数字逻辑电路

合集下载

第5章数字逻辑电路.ppt

第5章数字逻辑电路.ppt

(2)逻辑关系式表示:F=A·B·C
(3)真值表表示:如图表5-1所示
下一页 返回
5.4 基本逻辑门电路
2.“或”逻辑关系 当决定事件的各个条件中只要有一个或一个以上具备时事件就
会发生 图5-10所示,F和A、B、C之间就存在“或”逻辑关系 “或”逻辑也有如上三种表示方法: (1)图5-11所示为“或”逻辑图形符号 (2)逻辑表达式:F=A+B+C (3)真值表:见表5-2
下一页 返回
5.2 数制
5.2.2 二进制数
二进制数只有0和1两个符号。只要能区分两种状态的元件即 可实现。
计数的基数为2,各位数的权是2的幂,计数规律是“逢二进 一”
N位二进制整数的表达示为:
例5.1 一个二进制数10101000, 试求对应的十进制数
上一页 下一页 返回
5.2 数制
图5-23是利用三态与非门组成的双向传输通路,改变控制端C 的电平,就可控制信号的传输方向。
上一页 下一页 返回
5.4 基本逻辑门电路
3. CMOS门电路 CMOS门电路是由PMOS管和NMOS管构成的一种互补对称场效
应管集成门电路。 下面是几种常用的CMOS门电路的结构和工作原理的简要说明 (1)CMOS与非门:如图5-24所示 当A、B全为1时,T1和T2同时导通,T3和T4同时截止,F=0 当输入端由一个或全为0时,串联的T1和T2必有一个或两个全部截
上一页 下一页 返回
5.4 基本逻辑门电路
(5)TTL三态输出与非门电路。简称三态门,图5-20是其逻辑 图形符号。A、B是输入端,C是控制端,F为输出端。输出端除 了可以实现高低电平外,还可以出现高阻状态。

数电 第1章 数字逻辑电路基础

数电 第1章 数字逻辑电路基础
第1章 数字逻辑电路基础
两类信号: 模拟信号;数字信号. 在时间上和幅值上均连续 的信号称为模拟信号; 在时间上和幅值上均离散 的信号称为数字信号.
处理数字信号的电路称为数字电路.
数字电路特点:
1) 工作信号是二进制表示的二值信号(具有“0”和“1”
两种取值);
2) 电路中器件工作于“开”和“关”两种状态,电路的输
与逻辑电路
若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
A 0 0 1 1 与逻辑真值表 B F=A ·B 0 1 0 1 0 0 0 1
A B
&
F=AB
与门逻辑符号
与门的逻辑功能概括: 1)有“0”出“0”; 2)全“1”出“1”。
非逻辑电路

与门和或门均可以有多个输入端.
1.3.2
复合逻辑运算
1. 与非逻辑 (将与逻辑和非逻辑组合而成)
与非逻辑真值表 B F=A ·B 0 1 0 1 1 1 1 0
A 0 0 1 1
A
&
B
F=AB
与非门逻辑符号
2. 或非逻辑 (将或逻辑和非逻辑组合而成)
A 0 0 1 1 或非逻辑真值表 B F=A +B
表示二进制数的方法有三种,即原码、反码和补码
符号位(+)
真实二进制数
B6 B 5 B4 B3 B2 B1 B0 1 0 1 0 0 1 1 =-4510
符号位(-)
补码
用补码系统表示有符号数
1.3.3
+9 +4
补码系统中的加法
0 1001 (被加数) 0 0100 (加数) 0 1101 (和=+13)

数字逻辑电路大全

数字逻辑电路大全

G1
DI
1
EN
EN
1
DO
EN
G2
总线
A2
B2
EN2
D I / DO
A3
B3
E N3
总线 & G1 EN & G2 EN
& G3 EN
七、TTL集成逻辑门电路系列简介
1.74系列——为TTL集成电路的早期产品,属中速TTL器件。 2.74L系列——为低功耗TTL系列,又称LTTL系列。 3.74H系列——为高速TTL系列。 4.74S系列——为肖特基TTL系列,进一步提高了速度。如图示。
LABC
A
31
2T 2 截 止
Vo
B
T1
C
饱和
3 3 .6 V
1
2T 3
0 .3 V
R e2
截止
1 kΩ
二、TTL与非门的开关速度
1.TTL与非门提高工作速度的原理 (1)采用多发射极三极管加快了存储电荷的消散过程。
iB 1
R b1
4k Ω
+ VC C Rc2 1. 6kΩ
3 .6 V
A B C
1
1
3 .6 V
R e2
1K
+ VC C( + 5 V ) R c4 1 30 Ω
3
T2 4 截 止
D截止
Vo 3 0 .3 V 2T 3 饱和
(2)输入有低电平0.3V 时。
该发射结导通,VB1=1V。所以T2、T3都截止。由于T2截止,流过RC2的 电流较小,可以忽略,所以VB4≈VCC=5V ,使T4和D导通,则有:
C
+ VC C( + 5 V )

数字逻辑电路

数字逻辑电路

数字逻辑电路数字逻辑电路是现代电子领域中的重要概念,它是指在数字信号处理中使用的集成线路电子设备。

数字逻辑电路通过控制与门、或门、非门等组合来实现逻辑运算,从而处理数字信息。

数字逻辑电路在计算机、通信系统、数字信号处理等领域中都有着广泛的应用。

1. 数字逻辑电路的基本概念数字逻辑电路使用不同的门电路(如与门、或门、非门)来实现不同的逻辑功能。

其中,与门输出为1的条件是所有输入均为1;或门输出为1的条件是至少有一个输入为1;非门将输入反转。

数字逻辑电路的设计和分析通常基于布尔代数,它是由乔治·布尔于19世纪中叶创立的代数体系。

利用布尔代数,可以描述逻辑运算的基本规则,并通过代数表达式描述数字逻辑电路的功能。

2. 数字逻辑电路的分类数字逻辑电路可以分为组合逻辑电路和时序逻辑电路两类。

•组合逻辑电路:组合逻辑电路的输出仅取决于当前输入的状态,与时间无关。

最简单的组合逻辑电路为三种基本门电路的组合,通过组合不同的门电路可以实现不同的逻辑功能。

•时序逻辑电路:时序逻辑电路的输出不仅受当前输入的影响,还受到系统内部状态的影响。

时序逻辑电路中通常包含寄存器、触发器等时序元件,可以实现存储和时序控制功能。

3. 通用逻辑门通用逻辑门是数字逻辑电路设计中常用的元件,它可以实现不同的逻辑功能。

常见的通用逻辑门包括与非门(NAND门)、或非门(NOR门)和异或门(XOR 门)等。

通用逻辑门的特点在于可以通过适当的电路连接和组合来实现各种复杂的逻辑功能,是数字逻辑电路设计中的核心组成部分。

4. 数字逻辑电路在计算机领域的应用数字逻辑电路在计算机体系结构设计中发挥着重要作用。

如CPU内部的控制逻辑、寄存器文件、算术逻辑单元(ALU)等模块,都是由数字逻辑电路实现的。

在计算机的数据通路设计中,数字逻辑电路用于数据的选择、传输、处理等操作,确保计算机可以正确高效地完成各种计算任务。

5. 结语数字逻辑电路作为数字电子技术的基础,对现代电子设备的设计和功能发挥起着至关重要的作用。

《数字逻辑电路》课程标准

《数字逻辑电路》课程标准

《数字逻辑电路》课程标准一、课程基本信息课程名称:数字逻辑电路学生对象:电子工程、计算机科学等相关专业的本科生课程时长:一学年,每周4小时二、课程目标与内容1. 知识与技能目标:学生应掌握数字逻辑电路的基本原理、概念和设计方法,包括逻辑门、触发器、寄存器、计数器等基本元件,以及数字系统设计、仿真和测试等技能。

2. 过程与方法目标:学生应学会数字逻辑电路的分析和设计方法,通过实践操作培养独立思考和团队协作的能力。

3. 情感态度价值观:培养学生严谨的科研态度,提高逻辑思维能力,增强对数字系统的兴趣和热爱。

三、教学内容与安排1. 数字逻辑电路基础(第1-2周):介绍数字电路的基本概念、分类和特点,以及数字信号和模拟信号的转换原理。

2. 逻辑门电路(第3-4周):讲解基本逻辑门如AND、OR、NOT等的功能和设计,以及CMOS和TTL等不同类型门电路的特点和应用。

3. 触发器和寄存器(第5-6周):介绍触发器和寄存器的原理和应用,包括SR、JK、D等类型,以及它们在数字系统设计中的重要作用。

4. 计数器和其他复杂元件(第7-8周):讲解计数器、移位寄存器、译码器等复杂元件的功能和应用,以及它们在数字系统设计中的组合应用。

5. 数字系统设计(第9-12周):通过实际案例,指导学生进行数字系统设计,包括系统需求分析、方案制定、硬件选择、软件编程等步骤。

6. 课程实验与项目(第13-16周):安排多个实验项目,如设计简单数字系统、制作集成电路等,培养学生动手能力和团队协作精神。

四、教学方法与评估1. 教学方法:采用理论授课、实验操作、项目实践等多种方式,注重实践操作和案例教学。

2. 评估方法:包括平时作业、实验报告、项目成果、期末考试等。

其中,期末考试占50%,平时作业和实验报告占30%,项目成果占20%。

3. 评估标准:根据学生掌握知识和技能的情况,以及在实验和项目中的表现进行评估。

五、教学资源与支持1. 教学资源:提供数字逻辑电路相关教材、实验设备(如集成电路板、实验箱等)、网络资源(如教学视频、论坛等)等。

数字逻辑电路

数字逻辑电路

数字逻辑电路1. 概述数字逻辑电路是计算机科学和电子工程领域中的一种重要组成部分。

它是由逻辑门和触发器等基本组件组成的电路,用于处理和运算数字信号。

数字逻辑电路广泛应用于计算机、通信设备、数字仪表、自动控制系统等领域。

数字逻辑电路根据具体应用的需要,可以实现不同的功能,如加法器、多路选择器、译码器、寄存器等。

这些电路通过将逻辑门和触发器连接在一起,以实现特定的功能。

2. 逻辑门逻辑门是数字逻辑电路的基本组件,它根据输入的信号值产生相应的输出信号值。

常见的逻辑门有与门、或门、非门、异或门等。

•与门(AND Gate):当所有输入信号都为高电平时,输出为高电平;否则,输出为低电平。

•或门(OR Gate):当任意输入信号为高电平时,输出为高电平;否则,输出为低电平。

•非门(NOT Gate):当输入信号为高电平时,输出为低电平;否则,输出为高电平。

•异或门(XOR Gate):当输入信号的数量为奇数时,输出为高电平;否则,输出为低电平。

逻辑门可以通过不同的组合方式实现复杂的逻辑运算,如与非门(NAND Gate)和异或门(XOR Gate)等。

3. 触发器触发器是数字逻辑电路的另一种常见组件,它可以存储和处理电平变化。

触发器有很多种类,如RS触发器、JK触发器、D触发器等。

•RS触发器:RS触发器有两个输入信号(R和S)和两个输出信号(Q和Q’)。

当R=0、S=1时,Q=0、Q’=1;当R=1、S=0时,Q=1、Q’=0;当R=1、S=1时,根据之前的状态决定Q和Q’的值。

•JK触发器:JK触发器类似于RS触发器,但是它引入了一个时钟输入。

当J=1、K=0时,下降沿时,触发器的状态发生变化;当J=0、K=1时,上升沿时,触发器的状态发生变化;当J=1、K=1时,翻转触发器的状态。

•D触发器:D触发器只有一个输入信号D和两个输出信号(Q和Q’)。

当时钟信号为上升沿时,Q的值等于D的值;当时钟信号为下降沿时,Q的值保持不变。

数字逻辑电路

数字逻辑电路

数字电子电路中的后起之秀是数字逻辑电路。

把它叫做数字电路是因为电路中传递的虽然也是脉冲,但这些脉冲是用来表示二进制数码的,例如用高电平表示“ 1 ”,低电平表示“ 0 ”。

声音图像文字等信息经过数字化处理后变成了一串串电脉冲,它们被称为数字信号。

能处理数字信号的电路就称为数字电路。

这种电路同时又被叫做逻辑电路,那是因为电路中的“ 1 ”和“ 0 ”还具有逻辑意义,例如逻辑“ 1 ”和逻辑“ 0 ”可以分别表示电路的接通和断开、事件的是和否、逻辑推理的真和假等等。

电路的输出和输入之间是一种逻辑关系。

这种电路除了能进行二进制算术运算外还能完成逻辑运算和具有逻辑推理能力,所以才把它叫做逻辑电路。

由于数字逻辑电路有易于集成、传输质量高、有运算和逻辑推理能力等优点,因此被广泛用于计算机、自动控制、通信、测量等领域。

一般家电产品中,如定时器、告警器、控制器、电子钟表、电子玩具等都要用数字逻辑电路。

数字逻辑电路的第一个特点是为了突出“逻辑”两个字,使用的是独特的图形符号。

数字逻辑电路中有门电路和触发器两种基本单元电路,它们都是以晶体管和电阻等元件组成的,但在逻辑电路中我们只用几个简化了的图形符号去表示它们,而不画出它们的具体电路,也不管它们使用多高电压,是TTL 电路还是CMOS 电路等等。

按逻辑功能要求把这些图形符号组合起来画成的图就是逻辑电路图,它完全不同于一般的放大振荡或脉冲电路图。

数字电路中有关信息是包含在0 和 1 的数字组合内的,所以只要电路能明显地区分开0 和 1 ,0 和 1 的组合关系没有破坏就行,脉冲波形的好坏我们是不大理会的。

所以数字逻辑电路的第二个特点是我们主要关心它能完成什么样的逻辑功能,较少考虑它的电气参数性能等问题。

也因为这个原因,数字逻辑电路中使用了一些特殊的表达方法如真值表、特征方程等,还使用一些特殊的分析工具如逻辑代数、卡诺图等等,这些也都与放大振荡电路不同。

门电路和触发器( 1 )门电路门电路可以看成是数字逻辑电路中最简单的元件。

数字逻辑电路基础知识整理

数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是由离散的数字信号构成的电子电路系统,主要用于处理和操作数字信息。

它是计算机和其他数字系统的基础。

以下是一些数字逻辑电路的基础知识的整理:1. 逻辑门:逻辑门是数字电路的基本构建单元。

它们根据输入信号的逻辑关系生成输出信号。

常见的逻辑门有与门、或门、非门、异或门等。

其中,与门输出仅当所有输入都为1时才为1;或门输出仅当至少一个输入为1时才为1;非门将输入信号取反;异或门输出仅当输入中的1的数量为奇数时才为1。

2. 逻辑运算:逻辑运算是对逻辑门的扩展,用于实现更复杂的逻辑功能。

常见的逻辑运算包括与运算、或运算、非运算、异或运算等。

与运算将多个输入信号进行AND操作,返回结果;或运算将多个输入信号进行OR操作,返回结果;非运算对输入信号进行取反操作;异或运算将多个输入信号进行异或操作,返回结果。

3. 编码器和解码器:编码器将多个输入信号转换为较少数量的输出信号,用于压缩信息;解码器则将较少数量的输入信号转换为较多数量的输出信号,用于还原信息。

常用的编码器有优先编码器和BCD编码器,常用的解码器有二进制-十进制解码器和译码器。

4. 多路选择器:多路选择器根据选择输入信号从多个输入信号中选择一个信号输出。

它通常有一个或多个选择输入信号和多个数据输入信号。

选择输入信号决定了从哪个数据输入信号中输出。

多路选择器可用于实现多路复用、数据选择和信号路由等功能。

5. 触发器和寄存器:触发器是存储单元,用于存储和传输信号。

常见的触发器有弗洛普触发器、D触发器、JK触发器等。

寄存器由多个触发器组成,用于存储和传输多个比特的数据。

6. 计数器和时序电路:计数器用于计数和生成递增或递减的序列。

它通过触发器和逻辑门组成。

时序电路在不同的时钟脉冲或控制信号下执行特定的操作。

常见的时序电路有时钟发生器、定时器和计数器。

7. 存储器:存储器用于存储和读取数据。

常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。

数字电路和数字逻辑

数字电路和数字逻辑

1. 晶体二极管及其单方向导电特性
通常情况下,可把一些物体划分成导体(双向导电)和 绝 缘体(不导电)两大类。在这两类物体的两端有电压存在时, 会出现有电流流过或无电流流过物体的两种不同情形。
人们也可以制作出另外一类物体,使其同时具备导体和绝
缘体两种特性,其特性取决于在物体两端所施加电压的方向, 当在一个方向上有正的电压(例如 0.7V)存在时,可以允许电 流流过(如图所示),此时该物体表现出导体的特性;
计算机中常用的逻辑器件,包括组合逻辑和时序逻辑电路 两大类别;也可以划分为专用功能和通用功能电路两大类别。
组合逻辑电路的输出状态只取决于当前输入信号的状态, 与过去的输入信号的状态无关,例如加法器,译码器,编码器, 数据选择器等电路;
时序逻辑电路的输出状态不仅和当前的输入信号的状态有 关,还与以前的输入信号的状态有关,即时序逻辑电路有记忆 功能,最基本的记忆电路是触发器,包括电平触发器和边沿触 发器,由基本触发器可以构成寄存器,计数器等部件;
而在相反的方向上施加一定大小的电压时, +
-
该物体中不会产生电流,表现出绝缘体的
的特性,即该物体只能在单个方向上导电, 这样的物体被称为半导体。制作出的器件
电流 i
被称为二极管。
二极管的内部结构及其开关特性
绝缘体和导体不同的导电特性是由于它们不同的原子结构 特性造成的。
通过在绝缘材料中有控制地掺加进少量的导电物质,可以 使得到的材料有一定的导电特性。例如在 4价的硅材料(每个原 子核周围有 4个电子)中掺杂进少量 5价的金属材料形成 N型材 料,或者掺杂进少量 3价的金属材料形成 P型材料,使新得到的 材料中总的原子核数量与电子的数量不满足 1:4 的关系, N型 材料中形成有极少量的带负电荷的多余电子, P型材料中缺少 极少量的电子(反过来称为有极少量的带正电的空穴),这些 电子和空穴可以成为导电的载流子。当把这样的两种材料结合 在一起时,就表现出在单个方向导电的特性,这就是半导体, 做成器件就是二极管。当P型材料一端(称为二极管的正极)有 比N型材料一端(称为二极管的负极)高 0.7 伏的电压时,就会 产生从正极流向负极的电流,小的反向电压则不会产生电流。

第一章.数字逻辑电路基础知识

第一章.数字逻辑电路基础知识
A 0 1 Z 1 0
A
Z
Z=A A Z
实际中存在的逻辑关系虽然多种多样,但归结 起来,就是上述三种基本的逻辑关系,任何复杂 的逻辑关系可看成是这些基本逻辑关系的组合。
B Z
E
真值表
A 0 0 1 1 B 0 1 0 1 Z 0 1 1 1
逻辑符号 曾用符号
A B Z
逻辑表达式
Z A B
Z=A∨B 完成“或”运算功能的电路叫“或”门
3.“非”(反)逻辑-----实现 的电路叫非门(或反相器
定义:如果条件具备了,结果 便不会发生;而条件不具备时结果 一定发生。因为“非”逻辑要求对 应的逻辑函数是“非”函数,也叫 “反”函数 或“补”函数
数字集成电路发展非常迅速-----伴
随着计算机技术的发展: • 2.中规模集成电路
(MSI) 1966年出现, 在一块硅片上包含 • 1.小规模集成电 100-1000个元件或10路(SSI) 1960 100个逻辑门。如 : 集成记时器,寄存器, 年出现,在一块硅 译码器。 片上包含10-100 • TTL:Transister个元件或1-10个逻 Transister Logic 辑门。如 逻辑门 • SSI:Small Scale 和触发器。 Integration • MSI:Mdeium Scale Integration)
f(t)
t 模拟信号
f(t)
Ts 2Ts 3Ts
t
抽样信号
f(KT)
数字信号T 2T 3T
t
二.数字电路的特点:
模拟电路的特点:主要是研究微弱信号的放 大以及各种形式信号的产生,变换和反馈等。
数字电路的特点:
1 基本工作信号是二进制的数字信号,只 有0,1两个状态,反映在电路上就是低电平 和高电平两个状态。(0,1不代表数量的大 小,只代表状态 ) 2 易实现:利用三极管的导通(饱和)和 截止两个状态。-----(展开:基本单元是 连续的,从电路结构介绍数字和模拟电路的 区别)

第一章 数字逻辑电路基础知识

第一章    数字逻辑电路基础知识
=(11.625)D
(DFC.8)H =13×162+15×161+12×20+8×16-1 =(3580 .5)D
二. 二进制数←→十六进制数
因为24=16,所以四位二进制数正好能表示一位十六进制数的16个数码。反过
来一位十六进制数能表示四位二进制数。
例如:
(3AF.2)H 1111.0010=(001110101111.0010)B 2
第一章 数字逻辑电路基础知识
1.1 数字电路的特点 1.2 数制 1.3 数制之间的转换 1.4 二进制代码 1.5 基本逻辑运算
数字电路处理的信号是数字 信号,而数字信号的时间变 量是离散的,这种信号也常 称为离散时间信号。
1.1 数字电路的特点
(1)数字信号常用二进制数来表示。每位数有二个数码,即0和1。将实际中彼此 联系又相互对立的两种状态抽象出来用0和1来表示,称为逻辑0和逻辑1。而且在 电路上,可用电子器件的开关特性来实现,由此形成数字信号,所以数字电路又 可称为数字逻辑电路。
例如: (1995)D=(7CB)H =(11111001011)B
或 1995D =7CBH=11111001011B 对于十进制数可以不写下标或尾符。
1.3 不同进制数之间的转换
一.任意进制数→十进制数: 各位系数乘权值之和(展开式之值)=十进制数。 例如: (1011.1010)B=1×23+1×21+1×20+1×2-1+1×2-3
逻辑运算可以用文字描述,亦可用逻辑表达式描述,还可 以用表格(这种表格称为真值表)和图形( 卡诺图、波形 图)描述。
在逻辑代数中有三个基本逻辑运算,即与、或、非逻辑运 算。
一. 与逻辑运算

基本数字逻辑电路

基本数字逻辑电路

基本数字逻辑电路基本数字逻辑电路(Basic Digital Logic Circuits)数字逻辑电路是由逻辑门组成的电路,用于处理和操作数字信号。

数字逻辑电路是现代计算机和电子设备中最基本的组成部分之一。

本文将介绍一些常见的基本数字逻辑电路,并描述其功能和应用。

1. 逻辑门(Logic Gates)逻辑门是实现逻辑运算的基本组件。

常见的逻辑门有与门(AND gate)、或门(OR gate)、非门(NOT gate)、与非门(NAND gate)、或非门(NOR gate)和异或门(XOR gate)等。

逻辑门接受一个或多个输入信号,并产生一个输出信号,输出信号的值取决于输入信号的逻辑状态。

- 与门(AND gate):接受两个或多个输入信号,当所有输入信号都为逻辑高(1)时,输出为逻辑高(1),否则输出为逻辑低(0)。

与门的基本符号为“∧”。

- 或门(OR gate):接受两个或多个输入信号,当其中至少一个输入信号为逻辑高(1)时,输出为逻辑高(1),否则输出为逻辑低(0)。

或门的基本符号为“∨”。

- 非门(NOT gate):接受一个输入信号,输出信号的逻辑状态与输入信号相反。

当输入信号为逻辑高(1)时,输出为逻辑低(0),反之亦然。

非门的基本符号为“¬”。

- 与非门(NAND gate):与门的输出信号经非门取反得到。

当两个或多个输入信号都为逻辑高(1)时,输出为逻辑低(0),否则输出为逻辑高(1)。

与非门的基本符号为“⊼”。

- 或非门(NOR gate):或门的输出信号经非门取反得到。

当所有输入信号都为逻辑低(0)时,输出为逻辑高(1),否则输出为逻辑低(0)。

或非门的基本符号为“⊽”。

- 异或门(XOR gate):接受两个输入信号,当输入信号相同时,输出为逻辑低(0),当输入信号不同时输出为逻辑高(1)。

异或门的基本符号为“⊕”。

2. 组合逻辑电路(Combinational Logic Circuits)组合逻辑电路由逻辑门组成,用于实现逻辑函数。

数字逻辑电路

数字逻辑电路

数字逻辑电路数字逻辑电路是一种基于数字信号的电子电路,用于处理和操控数字信息。

它是计算机、通信系统和其他电子设备的核心组成部分。

数字逻辑电路可以执行诸如加法、乘法、逻辑运算等基本操作,并且可以通过逻辑门和触发器等元件组合成更复杂的电路,实现数字数据的存储、处理和传输。

数字逻辑电路的基本元件是逻辑门。

逻辑门根据输入信号的不同组合产生输出信号,它们包括与门、或门、非门、异或门等。

与门的输出信号只有当所有输入信号都为1时才为1,否则为0;或门的输出信号只有当至少一个输入信号为1时才为1,否则为0;非门的输出信号与输入信号相反;异或门则在输入信号中有奇数个1时输出为1,否则为0。

这些逻辑门可以根据需要灵活地组合,形成不同功能的数字逻辑电路。

数字逻辑电路在计算机的运算单元中起到了关键作用。

在计算机中,最基本的数字逻辑电路是加法器。

加法器用于实现数字的二进制相加,其基本原理是将两个二进制数的对应位相加,并将结果保存在相应的输出位上。

复杂的电子计算器和计算机处理器中,会使用多级加法器来实现多位数的相加。

除了加法器,还有减法器、乘法器等用于实现数字运算的数字逻辑电路。

除了基本的算术操作,数字逻辑电路还可以实现逻辑运算。

逻辑运算可以判断输入信号的真假,并根据逻辑关系产生相应的输出信号。

逻辑门是实现逻辑运算的基本元件,通过组合不同的逻辑门可以实现逻辑门电路。

常见的逻辑门电路有与门电路、或门电路、非门电路等。

例如,在计算机的控制单元中,通过与门电路和非门电路的组合可以实现条件分支和循环控制等逻辑功能。

数字逻辑电路还可以实现存储和传输数字信息。

触发器是一种常用的数字逻辑电路,用于存储和传输数字信息。

触发器可以在时钟脉冲的驱动下改变其输出信号,从而实现数字信号的存储和传输。

在计算机的内存系统中,使用触发器来存储和读取计算过程中的数据。

另外,计算机的通信接口中也会使用触发器来处理输入和输出的数字信号。

数字逻辑电路在现代科技中发挥着重要作用。

数字电路数字逻辑

数字电路数字逻辑

数字电路数字逻辑
数字电路是一种用来处理数字信号的电子电路,也称为数字系统或数字逻辑电路。

它是现代电子设备的基础,如计算机、通信设备和各种控制系统等。

数字电路以二值数字逻辑为基础,其工作信号是离散的数字信号,反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。

数字电路中的基本单元是逻辑门,它实现基本的逻辑运算,如与、或、非等。

逻辑门由半导体工艺制成的数字集成器件构造而成,常见的有与门、或门、非门、异或门等。

存储器是用来存储二进制数据的数字电路,它对数据的存储和读取都是以二进制的形式进行的。

从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。

组合逻辑电路的输出信号只与当时的输入信号有关,而与电路以前的状态无关,它不具有记忆功能。

而时序逻辑电路则具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。

常见的时序逻辑电路有触发器和寄存器等。

数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。

现代的数字电路由半导体工艺制成的若干数字集成器件构造而成,具有体积小、功耗低、可靠性高、速度快、功能强等特点。

总的来说,数字电路是数字系统的基础,它的设计和应用涉及到计算机科学、电子工程、通信工程等多个领域。

数字逻辑电路

数字逻辑电路

4)逻辑符号 1)电路
图2.5.14 三极管“非”门电路
2)工作原理3)逻辑表达式:Y=A NhomakorabeaA
1
F
5.4
门电路
“或非” 门电 路
“与非” 门电 路
5.4
门电路
逻辑关系及其符号
表2.5.6“与非”门和“或非”门的逻辑关系 逻辑关系 含义 与非 逻辑表达 式 记忆口诀 逻辑符号
条件A、B、 C都具备 时,事件 Y=A · · B C Y则不发 生 条件A、B 、C中任 一具备时, Y=A+B+C 事件Y则 不发生
图2.5.22 例 5.5.5题图
5.5
组合逻辑电路
【解】 写出逻辑表达式
G1:X=ABCD
G2:Y=X=ABCD G3:F= YS G4:Z= XS 已知开锁时,S=1。 要开锁, F= 1 Y=1 密码为:A=1,B = 0,C =0, D =1
密码不对时:X=1,则Z =1,拨通警铃。
5.5
全1则0 有 0出1
A B C

Y
或非
全0则1 有1出0
A B C
≥1
Y
5.4
门电路
【例5.4.1 】对TTL门电路,输入端A、B分别加上如图2.5.17 的脉冲波形,C端不接,画出通过下列逻辑电路后的输出波形。
【解】分析
C端不接,等效于 接高电平.即:C=1
图1
图1中F=ABC
图2中F=A+B+C
事件才发生,这样的因果关系称为“与”逻辑关系。 例如图2.5.6 中,F代表电灯,A、B、C代表各个开关。设 开关闭合为逻辑“1” ,开关断开为逻辑“0” ;电灯亮为 逻辑“1” ,电灯灭为逻辑“0” 。

数字逻辑电路的类型

数字逻辑电路的类型

数字逻辑电路的类型数字逻辑电路是由数字电子器件构成的电路,主要用于数字信号的处理和控制,它可以实现数字信号的传输、组合、计算、存储和显示等功能。

数字逻辑电路的类型有:(1)组合逻辑电路:组合逻辑电路是由多个逻辑门或逻辑门的组合构成的,它的输出只与输入的当前状态有关,与之前的输入状态无关。

常见的组合逻辑电路有与门、或门、非门、异或门、译码器、多路选择器等,它们的主要功能是实现逻辑运算和数字信号的选择和转换。

时序逻辑电路是由组合逻辑电路和时序元件组成的,它的输出不仅与当前输入有关,在一定时间内之前输入的状态也有关,即它具有信息存储和延迟传输的函数。

时序逻辑电路主要包括触发器、计数器、移位寄存器、时序比较器等,它们的主要功能是实现逻辑运算和数字信号的计数、存储、延迟和比较。

(3)微处理器:微处理器是一种带有处理器核心的单一集成电路,它包含计算机的中央处理器(CPU)、存储器(RAM、ROM)、输入输出接口(I/O)和系统时钟电路等,它可以执行指定的程序,并根据程序的要求进行数据处理和控制。

微处理器的主要功能是提供计算能力和控制能力,它广泛应用于电子产品、通讯设备、工业自动化等领域。

数字信号处理器(DSP)是一种高性能微处理器,它具有强大的数字信号处理能力,可以实现高速数字信号处理、高精度计算和实时控制等功能,应用于音频处理、视频处理、图像处理、通讯处理、医学影像处理等领域。

(5)FPGA:FPGA是可编程逻辑门阵列(Field-Programmable Gate Array)的缩写,它是一种可编程逻辑器件,可以根据不同的应用需求灵活地配置和设计电路,它具有复杂电路的功能和可编程性的特点,应用于数字信号处理、嵌入式系统、通讯网络、图像和视频处理等领域。

综上所述,数字逻辑电路的类型有组合逻辑电路、时序逻辑电路、微处理器、数字信号处理器和FPGA等,它们在不同的应用领域具有不同的优势和特点,提高了数字系统的性能和可靠性。

数字电子技术逻辑门电路

数字电子技术逻辑门电路
数字电子技术逻辑门电路
• 引言 • 逻辑门电路基础知识 • 逻辑门电路的工作原理 • 逻辑门电路的应用 • 逻辑门电路的实现方式 • 结论
01
引言
主题简介
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和
信号处理功能。
逻辑门电路由输入端和输出端组 成,根据输入信号的状态(高电 平或低电平)决定输出信号的状
基于CMOS的逻辑门电路实现方式
总结词
CMOS(Complementary Metal-Oxide Semiconductor)是一种常见的数字逻辑门电路实现方式,它利用互 补的NMOS和PMOS晶体管作为开关元件,具有功耗低、抗干扰能力强等优点。
详细描述
基于CMOS的逻辑门电路通常由输入级、中间级和输出级三部分组成。输入级由NMOS和PMOS晶体管组成,用 于接收输入信号;中间级由NMOS和PMOS晶体管组成,用于放大和传递信号;输出级由NMOS和PMOS晶体管 组成,用于驱动负载并输出信号。
04
逻辑门电路的应用
逻辑门电路在计算机中的应用
计算机的基本组成
逻辑门电路是计算机的基本组成单元,用于实现计算机内部的逻 辑运算和数据处理。
中央处理器(CPU)
CPU中的指令执行和数据处理都离不开逻辑门电路,它控制着计算 机的运算速度和性能。
存储器
存储器中的每个存储单元都是由逻辑门电路构成的,用于存储二进 制数据。
逻辑门电路在数字通信中的应用
数据传输
01
逻辑门电路用于实现数字信号的编码、解码和调制解调,确保
数据在通信信道中可靠传输。
信号处理
02
逻辑门电路用于信号的逻辑运算、比较和转换,实现数字信号
的处理和分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程编号:课程名称:信息与通信工程基础理论
适用学院:电子信息工程学院
适用专业:信息与通信工程
一、考试的总体要求
考察学生应达到工科院校本科电子信息类《信号与系统》、《通信原理》和《数字电路》课程教学大纲规定的基本要求;对所学基本知识、基本理论能熟练掌握并具有正确计算、应用能力。

二、考试内容及比例
本考试课程包括"信号与系统"、"通信原理"和"数字电路"三部分内容。

其中"信号与系统"和"通信原理"二者选一,但必须与初试科目不同,"数字电路"为必选科目。

第一部分:信号与系统部分(约占50%)
(一)信号与系统的基础知识(5~10%)
1、基本信号及其两种(函数表示式和波形图)描述方法
2、信号的基本运算
3、线性系统的基本性质
(二)连续系统的时域分析(5~10%)
1、零输入响应和零状态响应
2、冲激响应和阶跃响应
3、卷积及其性质
(三)连续信号与系统的变换域分析(10~20%)
1、周期信号的傅里叶级数及其频谱
2、信号的傅里叶变换及其性质
3、取样信号、取样信号的频谱与取样定理
4、周期和非周期信号通过线性系统的频域分析
5、拉普拉斯变换及其性质
6、信号通过线性系统的S域分析
7、拉普拉斯变换与傅里叶变换的映射关系
(四)离散信号与系统分析(5~10%)
1、离散时间信号及其运算
2、离散卷积
3、Z变换及其性质
4、离散系统的Z变换分析法
(五)系统函数(5~10%)
1、系统函数的零极点与系统响应之间的关系
2、系统的稳定性及其判断方法
3、系统的框图、信号流图表示及系统模拟
(六)连续与离散系统的状态变量分析(5~10%)
1、状态、状态变量与状态方程的基本概念
2、连续与离散状态方程的建立方法
3、描述系统的状态方程与输入-输出方程之间的关系
第二部分:通信原理部分(约占50%)
(一)通信的基本概念:定义、系统模型、性能分析、信道特性、信道容量公式。

5%
(二)模拟通信系统:幅度调制和角度调制的时域和频域分析,产生和解调方法,带宽和功率的计算,噪声性能分析。

频分复用。

5% (三)信源编码:抽样定理、PCM和ΔM的编译码原理、时分复用。

10% (四)数字信号的传输原理:基带传输的常用码型、无码间串扰、奈奎斯特准则、眼图和均衡;载波传输的二进制数字调制和解调方法、多进制数字调制的基本原理、产生和解调方法、各种数字调制的带宽计算;了解现代数字调制技术。

15%
(五)同步原理:载波同步、位同步、帧同步的基本原理和实现方法。

5% (六)信道编码:差错控制技术,几种常用的检错码,线性分组码,循环码。

10%
第三部分:数字电路部分(约占50%)
(一)数制(十进、二进、十六进等)、码制(反码、补码、BCD码、格雷码等)的变换,逻辑代数基本定理、定律,卡诺图的应用,逻辑函数的化简及变换、等式证明;10% (二)TTL、CMOS集成门、触发器的原理、功能、输入/输出特性及使用,施密特电路、单稳态电路、振荡电路的原理、参数计算及应用;10% (三)组合逻辑电路的分析和设计,常用组合逻辑器件的功能、扩展、应用;10% (四)时序逻辑电路的分析和设计,常用时序逻辑器件(计数器较多)的功能、应用,序列码发生器的分析和设计;15%
(五)各种存储器的原理、功能、扩展应用,可编程逻辑器件的简单应用。

5% 注:以上比例仅供参考;数字电路试题及答题一律使用符合国家标准GB/T4728.12-1996《电气简图用图形符号第12部分:二进制逻辑元件》所规定的符号。

三、试卷题型及比例
(1)选择、填空题:10%
(2)解析题15%
(3)分析题30%
(4)设计题40%
(5)其他5%
注:以上比例仅供参考,综合题型是不同部分内容或不同题型的混合,在试卷中会经常出现。

四、考试形式及时间
考试形式为笔试,考试时间1.5小时,满分65分。

相关文档
最新文档