高中数学 第二章 平面向量 2-5-1平面几何中的向量方法课件 新人教A版必修4
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4
1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
向量背景及基本概念人教A版必修课件
(4)相等向量一定是平行向量,平行向量不一 定是相等向量.
典题例证技法归纳
题型探究 题型一 向量的有关概念
例1 判断下列命题是否正确,不正确的说 明理由: (1)若向量a与b同向,且|a|>|b|,则a>b;
(2)若|a|=|b|,则a与b的长度相等且方向相同 或相反; (3)若|a|=|b|,且a与b的方向相同,则a=b; (4)由于0方向不确定,故0不能与任意向量平 行; (5)向量a与向量b平行,则向量a与b方向相同 或相反; (6)起点不同,但方向相同且模相等的几个向 量是相等向量.
(2)向量的表示方法
①几何表示法:常用一条有向线段表示向量. 符号表示:以__A_为___起__点___、__B__为__终__点____的
有向线段,记作A→B.
(注意起点、终点顺序) ②用字母表示:向量可 用字母 a、b、c 等表示(印刷时用黑体 a、b、c,
书写时用→a 、→b 、→c ).
想一想 2.有向线段与向量有何区别和联系? 提示:
B→C,A→O,F→E. 4 分
(3)与 a 共线的向量有E→F,B→C,O→D,F→E,C→B,
D→O,A→O,D→A,A→D.
6分
(4)与 a 相等的向量有E→F,D→O,C→B;
与 b 相等的向量有D→C,E→O,F→A;
与 c 相等的向量有F→O,E→D,A→B 8 分
名师微博 注意两个向量相等必须满足大小相等,方向 相同. 【名师点评】向量的模是用向量的长度定义 的,共线向量是用向量的方向定义的,而相 等向量是用向量的方向和长度共同定义的, 解决本题要弄清这三个概念的联系与区别.
变式训练 2.如图所示,四边形 ABCD 和 ABDE 都是平 行四边形. (1)写出与向量E→D相等的向量;
新人教A版必修4高中数学2.5.1平面几何中的向量方法导学案
1高中数学 2.5.1平面几何中的向量方法导学案新人教A 版必修4 学习目标1. 掌握向量理论在平面几何中的初步运用;会用向量知识解决几何问题;2. 能通过向量运算研究几何问题中点,线段,夹角之间的关系. 学习过程一、课前准备(预习教材P109—P111)复习:(1)若O 为ABC 重心,则OA +OB +OC =(2)水渠横断面是四边形ABCD ,DC = 12AB ,且|AD |=|BC |,则这个四边形为 .类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3)两个人提一个旅行包,夹角越大越费力.为什么?二、新课导学 ※ 探索新知问题1:平行四边形是表示向量加法与减法的几何模型. 如下图,AC AB AD=-,你能发现平行四边形对角线=+,DB AB AD的长度与两条邻边长度之间的关系吗?结论:23结论:问题3:用向量方法解决平面几何问题的“三步曲”是怎样的?⑴⑵⑶※ 典型例题1、在ABC ∆中,若()()0CA CB CA CB +⋅-=,判断ABC ∆的形状.42、设ABCD 是四边形,若AC BD ⊥,证明:2222AB CD BC DA +=+三、小结反思1、在梯形ABCD 中,CD // AB,E 、F 分别是AD 、BC 的中点,且EF =12(AB +CD ).求证:EF// AB// CD.2、求证:直角三角形斜边上的中线等于斜边上的一半。
课后作业1. 已知直线ax+by+c=0与圆O:x2+y2=4相交于A、B两5点,且|AB|=23,则OA→·OB→=________.2. 在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB→-tOC→)·OC→=0,求t的值.6。
高中数学第二章平面向量2.5.1平面几何中的向量方法全国公开课一等奖百校联赛微课赛课特等奖PPT课件
22
2
2
思索:能否用向量 坐标形式证实?
a b a b
r2 r2 0
即 AC CB 0 ,∠ACB=90°
9/10
小结: 用向量方法处理平面几何问题“三步曲”:
(1)建立平面几何与向量联络,用向量表示 问题中包括几何元素,将平面几何问题转化 为向量问题; (2)经过向量运算,研究几何元素之间关系, 如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。
2
2
AB2 BC 2 CD2 DA2 2( a b )
AC2
BD2
2
ab
ab
2
a
2
2ab
2
b
2
a
2ab
2
b
2
2
a
2
b
2
a
2
b
2
∴ AB2 BC 2 CD2 DA2 AC 2 BD2
4/10
你能总结一下利用向量法处理平面几何问题 基本思绪吗?
用向量方法处理平面几何问题 “三步曲”:
(1)建立平面几何与向量联络,用向量表示 问题中包括几何元素,将平面几何问题转化 为向量问题;
(2)经过向量运算,研究几何元素之间关系, 如距离、夹角等问题;
(3)把运算结果“翻译”成几何元素。
简述:形到向量
向量运算 向量和数到形
5/10
例2 如图, ABCD中,点E、F分别 是AD 、 DC边中点,BE 、 BF分别与 AC交于R 、 T两点,你能发觉AR 、 RT 、TC之间关系吗?
猜测: AR=RT=TC
D
F
C
ER
T
A
B
6/10
解:设 AB a, AD b , AR r , 则 AC a b
平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册
3
+
2
4
2.已知A,B,C,D四点的坐标分别是(1,0),(4,3),(2,4),(0,2),则
此四边形为( A )
A.梯形
B.菱形
C.矩形
D.正方形
由题意得 =(3,3), =(2,2),
∴ ∥,||≠||.
3.平面上有三个点A(-2,y),B
0,
2
,C(x,y)(x≠0),若
____________________________________________________________.
(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或
线段)是否垂直等,常用向量垂直的条件:
a⊥b⇔a·
b=0⇔x1x2+y1y2=0(a=(x1,y1),b=(x2,y2))
1
2
CD=DA= AB,求证:AC⊥BC.
证法二
如图,建立直角坐标系,
设CD=1,则A(0,0),B(2,0),C(1,1),D(0,1).
∴ =(-1,1), =(1,1).
∴ · =(-1,1)·(1,1)=-1+1=0.
∴AC⊥BC.
方法总结
用向量证明平面几何问题的两种基本思路
___________________________________________________.
(3)求角问题,利用公式:cos〈a,b〉=
⋅
1 2 +1 2
=
_____________________
12 +12 22 +22
(a=(x1,y1),b=(x2,y2)).
(1)向量的线性运算法的四个步骤
第二章平面向量在几何物理中的应用举例【新教材】北师大版高中数学必修第二册课件
当堂检测
角度2 垂直问题
例2如图,在正方形ABCD中,P是对角线BD上的一点,四边形PECF是
矩形,用向量证明:PA⊥EF.
探究一
探究二
当堂检测
证明设正方形边长为 a,由于 P 是对角线 BD 上的一点,可设
=λ(0≤λ≤1).
则 = − = -λ = -λ( + )=(1-λ)-λ.
激趣诱思
知识点拨
(3)要证 A,B,C 三点共线,只要证明存在唯一一个实数 λ≠0,使=λ,
或若=a,=b,=c,存在一个实数 t,使 c=ta+(1-t)b.
(4)证明线段的垂直问题,如证明四边形是矩形、正方形,判断直线
(线段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a·
b=0
| || |
π
=
2
2×
=
3
2
3
3
2
.
π
因为 0<∠EAC<2 ,所以∠EAC=6 .
反思感悟 利用平面向量解决几何中的夹角问题,本质是将平面图
形中的角视为两个向量的夹角,借助夹角公式进行求解.这类问题
也有两种方向,一是利用向量的基求解,二是利用坐标运算.在求解
过程中,务必注意向量的方向.
探究一
因为实际速度=游速+水速,所以游速为
− = ,
在 Rt△AOB 中,由已知||=4 3,||=4,
因此 ∥ ,
又因为 , 有公共点 F,所以 A,E,F 三点共线.
探究一
探究二
当堂检测
反思感悟 证明A,B,C三点共线的步骤
(1)证明其中两点组成的向量与另外两点组成的向量共线.
(2)说明两向量有公共点.
高中数学 人教A版必修4 第2章 2.5.1平面几何中的向量方法
2.5.1
2.5.1
平面几何中的向量方法
本 课 时 栏 目 开 关
【学习要求】 1.经历用向量方法解决某些简单的平面几何问题及其它一些实际 问题的过程. 2.体会向量是一种处理几何问题的有力工具. 3.培养运算能力、分析和解决实际问题的能力. 【学法指导】 由于向量涉及共线、夹角、垂直、长度等基本问题,而这些问题 正是平面几何研究的对象,因此可以用向量来处理平面几何问题. 用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; ②通过向量运算,研究几何元素之间的关系; ③把运算结果“翻译”成几何关系.
研一研·问题探究、课堂更高效
2.5.1
探究点三
平面向量在几何中的应用
用向量法处理有关直线平行、垂直、线段相等、点共线、线 共点以及角度等问题时有独到之处,且解法思路清晰、简洁 直观.其基本方法是:
当 v1⊥v2,即 v1· v2=1+k1k2=0 时,l1⊥l2,夹角为直角;当 k1k2≠-1 时,v1· v2≠0,直线 l1 与 l2 的夹角为 θ(0° <θ<90° ).不 难推导利用 k1、k2 表示 cos θ 的夹角公式: |1+k1k2| |v1· v2 | cos θ= = 2 2. |v1||v2| 1+k1· 1+k2
填一填·知识要点、记下疑难点
2.5.1
1.向量方法在几何中的应用
本 课 时 栏 目 开 关
(1)证明线段平行问题,包括相似问题,常用向量平行 (共
a=λb ⇔ x1y2-x2y1=0 线)的等价条件:a∥b(b≠0)⇔_____
.
(2)证明垂直问题,如证明四边形是矩形、正方形等,常用
新课标人教版高中A版数学目录(超详细完美版)
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
平面向量的概念 课件-高一下学期数学人教A版(2019)必修第二册
达 D 地.
→ → → →
(1)作出向量AB,BC,CD,DA;
→ → → →
解 由题意,作出向量AB,BC,CD,DA,
如图所示.
跟踪训练1
(2)问D地在A地的什么方向?D地距A地多远?
→
→
③若向量AB是单位向量,则BA也是单位向量;
1
→
④△ABC 中,∠A=90°,若该三角形的外接圆的半径长为 ,则BC为单位向量.
2
3
其中正确的个数是______.
跟踪训练2
→
→
解析 ①正确,由于|a|=|AB|=AB,|b|=|BA|=BA=AB,因此有|a|=|b|.
②不正确,由单位向量的定义知,凡长度为1个单位长度的向量均称为单位
解
依题意知,△ABC为正三角形,
所以AC=2 000 km.
又因为∠ACD=45°,CD=1 000 2 km,
所以△ACD 为等腰直角三角形,则 AD=1000 2 km,∠CAD=45°,
所以 D 地在 A 地的东南方向,距 A 地 1000 2 km.
2
零向量、单位向量
知 识 梳 理
两个特殊向量
→ → → → →
BA,CD,DE,CE与AB方向相反,
→
→ → → → → → →
所以与向量AB共线的向量为BA,CD,DC,ED,DE,EC,CE.
跟踪训练3
(2)如图所示,四边形ABCD与ABDE是平行四边形.
→
②找出与向量AB相等的向量.
解 由四边形 ABCD 与 ABDE 是平行四边形,
高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4
=(2,1).
(2)设点A(x,y),则x= | OA | cos 60=4 3cos 60=2 3,
y= OA sin 60=4 3sin 60=6, 即 A 2 3,6 , 所以
OA= 2 3,6 .
【方法技巧】平面向量坐标运算的技巧 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进 行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的 坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
(x1+x2,y1+y2); ①a+b= _______________ (x1-x2,y1-y2) ; ②a-b= _____________ (λx1,λy1) ③λa= ____________.
(2)重要结论:已知向量 y2),则 的起点A(x1,y1),终点B(x2,
(x2-x1,y2-y1) = _____________.
=(x-5,2-y+2)=(4,6),解得x=9,
2.已知四边形ABCD为平行四边形,O为对角线AC,BD的交点, =(3,7), =(-2,1).求 的坐标.
【解析】因为 DB AB -AD =(-2,1)-(3,7)=(-5,-6),
1 5 所以 OB DB (- ,-3). 2 2
(2)定义坐标:对于平面内的一个向量a,由平面向量基本定理 (x_______ ,y) xi+yj 则有序数对 知,有且只有一对实数x,y,使得a=_____. 叫做向量a的坐标. (3)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
3.平面向量的坐标运算
人教a版必修4学案:2.5.1平面几何中的向量方法(含答案)
2.5.1平面几何中的向量方法自主学习知识梳理1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔________⇔____________.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b ⇔__________⇔__________.(3)求夹角问题,往往利用向量的夹角公式cos θ=_______________=_______________.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=______.2.直线的方向向量和法向量(1)直线y=kx+b的方向向量为____________,法向量为__________.(2)直线Ax+By+C=0的方向向量为__________,法向量为__________.自主探究在平行四边形中有下列的结论:平行四边形两条对角线的平方和等于两条邻边平方和的2倍.请用向量法给出证明.对点讲练知识点一利用向量证明平行问题例1如图所示,若ABCD为平行四边形,EF∥AB,AE与BF相交于点N,DE与CF 相交于点M.求证:MN∥AD.回顾归纳(1)本题利用平行向量基本定理证明两直线平行,解题时要注意灵活运用已知条件.(2)向量法证明直线平行,恰是向量平行问题的一种存在形式—它们的基线无公共点.与前面例1比较,最大的区别在于,此处共线的两个向量没有公共端点.变式训练1△ABC中,M、N分别为AB、AC的中点.求证:MN∥BC.知识点二 利用向量证明垂直问题例2 如图所示,在平行四边形ABCD 中,BC =2BA ,∠ABC =60°,作AE ⊥BD 交BC于E ,求BEEC的值.回顾归纳 利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.变式训练2 已知P 是正方形ABCD 对角线BD 上一点,PFCE 为矩形.求证:P A =EF 且P A ⊥EF .知识点三 直线方向向量的应用例3 在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线的方程.回顾归纳 直线Ax +By +C =0的方向向量为v =(B ,-A ),法向量n =(A ,B ).这两个概念在求直线方程、判断两条直线位置关系.求两条直线的夹角时非常有用.变式训练3 在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且|OC →|=2,则OC →=________.1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.2.在直线l :Ax +By +C =0(A 2+B 2≠0)上任取两点P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→就是直线l 的一个方向向量,λP 1P 2→(λ∈R 且λ≠0)也是直线l 的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l :Ax +By +C =0 (A 2+B 2≠0)垂直的向量都叫直线l 的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用.①y =kx +b 的方向向量v =(1,k ),法向量为n =(k ,-1).②Ax +By +C =0(A 2+B 2≠0)的方向向量v =(B ,-A ),法向量n =(A ,B ).课时作业一、选择题1.在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边的中线AD 的长是( )A .2 5 B.52 5 C .3 5 D.7252.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点3.如图,非零向量OA →=a ,OB →=b 且BC ⊥OA ,C 为垂足,若OC →=λa ,则λ等于( )A.a·b |a|2B.a·b |a||b|C.a·b |b |2D.|a||b|a·b4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形5.已知点A (3,1),B (0,0),C (3,0),设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于( )A .2 B.12 C .-3 D .-13二、填空题6.过点(1,2)且与直线3x -y +1=0垂直的直线的方程是 ____________.7.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5.则AB →·BC →+BC →·CA →+CA →·AB →=______.8.设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状一定是______.三、解答题9. 如图所示,已知四边形ABCD 是菱形,AC 和BD 是它的两条对角线. 求证:AC ⊥BD .10.三角形ABC 是等腰直角三角形,∠B =90°,D 是BC 边的中点,BE ⊥AD ,延长BE 交AC 于F ,连结DF .求证:∠ADB =∠FDC .§2.5 平面向量应用举例 2.5.1 平面几何中的向量方法答案知识梳理1.(1)a =λb x 1y 2-x 2y 1=0 (2)a·b =0 x 1x 2+y 1y 2=0(3)a·b|a||b | x 1x 2+y 1y 2x 21+y 21 x 22+y 22(4)x 2+y 22.(1)(1,k ) (k ,-1) (2)(B ,-A ) (A ,B ) 自主探究证明 在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB → ∴AC →2=(AB →+AD →)2=AB →2+AD →2+2AB →·AD →; BD →2=(AD →-AB →)2=AD →2+AB →2-2AB →·AD →. ∴AC →2+BD →2=2AB →2+2AD →2. 即|AC →|2+|BD →|2=2(|AB →|2+|AD →|2).∴平行四边形两条对角线的平方和等于两条邻边平方和的2倍. 对点讲练例1 证明 ∵EF ∥AB ,∴△NEF ∽△NAB ,设AB →=μEF →(μ≠1),则AN EN=μ,AE →=(μ-1)EN →,同理,由EF →∥CD →,可得DE →=(μ-1)EM →, ∴AD →=ED →-EA →=AE →-DE →=(μ-1)MN →,∵μ≠1,令λ=μ-1,∴AD →=λMN →,∴AD ∥MN .变式训练1 证明 设AB →=a ,AC →=b ,则BC →=AC →-AB →=b -a ,又M 、N 分别为AB 、AC 的中点.∴AM →=12a ,AN →=12b .△AMN 中,MN →=12b -12a =12(b -a ),∴MN →=12BC →,即MN →与BC →共线,∴MN ∥BC .例2 解 方法一 (基向量法) 设BA →=a ,BC →=b ,|a |=1,|b |=2.a·b =|a||b |cos 60°=1,BD →=a +b . 设BE →=λBC →=λb ,则AE →=BE →-BA →=λb -a .由AE ⊥BD ,得AE →·BD →=0. 即(λb -a )·(a +b )=0.解得λ=25,∴BE EC =2535=23.方法二 以B 为坐标原点,直线BC 为x 轴建立平面直角坐标系,根据条件,设B (0,0),C (2,0),A ⎝⎛⎭⎫12,32,D ⎝⎛⎭⎫52,32.又设E (m,0),则BD →=⎝⎛⎭⎫52,32,AE →=⎝⎛⎭⎫m -12,-32.由AE ⊥BD ,得AE →·BD →=0.即52⎝⎛⎭⎫m -12-32×32=0, 得m =45,∴BE EC =4565=23.变式训练2 证明以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系Oxy (如图所示),设正方形边长为1,|OP →|=λ,则A (0,1),P ⎝⎛⎭⎫2λ2,2λ2,E ⎝⎛⎭⎫1,22λ,F ⎝⎛⎭⎫22λ,0, 于是P A →=⎝⎛⎭⎫-22λ,1-22λ,EF →=⎝⎛⎭⎫22λ-1,-22λ.∵|P A →|=⎝⎛⎭⎫-22λ2+⎝⎛⎭⎫1-22λ2=λ2-2λ+1,同理|EF →|=λ2-2λ+1, ∴|P A →|=|EF →|,∴P A =EF .P A →·EF →=⎝⎛⎭⎫-22λ⎝⎛⎭⎫2λ2-1+⎝⎛⎭⎫1-22λ⎝⎛⎭⎫-22λ=0,∴P A →⊥EF →.∴P A ⊥EF .例3 解 AB →=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为: AB →|AB →|+AC →|AC →|=⎝⎛⎭⎫35,45+⎝⎛⎭⎫-45,35 =⎝⎛⎭⎫-15,75. ∵∠A 的平分线过点A .∴所求直线方程为-75(x -4)-15(y -1)=0.整理得:7x +y -29=0.变式训练3 ⎝⎛⎭⎫-105,3105解析已知A (0,1),B (-3,4), 设E (0,5),D (-3,9), ∴四边形OBDE 为菱形.∴∠AOB 的角平分线是菱形OBDE 的对角线OD .设C (x 1,y 1),|OD →|=310,∴OC →=2310OD →.∴(x 1,y 1)=2310(-3,9)=⎝⎛⎭⎫-105,3105,即OC →=⎝⎛⎭⎫-105,3105.课时作业1.B [BC 中点为D ⎝⎛⎭⎫32,6,AD →=⎝⎛⎭⎫-52,5, ∴|AD →|=525.]2.D [∵OA →·OB →=OB →·OC →.∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC , OC ⊥AB ,∴O 为垂心.]3.A [BC →=OC →-OB →=λa -b .∵BC ⊥OA ,∴BC →·OA →=(λa -b )·a =0,即λa 2-a·b =0.∴λ=a·b|a |2.]4.B [∵|OB →-OC →|=|CB →|=|AB →-AC →|, |OB →+OC →-2OA →|=|AB →+AC →|, ∴|AB →-AC →|=|AB →+AC →|,∴A ,B ,C 是同一矩形的三个顶点,且∠BAC =90°. ∴△ABC 是直角三角形.] 5.C[如图所示,由题知∠ABC =30°,∠AEC =60°,CE =33,∴|BC ||CE |=3,∴BC →=-3CE →.] 6.x +3y -7=0解析 设P (x ,y )是所求直线上任一点,直线3x -y +1=0的方向向量为(-1,-3), 由(x -1,y -2)·(-1,-3)=0得x +3y -7=0. 7.-25解析 △ABC 中,B =90°,cos A =35,cos C =45,∴AB →·BC →=0,BC →·CA →=4×5×⎝⎛⎭⎫-45=-16; CA →·AB →=5×3×⎝⎛⎭⎫-35=-9. ∴AB →·BC →+BC →·CA →+CA →·AB →=-25. 8.等腰三角形解析 ∵(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →) =(AB →+AC →)·(AB →-AC →)=AB →2-AC →2 =|AB →|2-|AC →|2=0, ∴|AB →|=|AC →|,∴△ABC 是等腰三角形.9.证明 ∵四边形ABCD 是菱形,∴|AB →|=|AD →|,又∵AC →=AB →+AD →,BD →=AD →-AB →, ∴AC →·BD →=(AB →+AD →)·(AD →-AB →)∴AC →⊥BD →,即AC ⊥BD . 10.证明如图所示,建立直角坐标系,设A (2,0),C (0,2),则D (0,1),于是AD →=(-2,1), AC →=(-2,2),设F (x ,y ),由BF →⊥AD →, 得BF →·AD →=0, 即(x ,y )·(-2,1)=0, ∴-2x +y =0①又F 点在AC 上,则FC →∥AC →, 而FC →=(-x,2-y ),因此2×(-x )-(-2)×(2-y )=0, 即x +y =2.②由①、②式解得x =23,y =43,∴F ⎝⎛⎭⎫23,43,DF →=⎝⎛⎭⎫23,13,DC →=(0,1) DF →·DC →=13,又DF →·DC →=|DF →||DC →|cos θ=53cos θ,∴cos θ=55,即cos ∠FDC =55,又cos ∠ADB =|BD →||AD →|=15=55,∴cos ∠ADB =cos ∠FDC , 故∠ADB =∠FDC .。
数学:2.5.1《平面几何中的向量方法》课件(1)(新人教A版必修4)
2.5 平面向量应用举例
2.5.1平面几何中的向量方法
一、长度关系
例1、平行四边形是表示向量加法与减法的几 何模型。如图,你能发现平行四边形对角 线的长度与两条邻边长度之间的关系吗?
1.长方形对角线的长度 与两条邻边长度之间有 何关系? D C
A B 2.类比猜想,平行四边形有相似关系吗?
用向量方法解决平面几何问题的 “三步曲”: (1)建立平面几何与向量的联系, 用向量表示问题中涉及的几何元素, 将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素 之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元 素。 NhomakorabeaG
B
E
C B
F
G
E
C
D
A
规律总结:重心的计算
F
G
已知 ABC 的三个顶点 A( x1 , y1 ), B( x2 , y2 ), C ( x3 , y3 ),则重心 G的B 坐标为 ________
x1 x2 x3 y1 y2 y3 ( , ) 3 3
E
C
D
2 1 OG OA AG OA AD OA ( AB AC ) 3 3 1 OA OB OC OA (OB OA OC OA) 3 3
回顾作业:
1、设向量OA ( k ,12), OB (4,5), OC (10, k ),当k为何值时 , A、B、C 三点共线 ?
AB (4 k ,7), BC (6, k 5)
k 2或11
由于向量的线性运算和数量积 运算具有鲜明的几何背景,平面几 何图形的许多性质,如平移、全等、 相似、长度、夹角等都可以由向量 的线性运算及数量积表示出来,因 此,可用向量方法解决平面几何中 的一些问题,下面我们通过几个具 体实例,说明向量方法在平面几何 中的运用。
人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)
必修第二册·人教数学A版
返回导航 上页 下页
探究二 平面向量在几何求值中的应用
[例 2] (1)已知边长为 2 的正六边形 ABCDEF,连接 BE,CE,
点 G 是线段 BE 上靠近 B 的四等分点,连接 GF,则G→F·C→E( )
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
的合力的大小为( )
课件
课件
课件
课件
A.5 课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
N
B.5 2 N
C.5 3 N
D.5 6 N
解析:两个力的合力的大小为|F1+F2|= F21+F22+2F1·F2=5 6(N). 答案:D
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;
④把几何问题向量化.
(2)向量的坐标运算法的四个步骤:
基底表示,利用向量的运算法则、运算律或性质计算.
②坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、
平行、夹角等问题转化为代数运算.
平面向量的概念 课件-高中数学人教A版(2019)必修第二册
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理课件新人教A版必修4
a与b 7 __同__向______ a与b 8 __垂__直______,记作 9 _a_⊥__b______
a与b 10 ___反__向_____
‖小试身手‖
3.若向量a,b的夹角为30°,则向量-a,-b的夹角为
() A.60°
B.30°
C.120°
D.150°
答案:B 4.在等腰
Rt△ABC
题型二 向量的夹角
【例 2】 已知|a|=|b|=2,且 a 与 b 的夹角为 60°,设 a+b 与 a 的夹角为 α,a-b 与 a 的夹角是 β,求 α+β.
[解] 如图,作O→A=a,O→B=b,且∠AOB=60°,
以O→A,O→B为邻边作▱OACB, 则O→C=a+b,B→A=O→A-O→B=a-b, B→C=O→A=a.
解:解法一:∵A→B=e2,DABC=k, ∴D→C=kA→B=ke2. ∵A→B+B→C+C→D+D→A=0, ∴B→C=-A→B-C→D-D→A =-A→B+D→C+A→D=e1+(k-1)e2. 又M→N+N→B+B→A+A→M=0,
且N→B=-12B→C,A→M=12A→D, ∴M→N=-A→M-B→A-N→B =-12A→D+A→B+12B→C=k+2 1e2. 解法二:同解法一得,D→C=ke2, B→C=e1+(k-1)e2.连接MB,MC, 由M→N=12(M→B+M→C)得,M→N=12(M→A+A→B+M→D+D→C)=12(A→B +D→C)=k+2 1e2.
A.a-12b
B.12a-b
C.a+12b
D.12a+b
解析:选 D 连接 CD,OD,如图所示.∵ 点 C,D 是半圆弧 AB 上的两个三等分点,∴ AC=CD,∠CAD=∠DAO=30°.∵OA=OD, ∴∠ADO=∠DAO=30°,∴∠CAD=∠ADO, ∴AC∥DO.由 AC=CD,得∠CDA=∠CAD=30°,∴∠CDA=∠ DAO,∴CD∥AO,∴四边形 ACDO 为平行四边形, ∴A→D=A→O +A→C=12A→B+A→C=12a+b.故选 D.
平面几何中的向量方法 高一数学课件(人教A版2019必修第二册)
向量具有“几何”与“代数”的双重身份
1、我们学了向量的线性运算与数量积运算,你能说出它们的 几何意义吗?这与平面几何哪些内容可以相互联系与转化?
B A
O D
A
B C
O B
A B
)
O
A
数量积性质?
求模 求夹角 证垂直
2、向量的代数身份是通过什么来实现的?坐标表示
当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数” 的计算
又有公共点 P,则 A,C, P 三点共线.所以 B 正确.
故选:B
5.(多选)点 P 是ABC 所在平面内一点,满足
PB PC PB PC 2PA 0 ,则ABC 的形状不可能是
A.钝角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
【详解】∵P 是 ABC 所在平面内一点,且
,∴ , | PB PC | | PB PC 2PA | 0
例 7.如图,已知正方形 ABCD 的边长为 1, 点 E 是 AB 边上的动点,求:
(1) DE CB 的值;(2) DE DC 的最大值.
(2)因为 DE 1, x, DC 0,1 ,所以 DE CB 1 0 x 1 x , 因为0 x 1, 所以 DE DC 的最大值是 1.
例 8.如图,在
(1)当 a , b 满足什么条件时,a b a b ? (2)当 a ,b 满足什么条件时, a b a b ?
(2)由(1)可得, a b AC, a b BD a b a b ,即 AC BD ,此时四边形 ABCD 为矩 形从而可得 AB AD a b 时, a b a b .
(5)、两向量垂直的充要条件:向量 a b a •b 0
新人教A高中数学教材目录必修选修很全面
新人教A高中数学教材目录必修选修很全面人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn 思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4
向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)要证 A,B,C 三点共线,只要证明存在一实数 λ≠0, → → → → → 使AB=λAC,或若OA=a,OB=b,OC=c,存在一个实数 t, 使 c=ta+(1-t)b 即可. (4)证明线段的垂直问题,如证明四边形是矩形、正方形, 判断直线(线段)是否垂直等, 常运用向量垂直的条件: a⊥b⇔a· b =0(或 x1x2+y1y2=0).
二
用坐标法解决几何问题
如下图所示,P是正方形ABCD对角线BD上一
【例3】
点,四边形PECF是矩形,求证:
(1)PA=EF; (2)PA⊥EF.
【分析】
从图中看,PA与EF没有直接关系,因此可以
建立直角坐标系,利用向量坐标运算找到PA与EF的联系.
【证明】
【证明】
→ → → 设OA=a,OB=b,OC=c,则
→ → → BC=c-b,CA=a-c,AB=b-a. →2 →2 →2 →2 →2 →2 ∵|OA| +|BC| =|OB| +|CA| =|OC| +|AB| , ∴a2+(c-b)2=b2+(a-c)2=c2+(b-a)2. ∴c· b=a· c=b· a.
→ → 故AB· OC=(b-a)· c=b· c-a· c=0, → → BC· OA=(c-b)· a=c· a-b· a=0. → → → → ∴AB⊥OC,BC⊥OA. ∴点O是△ABC的垂心.
变式训练1 如图所示,平行四边形ABCD中,已知AD= 1,AB=2,对角线BD=2,求对角线AC的长.
【例2】 如图所示,点O是平行四边形ABCD的中心, CE AF 1 E,F分别在边CD,AB上,且 = = . ED FB 2 求证:点E,O,F在同一直线上.
【分析】
→ → 要证点E,O,F共线,只要证明 FO =λ OE 即
→ → → → → → 可.选基底AB,AD,用基底AB,AD表示出FO和OE.
第二章
平面向量
§2.5 平面向量应用举例
2.5.1 平面几何中的向量方法
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学 习 目 标 1.通过平行四边形这个几何模型,归纳总结出用向量方法 解决平面几何问题的“三步曲”. 2. 明确平面几何图形中的有关性质, 如平移、 全等、 相似、 长度、夹角等可以由向量的线性运算及数量积表示.
规律技巧
证明三点A,B,C共线,可证其中两点组成的
向量与另外两点组成的向量共线.常采用选基底的方法证明.
变式训练2
已知平行四边形ABCD中,E、F是对角线AC上的两点,且 1 AE=FC= 4 AC,试用向量方法证明四边形DEBF也是平行四边 形.
→ → 证明 设AD=a,AB=b, 1 3 → → → 1→ 则DE=AE-AD=4AC-a=4b-4a, 3→ 1 3 → → → FB=AB-AF=b-4AC=4b-4a, → → 所以 DE = FB ,且D、E、F、B四点不共线,所以四边形 DEBF是平行四边形.
课堂互动探究
剖析归纳 触类旁通
典例剖析
一
平面几何问题的向量方法
→ 2 已知O为△ABC所在平面内一点,且满足| OA | +
【例1】
→ → → → → |BC|2=|OB|2+|CA|2=|OC|2+|AB|2.求证:点O是△ABC的垂心. 【分析】 本题考查用向量数量积概念及其性质解答三角
形中的问题.要证点O是△ABC的垂心,需证AB⊥OC,BC⊥ → → → → OA,只需证明AB· OC=0,BC· OA=0.
CE AF 1 → → 【证明】 设AB=m,AD=n,由ED=FB=2, 知E,F分别是CD,AB的三等分点, → → → 1→ 1→ ∴FO=FA+AO= BA+ AC 3 2 1 1 1 1 =-3m+2(m+n)=6m+2n, → → → 1→ 1 → OE=OC+CE=2AC+3CD
1 1 1 1 =2(m+n)-3m=6m+2n. → → ∴FO=OE,又O为其公共点, 故点E,O,F在同一直线上.
→ → → → 解 设AD=a,AB=b,则BD=a-b,AC=a+b. → 而|BD|=|a-b| = a2-2a· b+b2 = |a|2-2a· b+|b|2 = 1+4-2a· b= 5-2a· b, →2 ∴|BD| =5-2a· b=4.①
→2 又|AC| =|a+b|2=a2+2a· b+b2 =|a|2+2a· b+|b|2=1+4+2a· b. 由①得2a· b=1, →2 → ∴|AC| =6,∴|AC|= 6,即AC= 6.
自我 (1)向量 校对 问题
向量
(2)运算
思考探究
用向量解决几何问题时,有时需要选择合适的
基底,你知道怎样选择合适的基底吗? 提示 所选择基向量的长度和夹角应该是已知的.
名 师 点 拨 向量方法可以运用于证明有关直线平行、垂直、线段的相 等、点共线、求夹角等问题,其基本方法有: (1)证明线段相等,常运用向量加法的三角形法则、平行四 边形法则,有时也用到向量减法的定义.如要证两线段 AB= →2 → 2 → → CD,可转化为证明AB =CD 或AB=CD. (2)证明线段平行、三角形相似,判断两直线 (或线段)是否 平行, 常运用向量平行(共线)的条件: a∥b⇔a=λb(或 x1y2-x2y1 =0).
课 前 热 身 用向量法解决平面几何问题的“三步曲”: (1)转化——建立平面几何与向量的联系,用________表示 问题中涉及的几何元素,将平面几何问题转化为________. (2) 运算 —— 通过向量 ________ ,研究几何元素之间的关 系,如距离、夹角等问题. (3)翻译——把运算结果“翻译”成几何关系.
(5)求与夹角相关的问题,往往利用向量的夹角公式 cosθ= a· b 1 ,例如:用公式 S= absinC 求三角形的面积时,可利用夹 |a||b| 2 角公式,求出 sinC. (6)向量的坐标法,对于有些平面几何问题,如长方形、正 方形、直角三角形等,建立直角坐标系,把向量用坐标表示, 通过代数运算解决几何问题.