昆明市第一中学2012届高考第二轮考点专题复习教案 立体几何问题的题型与方法

合集下载

云南省昆明市第一中学高考数学 第二轮考点专题复习 第9-12课时课题 不等式问题的题型与方法教案3

云南省昆明市第一中学高考数学 第二轮考点专题复习 第9-12课时课题 不等式问题的题型与方法教案3

第9-12课时课题:不等式问题的题型与方法一.复习目标:1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..二.考试要求:1.理解不等式的性质及其证明。

2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

3.掌握分析法、综合法、比较法证明简单的不等式。

4.掌握简单不等式的解法。

5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。

三.教学过程:(Ⅰ)基础知识详析1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

昆明市第一中学2012届高考第二轮考点专题复习教案 立体几何问题的题型与方法

昆明市第一中学2012届高考第二轮考点专题复习教案 立体几何问题的题型与方法

第21-24课时:立体几何问题的题型与方法一.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.二.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。

2012届高三数学文科二轮专题复习教案――立体几何

2012届高三数学文科二轮专题复习教案――立体几何

专题八 立体几何知识点1.空间几何体的三视图:正俯长对正,正左高平齐,左俯宽相等.2.空间几何体的侧面积、表面积、体积(1)直棱柱的侧面积S ch =侧.V Sh =柱体(2)正棱锥的周长为c ,斜高为h ',12S ch '=侧.13V Sh =锥体(3)正棱台的上、下底面的周长是c c ',,斜高是h ',1()2S c c h ''=+侧.1()3V S S S S h '=++台体 (4)圆柱母线的长为l ,底面半径为r ,2πS rl =侧,2πS r =底.圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.2πV r h =圆柱(5)圆锥底面半径为r ,母线长为l,πS rl=侧,2πππ()S S S rl r r r l =+=+=+侧底.21π3V r h =圆锥(6)圆台的上、下底面半径分别为r r ',,母线长为l ,π()S r r l '=+侧.圆台的表面积2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.221π()3V r Rr R h =++圆台(7)球的表面积24πS R =.334R V π=3.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

(2)公理2:过不在一条直线上的三点,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。

4. 直线与直线的位置关系(1)空间直线位置分三种:相交、平行、异面. (2)平行公理:平行于同一条直线的两条直线互相平行.(3)等角定理:如果一个角的两边和另一个角的两边分别平行那么这两个角相等或互补。

5. 直线与平面的位置关系.(1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ (3)直线和平面平行性质定理:m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα(4)直线与平面垂直判定定理:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,推论:如果两条直线同垂直于一个平面,那么这两条直线平行. (5)直线与平面垂直的性质定理:m l m l ⊥⇒⎭⎬⎫⊂⊥αα6. 平面与平面的位置关系:(1)空间两个平面的位置关系:相交、平行.ml αlmβαABC αlm αlγmβαllαβ(2)平面平行判定定理:βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα αββα////l l ⇒⎭⎬⎫⊂(4)两个平面垂直性质判定:βαβα⊥⇒⎭⎬⎫⊂⊥l l(5)两个平面垂直性质定理:αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 7.空间距离,空间角(1)点到平面的距离的求解方法①直接求解法:从该点向平面引垂线,求垂线的长度 ②等体积代换法(2)空间角:①异面直线所成的角②直线和平面所成的角:直线和在平面的摄影所成的角 二面角例题1.(2008安徽文\理)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖例2 .下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10π C .11π D .12π例3.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900. (1)求证:PC⊥BC; (2)求点A 到平面PBC 的距离.例4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD , 2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.DCABPMOmβαllβαlβαmP A B D C练习1.(2010浙江)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )133.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B. 23C. 33D. 234.(湖北卷)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38π B. 328πC. π28D. 332π 5.(2010全国卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)74(D) 346.设图1是某几何体的三视图,则该几何体的体积为A .429+πB .1836+πC .1229+πD .1829+π7.几何体的三视图如图所示,则这个几何体的直观图可以是8.已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .9.(2011.上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .10.如图,在四棱台111A B C D A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面.11.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP,AD的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD正视图俯视图侧视图图1233FE ADPxyz NMABD C OP利用空间向量解立体几何一、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离1.点点距离:点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+-2.点线距离:求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ在法向量(),n A B =上的射影P Q n n⋅ =0022Ax By C A B+++即为点P 到l 的距离. 3.点面距离 :求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角:求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;②再求其余角,即是线面的夹角. 3.面面夹角(二面角):若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.1.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2.安徽卷(18)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

昆明市第一中学2012届高考第二轮考点专题复习教案 解析几何问题的题型与方法

昆明市第一中学2012届高考第二轮考点专题复习教案 解析几何问题的题型与方法

第17-20课时: 解析几何问题的题型与方法一.复习目标:1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二.考试要求:(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2012届高考数学第二轮考点专题复习教案

2012届高考数学第二轮考点专题复习教案

导数应用的题型与方法一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, logx的a导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。

能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。

4.了解复合函数的概念。

会将一个函数的复合过程进行分解或将几个函数进行复合。

掌握复合函数的求导法则,并会用法则解决一些简单问题。

二.考试要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。

⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的a导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。

⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。

三.教学过程:(Ⅰ)基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。

昆明市第一中学2012届高考第二轮考点专题复习教案 数列问题的题型与方法

昆明市第一中学2012届高考第二轮考点专题复习教案 数列问题的题型与方法

第5-8课时课题:数列问题的题型与方法一.复习目标:1. 能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n 项和公式解题; 2.能熟练地求一些特殊数列的通项和前n 项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。

4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

昆明市第一中学2012届高考第二轮考点专题复习教案 导数应用的题型与方法

昆明市第一中学2012届高考第二轮考点专题复习教案 导数应用的题型与方法

第25-29课时:导数应用的题型与方法一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, logx的导数)。

掌a握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。

能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。

4.了解复合函数的概念。

会将一个函数的复合过程进行分解或将几个函数进行复合。

掌握复合函数的求导法则,并会用法则解决一些简单问题。

二.考试要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。

⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的导数)。

掌握a两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。

⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。

三.教学过程:(Ⅰ)基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。

高考数学二轮复习立体几何题型解题技巧

高考数学二轮复习立体几何题型解题技巧

高考数学二轮复习立体几何题型解题技巧知识整合1.有关平行与垂直(线线、线面及面面)的效果,是在处置平面几何效果的进程中,少量的、重复遇到的,而且是以各种各样的效果(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总温习中,首先应从处置〝平行与垂直〞的有关效果着手,经过较为基本效果,熟习公理、定理的内容和功用,经过对效果的剖析与概括,掌握平面几何中处置效果的规律--充沛应用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思想才干和空间想象才干。

2. 判定两个平面平行的方法:(1)依据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:(1)由定义知:〝两平行平面没有公共点〞。

(2)由定义推得:〝两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:〞假设两个平行平面同时和第三个平面相交,那么它们的交线平行〝。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只要一个平面战争面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为〞性质定理〝,但在解题进程中均可直接作为性质定理援用。

解答题分步骤处置可多得分1. 合理布置,坚持清醒。

数学考试在下午,建议半夜休息半小时左右,睡不着闭闭眼睛也好,尽量抓紧。

然后带齐用具,提早半小时到考场。

2. 通览全卷,摸透题情。

刚拿到试卷,普通较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。

这样能提示自己先易后难,也可防止漏做题。

3 .解答题规范有序。

普通来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

关于解答题中的容易题和中档题,要留意解题的规范化,关键步骤不能丢,如三种言语(文字言语、符号言语、图形言语)的表达要规范,逻辑推理要严谨,计算进程要完整,留意算理算法,运用题建模与恢复进程要明晰,合理布置卷面结构……关于解答题中的难题,得总分值很困难,可以采用〝分段得分〞的战略,由于高考(微博)阅卷是〝分段评分〞。

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

立体几何初步【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【考纲要求】(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

(完整word版)高三数学二轮专题复习教案设计――立体几何

(完整word版)高三数学二轮专题复习教案设计――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

高考数学第二轮复习教案(6):立体几何新题型的解题技巧

高考数学第二轮复习教案(6):立体几何新题型的解题技巧

第六讲立体几何新题型的解题技巧【命题趋向】在高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.(B)版.①理解空间向量的概念,掌握空间向量的加法、减法和数乘.②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.⑦会画直棱柱、正棱锥的直观图.空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==sin AG AFG AF ∴==∠所以二面角1A A D B --的大小为AB CD1A1C1BABCD1A1C1BOF(Ⅲ)1A BD △中,111A BD BD A D A B S ==∴=△1BCD S =△. 在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCD C A BD V V --=,得11133BCD A BD S S d △△,1A BD d ∴=△∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(0A,(0A ,1(120)B ,,,1(12AB ∴= ,,(210)BD =-,,,1(12BA =- . 12200AB BD =-++= ,111430AB BA =-+-= , 1AB BD ∴ ⊥,11AB BA⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =- ,,1(020)AA = ,,. AD ⊥n ,1AA⊥n , 100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.cos <n,111AB AB AB >==n n ∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD的距离11BC AB d AB =. 小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN .QBCPADOM因为21,21===OC NO OA NO OQ PO ,所以OANOOQ PO =, 从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角.因为3PB ==,PN ===10)2()22(2222=+==ON OB BN所以9333210392cos 222=⨯⨯-+=⋅-∠PN PB BN PN PB BPN +=. 从而异面直线AQ 与PB 所成的角是93arccos . (Ⅲ)连结OM ,则112.22OM AB OQ === 所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离.又03,sin 452PQ PO QO PH PQ =+=∴==. 即点P 到平面QAD方法二(Ⅰ)连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD .由(Ⅰ),QO ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,1),A (22,0,0),Q (0,0,-2),B (0,22,0).所以)2,0,22(--=AQ1)PB =-于是93,cos =〉〈PB AQ . (Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=AD ,(0,0,3)PQ =-,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅00AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x . 取x =1,得)2,1,1(--=n .所以点P 到平面QAD的距离2PQ n d n⋅==. 考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF 由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . BACDOGH 1A 1C 1D1B 1O即BD 到平面11D GB 的距离等于362. 解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h 即BD 到平面11D GB 的距离等于362. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题例5(2007年北京卷文)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O = ,CO ∴⊥平面AOB ,又CO ⊂平面COD .O CADBE∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴又12DE AO ==∴在Rt CDE △中,tan CE CDE DE==∴异面直线AO 与CD所成角的大小为解法2:(I )同解法1.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,D ,(00OA ∴=,,(CD =- , cos OA CDOACD OA CD ∴<>=, ∴异面直线AO 与CD所成角的大小为小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:⎥⎦⎤ ⎝⎛2,0π.例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法.解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB , AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.是矩形的直径,是圆、ABFC O BC AF ∴ ,是正方形,又ABFC AC AB ∴==6由于ABFC 是正方形,所以∠BAF =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=cos ,10||||BD FE BD FE BD FE ⋅<>===设异面直线BD 与EF 所成角为α,则.cos cos ,10BD FE α=<>=故直线BD 与EF 所成的角为1082arccos . 考点5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题例7.(2007年全国卷Ⅰ理)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC = ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.DBCS解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC = ∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =AO =1SO =,SD =.SAB △的面积112S AB =连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = ,解得h = 设SD 与平面SAB 所成角为α,则sin h SD α=.所以,直线SD 与平面SBC 所成的我为解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O -0)A ,,(0B ,(0C ,(001)S ,,,SA =(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭, y连结SE ,取SE 中点G ,连结OG,12G ⎫⎪⎪⎝⎭,.12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =.0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D,()=.cos OG DS OG DSα==,sin β所以,直线SD 与平面SAB所成的角为.小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题例8.(2007年湖南卷文)如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.ABCQ αβ P命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ= ,所以CO α⊥, 又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ= ,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =sin 302OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=不妨设2AC =,则AO =1CO =. 在Rt OAB △中,45ABO BAO ∠=∠=,ABCQαβ P OHQ所以BO AO == 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以AB =,(0AC = . 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩ ,得00z -=+=⎪⎩, 取1x =,得1n =.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<> ,.所以1212cos ||||n n n n θ===故二面角B AC P --的大小为. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值范围.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:解法一:(Ⅰ)证:由已知DF //=AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF .又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD .在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF . (Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△PAC 中易知EG ∥PA .又因PA ⊥底面ABCD ,故EG ⊥底面ABCD .在底面ABCD 中,过G 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△PAC 中,有 EG =21PA =21ka . 以下计算GH ,考察底面的平面图.连结GD .因S △GBD =21BD ·GH=21GB ·DF . 故GH =BDDFGB ⋅.在△ABD 中,因为AB =a ,AD =2a ,得BD =5a. 而GB =21FB =21AD =a ,DF =AB ,从而得 GH =BD AB GB ⋅= aa a 5⋅=.55a 因此tan ∠EHG=GH EG =.255521k a ka=由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33 解之得,k 的取值范围为k >.15152 解法二:(Ⅰ)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z轴建立空间直角坐标系,设AB=a ,则易知点A,B,C,D,F 的坐标分别为 A (0,0,0),B (a ,0,0),C (2a ,2a ,0),D (0,2a ,0), F (a ,2a ,0). 从而=(2a ,0,0), BF =(0,2a ,0),DC ·=0,故DC ⊥ .设PA =b ,则P (0,0,b ),而E 为PC 中点.故 E ⎪⎭⎫ ⎝⎛2,,b a a . 从而=⎪⎭⎫ ⎝⎛2,,0b a ,·=0,故⊥. 由此得CD ⊥面BEF .(Ⅱ)设E 在xOy 平面上的投影为G ,过G 作GH ⊥BD 垂足为H ,由三垂线定理知EH ⊥BD . 从而∠EHG 为二面角E -BD -C 的平面角. 由PA =k ·AB 得P (0,0,ka ),E ⎪⎭⎫⎝⎛2,,ka a a ,G (a ,a ,0). 设H (x ,y ,0),则=(x -a ,y -a ,0), =(-a ,2a ,0), 由·=0得-a (x -a )+2a (y -a )=0,即 x -2y =-a ①又因BH =(x-a,y,0),且BH 与BD 的方向相同,故a a x --=ay2,即 2x +y =2a ② 由①②解得x =53a ,y=54a ,从而=⎪⎭⎫⎝⎛--0,51,52a a ,||=55a . tan ∠EHG = EGGH=a ka 552=k 25. 由k >0知,∠EHG 是锐角,由∠EHG >,30︒得tan ∠EHG >tan ,30︒即k 25>.33 故k 的取值范围为k >15152. 考点7 利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题例10.(2007年江苏卷)如图,已知1111ABCD A BC D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,23BG =,点M 在1BB 上, GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE D N ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥.又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB == ∠∠23132BC BG CF ==⨯= .因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥.CBAHMDE F1B1A1D1CCAHMDE F 1B1A1D1CN又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B . (3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠1BM ===tan EM MH θ== 解法二:(1)建立如图所示的坐标系,则(301)BE = ,,,(032)BF =,,,1(333)BD = ,,, 所以1BD BE BF =+ ,故1BD ,BE ,BF共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭ ,,,而(032)BF = ,,,由题设得23203GM BF z =-+= , 得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,,又1(003)BB = ,,,(030)BC =,,,所以10ME BB = ,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥.而(301)BE = ,,,(032)BF = ,,,得330BP BE x =+= ,360BP BF y =+= ,解得1x =-,2y =-,所以(123)BP =--,,.又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是cos BP BA BP BAθ==.故tan θ=小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF 的法向量上的投影的绝对值. 例11.(2006年全国Ⅰ卷)如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM =MB =MN (I )证明AC ⊥NB ;(II )若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值. 命题目的:本题主要考查异面直线垂直、直线与平面所成角的有关 知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:方法一关键是用恰当的方法找到所求的空间角; 方法二关键是掌握利用空间向量求空间角的一般方法. 解答过程:解法一: (Ⅰ)由已知l 2⊥MN , l 2⊥l 1 , MN ∩l 1 =M, 可得 l 2⊥平面ABN . 由已知MN ⊥l 1 , AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(Ⅱ)∵Rt △CAN ≌Rt △CNB , ∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB , ∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心,连结BH ,∠NBH 为NB 与平面ABC 所成的角. 在Rt △NHB 中,cos ∠NBH = HB NB = 33AB 22AB = 63.解法二: 如图,建立空间直角坐标系M -xyz . 令MN=1, 则有A (-1,0,0),B (1,0,0),N (0,1,0),(Ⅰ)∵MN 是 l 1、l 2的公垂线, l 1⊥l 2, ∴l 2⊥平面ABN .l 2平行于z 轴. 故可设C (0,1,m ). 于是 =(1,1,m ), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC ⊥NB .(Ⅱ)∵ =(1,1,m ), =(-1,1,m ), ∴||=||, 又已知∠ACB =60°,∴△ABC 为正三角NCN形,AC =BC =AB =2. 在Rt △CNB 中,NB =2, 可得NC =2,故C (0,1, 2). 连结MC ,作NH ⊥MC 于H ,设H (0,λ, 2λ) (λ>0). ∴=(0,1-λ,-2λ), =(0,1, 2) ∵ · = 1-λ-2λ=0, ∴λ= 13 ,∴H (0, 13, 23), 可得=(0,23, - 23), 连结BH , 则=(-1,13, 23),∵·=0+29 - 29 =0, ∴⊥, 又MC ∩BH =H , ∴HN ⊥平面ABC , ∠NBH 为NB 与平面ABC 所成的角. 又=(-1,1,0),∴cos ∠NBH = = 4323×2 = 63.考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可.解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°⇒AB =3a . BD =2a ⇒正六棱柱体积为V .V =a a 360sin 212162⋅︒⋅⋅⋅)-(=a a ⋅22129)-( =a a a 4)21)(21(89--≤33289)(⋅ . 当且仅当 1-2a =4a ⇒ a =61时,体积最大,此时底面边长为1-2a =1-2×61=32.∴ 答案为61.例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )A 、90°B 、60°C 、45°D 、0°[思路启迪] 画出折叠后的图形,可看出GH ,IJ 是一对异面直线,即求异面直线所成角. 过点D 分别作IJ 和GH 的平行线,即AD 与DF ,所以 ∠ADF 即为所求. 因此GH 与IJ 所成角为60°,答案:B 例14.长方体ABCD -A 1B 1C 1D 1中,① 设对角线D 1B 与自D 1出发的三条棱分别成α、β、γ角 求证:cos 2α+cos 2β+cos 2γ=1② 设D 1B 与自D 1出发的三个面成α、β、γ角,求证: cos 2α+cos 2β+cos 2γ=2[思路启迪] ①因为三个角有一个公共边即D 1B ,在构造 的直角三角形中,角的邻边分别是从长方体一个顶点出 发的三条棱,在解题中注意使用对角线长与棱长的关系 ③ 利用长方体性质,先找出α,β,γ,然后利用各边 ④ 所构成的直角三角形来解.解答过程:①连接BC 1,设∠BD 1C 1=α,长方体三条棱 长分别为a ,b ,c ,设D 1B =l则cos 2α=22l a 同理cos 2β=22l b ,cos 2γ=22lc∴cos 2α+cos 2β+cos 2γ=2222l+c +b a =1 ②连接D 1C ,∵ BC ⊥平面DCC 1D 1BA CDEFGHIJ(A 、B 、C )DEFGHIJ ABCADA 1B 1C 1D 1∴ ∠BD 1C 即是D 1B 与平面DCC 1D 1所成的角,不妨设∠BD 1C =α,则cos 2α=222+lb a 同理:cos 2β=222l+c b ,cos 2γ=222l a c +. 又∵l 2=a 2+b 2+c 2.∴cos 2α+cos 2β+cos 2γ=2222)2l +c +b (a =2.考点9.简单多面体的侧面积及体积和球的计算棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于31Sh 其中S 是底面积,h 是棱锥的高. 典型例题例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a , A 1在底面△ABC 上的射影O 在AC 上 ① 求AB 与侧面AC 1所成角;② 若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC 1所成角即是∠CAB ;②三棱锥侧面积转化成三个侧面面积之和,侧面BCC 1B 1是正方形,侧面ACC 1A 1和侧面ABB 1A 1是平行四边形,分别求其面积即可. 解答过程:①点A 1在底面ABC 的射影在AC 上, ∴ 平面ACC 1A 1⊥平面ABC .在△ABC 中,由BC =AC =a ,AB =2a . ∴ ∠ACB =90°,∴ BC ⊥AC . ∴ BC ⊥平面ACC 1A 1.即 ∠CAB 为AB 与侧面AC 1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC 1所成角是45°.② ∵ O 是AC 中点,在Rt △AA 1O 中,AA 1=a ,AO =21a . A 1B 1C 1AB CDO∴ AO 1=23a . ∴ 侧面ACC 1A 1面积S 1=2123a =AO AC ⋅. 又BC ⊥平面ACC 1A 1 , ∴ BC ⊥CC 1.又BB 1=BC =a ,∴ 侧面BCC 1B 1是正方形,面积S 2=a 2. 过O 作OD ⊥AB 于D ,∵ A 1O ⊥平面ABC , ∴A 1D ⊥AB . 在Rt △AOD 中,AO =21a ,∠CAD =45° ∴ OD =42a 在Rt △A 1OD 中,A 1D =222122342)+()(=a a O +A OD =a 87. ∴ 侧面ABB 1A 1面积S 3=a a D =A AB 8721⋅⋅=227a .∴ 三棱柱侧面积 S =S 1+S 2+S 3=273221a )++(.例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( ) A 、23 B 、23 C 、3 D 、3 [思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =31Sh 即可. 解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L .则AK ⊥MN ,KL ⊥MN . ∴ ∠AKL =30°.则四棱锥A —MNCB 的高h =︒⋅30sin AK =23. ABCMNKLABC MNKLKL ⋅242S MNCB +==33⋅. ∴ 233331V MNCB A ⋅⋅=-=23. ∴ 答案 A例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又PA ⊥AB ,PA =4,∠PAD =60° ① 求四棱锥的体积;② 求二面角P -BC -D 的大小.思路启迪①找棱锥高线是关键,由题中条件可设△PAD 的高PH 即是棱锥的高.②找出二面角平面角∠PEH ,在Rt △PHE 中即可求出此角. 解答过程:①∵ PA ⊥AB ,AD ⊥AB . ∴ AB ⊥面PAD .又AB ⊂面ABCD . ∴ 面PAD ⊥面ABCD .在面PAD 内,作PH ⊥AD 交AD 延长线于H . 则PH ⊥面ABCD ,即PH 就是四棱锥的高. 又∠PAD =60°,∴ PH = 3223460sin ==⋅︒⋅PA . ∴ 32321331S 31V ABCD ABCD P ===-⋅⨯⋅⋅⋅PH . ② 过H 作HE ⊥BC 交BC 延长线于E ,连接PE , 则HE =AB =3.∵ PH ⊥面ABCD , ∴ PE ⊥BC . ∴ ∠PEH 为二面角P -BC -D 的平面角. ∴ tan ∠PEH =332=HE PH . 即二面角的大小为 arctan332. 例18 .(2006年全国卷Ⅱ)已知圆O 1是半径为R 的球O 的一个小圆,且圆O 1的面积与球PAHEDBCO 的表面积的比值为92,则线段OO 1与R 的比值为 . 命题目的:①球截面的性质;②球表面积公式. 过程指引:依面积之比可求得Rr,再在Rt △OO 1A 中即得 解答过程:设小圆半径为r ,球半径为R则92422=R r ππ ⇒ 92422=Rr ⇒ 322=R r ∴ cos ∠OAO 1=322=R r 而31981sin 1=-==αR OO 故填31 【专题训练与高考预测】 一、选择题1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( ) A.3π B. 4πC. 410arctan D. 46arcsin2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面α内与a 异面的任意直线,则a 与b 所成的角( )A. 最小值θ,最大值θπ-B. 最小值θ,最大值2πC. 最小值θ,无最大值D. 无最小值,最大值4π3.在一个︒45的二面角的一平面内有一条直线与二面角的棱成︒45角,则此直线与二面角的另一平面所成的角为( )A. ︒30B. ︒45C. ︒60D. ︒904.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,︒=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成B ACD D 1 C 1B 1A 1CBA1A1B 1C DBCDEA 1B 1 C1的角的正弦值为( ) A.21 B. 23 C.22 D. 435.已知在ABC ∆中,AB =9,AC =15,︒=∠120BAC ,它所在平面外一点P 到ABC ∆三顶点的距离都是14,那么点P 到平面ABC ∆的距离为( )A. 13B. 11C. 9D. 76.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A.29B. 3C.556 D. 2 7.将︒=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成︒60的二面角,则MP 与NQ 间的距离等于( )A.a 23 B. a 43 C. a 46 D.a 438.二面角βα--l 的平面角为︒120,在α内,l AB ⊥于B ,AB =2,在β内,l CD ⊥于D ,CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )A. 52B. 22C.26 D. 629.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a , 动点P 在线段AB 上, 动点Q 在线段CD 上,则P 与Q 的最短距离为( )A.a 21 B. a 22 C. a 23D.a 10.在一个正四棱锥,它的底面边长与侧棱长均为a ,现有一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( )A. a )62(+B.a 262+ C. a )31(+ D. a 231+ ADB AD 1 C 1B 1A 1M N。

2012届高考数学立体几何备考复习教案

2012届高考数学立体几何备考复习教案

2012届高考数学立体几何备考复习教案专题四:立体几何【备考策略】根据近几年高考命题特点和规律,复习本专题时要注意以下几方面:1.全面掌握空间几何体的概念及性质,特别是常见几何体如正方体、长方体、棱柱、棱锥、球的概念和性质,这是进行计算和证明的基础。

2.多面体画图、分析图,用自己的语言描述图,提高借助图形分析问题的能力,培养空间观念。

3.注重三视图与直观图的相互转化及等积转化的思想。

4.特别关注空间三种角落计算问题以及涉及到探究点的位置的问题。

第一讲空间几何体【最新考纲透析】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图。

3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。

4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

.了解球、棱柱、棱锥的表面积和体积的计算公式(不要求记忆公式)。

【核心要点突破】要点考向1:空间几何体的三视图考情聚焦:1.三视图是新标教材的新增内容,是高考中新的增加点及亮点。

2.常与表面积、体积计算综合出现,多以选择题或解答题的形式呈现,属较容易的题。

考向链接:1.解答此类问题,首先由三视图想象出原几何体的形状,并由相关数据得出几何体中的量。

2.掌握三视图是正确解决这类问题的关键,同时也体现了知识间的内在联系,是高考的新动向。

例1:(2010&#8226;陕西高考理科&#8226;T7)若某空间几何体的三视图如图所示,则该几何体的体积是()(A) (B) () 1 (D) 2【命题立意】本题考查三视图的概念及空间想象能力,属中等题。

【思路点拨】三视图几何体是直三棱柱该几何体的体积【规范解答】选由该几何体的三视图可知,该几何体是直三棱柱,且棱柱的底面是两直角边长分别为和1的直角三角形,棱柱的高为,所以该几何体的体积要点考向2:几何体的表面积与体积考情聚焦:1.几何体的表面积与体积一直是高考的热点内容,应引起重视。

2012届高考理科数学第二轮立体几何复习教案

2012届高考理科数学第二轮立体几何复习教案

2012届高考理科数学第二轮立体几何复习教案2012届高考数学二轮复习专题六立体几何【重点知识回顾】稳定中有所创新,由知识立意转为能力立意(1)考查重点及难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定,以及求线面角、二面角等知识都是重点考查的内容,其中线线角、线面角、二面角的求解更是重中之重在难度上平稳过渡,始终以中等偏难为主。

实行新程的高考,命题者在求稳的同时注重创新高考创新,主要体现在命题的立意和思路上注重对学生能力的考查(2)空间几何体中的三视图仍是高考的一个重要知识点解答题的考查形式仍要注重在一个具体立体几何模型中考查线面的关系(3)使用,“向量”仍将会成为高考命题的热点,一般选择题、填空题重在考查向量的概念、数量积及其运算律在有些立体几何的解答题中,建立空间直角坐标系,以向量为工具,利用空间向量的坐标和数量积解决直线、平面问题的位置关系、角度、长度等问题,比用传统立体几何的方法简便快捷,空间向量的数量积及坐标运算仍是2012年高考命题的重点(4)支持新改,在重叠部分做,在知识交汇点处命题立体几何中平行、垂直关系证明的思路清楚吗?平行垂直的证明主要利用线面关系的转化:线面平行的判定:线面平行的性质:三垂线定理(及逆定理):线面垂直:面面垂直:三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90° (2)直线与平面所成的角θ,0°≤θ≤90°(三垂线定理法:A∈α作或证AB⊥β于B,作B⊥棱于,连A,则A⊥棱l,∴∠AB为所求。

)三类角的求法:①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABD—A1B11D1中,棱长为a,则:(1)点到面AB11的距离为___________;(2)点B到面AB1的距离为____________;(3)直线A1D1到面AB11的距离为____________;(4)面AB1与面A1D1的距离为____________;()点B到直线A11的距离为_____________。

昆明市第一中学2012届高考第二轮考点专题复习教案-三角问题的题型与方法(1)

昆明市第一中学2012届高考第二轮考点专题复习教案-三角问题的题型与方法(1)

第13-16课时课题:三角问题的题型与方法一.复习目标:1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等.2.熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等.并能应用这些方法进行三角函数式的求值、化简、证明.3.掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.4.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.5.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、6.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.二.考试要求:1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同解三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。

3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。

4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。

5.了解正弦函数、余弦函数、正切函数的图象和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图,理解A、ω、ψ的物理意义。

6.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x表示。

7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题。

三.教学过程:(Ⅰ)基础知识详析(一)三角变换公式的使用特点1.同角三角函数关系式(1)理解公式中“同角”的含义.(2)明确公式成立的条件。

例如,tan2α+1=sec2α,当且仅当 ≠k(3)掌握公式的变形.特别需要指出的是sinα=tanα·cosα,cosα=cotα·sinα.它使得“弦”可以用“切”来表示.(4)使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法.(5)几个常用关系式①sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示.) 同理可以由sinα-cosα或sinα·cosα推出其余两式.②21sin 1sin 2αα⎛⎫+=+ ⎪⎝⎭. ③当0,2x π⎛⎫∈ ⎪⎝⎭时,有sin tan x x x <<.2.诱导公式(1)诱导公式中的角是使公式成立的任意角. (2)正确使用诱导公式的关键是公式中符号的确定. (3)sin(kπ+α)=(-1)k sinα;cos(kπ+α)=(-1)k cosα(k ∈Z). ⑷熟记关系式sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭. 3.两角和与差的三角函数(1)公式不但要会正用,还要会逆用. (2)公式的变形应用要熟悉. 熟记:tanα+tanβ=tan(α+β)(1-tanα·tanβ),它体现了两个角正切的和与积的关系. (3)角的变换要能灵活应用,如α=(α+β)-β,β=α-(α-β),2α=(α+β)+(α-β)等. 4.倍角公式,半角公式(2)使用二倍角的正弦、余弦公式时,公式的选择要准确. 如已知sinα,cosα,tanα求cos2α时,应分别选择cos2α=1-(3)余弦的二倍角公式的变形——升幂公式、降幂公式必须熟练掌握.要明确,降幂法是三角变换中非常重要的变形方法.对sin3α,cos3α的公式应记住.(4)使用正弦、余弦的半角公式时,要注意公式中符号的确定方法.正在使用无理表达式时,须要确定符号;在使用两个有理表达式时,无须确定符号,这是与选用无理表达式最大的区别,因此在化简、证明题中,5.和差化积、积化和差公式,这两组公式现在不要求记忆,但要会使用. (1)要明确,这两组公式是解决正、余弦的加、减、乘的运算关系式. (3)对下列关系式要熟记:6.三角变换:三角函数式的恒等变形或用三角式来代换代数式称为三角变换.三角恒等变形是以同角三角公式,诱导公式,和、差、倍、半角公式,和差化积和积化和差公式,万能公式为基础.三角代换是以三角函数的值域为根据,进行恰如其分的代换,使代数式转化为三角式,然后再使用上述诸公式进行恒等变形,使问题得以解决.7.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点.(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC .(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理. r 为三角形内切圆半径,p 为周长之半.在非直角△ABC 中,tanA+tanB+tanC=tanA·tanB·tanC . (4)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°.△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列. 8.三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高). (2)△=21ab sin C =21bc sin A =21ac sin B .(3)△=)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)sin(2sin sin 2B A BA c +.(4)△=2R 2sin A sin B sin C . (R 为外接圆半径) (5)△=Rabc 4. (6)△=))()((c s b s a s s ---;⎪⎭⎫ ⎝⎛++=)(21c b a s . (7)△=r ·s .9.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a .(1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b, tg A =ctg B =b a ,ctg A =tg B =ab.10.斜三角形中各元素间的关系:如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等. (R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(4)射影定理:a =b ·cos C +c ·cos B ,b =a ·cos C +c ·cos A , c =a ·cos B +c ·cos A .11.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形.解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π,(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b . (3)边与角关系:正弦定理R CcB b A a 2s i n s i n s i n ===(R 为外接圆半径). 余弦定理 c 2 = a 2+b 2-2bc cos C ,b 2 = a 2+c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A .它们的变形形式有:a = 2R sin A ,baB A =sin sin ,bc a c b A 2cos 222-+=. (4)面积公式:A bcB acC ab ch bh ah S c b a sin 21sin 21sin 21212121======∆. 解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b .(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角.(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C . (二)三角函数性质的分析1.三角函数的定义域这两种表示法都需要掌握.即角x 不能取终边在y 轴上的角.函数y=cotx 的定义域是x≠π或(kπ,kπ+π)(k ∈Z),这两种表示法都需要掌握.即角x 不能取终边在x 轴上的角.(2)函数y=secx 、y=cscx 的定义域分别与y=tanx 、y=cotx 相同. 2.三角函数的值域(1)由|sinx|≤1、|cosx|≤1得函数y=cscx 、y=secx 的值域是|cscx|≥1、|secx|≥1.(2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.常用的一些函数的值域要熟记. ③y=tanx+cotx ∈(-∞,-2]∪[2,+∞). 3.三角函数的周期性(1)对周期函数的定义,要抓住两个要点:①周期性是函数的整体性质,因此f(x+T)=f(x)必须对定义域中任一个x 成立时,非零常数T 才是f(x)的周期.②周期是使函数值重复出现的自变量x 的增加值.因为sin(2kπ+x)=sinx 对定义域中任一个x 成立,所以2kπ(k ∈Z ,k≠0)是y=sinx 的周期,最小正周期是2π. 同理2kπ(k ∈Z ,k≠0)是y=cosx 的周期,最小正周期是2π.因为tan(kπ+x)=tanx 对定义域中任一个x 成立,所以kπ(k ∈Z ,k≠0)是y=tanx 的周期,最小正周期是π. 同理kπ(k ∈Z ,k≠0)是y=cotx 的周期,最小正周期是π. (3)三角函数的周期性在三角函数性质中的作用①函数的递增或递减区间周期性的出现,每一个三角函数,都有无数个递增或递减区间,这些递增区间互不连接,递减区间也互不连接.②函数的最大、最小值点或使函数无意义的点周期性变化.③因为三角函数是周期函数,所以画三角函数图象时,只须画一个周期的图象即可.4.三角函数的奇偶性,单调性研究函数的单调性,关键是求函数的单调区间. 5.三角函数的图象(1)画三角函数的图象应先求函数的周期,然后用五点法画出函数一个周期的图象. (2)函数y=sinx ,y=cosx ,y=tanx ,y=cotx 图象的对称中心分别为 ∈Z)的直线. (三)思想方法1.三角函数恒等变形的基本策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21-24课时:立体几何问题的题型与方法一.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.二.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。

(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

(5)会用反证法证明简单的问题。

(6)了解多面体的概念,了解凸多面体的概念。

(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

(9)了解正多面体的概念,了解多面体的欧拉公式。

(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。

三.教学过程:(Ⅰ)基础知识详析高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2. 判定两个平面平行的方法:(1)根据定义——证明两平面没有公共点;(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑸夹在两个平行平面间的平行线段相等。

⑹经过平面外一点只有一个平面和已知平面平行。

以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。

4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦,二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π].对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线);求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角α-l -β的平面角(记作θ)通常有以下几种方法:(1) 根据定义;(2) 过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱正棱柱”这一系列中各类几何体的内在联系和区别。

⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体直平行六面体长方体正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。

⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。

⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。

还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。

⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.多面体与旋转体的体积问题是《直线、平面、简单几何体》课程当中相对独立的课题.体积和面积、长度一样,都是度量问题.常用“分割与补形”,算出了这些几何体的体积.7.欧拉公式:如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2.计算棱数E 常见方法:(1)E =V+F-2;(2)E =各面多边形边数和的一半;(3)E =顶点数与共顶点棱数积的一半。

8.经纬度及球面距离⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O 的地轴为NS ,圆O 是0°纬线,半圆NAS 是0°经线,若某地P 是在东经120°,北纬40°,我们可以作出过P 的经线NPS 交赤道于B ,过P 的纬线圈圆O 1交NAS 于A ,那么则应有:∠AO 1P=120°(二面角的平面角) ,∠POB=40°(线面角)。

⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。

例如,可以循着如下的程序求A 、P 两点的球面距离。

S 球表=4πR 2 V 球=34πR 3⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n 个小三棱锥的体积=31S n h n (S n 为该小三棱锥的底面积,h n 为小三棱锥高),所以V 球=31S 球面·R =31·4πR 2·R =34πR 3. ⑵在应用球体积公式时要注意公式中给出的是球半径R ,而在实际问题中常给出球的外径(直径).⑶球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。

10.主要题型:⑴以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。

⑵利用欧拉公式求解多面体顶点个数、面数、棱数。

⑶求球的体积、表面积和球面距离。

解题方法:求球面距离一般作出相应的大圆,转化⌒ ⌒ ⌒ ⌒为平面图形求解。

11.注意事项⑴须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。

⑵与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是指“二平面没有公共点”。

由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”。

要善于运用平面与平面平行的定义所给定的两平面平行的最基本的判定方法和性质。

⑶注意两个平行平面的画法——直观地反映两平面没有公共点,将表示两个平面的平行四边形画成对应边平行。

两个平面平行的写法与线、线平行,线、面平行的写法一议,即将“平面α平行于平面β”,记为“α∥β”。

⑷空间两个平面的位置关系有且只有“两平面平行”和“两平面相交”两种关系。

⑸在明确“两个平行平面的公垂线”、“两个平行平面的公垂线段”、“两个平行平面的距离”的概念后,应该注意到,两平行平面间的公垂线段有无数条,但其长度都相等——是唯一确定的值,且两平行平面间的公垂线段,是夹在两平行平面间的所有线段中最短的线段,此外还须注意到,两平行平面间的距离可能化为“其中一个平面内的直线到另一个平面的距离”又可转化为“其中一个面内的一个点到另一个平面的距离。

相关文档
最新文档