质,从而可以利用等式的性质解一元一次方程.3. 利用移项解一元一次方程.仔细观察例1解答过程中的第1步:2x-1=19,①2x=19+1. ②问题:你发现了什么?由方程①到方程②,这个变形相当于把①中的“-1”这一项从方程的左边移到了方程的右边.问题:“-1”这项移动后,发生了什么变化?改变了符号.总结:根据等式的基本性质1对方程进行变形,相当于把方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.一般地,把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x=a”的形式.移项,一般都习惯把含未知数的项移到等式左边.例2 解方程:3x+5=5x-7.解:移项,得3x-5x=-7-5.合并同类项,得-2x=-12.两边都除以-2,得x=6.【设计意图】让学生体验利用移项解一元一次方程的过程与方法,深化对解一元一次方程过程的认识.4. 去括号解一元一次方程.例3解方程:2(x-2)-3(4 x-1)=9(1-x).解:去括号,得2x-4-12x+3=9-9x.移项,得2x-12x+9x=9+4-3.合并同类项,得-x=10.两边都除以-1,得x=-10.问题:通过解答上面的方程,你能得出什么结论?方程中含有括号,如果去掉括号,就可以利用移项法则进行解方程了,关键步骤就是去括号.问题:你还记得去括号法则吗?(1)括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号.(2)括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.注意:(1)方程中有带括号的式子时,根据乘法分配律和去括号法则化简;(2)去括号时,不要漏乘括号内的任何一项;(3)若括号前面是“-”号,记住去括号后括号内各项都变号;(4)-x=10不是方程的解,必须把x的系数化为1,才算完成解方程的过程.【设计意图】让学生体验去括号解一元一次方程的过程与方法,深化对解一元一次方程过程的认识.5. 去分母解一元一次方程.例4 解方程:x−10x+16=2x+14−1.解:去分母,得12x-2(10x+1)=3(2x+1)-12.去括号,得12x-20x-2=6x+3-12.移项,得12x-20x-6x=3-12+2.合并同类项,得-14x=-7.两边都除以-14,得x=12.问题:通过解答上面的方程,你能得出什么结论?方程两边都乘以所有分母的最小公倍数,从而去掉分母.于是,解方程的基本程序又多了一步“去分母”.问题:你能总结一下解一元一次方程都有哪些步骤吗?(1)去分母:方程两边同乘以各分母的最小公倍数.注意不可漏乘某一项,特别是不含分母的项,分子是代数式要加括号;(2)去括号:应用分配律、去括号法则,注意不漏乘括号内各项,括号前“-”号,括号内各项要变号;(3)移项:一般把含未知数的项移到方程的左边,常数项移到方程的右边,注意移项要变号;(4)合并同类项:要注意只是系数相加减,字母及其指数不变;(5)系数化为1:同除以未知数前面的系数,即ax=b⇒x=ba.【设计意图】让学生体验去分母解一元一次方程的过程与方法,并总结出解一元一次方程的步骤,深化对解一元一次方程过程的认识.三、巩固练习1. 解方程:2(x+3)-5(1-x)=3(x-1).2. 解方程:34[43(12x−14)−8]=32x+1.四、课堂总结问题:通过这节课的学习,你有哪些收获?1. 一元一次方程的概念:只含有一个未知数(元),并且未知数的次数是1,且等式两边都是整式的方程叫做一元一次方程.2. 等式的基本性质:性质1如果a=b,那么a+c=b+c,a-c=b-c.性质2如果a=b,那么ac=bc,ac =bc(c≠0).性质3如果a=b,那么b=a.性质4如果a=b,b=a,那么a=c.3.解一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 略.◆教学反思。
沪科版数学七年级上册《一元一次方程及其解法》教学设计
沪科版数学七年级上册《一元一次方程及其解法》教学设计一. 教材分析《一元一次方程及其解法》是沪科版数学七年级上册的一章内容。
本章主要介绍一元一次方程的概念、性质和解法。
通过本章的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
二. 学情分析学生在学习本章内容前,已经学习了整数、实数和代数的基础知识。
他们对代数的概念和运算有一定的了解,但可能对一元一次方程的概念和解法较为陌生。
因此,在教学过程中,需要注重引导学生理解一元一次方程的定义,并通过例题和练习题让学生熟悉一元一次方程的解法。
三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
2.过程与方法:学生能够通过观察、分析和归纳,探索一元一次方程的解法,并能够运用解法解决实际问题。
3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,培养合作和思考的能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:一元一次方程的解法应用。
五. 教学方法1.讲授法:通过讲解一元一次方程的概念和解法,引导学生理解和掌握相关知识。
2.案例分析法:通过例题和练习题,让学生熟悉一元一次方程的解法,并能够运用到实际问题中。
3.小组讨论法:引导学生进行小组讨论,共同探索一元一次方程的解法,培养学生的合作和思考能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示一元一次方程的概念和解法的讲解和例题。
2.练习题:准备一些一元一次方程的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过引入实际问题,引发学生对一元一次方程的思考,激发学生的学习兴趣。
2.呈现(15分钟)讲解一元一次方程的概念和解法,引导学生理解和掌握相关知识。
3.操练(15分钟)让学生独立完成一些一元一次方程的练习题,巩固学生的学习成果。
4.巩固(10分钟)通过小组讨论和分享,让学生进一步理解和掌握一元一次方程的解法。
沪科版七年级上册数学课件:一元一次方程及其解法(42张)
游戏:猜猜你的年龄
把你的年龄乘以2减去5的 得数告知同座,他可以猜出 你的年龄。
如何猜出的呢?假设你的年龄为X,
得: 2X-5=得数
合作、探究、找等量关系:
在04年的雅典奥运会上,中国女子排球队参加 排球比赛(最终荣获冠军,为祖国得了荣誉),共 赛了八场,总得分为15分,请问她们胜了几场? (胜一场得2分,无平局,负一场得1分)请列出方
ab
cc
由示例共同探究等式的其它 例如:性由质-?4=X,可得X=-4.
如果:a=b,那么b=a。这就是等式的性质3:对 称 性。
再如:。由∠A=30 ,。 又∠B=∠A,所以 ∠B=30。
如果:a=b,b=c,那么a=c。这就 是 等式的性质4:传 递 性。
等式的基个 数,两边都要作同一种运算。
2X – 4 = 18
解: 两边都加上4,得: 2x–4 + 4 = 18 + 4(等式基本性质1) 即 2x = 22
两边都除以2,得: x = 11 (等式基本性质2)
检验: 将x=11分别代入原方程的两边,得 左边=2×11-4=18 右边=18
即 左边=右边 所以 x = 11是原方程的解(或根)
你能发现什么规律 ?
bc
左
a=b
a
右
你能发现什么规律 ?
bc 左
a=b
a
右
你能发现什么规律 ?
bc
左
a=b
ac 右
你能发现什么规律 ?
bc
ac
左 a=b
右
a+c =b+c
你能发现什么规律 ?
bc
左 a=b
ca
沪科版七年级数学上册优秀教学案例:3.1一元一次方程及其解法(6课时)
此外,我还关注学生的个性化发展,尊重学生的差异,给予不同学生有针对性的指导,使他们在原有基础上得到提高。在教学评价环节,我采用多元化评价方式,充分调动学生的积极性,促进学生的全面发展。
2.设计有趣的数学故事,如《狐狸和葡萄》的故事,引发学生对一元一次方程的思考。
3.通过提问方式引导学生回顾已学的知识,如“你能用我们学过的知识解决实际问题吗?”
4.利用多媒体技术展示图片、动画等,形象直观地展示一元一次方程的应用场景。
(二)讲授新知
1.引导学生通过探究活动发现一元一次方程的定义、性质和解法。
2.探究式学习:在教学过程中,我引导学生通过探究活动发现一元一次方程的定义、性质和解法。这种教学方法能够培养学生的自主学习能力和逻辑思维能力,使学生能够更深入地理解和掌握知识。
3.小组合作学习:我组织学生进行小组讨论,共同探讨一元一次方程的解法。这种教学方法不仅能够培养学生的合作精神,还能够促进学生之间的交流和分享,提高学生的团队协作能力。
4.数形结合的教学方法:我引导学生运用数形结合的思想方法,将实际问题转化为方程问题。这种方法能够帮助学生更好地理解和解决实际问题,提高学生的问题解决能力。
5.多元化的教学评价:在教学过程中,我采用多元化的教学评价方式,既关注学生的知识掌握程度,也关注学生的过程与方法、情感态度与价值观等方面的发展。这种评价方式能够充分调动学生的积极性,促进学生的全面发展。
3.利用多媒体技术展示图片、动画等,形象直观地展示一元一次方程的应用场景,帮助学生更好地理解概念。
4.创设问题情境,让学生在解决问题的过程中自然引入一元一次方程,激发学生的求知欲。
七年级数学上册 第3章3.1 一元一次方程及其解法例题与讲解 (新版)沪科版
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程 判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解 ①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程. 方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G.2x 2+2x+1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解.A .-5(x -1)=-4(x -2)B .4x +2=1C .13x +5=5 D .-3x -1=0 解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质 (1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =b c(c ≠0).③性质3:如果a =b ,那么b =a .(对称性)如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57. 答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7. 分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4.(2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1, ∴x =6-1. ∴x =5.(4)方程两边都加上x ,得3-x +x =7+x ,3=7+x , 方程两边都减去7, 得3-7=7+x -7, ∴-4=x ,即x =-4. 3.解一元一次方程 (1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边. ③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x =7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x =7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x =1,把3从方程的左边移到右边要变号,得5x =1-3,是属于移项;而把5x -15x +11x =11变成5x +11x -15x =11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区 移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为 1.具体见下表:变形名称 具体做法 变形依据 注意事项去分母 方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号 分配律;去括号的法则 不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项 移项就是将方程中的某些项改变符号后,从方程的一边移到另一边 等式的基本性质1 移项要变号合并同类项 将方程化为ax =b 的最简形式 合并同类项的法则只将系数相加,字母及其指数不变 化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒解技巧 巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9 解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3.移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3. 去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495.两边同除以-11,得 x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4, 得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫12x -14-4=32x +1.分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝ ⎛⎭⎪⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5x +3-7x +235=2x +1-3x +412,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5x +3-7x +235=2x +1-3x +412.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件 许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.。
沪科版七年级数学上册《3.1一元一次方程及解法》课件
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一12时51分11秒12:51:118 November 2021
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午12时51 分11秒下午12时51分12:51:1121.11.8
讨论:分数基本性质与等式性质2 有何区别?
1.将分母小数化整数是利用分数基本性质,它仅与一个分数 的分子和分母有关,与其他各项均无关!
3。课堂举例:
例 :解方程
—x -0—.1—7–—0.—2x = 1 0.7 0.03
( 口头检验)
分析:该方程即是 —1 x - —1—的分母是小数,所以得先利用(分数基本性质)
将其化成整数,根据刚才的练习,原方程可以变为:
1—0x– -1—7 -—2—0x— =1 (注意:右边的 1 没有变化,为什么?)
到方程一边,其它项 移项
不移的项不变号
都移到方程另一边, 注意移项要变号
法则 2)注意项较多时不要漏项
合并 同类 项
把方程变为ax=b 合并同类
1)把系数相加
(a≠0 ) 的最简形式 项法则 2)字母和字母的指数不变
系数 将方程两边都除以未知 等式
化1 数系数a,得解x=b/a 性质2
解的分子,分母位置 不要颠倒
新 知
1. 引入:(提问) 分数的基本性质?
分数的分子和分母都乘以(或除以)同一个不等于 0 的数,
沪科版七年级上册 数学 课件 3.1 一元一次方程及其解法
填写下列等式的变形,并说明利用了等 式的哪一条性质? (1)若5x 1 6,则5x 6 __1___
(2)若6m 2m 3,则6m __(-_2_m_)__ 3
(3)若 y 4,则y __-8___ 2
(4)若 7 y,则y __-_7___
(5)若1 2, 2 3,则3 _∠__1___
一元一次方程及其解法
问题情境
问题情境
1.2010年上海举办了世博会,图中的中国馆 以其独特的造型备受瞩目,据不完全统计10 月份到世博会游玩的人数大约是1570万,比 参观中国馆的人数的5倍还多70万,求10月 份到世博会中国馆游玩的大约有多少万人?
问题情境
2.一个数的2倍等于这个数的3倍,求这个数?
x
(2)3m 2 m 1
√
(3) 1 1
x
x (4)5x y 1来自x(5)x 2
√
(6) x x 1
√
2
2:方程的解:
使方程左右两边相等的未知数的值
叫做方程的解。一元方程的解,也可叫 做方程的根.
判断括号里的数是不是方程的解 1. 2x-4=18 (x=11) 2. 36+x=2 (12+x) ( x=12) 3、3x+1=7 ( x=3 )
如果a b,那么ac bc, a b (c 0) cc
如果 12 = x,则x= 12. 等式的基本性质3: 如果a b, 那么b a(对称性)
如果y=x ,又x=3 ,则y= 3. 等式的基本性质4: 如果a b,b c,那么a c(传递性)
一个量用与它相等的量代替, 简称等量代换.
2:等式的基本性质:
等式的基本性质1: 等式的两边都加上(或减去)同一个数 (或同一个整式),所得结果仍是等式.
沪科版七年级数学上册《3.1.3一元一次方程解法》课件
变形名称
பைடு நூலகம்
根
据
去 分 母 等式基本性质(2)
去 括 号 去括号法则
移
项 等式基本性质(1)
合并同类项
系数化为1
合并同类项法则 等式基本性质(2)
当堂训练 P90练习第3题的(1)、(2)题。
布置作业
习题3.1:
第5题(1)、(3)、(5)题, 第7题。
预学下节内容
3.2一元一次方程的应用 : 例1、例2.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午12时49分21.11.812:49November 8, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一12时49分8秒12:49:088 November 2021
12x-20x-6x=3-12+2
合并同类项,得
-14x=-7
两边同除以-14,1得 X= 2
当堂训练 • P90练习第1、2题。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
4) 解方程
解:3 2x 1 3 2 x
3
3
去分母,得 2x-1 = 2-x
合作探究 解方程 3x 1 2x 1
2
4
思考: (1)这个方程中各分母的最小公倍数是多少?
七年级数学上册3.1一元一次方程及其解法(三)习题课件(
9.(8 分)当 x 为何值时,式子x-4 1的值比2-3 x的值大 2? 3x+2x-3 1=3-x+2 1去分母正确的是( A ) A.18x+2(2x-1)=18-3(x+1) B.3x+(2x-1)=3-(x+1) C.18x+(2x-1)=18-(x+1) D.3x+2(2x-1)=3-3(x+1) 11.式子2x-5 3与2x-3 3-2 的值相等,则 x 的值为( A )
).
【综合运用】 18.(12 分)马小虎解方程2x-3 1=x+2 a-1,去分母时,方程右边 的-1 忘记乘 6,因而求得解为 x=2,试求 a 的值,并正确解方 程.
解:依题意得:2(2x-1)=3(x+a)-1,将 x=2,代入得 a=13, 当 a=31时原方程为2x- 3 1=x+2 31-1,解得 x=-3
知识点1 解含有分母的一元一次方程
1.(3 分)解方程3y-4 2+1=2y-3 7,为了去分母应将方程的两边同乘 以( C ) A.4 B.3 C.12 D.24 2.(3 分)在解方程x-2 1=1+2x+3 3时,去分母正确的是( A ) A.3(x-1)=6+2(2x+3) B.3(x-1)=1+2(2x+3) C.3x-1=6+(4x-3) D.3x-1=1+4x-3
16.(12 分)解下列方程: (1)y+4 2-1=2y-6 1;
解:y=-4
(2)1-4-43x=5x+ 6 2-x; 解:x=141
(3)2x- 3 1-2x+ 4 1=10x6+1-1.
解:x=61
17.(12 分)根据下列解方程0.3x0+.20.5=2x-3 1的过程,请在前面的括
号内填写变形步骤,在后面的括号内填写变形的依据.
3.1 一元一次方程及其解法(三)