人教A版高一数学必修1练习卷及答案
人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a =1.70.3,b =0.31.7,c =log 0.31.7,则 a ,b ,c 的大小关系为 ( ) A . a <b <c B . c <b <a C . c <a <b D . b <a <c2. 已知 m ∈R ,“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 已知 sin (α+β)=14,sin (α−β)=13,则 tanα:tanβ= ( )A . −17B . 17C . −7D . 74. 根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为 f (x )=√x x <A√Ax ≥A (A ,c为常数),已知工人组装第 4 件产品用时 30 min ,组装第 A 件产品用时 15 min ,那么 c 和 A 的值分别是 ( ) A . 75,25 B . 75,16 C . 60,25 D . 60,165. 已知函数 f (x )={ln (x +1)+m,x ≥0ax −b +1,x <0(m <−1),对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t ,若关于 x 的方程 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,则 a 的取值范围是 ( ) A . (−4,−2) B . (−1,0)C . (−2,−1)D . (−4,−1)∪(−1,0)6. 已知 a >0 且 a ≠1,下列说法中正确的是 ( ) ①若 M =N ,则 log a M =log a N ; ②若 log a M =log a N ,则 M =N ; ③若 log a M 2=log a N 2,则 M =N ; ④若 M =N ,则 log a M 2=log a N 2. A .①③B .②④C .②D .①②③④7.定义在(−1,1]上的函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若函数g(x)=∣∣f(x)−12∣∣−mx−m+1在(−1,1]内恰有3个零点,则实数m的取值范围是( )A.(32,+∞)B.(32,258)C.(32,2516)D.(23,34)8.实数α,β为方程x2−2mx+m+6=0的两根,则(α−1)2+(β−1)2的最小值为( )A.8B.14C.−14D.−2549.若a>b>0,c<d<0,则一定有( )A.ac −bd>0B.ac−bd<0C.ad>bcD.ad<bc10.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A.12R2B.12R2Ssin1cos1C.12(1−sin1cos1)R2D.(1−sin1cos1)R2二、填空题(共10题)11.已知△ABC中,sin(A+B)=45,cosB=−23,则sinB=,cosA=.12.函数y=lg(x2+2x−a)的定义域为R,则实数a的取值范围是.13.已知函数y=f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内零点的个数的最小值是个.14.一个驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09mg/mL,那么这个驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg2≈0.30,lg3≈0.48)15.将函数y=√4+6x−x2−2(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则tanα的最大值为.16.设集合A为含有三个元素的集合,集合B={z∣z=x+y,x,y∈A,x≠y},若B={log 26,log 210,log 215},则集合 A = .17. 已知 p:∣x −4∣>6,q:x 2−2x +1−a 2>0(a >0),若 p 是 q 的充分不必要条件,则实数 a的取值范围为 .18. 已知 α 为第二象限角,sinα+cosα=12,则 cos2α= .19. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .20. 已知函数 f (x )={x +2x −3,x ≥1lg (x 2+1),x <1,则 f(f (−3))= ,f (x ) 的最小值是 .三、解答题(共10题)21. 已知一扇形的周长为 40 cm ,当它的半径和圆心角取何值时,能使扇形的面积最大,最大面积是多少?22. 已知实数 a ,b 是常数,函数 f (x )=(√1+x +√1−x +a)(√1−x 2+b).(1) 求函数 f (x ) 的定义域,判断函数的奇偶性,并说明理由;(2) 若 a =−3,b =1,设 t =√1+x +√1−x ,记 t 的取值组成的集合为 D ,则函数 f (x )的值域与函数 g (t )=12(t 3−3t 2)(t ∈D ) 的值域相同.试解决下列问题:(i )求集合 D ;(ii )研究函数 g (t )=12(t 3−3t 2) 在定义域 D 上是否具有单调性?若有,请用函数单调性定义加以证明:若没有,请说明理由.并利用你的研究结果进一步求出函数 f (x ) 的最小值.23. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).24. 已知函数 f (x )=(sinx +cosx )2+2cos 2x −1.(1) 求 f (x ) 的最小正周期;(2) 求 f (x ) 在 [0,π2] 上的单调区间.25. 已知函数 f (x )=a +b x (b >0,b ≠1) 的图象过点 (1,4) 和点 (2,16).(1) 求 f (x ) 的表达式; (2) 解不等式 f (x )>(12)3−x2;(3) 当 x ∈(−3,4] 时,求函数 g (x )=log 2f (x )+x 2−6 的值域.26. 已知函数 f (x ) 的定义域为 D ,若对任意的 x 1∈D ,都存在 x 2∈D ,满足 f (x 1)=1f (x 2),则称函数 f (x ) 为“L 函数”.(1) 判断函数 f (x )=sinx +32,x ∈R 是否为“L 函数”,并说明理由;(2) 已知“L 函数”f (x ) 是定义在 [a,b ] 上的严格增函数,且 f (a )>0,f (b )>0,求证:f (a )⋅f (b )=1.27. 记函数 f (x ) 的定义域为 D ,如果存在实数 a ,b 使得 f (a −x )+f (a +x )=b 对任意满足a −x ∈D 且 a +x ∈D 的 x 恒成立,则称 f (x ) 为 Ψ 函数. (1) 设函数 f (x )=1x −1,试判断 f (x ) 是否为 Ψ 函数,并说明理由; (2) 设函数 g (x )=12x +t ,其中常数 t ≠0,证明 g (x ) 是 Ψ 函数;(3) 若 ℎ(x ) 是定义在 R 上的 Ψ 函数,且函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称,试判断 ℎ(x ) 是否为周期函数?并证明你的结论.28. 已知函数 f (x ) 和 g (x ) 的图象关于原点对称,且 f (x )=x 2+2x .(1) 求函数 g (x ) 的解析式;(2) 若 ℎ(x )=g (x )−λf (x )+1 在区间 [−1,1] 上是增函数,求实数 λ 的取值范围.29. 解答题.(1) 已知 cosα=17,cos (α+β)=−1114,α,β 都是锐角,求 cosβ 的值;(2) 已知 π2<β<α<34π,cos (α−β)=1213,sin (α+β)=−35,sin2α.30.用五点法作出下列函数在[−2π,0]上的图象.(1) y=1−sinx;(2) y=sin(π+x)−1.答案一、选择题(共10题) 1. 【答案】B【知识点】指数函数及其性质、对数函数及其性质2. 【答案】B【解析】若函数 y =f (x )=2x +m −1 有零点,则 f (0)=1+m −1=m <1, 当 m ≤0 时,函数 y =log m x 在 (0,+∞) 上为减函数不成立,即充分性不成立,若 y =log m x 在 (0,+∞) 上为减函数,则 0<m <1,此时函数 y =2x +m −1 有零点成立,即必要性成立,故“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的必要不充分条件. 【知识点】指数函数及其性质、充分条件与必要条件、对数函数及其性质3. 【答案】C【解析】 sin (α+β)=sinαcosβ+cosαsinβ=14,sin (α−β)=sinαcosβ−cosαsinβ=13, 所以 sinαcosβ=724,cosαsinβ=−124,所以 tanα:tanβ=sinαcosβcosαsinβ=−7. 【知识点】两角和与差的正切4. 【答案】D【知识点】函数的模型及其实际应用5. 【答案】A【解析】由题意可知 f (x ) 在 [0,+∞) 上单调递增,值域为 [m,+∞),因为对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t , 所以 f (x ) 在 (−∞,0) 上是减函数,值域为 (m,+∞), 所以 a <0,且 −b +1=m ,即 b =1−m . 因为 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,所以 0<f (m2)<−m ,又 m <−1,所以 0<am 2<−m ,即 0<(a2+1)m <−m ,所以 −4<a <−2,所以则 a 的取值范围是 (−4,−2).【知识点】对数函数及其性质、函数的零点分布6. 【答案】C【解析】对于①,当 M =N ≤0 时,log a M ,log a N 都没有意义,故不成立; 对于②,log a M =log a N ,则必有 M >0,N >0,M =N ,故成立;对于③,当 M ,N 互为相反数且不为 0 时,也有 log a M 2=log a N 2,但此时 M ≠N ,故不成立; 对于④,当 M =N =0 时,log a M 2,log a N 2 都没有意义,故不成立. 综上,只有②正确. 【知识点】对数的概念与运算7. 【答案】C【解析】当 x ∈(−1,0) 时,x +1∈(0,1),f (x )=1f (x+1)−1=1x+1−1,若函数 g (x )=∣∣f (x )−12∣∣−mx −m +1 在 (−1,1] 内恰有 3 个零点,即方程 ∣∣f (x )−12∣∣−mx −m +1=0 在 (−1,1] 内恰有 3 个根,也就是函数 y =∣∣f (x )−12∣∣ 与 y =mx +m −1 的图象有三个不同交点,作出函数图象如图:由图可知,过点 (−1,−1) 与点 (−13,0) 的直线的斜率为 32;设过点 (−1,1),且与曲线 y =1x+1−1−12=−3x−12(x+1) 相切的切点为 (x 0,y 0), 则 yʹ∣x=x 0=−1(x 0+1)2=y 0−1x0−(−1), 又因为 y 0=−3x 0−12(x 0+1),解得 {x 0=−15,y 0=−14,则切点为 (−15,−14).所以切线的斜率为 k =1+14−1−(−15)=−2516,由对称性可知,过点 (−1,−1) 与曲线 ∣∣f (x )−12∣∣ 在 (−1,0) 上相切的切线的斜率为 2516.所以使函数 y =∣∣f (x )−12∣∣与 y =mx +m −1 的图象有三个不同交点的 m 的取值范围为(32,2516).【知识点】函数的零点分布、利用导数求函数的切线方程8. 【答案】A【解析】因为 Δ=(2m )2−4(m +6)≥0, 所以 m 2−m −6≥0, 所以 m ≥3 或 m ≤−2.而(α−1)2+(β−1)2=α2+β2−2(α+β)+2=(α+β)2−2αβ−2(α+β)+2=(2m )2−2(m +6)−2(2m )+2=4m 2−6m −10=4(m −34)2−494,因为 m ≥3,或 m ≤−2,所以当 m =3 时,(α−1)2+(β−1)2 的最小值为 8,故选A . 【知识点】函数的最大(小)值9. 【答案】D【解析】因为 c <d <0,所以 0<−d <−c , 又 0<b <a ,所以 −bd <−ac ,即 bd >ac , 又因为 cd >0,所以 bdcd >accd ,即 bc >ad . 【知识点】不等式的性质10. 【答案】D【解析】 l =4R −2R =2R ,α=lR =2R R=2,可得:S 扇形=12lR =12×2R ×R =R 2,可得:S 三角形=12×2Rsin1×Rcos1=sin1⋅cos1⋅R 2,可得:S弓形=S扇形−S三角形=R2−sin1⋅cos1⋅R2 =(1−sin1cos1)R2.【知识点】弧度制二、填空题(共10题)11. 【答案】√53;6+4√515【知识点】两角和与差的余弦12. 【答案】a<−1【知识点】函数的定义域的概念与求法、对数函数及其性质13. 【答案】7【知识点】函数的零点分布、函数的周期性14. 【答案】5【解析】设经过n小时后才能开车,由题意得0.3(1−0.25)n≤0.09,所以(34)n≤0.3,所以nlg34≤lg310<0,所以n≥lg3−1lg3−2lg2=0.48−10.48−0.6=133,解得n≥133,故至少经过5小时才能开车.故答案为:5.【知识点】函数模型的综合应用15. 【答案】23【解析】将函数变形为方程,可得(x−3)2+(y+2)2=13,x∈[0,6],y≥0,其图象如图所示.过点O作该图象所在圆M的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为∠AOy,此时曲线C都是一个函数的图象,因为k OA=−1k OM =32,所以tan∠AOy=23.【知识点】函数的相关概念16. 【答案】 {1,log 23,log 25}【解析】设 A ={a,b,c }(a <b <c ),则 {a +b =log 26,b +c =log 215,c +a =log 210,所以 a +b +c =log 230,所以 a =1,b =log 23,c =log 25, 所以 A ={1,log 23,log 25}. 【知识点】元素和集合的关系17. 【答案】 0<a ≤3【知识点】充分条件与必要条件18. 【答案】 −√74【解析】因为 sinα+cosα=12,所以 1+2sinαcosα=14,所以 2sinαcosα=−34,则 (cosα−sinα)2=1−2sinαcosα=74. 又因为 α 为第二象限角,所以 cosα<0,sinα>0, 则 cosα−sinα=−√72,所以cos2α=cos 2α−sin 2α=(cosα+sinα)(cosα+sinα)=12×(−√72)=−√74. 【知识点】二倍角公式19. 【答案】 1≤a ≤√2【解析】因为函数 f (x ) 满足 f (x +2)=f (x )−2,所以若 x ∈(−6,−4] 时,则 x +2∈(−4,−2],x +4∈(−2,0], 若 x +6∈(0,2],即若 x ∈(−6,−5] 时, 则 x +2∈(−4,−3],x +4∈(−2,−1], 若 x +6∈(0,1],则f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6+(x +6)2−(x +6)−6=x 2+11x +30,若 x ∈(−5,−4] 时,则 x +2∈(−3,−2],x +4∈(−1,0], 若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布20. 【答案】 0 ; 2√2−3【解析】因为 f (−3)=lg [(−3)2+1]=lg10=1,所以 f(f (−3))=f (1)=1+2−3=0.当x ≥1 时,x +2x −3≥2√x ⋅2x −3=2√2−3,当且仅当 x =2x ,即 x =√2 时等号成立,此时 f (x )min =2√2−3<0;当 x <1 时,lg (x 2+1)≥lg (02+1)=0,此时 f (x )min =0.所以f(x)的最小值为2√2−3.【知识点】函数的最大(小)值、分段函数三、解答题(共10题)21. 【答案】设扇形的圆心角为θ(0<θ<2π),半径为r,弧长为l,面积为S,则l+2r=40,所以l=40−2r.S=12lr=12(40−2r)r=20r−r2=−(r−10)2+100.所以当r=10cm时,扇形的面积最大,最大值为100cm2,此时θ=lr =40−2×1010=2.【知识点】弧度制22. 【答案】(1) 因为实数a,b是常数,函数f(x)=(√1+x+√1−x+a)(√1−x2+b),所以由{1+x≥0,1−x≥0,1−x2≥0.解得−1≤x≤1.所以函数的定义域是[−1,1].对于任意x∈[−1,1],有−x∈[−1,1],且f(−x)=(√1+(−x)+√1−(−x)+a)(√1−(−x)2+b)=(√1−x+√1+x+a)(√1−x2+b)=f(x),即f(−x)=f(x)对x∈[−1,1]都成立.(又f(x)不恒为零)所以,函数f(x)是偶函数.(该函数是偶函数不是奇函数也可以)(2) 因为a=−3,b=1,所以f(x)=(√1+x+√1−x−3)(√1−x2+1).设t=√1+x+√1−x(−1≤x≤1),则t2=2+2√1−x2.所以0≤√1−x2≤1,2≤t2≤4(t≥0),即√2≤t≤2.所以D=[√2,2].于是,g(t)=12(t3−3t2)的定义域为D=[√2,2].对于任意的t1,t2∈D,且t1<t2,有g(t1)−g(t2)=12[t13−3t12−(t23−3t22)]=12[(t1−t2)(t12+t1t2+t22)−3(t1−t2)(t1+t2)]=12(t1−t2)[(t12−2t1)+(t22−2t2)+(12t1t2−t1)+(12t1t2−t2)]=12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)].又t1>0,t2>0,t1−t2<0,且t1−2≤0,t2−2≤0(这里二者的等号不能同时成立),所以12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)]>0,即g(t1)−g(t2)>0,g(t1)>g(t2).所以函数g(t)在D上是减函数.所以(g(t))min =g(2)=12×(23−3×22)=−2.又因为函数f(x)的值域与函数g(t)=12(t3−3t2)的值域相同,所以函数f(x)的最小值为−2.【知识点】函数的值域的概念与求法、函数的奇偶性23. 【答案】(1) g(x)=x+sin x3,所以cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sin x3)=cosg(x),所以g(x)是以6π为周期的余弦周期函数.(2) 因为f(x)的值域为R;所以存在x0,使f(x0)=c;又c∈[f(a),f(b)],所以f(a)≤f(x0)≤f(b),而f(x)为增函数;所以a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3) 若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式24. 【答案】(1) 由已知得,f(x)=sin2x+cos2x+1=√2sin(2x+π4)+1.函数的最小正周期T=2π2=π.(2) 由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)得,kπ−3π8≤x≤kπ+π8(k∈Z),又x∈[0,π2],所以x∈[0,π8],所以f(x)的单调递增区间为[0,π8],由2kπ+π2−≤2x+π4≤2kπ+3π2(k∈Z)得,kπ+π8≤x≤kπ+5π8(k∈Z),又x∈[0,π2],所以x∈[π8,π2 ],所以f(x)的单调递减区间为[π8,π2 ].【知识点】Asin(ωx+ψ)形式函数的性质25. 【答案】(1) 由题意知 {4=a +b,16=a +b 2,解得 {a =0,b =4 或 {a =7,b =−3(舍去), 所以 f (x )=4x . (2) f (x )>(12)3−x2,所以 4x>(12)3−x2,所以 22x >2x 2−3, 所以 2x >x 2−3, 解得 −1<x <3,所以不等式的解集为 (−1,3). (3) 因为g (x )=log 2f (x )+x 2−6=log 24x +x 2−6=2x +x 2−6=(x +1)2−7,因为 x ∈(−3,4],所以当 x =−1 时,g (x )min =−7, 当 x =4 时,g (x )max =18,所以函数 g (x )=log 2f (x )+x 2−6 的值域为 [−7,18].【知识点】函数的解析式的概念与求法、指数函数及其性质、函数的值域的概念与求法26. 【答案】(1) 不是; (2) 反证法,略.【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) f (x ) 的定义域为 {x∣ x ≠0}.设 f (x )=1x −1 是为 Ψ 函数,则存在实数 a ,b ,使得 f (a −x )+f (a +x )=b 对任意满足 a −x ∈D 且 a +x ∈D 的 x 恒成立, 即 1a−x +1a+x −2=b ,所以 (b +2)(a 2−x 2)=2a 恒成立,所以 a =0,b =−2. 所以存在 a =0,b =−2,使得 f (a −x )+f (a +x )=b 对任意 x ≠±a 恒成立. 所以 f (x )=1x −1 是 Ψ 函数.(2) 若 g (a +x )+g (a −x )=12a−x +t +12a+x +t =b 恒成立, 则 2a+x +2a−x +2t =b (2a+x +t )(2a−x +t ) 恒成立, 即 (1−bt )(2a+x +2a−x )=b (22a +t 2)−2t 恒成立,所以 1−bt =0,b (22a +t 2)−2t =0,又 t ≠0,所以 b =1t ,a =log 2∣t∣. 所以存在实数 a ,b 使得 g (x ) 是 Ψ 函数.(3) 因为函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称, 所以 ℎ(m −x )=ℎ(m +x ),所以当 m ≠a 时, ℎ(x +2m −2a )=ℎ[m +(x +m −2a )]=ℎ[m −(x +m −2a )]=ℎ(2a −x )=ℎ(a +(a −x )),又 ℎ(a +x )+ℎ(a −x )=b ,所以 ℎ(a +(a −x ))=b −ℎ[a −(a −x )]=b −ℎ(x ),所以 ℎ(x +2m −2a )=b −ℎ(x ),ℎ(x )=b −ℎ(x +2m −2a )=ℎ(x +2m −2a +2m −2a )=ℎ(x +4m −4a ).所以 ℎ(x ) 为周期函数,周期为 4m −4a .若 m =a ,则 ℎ(a −x )=ℎ(a +x ),且 ℎ(a −x )=b −ℎ(a +x ), 所以 ℎ(a +x )=b2,显然 ℎ(x ) 是周期函数. 综上,ℎ(x ) 是周期函数.【知识点】函数的对称性、函数的周期性、幂函数及其性质、指数函数及其性质28. 【答案】(1) g (x )=−x 2+2x ,(2) ℎ(x )=−(1+λ)x 2+2(1−λ)x +1,当 λ=−1 时,ℎ(x )=4x +1 在 [−1,1] 上显然为增函数,当 λ≠−1 时,可得 {1+λ>0,1−λ1+λ≥1, 或 {1+λ>0,1−λ1+λ≤−1,⇒−1<λ≤0 或 λ<−1,综上所述,所求 λ 的取值范围是 λ=−1 或 −1<λ≤0 或 λ<−1,即 λ≤0.【知识点】函数的解析式的概念与求法、函数的单调性29. 【答案】(1) 由题知,sinα=4√37,sin (α+β)=5√314,所以,cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα=12. (2) 因为 0<α−β<π4,cos (α−β)=1213,所以 sin (α−β)=513,因为 π<α+β<3π2,sin (α+β)=−35,所以 cos (α+β)=−45,所以 sin2α=sin [(α−β)+(α+β)]=sin (α−β)cos (α+β)+cos (α−β)sin (α+β)=−5665. 【知识点】两角和与差的正弦、两角和与差的余弦30. 【答案】(1) 找出关键的五个点,列表如下: x −2π−3π2−π−π2y =sinx 010−10y =1−sinx10121描点作图,如图所示.(2) 由于 y =sin (x +π)−1=−sinx −1,找出关键的五个点,列表如下: x −2π−3π2−π−π20y =sinx 010−10y =−sinx −1−1−2−10−1描点作图,如图所示. 【知识点】正弦函数的图象。
人教A版高中数学必修第一册全册测试卷(含答案)
人教A版高中数学必修第一册全册测试卷(含答案)一、单选题
1.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知集合,则()
A.B.
C.D.
3.若集合,0,1,,则
A.B.C.D.
4.已知正数x,y满足:,则x+y的最小值为( )
A .B.C.6D.
5.函数,其中,记在区间,上的最小值为(a),则函数(a)的最大值为()
A.B.0C.1D.2
6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()
A.B.
C.D.
7.设函数,则函数的定义域为()A.B.C.D.
8.函数的定义域为()A.B.C.D.
9.函数的图象大致为()
A.B.C.D.
10.设,则的大小关系是()A.B.C.D.
11.“”是“直线和直线互相垂直”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件。
人教A版高一数学必修第一册全册复习测试题卷含答案解析(35)
人教A 版高一数学必修第一册全册复习测试题卷6(共30题)一、选择题(共10题)1. 设集合 A ={x∣ x >1},B ={x∣ 0≤x <3},则 A ∩B = ( ) A . {x∣ 0≤x <3} B . {x∣ 1≤x <3} C . {x∣ 1<x <3}D . {x∣ x ≥0}2. 已知 0<a <1,则方程 a ∣x∣=∣log a x ∣ 的实根个数为 ( ) A . 2 B . 3 C . 4 D .与 a 的值有关3. 已知函数 f (x )=ln(√4x 2+1+2x),则 ( ) A . f (log 314)<f (1)<f (ln 12) B . f (ln 12)<f (log 134)<f (1)C . f (1)<f (ln2)<f (log 34)D . f (ln 12)<f (1)<f (log 34)4. 在 [0,2π] 内,不等式 sinx <−√32的解集是 ( )A . (0,π)B . (π3,4π3) C . (4π3,5π3) D . (5π3,2π)5. ∀x,y,z ∈(0,+∞),4x 2+y 2+1xy ≥−z 2+2z +m ,则 m 的取值范围为 ( ) A . (−∞,2√2−1]B . (−∞,3]C . (−∞,2]D . (−∞,4√2−1]6. 已知 f (x ) 是定义域为 R 的奇函数,且在 (0,+∞) 内的零点有 1003 个,则 f (x ) 的零点的个数为 ( ) A . 1003 B . 1004C . 2006D . 20077. 已知 α 是第二象限角,且 cosα=−35,则 cos (π4−α) 的值是 ( ) A . √210B . −√210C .7√210D . −7√2108. 下列函数是幂函数的是 ( )A . y =2xB . y =2x −1C . y =(x +1)2D . y =√x 239. 已知函数 f(x)={−x 2+2x +1,x <22x−2,x ≥2,且存在不同的实数 x 1,x 2,x 3,使得 f(x 1)=f(x 2)=f(x 3),则 x 1⋅x 2⋅x 3 的取值范围是 ( ) A . (0,3) B . (1,2) C . (0,2) D . (1,3)10. 函数 y =(mx 2+4x +m +2)−14的定义域是全体实数,则实数 m 的取值范围是 ( ) A . (√5−1,2) B . (√5−1,+∞)C . (−2,2)D . (−1−√5,−1+√5)二、填空题(共10题)11. 某公司一年购买某种货物 400 吨,每次都购买 x 吨,运费为 4 万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则 x = 吨.12. 函数 y =x 2+2x −1,当 x = 时有最 值为 . 13. 计算 cot45∘+cot30∘1−cot45∘cot30∘= .14. 已知函数 f (x )=∣∣∣log 2∣∣x −2x ∣∣∣∣∣−a (a >0),其所有的零点依次记为 x 1,x 2,⋯,x i (i ∈N ∗),则 x 1⋅x 2⋯x i = .15. 已知 cos (α+π4)=13,则 sin2α= .16. 求值:sin10∘−√3cos10∘cos40∘= .17. 用二分法求图象连续不断的函数 f (x ) 在区间 [1,5] 上的近似解,验证 f (1)⋅f (5)<0,给定精度 ɛ=0.01,取区间 (1,5) 的中点 x 1=1+52=3,计算得 f (1)⋅f (x 1)<0,f (x 1)⋅f (5)>0,则此时零点 x 0∈ .(填区间)18. 已知 f (x )={sinπx,x <0f (x −1)−1,x >0,则 f (−116)+f (116) 的值为 .19. 设函数 f (x )=cos (ωx −π6)(ω>0).若 f (x )≤f (π4) 对任意的实数 x 都成立,则 ω 的最小值为 .20. 已知 a >0,函数 f (x )={x 2+2ax +a,x ≤0−x 2+2ax −2a,x >0.若关于 x 的方程 f (x )=ax 恰有 2 个互异的实数解,则 a 的取值范围是 .三、解答题(共10题)21. 某公司要在一条笔直的道路边安装路灯,要求灯柱 AB 与地面垂直,灯杆 BC 与灯柱 AB 所在的平面与道路走向垂,路灯 C 采用锥形灯罩,射出的光线与平面 ABC 的部分截面如图中阴影部分所示.已知 ∠ABC =23π,∠ACD =π3,路宽 AD =24 米.设 ∠BAC =θ(π12≤θ≤π6).(1) 求灯柱 AB 的高 ℎ(用 θ 表示);(2) 此公司应该如何设置 θ 的值才能使制造路灯灯柱 AB 与灯杆 BC 所用材料的总长度最小?最小值为多少?(结果精确到 0.01 米)22. 请回答:(1) 若 f(√x +1)=x +2√x ,试求函数 f (x ) 的解析式;(2) 若 f (x ) 为二次函数,且 f (0)=3,f (x +2)−f (x )=4x +2,试求函数 f (x ) 的解析式.23. 如图所示,ABCD 是边长为 60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 A ,B ,C ,D 四个点重合于图中的点 P ,正好形成一个正四棱柱形状的包装盒,E ,F 在 AB 上是被切去的等腰直角三角形斜边的两个端点,设 AE =FB =x cm .(1) 若广告商要求包装盒侧面积 S (cm 2)最大,试问 x 应取何值?(2) 若广告商要求包装盒容积 V (cm 3) 最大,试问 x 应取何值?并求出此时包装盒的高与底面边长的比值.24. 以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在 6 元基础上按月份随正弦曲线波动的,已知 3 月份出厂价格最高为 8 元,7 月份出厂价格最低为 4 元,而该商品在商店的销售价格是在 8 元基础上按月随正弦曲线波动的,并已知 5 月份销售价最高为 10 元,9 月份销售价最低为 6 元,假设某商店每月购进这种商品 m 件,且当月售完,请估计哪个月盈利最大?并说明理由.25. 已知函数 f (x )=x 2−mx +m ,m,x ∈R .(1) 若关于 x 的不等式 f (x )>0 的解集为 R ,求 m 的取值范围;(2) 若实数 x 1,x 2 数满足 x 1<x 2,且 f (x 1)≠f (x 2),证明:方程 f (x )=12[f (x 1)+f (x 2)] 至少有一个实根 x 0∈(x 1,x 2);(3) 设 F (x )=f (x )+1−m −m 2,且 ∣F (x )∣ 在 [0,1] 上单调递增,求实数 m 的取值范围.26. 已知 f (x )=log a x ,g (x )=2log a (2x +t −2)(a >0,a ≠1,t ∈R ).(1) 若 f (1)=g (2),求 t 的值;(2) 当 t =4,x ∈[1,2],且 F (x )=g (x )−f (x ) 有最小值 2 时,求 a 的值; (3) 当 0<a <1,x ∈[1,2] 时,有 f (x )≥g (x ) 恒成立,求实数 t 的取值范围.27. 设函数 f (x )=3x ,g (x )=√2−x ,求:(1) f (1)+g (1); (2) f (2)+g (2); (3) f (x )+g (x ).28. “学习曲线”可以用来描述学习某一任务的速度,假设函数 t =f (N ),f (N )=−144lg (1−N90),其中 t 表示达到某一英文打字水平(字/分)所需的学习时间(时),N 表示每分钟打出的字数(字/分).(1) 计算要达到 20 字分、 40 字/分水平所需的学习时间.(精确到“时”) (2) 判断函数 t =f (N ) 的单调性,并说明理由.29. 设 x ∈R ,解方程 √10+x 4+√7−x 4=3.30. 设函数 f (x )={2x −a,x <14(x −a )(x −2a ),x ≥1.(1) 若 a =1,求 f (x ) 的最小值;(2) 若 f (x ) 恰有 2 个零点,求实数 a 的取值范围.答案一、选择题(共10题)1. 【答案】C【知识点】交、并、补集运算2. 【答案】A【解析】设y1=a∣x∣,y2=∣log a x∣,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a∣x∣=∣log a x∣有两个根.【知识点】函数零点的概念与意义3. 【答案】D【解析】函数的定义域为R,且f(−x)+f(x)=ln(√4x2+1−2x)+ln(√4x2+1+2x)=ln(√4x2+1−2x)(√4x2+1+2x)=ln(4x2+1−4x2)=ln1=0,得f(−x)=−f(x),即f(x)是奇函数,且f(x)在R上是增函数,因为ln12<1<log34,所以f(ln12)<f(1)<f(log34).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性4. 【答案】C【解析】画出y=sinx,x∈[0,2π]的草图如下:因为sinπ3=√32,所以sin(x+π3)=−√32,sin(2π−π3)=−√32.即在[0,2π]内,满足sinx=−√32的值为x=4π3或x=5π3,可知不等式sinx<−√32的解集是(4π3,5π3).故选C .【知识点】三角方程与不等式5. 【答案】B【解析】因为 x,y ∈(0,+∞),所以 4x 2+y 2+1xy ≥2√4x 2y 2+1xy =4xy +1xy ≥2√4=4(当且仅当 {4x 2=y 2,4xy =1xy时等号成立),又 (−z 2+2z +m )max =m +1, 所以 m +1≤4,即 m ≤3.故选B . 【知识点】均值不等式的应用6. 【答案】D【解析】根据奇函数的图象关于原点对称可得 f (x ) 在 (−∞,0) 内的零点有 1003 个,又 f (0)=0,故选D . 【知识点】函数的零点分布7. 【答案】A【知识点】两角和与差的余弦8. 【答案】D【解析】由幂函数的概念可知D 正确. 【知识点】幂函数及其性质9. 【答案】A【解析】 f(x)={−x 2+2x +1,x <22x−2,x ≥2的图象如图所示:设 x 1<x 2<x 3,又当 x ∈[2,+∞] 时,f(x)=2x−2 是增函数,当 x =3 时,f(x)=2,设f(x 1)=f(x 2)=f(x 3)=t ,1<t <2,即有 −x 12+2x 1+1=−x 22+2x 2+1=2x 3−2=t ,故x 1x 2x 3=(1−√2−t)(1+√2−t)(2+log 2t)=(t −1)(2+log 2t),设 g(t)=(t −1)(2+log 2t),1<t <2,可得 gʹ(t)=2+log 2t +t−1tln2>0,即 g(t) 在 (1,2) 上单调递增,又 g(1)=0,g(2)=3,可得 g(t) 的范围是 (0,3). 【知识点】函数的零点分布10. 【答案】B【解析】函数 y =(mx 2+4x +m +2)−14=√1mx 2+4x+m+24,因此,要使函数 y =(mx 2+4x +m +2)−14 的定义域为全体实数,需满足 mx 2+4x +m +2>0 对一切实数都成立,即 {m >0,42−4m (m +2)<0, 解得 m >√5−1.故选:B .【知识点】恒成立问题、函数的定义域的概念与求法二、填空题(共10题) 11. 【答案】 20【解析】每次都购买 x 吨,则需要购买400x次.因为运费为 4 万元/次,一年的总存储费用为 4x 万元, 所以一年的总运费与总存储费用之和为 4×400x+4x 万元.因为4×400x +4x≥160,当且仅当4x=4×400x时取等号,所以x=20吨时,一年的总运费与总存储费用之和最小.【知识点】均值不等式的实际应用问题12. 【答案】−1;小;−2【知识点】函数的最大(小)值13. 【答案】−2−√3【知识点】两角和与差的正切14. 【答案】16【解析】函数f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a(a>0)的零点,即f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a=0,所以∣∣∣log2∣∣x−2x∣∣∣∣∣=a.去绝对值可得log2∣∣x−2x ∣∣=a或log2∣∣x−2x∣∣=−a,即2a=∣∣x−2x ∣∣或2−a=∣∣x−2x∣∣.去绝对值可得2a=x−2x 或−2a=x−2x,2−a=x−2x或−2−a=x−2x.当2a=x−2x,两边同时乘以x,化简可得x2−2a⋅x−2=0,设方程的根为x1,x2,由韦达定理可得x1⋅x2=−2;当−2a=x−2x,两边同时乘以x,化简可得x2+2a⋅x−2=0,设方程的根为x3,x4,由韦达定理可得x3⋅x4=−2;当2−a=x−2x,两边同时乘以x,化简可得x2−2−a⋅x−2=0,设方程的根为x5,x6,由韦达定理可得x5⋅x6=−2;当−2−a=x−2x,两边同时乘以x,化简可得x2+2−a⋅x−2=0,设方程的根为x7,x8,由韦达定理可得x7⋅x8=−2.综上可得所有零点的乘积为x1⋅x2⋅x3⋅x4⋅x5⋅x6⋅x7⋅x8=(−2)4=16.【知识点】对数函数及其性质、函数的零点分布15. 【答案】79【解析】因为cos(α+π4)=13,所以cos(α+π4)=√22cosα−√22sinα=13=√22(cosα−sinα)=13,所以cosα−sinα=√23,因为{cosα−sinα=√23,cos2α+sin2α=1⇒(cosα−sinα)2=cos2α+sin2α−2sinαcosα=1−2sinαcosα=29,所以sin2α=2sinα⋅cosα=1−29=79.【知识点】二倍角公式16. 【答案】−2【解析】sin10∘−√3cos10∘cos40∘=2(12sin10∘−√32cos10∘)cos40∘=2sin(10∘−60∘)cos40∘=−2sin50∘cos40∘=−2.【知识点】两角和与差的正弦17. 【答案】(1,3)【解析】由f(1)⋅f(5)<0,f(1)⋅f(x1)<0及f(x1)⋅f(5)>0可知f(1)与f(x1)异号,f(x1)与f(5)同号,则x0∈(1,x1)即x0∈(1,3).【知识点】零点的存在性定理18. 【答案】−2【知识点】诱导公式19. 【答案】23【解析】结合余弦函数的图象得π4ω−π6=2kπ,k∈Z,解得ω=8k+23,k∈Z,又因为ω>0,所以当k=0时,ω取得最小值,最小值为23.【知识点】Asin(ωx+ψ)形式函数的性质20. 【答案】(4,8)【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 在△ACD中,∠CDA=θ+π6,由ADsin∠ACD =ACsin∠CDA,得AC=AD⋅sin∠CDAsin∠ACD=16√3sin(θ+π6);在△ABC中,∠ACB=π3−θ,由ABsin∠ACB =ACsin∠ABC,得ℎ=AC⋅sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2) △ABC中,由BCsin∠BAC =ACsin∠ABC,得BC=AC⋅sin∠BACsin∠ABC=32sin(θ+π6)sinθ,所以AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ=16sin2θ+8√3,因为π12≤θ≤π6,所以π6≤2θ≤π3,所以当θ=π12时,AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小,最小值约为21.86米.【知识点】三角函数模型的应用22. 【答案】(1) 令t=√x+1,则t≥1,x=(t−1)2,所以f(t)=(t−1)2+2(t−1)=t2−1,所以f(x)=x2−1,x∈[1,+∞).(2) 设f(x)=ax2+bx+c(a≠0),所以f(x+2)=a(x+2)2+b(x+2)+c,所以f(x+2)−f(x)=4ax+4a+2b=4x+2,所以{4a=4,4a+2b=2⇒{a=1,b=−1.又f(0)=3⇒c=3,所以f(x)=x2−x+3.【知识点】函数的解析式的概念与求法23. 【答案】(1) 设包装盒的高为ℎcm,底面边长为a cm,由已知得a=√2x,ℎ=√2=√2(30−x),0<x<30,S=4aℎ=8x(30−x)=−8(x−15)2+1800,所以当x=15时,S取得最大值.(2) 由题意,可得V=a2ℎ=2√2(−x2+30x2),则Vʹ=6√2x(20−x),由Vʹ=0得x=0(舍去)或x=20,当x∈(0,20)时,Vʹ>0,V在(0,20)上单调递增;当x∈(20,30)时,Vʹ<0,V在(20,30)上单调递减,所以当x=20时,V取得极大值,也是最大值,此时ℎa =12,即当x=20时,包装盒的容积最大,此时包装盒的高与底面边长的比值为12.【知识点】函数模型的综合应用、利用导数处理生活中的优化问题24. 【答案】设月份为x,由条件可得:出厂价格函数为:y1=2sin(π4x−π4)+6,销售价格函数为:y2=2sin(π4x−3π4)+8,则每期的利润函数为:y=m(y2−y1)=m[2sin(π4x−3π4)+8−2sin(π4x−π4)−6]=m(2−2√2sinπ4x),所以,当x=6时,y max=(2+2√2)m,即6月份盈利最大.【知识点】三角函数模型的应用25. 【答案】(1) 因为f(x)>0的解集为R,所以Δ=m2−4m<0,解得0<m<4.(2) 证明:令g(x)=f(x)−12[f(x1)+f(x2)],易知g(x)在其定义域内连续,且g(x1)⋅g(x2)={f(x1)−12[f(x1)+f(x2)]}⋅{f(x2)−12[f(x1)+f(x2)]}=−14[f(x1)−f(x2)]2<0,则g(x)=f(x)−12[f(x1)+f(x2)]在(x1,x2)上有零点,即方程f(x)=12[f(x1)+f(x2)]至少有一个实根x0∈(x1,x2).(3) F(x)=f(x)+1−m−m2=x2−mx+1−m2,Δ=m2−4(1−m2)=5m2−4,函数F(x)的对称轴为直线x=m2,①当 Δ=0 时,5m 2−4=0,即 m =±2√55, 若 m =2√55,则对称轴为 x =√55∈[0,1],则在 [0,1] 上不单调递增,不满足条件;若 m =−2√55,则对称轴为 x =−√55<0,则在 [0,1] 上单调递增,满足条件; ②当 Δ<0 时,−2√55<m <2√55,此时 F (x )>0 恒成立,若 ∣F (x )∣ 在 [0,1] 上单调递增,则 x =m 2≤0,即 m ≤0,此时 −2√55<m ≤0;③当 Δ>0 时,m <−2√55或 m >2√55,对称轴为 x =m2,当 m <−2√55时,对称轴为 x =m 2<0,要使 ∣F (x )∣ 在 [0,1] 上单调递增,则只需要 F (0)≥0 即可,此时 F (0)=1−m 2≥0,得 −1≤m ≤1, 此时 −1≤m <−2√55;当 m >2√55时,对称轴为 x =m 2>0,则要使 ∣F (x )∣ 在 [0,1] 上单调递增,此时 F (0)=1−m 2≤0,且对称轴 m 2≥1,所以 m ≥2.此时 m ≥2; 综上,−1≤m ≤0 或 m ≥2.【知识点】二次函数的性质与图像、函数的单调性26. 【答案】(1) 因为 f (1)=g (2), 所以 0=2log a (2+t ), 所以 t +2=1,即 t =−1. (2) 因为 t =4,F (x )=g (x )−f (x )=2log a (2x +2)−log a x =log a4(x+1)2x=log a 4(x +1x +2).又因为 y =x +1x 在 x ∈[1,2] 单调递增, 所以当 a >1 时,F (x ) 在 x ∈[1,2] 也单调递增, 所以 F (x )min =log a 16=2,解得 a =4,当 0<a <1 时,F (x ) 在 x ∈[1,2] 也单调递减, 所以 F (x )min =log a 18=2, 解得 a =√18=3√2(舍去), 所以 a =4.(3) f (x )≥g (x ),即 log a x ≥2log a (2x +t −2), 所以 log a x ≥log a (2x +t −2)2, 因为 0<a <1,x ∈[1,2], 所以 x ≤(2x +t −2)2, 所以 √x ≤2x +t −2, 所以 √x −2x +2≤t ,所以 √x −2x +2≤t ,依题意有 (√x −2x +2)max ≤t , 而函数 y =√x −2x +2=−2(√x −14)2+178,因为 x ∈[1,2],√x ∈[1,√2],y max =1, 所以 t ≥1.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】(1) f (1)+g (1)=4. (2) f (2)+g (2)=6.(3) 因为 f (x ) 的定义域是 R ,g (x ) 的定义域是 (−∞,2],交集是 (−∞,2], 所以 f (x )+g (x )=3x +√2−x ,定义域是 (−∞,2]. 【知识点】函数的相关概念28. 【答案】(1) t =f (20)≈16(时),t =f (40)≈37(时);所以,要达到这两个水平分别需要学习 16 小时和 37 小时.(2) 任取 0≤N 1<N 2<90,f (N 1)−f (N 2)=144lg 90−N290−N 1,因为 0≤90−N 2<90−N 1,所以 f (N 1)−f (N 2)=144lg 90−N290−N 1<0,即 f (N 1)<f (N 2),函数 t =f (N ) 在定义域内递增.【知识点】函数模型的综合应用29. 【答案】设 {√10+x 4=u,√7−x 4=v,则 {u +v =3,u 4+v 4=17,解得 {u =2,v =1或 {u =1,v =2, 即 x =−9 或 x =6.【知识点】幂的概念与运算30. 【答案】(1) 当 a =1 时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1.当 x <1 时,f (x )∈(−1,1),无最小值; 当 x ≥1 时,f (x )=4(x −32)2−1,所以函数 f (x ) 在 [1,32] 上单调递减,在 (32,+∞) 上单调递增.所以 f (x ) 的最小值为 f (32)=−1. 综上,当 x =32 时,f (x ) 取得最小值 −1. (2) 当 x <1 时,f (x )∈(−a,2−a ).①若 g (x )=2x −a 在 x <1 时与 x 轴有一个交点则 {a >0,g (1)=2−a >0,所以 0<a <2.ℎ(x )=4(x −a )(x −2a ) 与 x 轴有一个交点. 所以 2a ≥1 且 a <1, 所以 12≤a <1.②若 g (x ) 与 x 轴无交点,则 ℎ(x ) 在 x ≥1 时与 x 轴有两个交点,当 g (1)=2−a ≤0 时 a ≥2,ℎ(x )=4(x −a )(x −2a ) 与 x 轴有两交点且两交点均在 [1,+∞) 内.由上可知 12≤a <1 和 a ≥2.【知识点】函数的零点分布、函数的最大(小)值。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)
第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(52)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a 1,a 2,b 1,b 2 均为非零实数,不等式 a 1x +b 1<0 与不等式 a 2x +b 2<0 的解所组成的集合分别为集合 M 和集合 N ,则“a 1a 2=b 1b 2”是“M =N ”的 ( )A .充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件2. 下面各组角中,终边相同的是 ( ) A . 390∘,690∘ B . −330∘,750∘ C . 480∘,−420∘D . 3000∘,−840∘3. 若对于任意实数 x 总有 f (−x )=f (x ),且 f (x ) 在区间 (−∞,−1] 上是增函数,则 ( ) A . f (−32)<f (−1)<f (2) B . f (−1)<f (−32)<f (2) C . f (2)<f (−1)<f (−32)D . f (2)<f (−32)<f (−1)4. 函数 f (x )=(x +sinx )cosx 的部分图象大致为 ( )A .B .C.D.5.集合A={x∣ −1<x<3},B={x∣ x2+x−6<0,x∈Z},则A∩B=( )A.(−1,2)B.(−3,3)C.{0,1}D.{0,1,2}6.已知集合A={x∣ 1≤x<3},B={x∣ x2≤4},则A∩B=( )A.{x∣ 1≤x<2}B.{x∣ −2≤x<1}C.{x∣ 1≤x≤2}D.{x∣ 1<x≤2}7.已知cos(π2+α)=√33(−π2<α<π2),则sin(α+π3)=( )A.3√2−√36B.3√2+√36C.√6−36D.√6+368.设集合M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},则M∩N=( )A.{x∣ 0≤x≤1}B.{x∣ 0≤x<1}C.{x∣ 1<x≤2}D.{x∣ −1<x≤2}9. 式子 a√−1a 经过计算可得 ( ) A . √−a B . √a C . −√a D . −√−a10. 设集合 A ={x∣ −1<x ≤1},B ={−1,0,1,2},则 A ∩B = ( )A . {−1,0,1}B . {−1,0}C . {0,1}D . {1,2}二、填空题(共10题)11. 已知集合 A =(−2,3),B =[−1,4],则集合 A ∩B = .12. 已知 a >0,b >0,则 a 2+4+4ab+4b 2a+2b的最小值为 .13. 若 (3−2m )12>(m +1)12,则实数 m 的取值范围为 .14. 若 cosα=13,则 sin (α−π2)= .15. 若角 α 终边经过点 P (−1,2),则 tanα= .16. 二次函数 y =ax 2+bx +c (x ∈R ) 的部分对应值如表:x−3−2−101234y 60−4−6−6−406则不等式 ax 2+bx +c >0 的解集是 .17. 已知 a >b >0,则 a +4a+b +1a−b 的最小值为 .18. 若 π2<α<π 且 cosα=−13,则 tanα= .19. 如果 α∈(π2,π),且 sinα=45,那么 sin (α+π4)+cos (α+π4)= .20. 已知函数 f (x )=1+∣x∣−x 2(−2<x ≤2).用分段函数的形折表示该函数为 ; 该函数的值域为 .三、解答题(共10题)21.画出下列函数的图象,并根据图象说出函数y=f(x)的单调区间及在每一单调区间上的单调性.(1) y=x2−5x−6;(2) y=9−x2.22.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1) 对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n=nlog a M(n∈R).(2) 请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值.(3) 因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注:lg2019≈3.305).23.回答下列问题:(1) 将log232=5化成指数式;(2) 将3−3=127化成对数式;(3) 已知log4x=−32,求x;(4) 已知log2(log3x)=1,求x.24.写出下列命题的否定,并判断其否定的真假:(1) p:不论m取何实数,方程x2+mx−1=0必有实根;(2) ∀x,y∈R,x2+y2+2x−4y+5=0.25.已知集合A={x∣2−a≤x≤2+a},B={x∣∣x≤1或x≥4}.(1) 当a=3时,求A∩B;(2) 若A∩B=∅,求实数a的取值范围.26.已知函数f(x)=log a(x+2)−1,其中a>1.(1) 若f(x)在[0,1]上的最大值与最小值互为相反数,求a的值.(2) 若f(x)的图象不经过第二象限,求a的取值范围.27.求2π3的六个三角比的值.28.子集(1)对于两个集合A和B,如果集合A中都属于集合B(若a∈A,则a∈B),那么集合A叫做集合B的子集,记作或,读作“ ”或“ ”.可用文氏图表示为(2)子集的性质:①A⊆A,即任何一个集合是它本身的子集;②∅⊆A,即空集是任何集合的子集.问题:集合A是集合B的子集的含义是什么?,b},Q={0,a+b,b2},且P=Q.求a2018+b2019的值.29.已知集合P={1,ab30.已知集合A={x∣ 1≤x≤2},B={x∣ 1≤x≤a,a≥1}.(1) 若A⫋B,求a的取值范围;(2) 若B⊆A,求a的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】取 a 1=b 1=1,a 2=b 2=−1,则可得 M =(−∞,−1),N =(−1,+∞),M ≠N ,因此不是充分条件,而由 M =N ,显然可以得到 a 1a 2=b 1b 2,所以是必要条件.故选D .【知识点】充分条件与必要条件2. 【答案】B【解析】因为 390∘=360∘+30∘,690∘=720∘−30∘, 所以 390∘ 与 690∘ 终边不同,A 错误;因为 −330∘=−360∘+30∘,750∘=720∘+30∘, 所以 −330∘ 与 750∘ 终边相同,B 正确; 因为 480∘=360∘+120∘,−420∘=−360∘−60∘, 所以 480∘ 与 −420∘ 终边不同,C 错误;因为 3000∘=2880∘+120∘,−840∘=−720∘−120∘, 所以 3000∘ 与 −840∘ 终边不同,D 错误. 故选B .【知识点】任意角的概念3. 【答案】D【解析】由 f (−x )=f (x ) 可得 f (x ) 为偶函数,且在 (−∞,1] 上单增, 由偶函数性质可知其在区间 [1,+∞) 上, 因为 f (−32)=f (32),f (−1)=f (1), 所以 f (2)<f (−32)<f (−1). 【知识点】函数的单调性4. 【答案】D【解析】因为函数 f (x ) 为奇函数,故排除B ,又因为当 x ∈(0,π2) 时,f (x )>0,当 x ∈(π2,π)时,f (x )<0,故排除C ,A . 【知识点】函数的奇偶性、函数图象5. 【答案】C【解析】 B ={x∣ x 2+x −6<0,x ∈Z }={x∣ −3<x <2,x ∈Z }={−2,−1,0,1},又 A ={x∣ −1<x <3}, 所以 A ∩B ={0,1},故选C .【知识点】交、并、补集运算6. 【答案】C【知识点】二次不等式的解法、交、并、补集运算7. 【答案】A【解析】因为cos(π2+α)=−sinα=√33,所以sinα=−√33,所以−π2<α<0,所以cosα=√63,所以sin(α+π3)=sinαcosπ3+cosαsinπ3 =−√33×12+√63×√32=3√2−√36,故选A.【知识点】两角和与差的正弦8. 【答案】B【解析】因为M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},所以M∩N={x∣ 0≤x<1}.【知识点】交、并、补集运算9. 【答案】D【解析】因为√−1a 成立,所以a<0,所以a√−1a=−√−a2a=−√−a.故选D.【知识点】幂的概念与运算10. 【答案】C【解析】A∩B={0,1}.【知识点】交、并、补集运算二、填空题(共10题)11. 【答案】[−1,3)【知识点】交、并、补集运算12. 【答案】 4【解析】由a 2+4+4ab+4b 2a+2b=(a+2b )2+4a+2b=(a +2b )+4a+2b ,因为 a >0,b >0, 所以 a +2b >0,4a+2b >0, 所以 (a +2b )+4a+2b≥2√(a +2b )⋅4a+2b=4,当且仅当 a +2b =2 时取等号,即a 2+4+4ab+4b 2a+2b的最小值为 4.【知识点】均值不等式的应用13. 【答案】 [−1,23)【知识点】幂函数及其性质14. 【答案】 −13【知识点】诱导公式15. 【答案】 −2【知识点】任意角的三角函数定义16. 【答案】 (−∞,−2)∪(3,+∞)【知识点】二次不等式的解法17. 【答案】 3√2【解析】 4a+b +1a−b =22a+b +12a−b ≥(2+1)2(a+b )+(a−b )=92a , 所以 a +4a+b +1a−b≥a +92a≥2√a ⋅92a=3√2,当且仅当 {2a+b=1a−b,a =92a,即 a =3√22,b =√22时等号成立.【知识点】均值不等式的应用18. 【答案】 −2√2【知识点】同角三角函数的基本关系19. 【答案】 −3√25【知识点】两角和与差的余弦、两角和与差的正弦20. 【答案】 f(x)={1−x,−2<x ≤01,0<x ≤2; [1,3)【解析】 f (x )=1+∣x∣−x 2(−2<x ≤2),当 −2<x ≤0 时,f (x )=1−x ; 当 0<x ≤2 时,f (x )=1.所以函数 f (x )={1−x,−2<x ≤01,0<x ≤2,函数 f (x ) 的图象如图所示:根据图象,得函数 f (x ) 的值域为 [1,3).【知识点】分段函数、函数的值域的概念与求法三、解答题(共10题) 21. 【答案】(1) 图略.函数 y =x 2−5x −6 在 (−∞,52] 上单调递减,在 [52,+∞) 上单调递增. (2) 函数 y =9−x 2 在 (−∞,0] 上单调递增,在 [0,+∞) 上单调递减. 【知识点】函数的单调性22. 【答案】(1) (a m )n =a mn , log a (a m )n =log a a mn , log a (a m )n =mn ,令 a m =M ,则 m =log a M , 则 log a M n =nlog a M .(2) lg3lg4(lg8lg9+lg16lg27)=lg32lg2(3lg22lg3+4lg23lg3)=34+23=1712. (3) lg20192020=2020lg2019≈2020×3.305=6676.1,所以20192020≈106676.1∈(106676,106677),所以20192020位数为6677.【知识点】对数的概念与运算23. 【答案】(1) 因为log232=5,所以25=32.(2) 因为3−3=127,所以log3127=−3.(3) 因为log4x=−32,所以x=4−32=22×(−32)=2−3=18.(4) 因为log2(log3x)=1,所以log3x=2,即x=32=9.【知识点】对数的概念与运算24. 【答案】(1) ¬p:存在一个实数m,使方程x2+mx−1=0没有实数根.因为该方程的判别式Δ=m2+4>0恒成立,所以¬p为假命题.(2) ¬p:∃x,y∈R,x2+y2+2x−4y+5≠0.因为x2+y2+2x−4y+5=(x+1)2+(y−2)2,当x=0,y=0时,x2+y2+2x−4y+5≠0成立,所以¬p为真命题.【知识点】全(特)称命题的概念与真假判断、全(特)称命题的否定、复合命题的概念与真假判断25. 【答案】(1) 当a=3时,A={x∣−1≤x≤5},B={x∣∣x≤1或x≥4},所以A∩B={x∣∣−1≤x≤1或4≤x≤5}.(2) ①若A=∅,则2−a>2+a,解得a<0,满足A∩B=∅;②若A≠∅,则2−a≤x≤2+a,所以a≥0.因为A∩B=∅,所以{2−a>1,2+a<4,解得0≤a<1.综上,实数a的取值范围是(−∞,1).【知识点】交、并、补集运算26. 【答案】(1) 函数f(x)=log a(x+2)−1的定义域是(−2,+∞).因为a>1,所以f(x)=log a(x+2)−1是[0,1]上的增函数.所以f(x)在[0,1]上的最大值是f(1)=log a3−1;最小值是f(0)=log a2−1.依题意,得log a3−1=−(log a2−1),解得a=√6.(2) 由(1)知,f(x)=log a(x+2)−1是(−2,+∞)上的增函数.在f(x)的解析式中,令x=0,得f(0)=log a2−1,所以,f(x)的图象与y轴交于点(0,log a2−1).依题意,得f(0)=log a2−1≤0.解得a≥2.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】sin2π3=√32,cos2π3=−12,tan2π3=−√3,cot2π3=−√33,sec2π3=−2,csc2π3=23√3.【知识点】任意角的三角函数定义28. 【答案】(1)任何一个元素;A⊆B;B⊇A;A包含于B;B包含A(2)集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{−1,0,1},则由0∈{0,1}能推出0∈{−1,0,1}.【知识点】包含关系、子集与真子集29. 【答案】−1.【知识点】集合相等30. 【答案】(1) 若A⫋B,由下图可知,a>2.(2) 若B⊆A,由下图可知,1≤a≤2.【知识点】包含关系、子集与真子集11。
人教版高中数学A版必修1课后习题及答案(全)
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(39)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④2. 设全集为 R ,A ={x ∣x 2−5x −6>0},B ={x ∣−2<x <12},则 ( ) A . (∁R A )∪B =R B . A ∪(∁R B )=R C . (∁R A )∪(∁R B )=RD . A ∪B =R3. 已知函数 f (x )={log 2(x +1),x ≥11,x <1,则满足 f (2x +1)<f (3x −2) 的实数 x 的取值范围是( ) A . (−∞,0] B . (3,+∞) C . [1,3) D . (0,1)4. 已知函数 f (x )={x 2+4a,x >01+log a ∣x −1∣,x ≤0(a >0,且 a ≠1)在 R 上单调递增,若关于 x 的方程 ∣f (x )∣=x +3 恰好有两个互异的实数解,则 a 的取值范围是 ( ) A . (34,1316]B . (0,34]∪{1316}C . [14,34)∪{1316}D . [14,34]∪{1316}5. 已知 cosα+cosβ=12,sinα+sinβ=√32,则 cos (α−β)= ( ) A . −12B . −√32C . 12D . 16. 已知函数 f (x )=m 2x 2−2mx −√x +1−m 区间 [0,1] 上有且只有一个零点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,√2]∪[3,+∞)C . (0,√2]∪[2√3,+∞)D . (0,1]∪[3,+∞)7. 已知函数 f (x )=sin2x ,x ∈[a,b ],则“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 已知函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,则实数 a 的取值范围是( ) A . [25,12)B . (0,25]C . (0,12)D . (0,15]9. 函数 f (x )=lnx +2x −6 的零点一定位于区间 ( ) A . (1,2) B . (2,3) C . (3,4) D . (4,5)10. 已知 a =log 0.92019,b =20190.9,c =0.92019,则 ( ) A . a <c <b B . a <b <c C . b <a <c D . b <c <a二、填空题(共10题) 11. 已知函数 f (x )=3x −13x +1,若不式 f (kx 2)+f (2x −1)<0 对任意 x ∈R 恒成立,则实数 k 的取值范围是 .12. 已知函数 f (x )=lg 1−x 1+x ,若 f (a )=b ,则 f (−a )= .13. 已知一次函数 f (x ) 满足 f [f (x )]=4x +3,且 f (x ) 在 R 上为单调递增函数,则 f (1)= .14. 已知 f (x ) 是以 2e 为周期的 R 上的奇函数,当 x ∈(0,e ),f (x )=lnx ,若在区间 [−e,3e ],关于 x 的方程 f (x )=kx 恰有 4 个不同的解,则 k 的取值范围是 .15. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .16. 用二分法求函数 y =f (x ) 在区间 [2,4] 上零点的近似解,经验证有 f (2)f (4)<0.取区间的中点 x 1=2+42=3,计算得 f (2)f (x 1)<0,则此时零点 x 0∈ (填区间).17. 函数 f (x )=2x 与 g (x )=x 2 的图象交点个数是 个.18. 若某种参考书每本 2.5 元,则购书 x 本这种参考书的费用 y 关于 x 的函数表达式为 .19.已知13≤k<1,函数f(x)=∣2x−1∣−k的零点分别为x1,x2(x1<x2),函数g(x)=∣2x−1∣−k2k+1的零点分别为x3,x4(x3<x4),则(x4−x3)+(x2−x1)的最小值为.20.已知函数f(x)=∣∣x+1x∣∣,给出下列命题:①存在实数a,使得函数y=f(x)+f(x−a)为奇函数;②对任意实数a,均存在实数m,使得函数y=f(x)+f(x−a)关于x=m对称;③若对任意非零实数a,f(x)+f(x−a)≥k都成立,则实数k的取值范围为(−∞,4];④存在实数k,使得函数y=f(x)+f(x−a)−k对任意非零实数a均存在6个零点.其中的真命题是.(写出所有真命题的序号)三、解答题(共10题)21.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP=π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b).(1) 当θ=π6时,求ab的值;(2) 设θ∈[π4,π2],求b−a的取值范围.22.化简:(1) 1+sin(α−2π)sin(π+α)−2cos2(−α);(2) sin(−1071∘)sin99∘+sin(−171∘)sin(−261∘).23.已知f(x)=e x−ae x是奇函数(e为自然对数的底数).(1) 求实数a的值;(2) 求函数y=e2x+e−2x−2λf(x)在[0,+∞)上的值域;(3) 令g(x)=f(x)+x,求不等式g((log2x)2)+g(2log2x−3)≥0的解集.24. 已知 α,β 为锐角,tanα=43,cos (α+β)=−√55. (1) 求 cos2α 的值; (2) 求 tan (α−β) 的值.25. 设函数 f (x )=∣x −a ∣,a ∈R .(1) 当 a =2 时,解不等式:f (x )≥6−∣2x −5∣;(2) 若关于 x 的不等式 f (x )≤4 的解集为 [−1,7],且两正数 s 和 t 满足 2s +t =a ,求证:1s+8t ≥6.26. 已知 a ≥1,函数 f (x )=sin (x +π4),g (x )=−sinxcosx −1+√2af (x ).(1) 若 f (x ) 在 [−b,b ] 上单调递增,求正数 b 的最大值; (2) 若函数 g (x ) 在 [0,3π4] 内恰有一个零点,求 a 的取值范围.27. 对于函数 f (x )=ax 2+(b +1)x +b −2,(a ≠0),若存在实数 x 0,使 f (x 0)=x 0 成立,则称x 0 为 f (x ) 的不动点.(1) 当 a =2,b =−2 时,求 f (x ) 的不动点;(2) 当 a =2 时,函数 f (x ) 在 (−2,3) 内有两个不同的不动点,求实数 b 的取值范围; (3) 若对于任意实数 b ,函数 f (x ) 恒有两个不相同的不动点,求实数 a 的取值范围.28. 用适当的方法表示下列集合:(1) 二次函数 y =x 2−4 的函数值组成的集合; (2) 反比例函数 y =2x 的自变量组成的集合; (3) 不等式 3x ≥4−2x 的解集.29. 已知定义在 R 上的奇函数 f (x ),当 x ≤0 时,f (x )=x 2+4x .(1) 求出 f (x ) 的解析式,并直接写出 f (x ) 的单调区间. (2) 求不等式 f (x )>3 的解集.30. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2016 年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量 p 万件与促销费用 x 万元满足 p =3−2x+1(其中 0≤x ≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),每一件产品的)元,假定厂家的生产能力完全能满足市场的销售需求.销售价格定为(4+20p(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.答案一、选择题(共10题) 1. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即 1x 2=2−1x 1,当 x 1=12 时,2−1x 1=2−2=0,此时 1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件. 故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质2. 【答案】D【知识点】交、并、补集运算3. 【答案】B【解析】法一:由 f (x )={log 2(x +1),x ≥11,x <1可得当 x <1 时,f (x )=1;当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (1)=log 22=1, 要使得 f (2x +1)<f (3x −2),则 {2x +1<3x −2,3x −2>1, 解得 x >3,即不等式 f (2x +1)<f (3x −2) 的解集为 (3,+∞). 法二:当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (x )≥f (1)=1, 要使 f (2x +1)<f (3x −2) 成立,需 {2x +1≥1,2x +1<3x −2 或 {2x +1<1,3x −2>1,解得 x >3.【知识点】函数的单调性4. 【答案】D【解析】由函数的解析式可知函数在区间(0,+∞)上单调递增,当x≤0时,函数y=∣x−1∣单调递减,由复合函数的单调性法则可知:0<a<1,且函数在x=0处满足:02+4a≥1+log a∣0−1∣,解得:a≥14,故14≤a<1,方程∣f(x)∣=x+3恰有两个不相等的实数解,则函数∣f(x)∣与函数y=x+3的图象有且仅有两个不同的交点,绘制函数∣f(x)∣的图象如图中虚线所示,令1+log a∣x−1∣=0可得:x=1±1a,由14≤a<1可知1+1a>1,1−1a≥−3,则直线y=x+3与函数∣f(x)∣的图象在区间(−∞,0]上存在唯一的交点,原问题转化为函数y=x+3与二次函数y=x2+4a(14≤a<1)在区间(0,+∞)上存在唯一的交点,很明显当4a≤3,即a≤34时满足题意,当直线与二次函数相切时,设切点坐标为(x0,x02+4a),亦即(x0,x0+3),由函数的解析式可得:yʹ=2x,故2x0=1,x0=12,则x0+3=72,故切点坐标(12,72),从而x02+4a=72,即14+4a=72,a=1316.据此可得:a的取值范围是[14,34]∪{1316}.【知识点】函数的零点分布5. 【答案】A【解析】由 cosα+cosβ=12,sinα+sinβ=√32, 两边平方相加得,(cosα+cosβ)2+(sinα+sinβ)2=(12)2+(√32)2=1,所以 2+2cosαcosβ+2sinαsinβ=1, 即 2(cosαcosβ+sinαsinβ)=−1, 所以 cos (α−β)=−12. 故选A .【知识点】两角和与差的余弦6. 【答案】D【解析】由 f (x )=m 2x 2−2mx −√x +1−m =0, 得 m 2x 2−2mx +1=√x +m ,令 g (x )=m 2x 2−2mx +1=(mx −1)2,ℎ(x )=√x +m ,问题等价于函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. 又函数 g (x )=(mx −1)2 的图象为经过点 (0,1),对称轴为 x =1m 的抛物线,函数 ℎ(x )=√x +m 在区间 [0,1] 上单调递增,且图象经过点 (0,m ) 和 (1,1+m ). ①当 0<m ≤1 时,1m ≥1,所以函数 g (x )=(mx −1)2 在区间 [0,1] 上单调递减, 又当 0<m ≤1 时,g (1)=(m −1)2<1,ℎ(1)=1+m >1, 所以 g (1)<ℎ(1),所以函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. ②当 m >1 时,0<1m<1,在同一坐标系内做出两个函数的图象,如图所示. 由图形可得,要使两个函数的图象有且只有一个交点, 则需满足当 m >1 时,g (1)≥ℎ(1), 即 {m >1,m 2−3m ≥0,解得 m ≥3.综上,正实数 m 的取值范围是 (0,1]∪[3,+∞).【知识点】函数的零点分布7. 【答案】B【解析】 f (x ) 的最小正周期 T =2π2=π,所以当 x ∈[a,b ] 时,f (x )∈[−1,1],则 b −a ≥π2 恒成立, 而当 a =0,b =π2时,a −b ≥π2,此时 f (x )∈[0,1],故“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的必要而不充分条件.故B 选项符合题意.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】B【解析】因为函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,所以 {2a −1<0,0<a <1,log a 1≥2(2a −1)+a,即 {a <12,0<a <1,a ≤25,解得 0<a ≤25.【知识点】函数的单调性9. 【答案】B【知识点】零点的存在性定理10. 【答案】A【解析】因为 a <0,b >1,0<c <1, 所以 a <c <b .【知识点】对数函数及其性质、指数函数及其性质二、填空题(共10题) 11. 【答案】 (−∞,−1)【解析】易证 f (x )=3x −13x +1 为奇函数,所以 f (kx 2)+f (2x −1)<0⇒f (kx 2)<f (1−2x ). 因为 f (x )=3x −13x +1=1−23x +1,所以 f (x ) 在 R 上单调递增,所以 f (kx 2)<f (1−2x )⇒kx 2<1−2x ⇒kx 2+2x −1<0 在 R 上恒成立, 所以 {k <0,Δ=4+4k <0, 解得 k <−1,所以实数 k 的取值范围是 (−∞,−1).【知识点】函数的奇偶性、函数的单调性12. 【答案】 −b【解析】由 1−x1+x >0,得 {1−x >0,1+x >0, 或 {1−x <0,1+x <0,所以 −1<x <1.故 f (x ) 的定义域为 (−1,1),而 f (−x )=lg 1+x1−x =lg (1−x 1+x )−1=−lg 1−x1+x =−f (x ),所以 f (x ) 为奇函数,所以 f (−a )=−f (a )=−b . 【知识点】对数函数及其性质13. 【答案】 3【解析】根据题意,函数 f (x ) 是一次函数,设 f (x )=ax 十b ,则 f [f (x )]=a (ax +b )+b =a 2x +ab +b =4x +3,则有 {a 2=4,ab +b =3.解得:{a =2,b =1, 或 {a =−2,b =−3.又由 f (x ) 在 R 上为单调递增函数,则 f (x )=2x +1, 故 f (1)=2+1=3. 【知识点】函数的单调性14. 【答案】 (−∞,−1e]∪[13e ,1e)【知识点】函数的零点分布15. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象16. 【答案】 (2,3)【解析】因为 x 1=3,且 f (2)⋅f (3)<0,所以 x 0∈(2,3). 【知识点】零点的存在性定理17. 【答案】 3【知识点】函数的零点分布18. 【答案】 y =2.5x ,x ∈N ∗【知识点】函数的解析式的概念与求法19. 【答案】log23【解析】f(x)=∣2x−1∣−k=0⇒2x1=1−k,2x2=1+k⇒x1=log2(1−k),x2=log2(1+k),g(x)=∣2x−1∣−k2k+1=0⇒2x3=k+12k+1,2x4=3k+12k+1⇒x3=log2k+12k+1,x4=log23k+12k+1,由(1)(2)得(x4−x3)+(x2−x1)=log23k+11−k =log2(41−k−3),因为13≤k<1,故(x4−x3)+(x2−x1)≥log23.【知识点】函数的零点分布20. 【答案】②③④【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 由三角函数的定义,可得P(cosπ4,sinπ4),Q(cos(π4+θ),sin(π4+θ)).当θ=π6时,Q(cos5π12,sin5π12),即a=cos5π12,b=sin5π12,所以ab=cos5π12sin5π12=12×2×cos5π12sin5π12=12×sin5π6=14.(2) 因为Q(cos(π4+θ),sin(π4+θ)),所以a=cos(π4+θ),b=sin(π4+θ),由三角恒等变换的公式,化简可得:b−a=sin(π4+θ)−cos(π4+θ)=√2[sin(π4+θ)cosπ4−cos(π4+θ)sinπ4]=√2sinθ,因为θ∈[π4,π2],所以1≤√2sinθ≤√2.即b−a的取值范围为[1,√2].【知识点】任意角的三角函数定义、Asin(ωx+ψ)形式函数的性质22. 【答案】(1) −cos2a.(2) 0.【知识点】诱导公式23. 【答案】(1) 因为f(x)的定义域为R,f(x)为奇函数,所以f(0)=0,故1−a=0,即a=1.经检验,满足题意.(2) 设e x−1e x =t(t≥0),则e2x+1e2x=t2+2,设y=ℎ(t)=t2−2λt+2=(t−λ)2+2−λ2,t∈[0,+∞).①当λ≤0时,ℎ(t)≥ℎ(0),所以函数的值域为[2,+∞);②当λ>0时,ℎ(t)≥ℎ(λ),所以函数的值域为[2−λ2,+∞).(3) 因为g(x)的定义域为R,f(x)为奇函数,所以g(−x)=f(−x)+(−x)=−f(x)−x=−(f(x)+x)=−g(x),故g(x)为奇函数.任取x1,x2,且x1<x2,则g(x1)−g(x2)=(e x1−e x2)−(1e x1−1e x2)+(x1−x2)=(e x1−e x2)(1+1e x1+x2)+(x1−x2),因为x1<x2,所以(e x1−e x2)(1+1e x1+x2)<0,x1−x2<0,所以g(x1)−g(x2)<0,所以g(x1)<g(x2),故g(x)在R上单调递增.由g((log2x)2)+g(2log2x−3)≥0,得g((log2x)2)≥−g(2log2x−3),即g((log2x)2)≥g(−2log2x+3),所以(log2x)2≥−2log2x+3,所以(log2x)2+2log2x−3≥0,解得log2x≥1或log2x≤−3,故x≥2或0<x≤18.故原不等式的解集为(0,18]∪[2,+∞).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性24. 【答案】(1) 因为 tanα=43,tanα=sinαcosα, 所以 sinα=43cosα,因为 sin 2α+cos 2α=1,所以 cos 2α=925, 因此,cos2α=2cos 2α−1=−725.(2) 因为 α,β 为锐角,所以 α+β∈(0,π), 因为 cos (α+β)=−√55, 所以 sin (α+β)=√1−cos 2(α+β)=2√55.因此 tan (α+β)=−2, 因为 tanα=43,所以 tan2α=2tanα1−tan 2α=−247,因此tan (α−β)=tan [2α−(α+β)]=tan2α−tan (α+β)1+tan2αtan (α+β)=−211.【知识点】两角和与差的正切、二倍角公式25. 【答案】(1) 当 a =2 时,不等式:f (x )≥6−∣2x −5∣,可化为 ∣x −2∣+∣2x −5∣≥6. ① x ≥2.5 时,不等式可化为 x −2+2x −5≥6,所以 x ≥133;② 2≤x <2.5,不等式可化为 x −2+5−2x ≥6,所以 x ∈∅; ③ x <2,不等式可化为 2−x +5−2x ≥6,所以 x ≤13,综上所述,不等式的解集为 (−∞,13]∪[133,+∞).(2) 不等式 f (x )≤4 的解集为 [a −4,a +4]=[−1,7], 所以 a =3,所以 1s +8t =13(1s +8t )(2s +t )=13(10+ts +16s t)≥6,当且仅当 s =12,t =2 时取等号.【知识点】绝对值不等式的求解、均值不等式的应用26. 【答案】(1) 由2kπ−π2≤x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤x≤2kπ+π4,k∈Z.因为f(x)在[−b,b]上单调递增,令k=0,得−3π4≤x≤π4是f(x)的一个单调递增区间,所以{b≤π4,−b≥−3π4,解得b≤π4,可得正数b的最大值为π4.(2) g(x)=−sinxcosx+√2af(x)−1=−sinxcosx+a(sinx+cosx)−1,设t=sinx+cosx+√2sin(x+π4),当x∈[0,3π4]时,t∈[0,√2].它的图形如图所示.又sinxcosx=12(t2−1),则−sinxcosx+a(sinx+cosx)−1=12t2+at−12,t∈[0,√2],令ℎ(t)=−12t2+at−12,则函数g(x)在[0,3π4]内恰有一个零点,转化为ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点.①当t=0时,ℎ(t)无零点.②当t=√2时,由√2a−32=0,得a=3√24,把a=3√24代入−12t2+at−12=0中,得−12t2+3√24t−12=0,解得t1=√2,t2=√22,不符合题意.③当0<t<√2时,若Δ=a2−1=0,得a=1,此时t=1,由t=√2sin(x+π4)的图象可知不符合题意;若Δ=a2−1>0,即a>1,设−12t2+at−12=0的两根分别为t1,t2,由t1t2=1,且抛物线的对称轴为t=a≥1,要使ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点,则两同时为正,且一个根在(0,1)内,另一个根在(√2,+∞)内,所以{ℎ(1)>0,ℎ(√2)>0,解得a>3√24.综上,a的取值范围为(3√24,+∞).【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) 当a=2,b=−2时,f(x)=2x2−x−4,所以由 f (x )=x 得 x 2−x −2=0,所以 x =−1 或 x =2, 所以 f (x ) 的不动点为 −1,2.(2) 当 a =3 时,f (x )=2x 2+(b +1)x +b −2, 由题意得 f (x )=x 在 (−2,3) 内有两个不同的不动点,即方程 2x 2+bx +b −2=0 在 (−2,3) 内的两个不相等的实数根, 设 g (x )=2x 2+bx +b −2,所以只须满足 {g (−2)=8−2b +b −2>0,g (3)=18+3b +b −2>0,−2<−b4<3,b 2−8(b −2)>0, 所以 {b <6,b >−4,−12<b <8,b ≠4, 所以 −4<b <4 或 4<b <6.(3) 由题意得:对于任意实数 b ,方程 ax 2+bx +b −2=0 总有两个不相等的实数解, 所以 {a ≠0,Δ=b 2−4a (b −2)>0,所以 b 2−4ab +8a >0 对 b ∈R 恒成立, 所以 16a 2−32a <0,所以 0<a <2.【知识点】函数的零点分布28. 【答案】(1) {y∣ y ≥−4}. (2) {x∣ x ≠0}. (3) {x∣ x ≥45}.【知识点】集合的表示方法29. 【答案】(1) 当 x >0 时,−x <0,f (−x )=(−x )2+4(−x )=x 2−4x , 因为 f (x ) 是定义在 R 上的奇函数, 所以 f (x )=−f (x )=−x 2+4x , 所以 f (x )={x 2+4x,x ≤0−x 2+4x,x >0,f (x ) 的单调减区间为 (−∞,−2) 和 (2,+∞),单调增区间为 (−2,2).(2) 当 x ≤0 时,x 2+4x >3,即 x 2+4x −3>0, 即 x <−2−2√7 或 x >−2+2√7, 因为 x ≤0,所以 x <−2−2√7, 当 x >0 时,−x 2+4x >3,即 x 2−4x +3<0,即 (x −1)(x −3)<0,解得 1<x <3.综上,不等式f(x)>3的解集为(−∞,−2−2√7)∪(1,3).【知识点】函数的奇偶性、函数不等式的解法30. 【答案】(1) 由题意知,t=(4+20p)p−x−(10+2p),将p=3−2x+1代入化简得:y=16−4x+1−x(0≤x≤a).(2) y=17−(4x+1+x+1)≤17−2√4x+1×(x+1)=13,当且仅当4x+1=x+1,即x=1时,上式取等号,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,y=17−(4x+1+x+1)在[0,a]上单调递增,所以x=a时,函数有最大值,即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元时,厂家的利润最大.【知识点】均值不等式的实际应用问题、建立函数表达式模型。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(5)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 设 D 是含数 1 的有限实数集,f (x ) 是定义在 D 上的函数.若 f (x ) 的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1) 的可能取值只能是 ( ) A . √3B .√32C .√33D . 02. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8123. 定义“函数 y =f (x ) 是 D 上的 a 级类周期函数”如下:函数 y =f (x ),x ∈D ,对于给定的非零常数 a ,总存在非零常数 T ,使得定义域 D 内的任意实数 x 都有 af (x )=f (x +T ) 恒成立,此时 T 为 f (x ) 的周期.若 y =f (x ) 是 [1,+∞) 上的 a 级类周期函数,且 T =1,当 x ∈[1,2) 时,f (x )=2x +1,且 y =f (x ) 是 [1,+∞) 上的单调递增函数,则实数 a 的取值范围为 ( ) A . [56,+∞)B . [2,+∞)C . [53,+∞)D . [10,+∞)4. 下列函数中,既是偶函数又在 (0,+∞) 上单调递增的函数是 ( ) A . y =cosxB . y =x 3C . y =log 12xD . y =e x +e −x5. 若函数 f (x )(x ∈R ) 为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则 f (5)= ( )A . 0B . 1C . 52D . 56. 设函数 f (x )={x 2+1,x ≤12x ,x >1,则 f(f (3)) 等于 ( )A . 15B . 3C . 23D .1397. 已知函数 f (x )={x 2−2ax +2a,x ≤12x −alnx,x >1.若关于 x 的不等式 f (x )≥a 2 在 R 上恒成立,则实数 a 的取值范围为 ( ) A . (−∞,2√e] B . [0,32] C . [0,2]D . [0,2√e]8. 函数 f (x )=2x 2+2x x+1是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数9. 已知函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则实数 a 的值为 ( ) A . −12B . 12C . −1D . 110. 如图,在四边形 ABCD 中,AB ∥CD ,AB ⊥BC ,AD =DC =2,CB =√2,动点 P 从 A 点出发,按照 A →D →C →B 路径沿边运动,设 P 点运动的路程为 x ,△APB 的面积为 y ,则函数 y =f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 记 t =x +y −a(x +2√2xy),x >0,y >0.已知对任意的 x >0,y >0,恒有 t ≥0,则实数 a 的取值范围为 .12. 若函数 f (x )=√1−log 2x 的反函数为 f −1(x ),则 f −1(x ) 的值域为 .13. 已知函数 f (x )={x 2,x ≤0−x 2,x >0,则 f [f (−2)]= .14. 已知函数 f (x )=sinx +tanx .项数为 27 的等差数列 {a n } 满足 a n ∈(−π2,π2),且公差 d ≠0,若 f (a 1)+f (a 2)+⋯+f (a 27)=0,则当 k = 时,f (a k )=0.15. 试写出一个与函数 y =x 2 定义域和值域都相同的函数 .16. 已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时,f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为 .三、解答题(共6题)17. 某工厂有一段旧墙长 14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为 126 m 2 的厂房,工程条件是:(1)建 1 m 新墙的费用为 a 元; (2)修 1 m 旧墙的费用为 a4 元;(3)拆去 1 m 的旧墙,用可得的建材建 1 m 的新墙的费用为 a2 元. 经讨论有两种方案:①利用旧墙一段 x m (0<x <14) 为矩形一边; ②矩形厂房利用旧墙的一面边长 x ≥14. 试写出两种方案中总费用关于 x 的函数关系.18. 定义在 R 上的严格减函数 y =f (x ) 满足:当且仅当 x ∈M ⊆R + 时,函数值 f (x ) 的集合为[0,2] 且 f (12)=1;对 M 中的任意 x 1,x 2 都有 f (x 1⋅x 2)=f (x 1)+f (x 2).(1) 求证;14∈M ,18∉M ;(2) 求证:y =f (x ) 在 M 上的反函数 f −1(x ) 满足 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2); (3) 设 x ∈[0,2],解不等式 f −1(x 2+x )⋅f −1(x +2)≤14.19. 已知函数 f (x ) 对一切实数 x ,y 都有 f (x +y )=f (x )+f (y ).(1) 求证:f (x ) 是奇函数;(2) 若 f (−3)=a ,试用 a 表示 f (12).20. 判断函数 f (x )={x 2−2x +3,x >0,0,x =0,−x 2−2x −3,x <0. 的奇偶性.21. 设函数 y =f (x ) 的表达式为 f (x )=x 2+∣x −a ∣,其中 a 为实常数.(1) 判断函数 y =f (x ) 的奇偶性,并说明理由; (2) 设 a >0,函数 g (x )=f (x )x在区间 (0,a ] 上为严格减函数,求实数 a 的最大值.22. 已知 f (x ) 是定义在 R 上的奇函数,且 f (1)=1,对于任意的 x 1,x 2∈R (x 1≠x 2),都有f (x 1)−f (x 2)x 1−x 2>0.(1) 解关于 x 的不等式 f (x 2−3ax )+f (2a 2)<0;(2) 若 f (x )≤m 2−2am +1 对所有 x ∈[−1,1],a ∈[−1,1] 恒成立,求实数 m 的取值范围.答案一、选择题(共10题) 1. 【答案】B【知识点】抽象函数2. 【答案】B【解析】当 m =2 时,f (x )=(n −8)x +1,要使其在区间 [12,2] 上单调递减,则 n −8<0⇒n <8,于是 mn <16,则 mn 无最大值.当 m ∈[0,2) 时,f (x ) 的图象开口向下,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≤12,即 2n +m ≤18,又 n ≥0,则 mn ≤m (9−m2)=−12m 2+9m . 而 g (m )=−12m 2+9m 在 [0,2) 上为增函数,所以 m ∈[0,2) 时,g (m )<g (2)=16,故 m ∈[0,2) 时,mn 无最大值. 当 m >2 时,f (x ) 的图象开口向上,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≥2,即2m +n ≤12,而 2m +n ≥2√2m ⋅n ,所以 mn ≤18,当且仅当 {2m +n =12,2m =n. 即 {m =3,n =6. 时,取“=”,此时满足 m >2. 故 (mn )max =18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性3. 【答案】C【解析】 f (n +1)=af (n )=a (2n +1)≥2(n +1)+1,a ≥1+22n+1 对 n ≥1,n ∈N ∗ 恒成立, 所以 a ≥(1+22n+1)max=1+23=53.【知识点】函数的最大(小)值4. 【答案】D【解析】 y =cosx 是偶函数,但在 (0,+∞) 不是单调递增,y =x 3 和 y =log 12x 2 不是偶函数,所以只有 y =e x +e −x 满足题意. 【知识点】函数的奇偶性、函数的单调性5. 【答案】C【解析】因为 f (x ) 为奇函数,所以 f (−1)=−f (1), 又 f (x +2)=f (x )+f (2),令 x =−1,得 f (1)=f (−1)+f (2), 于是 f (2)=2f (1)=1;令 x =1,得 f (3)=f (1)+f (2)=32,于是 f (5)=f (3)+f (2)=52. 故选C .【知识点】函数的奇偶性、抽象函数6. 【答案】D【解析】因为 f (3)=23≤1,所以 f(f (3))=(23)2+1=139.【知识点】分段函数7. 【答案】C【知识点】分段函数、恒成立问题8. 【答案】D【解析】因为 f (x )=2x 2+2x x+1的定义域为 {x∣ x ≠−1},定义域不关于原点对称,所以 f (x ) 既不是奇函数也不是偶函数. 【知识点】函数的奇偶性9. 【答案】A【解析】函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,所以当 x ≥0 时,f (x )=2x −2−x , −x <0,即 f (−x )=2x −2−x , 所以 f (x )=f (−x ),同理当 x <0 时,f (x )=2−x −2x , 则 −x >0,则 f (−x )=2−x −2x , 即 f (x )=−f (−x ),综上可知,函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0 为偶函数,当 x ≥0 时,f (x )=2x −2−x ,此时 f (x ) 单调递增, 所以由偶函数对称性可知当 x <0 时 f (x ) 单调递减,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则需 ∣2x +1∣≥∣x −a ∣,两边同时平方,移项化简可得3x2+(2a+4)x+1−a2≥0,由二次函数性质,可得Δ=(2a+4)2−4×3×(1−a2)≤0,化简可得(2a+1)2≤0,由平方数性质可知(2a+1)2≥0,所以只能是(2a+1)2=0,解得a=−12.【知识点】函数的奇偶性、函数的单调性、分段函数10. 【答案】A【解析】当x∈[0,2]时,y=f(x)=√2+12,x,y与x成正比,故排除C,D;当x∈(2,4]时,y=f(x)=1+√2,△APB的面积保持不变,排除B.故选A.【知识点】函数图象、函数的表示方法二、填空题(共6题)11. 【答案】{a∣ a≤12}【解析】由t≥0,得x+y≥a(x+2√2xy).因为x>0,y>0,所以a≤x+2√2xy.因为2√2xy≤x+2y,所以x+2√2xy ≥x+yx+(x+2y)=12,当且仅当x=2y>0时,等号成立,因为a≤12,所以实数a的取值范围是{a∣ a≤12}.【知识点】均值不等式的应用12. 【答案】(0,2]【解析】求原函数定义域即解不等式1−log2x>0.【知识点】函数的值域的概念与求法13. 【答案】−16【解析】f[f(−2)]=f(4)=−16.【知识点】分段函数14. 【答案】14【解析】提示:函数 f (x )=sinx +tanx 为奇函数,a 1+a 27=a 2+a 26=⋯=2a 14=0 时,满足题意.又因为此函数在 (−π2,π2) 上为增函数,所以 k 只能等于 14. 【知识点】函数的奇偶性、等差数列15. 【答案】 y =(x +1)2(答案不唯一)【知识点】函数的相关概念16. 【答案】 (−5,0)∪(5,+∞)【解析】因为 f (x ) 是定义在 R 上的奇函数,所以 f (0)=0, 又当 x <0 时,−x >0,所以 f (−x )=x 2+4x . 又 f (x ) 为奇函数,所以 f (−x )=−f (x ), 所以 f (x )=−x 2−4x (x <0), 所以 f (x )={x 2−4x,x >00,x =0−x 2−4x,x <0①当 x >0 时,由 f (x )>x 得 x 2−4x >x ,解得 x >5; ②当 x =0 时,f (x )>x 无解;③当 x <0 时,由 f (x )>x 得 −x 2−4x >x ,解得 −5<x <0. 综上,不等式 f (x )>x 的解集用区间表示为 (−5,0)∪(5,+∞). 【知识点】函数的奇偶性、二次不等式的解法三、解答题(共6题)17. 【答案】方案①:修旧墙费用为 x ⋅a4 元,拆旧墙造新墙费用为 (14−x )⋅a2 元,其余建新墙费用为 (2x +2×126x−14)a 元,∴ 总费用 y =7a (x4+36x−1)(0<x <14).方案②:利用旧墙费用为 14⋅a 4=7a 2(元),建新墙费用为 (2x +252x−14)a (元),总费用 y =2a (x +126x)−212a (x ≥14).【知识点】建立函数表达式模型18. 【答案】(1) 因为 12∈M ,又 14=12×12,f (12)=1, 所以 f (14)=f (12×12)=f (12)+f (12)=2∈[0,2],所以 14∈M ,又因为 f (18)=f (14×12)=f (14)+f (12)=3∉[0,2], 所以 18∉M .(2) 因为 y =f (x ) 在 M 上是严格减函数,所以 y =f (x ) 在 M 上有反函数 y =f −1(x ),x ∈[0,2].任取 x 1,x 2∈[0,2],设 y 1=f −1(x 1),y 2=f −1(x 2), 所以 x 1=f (y 1),x 2=f (y 2)(y 1,y 2∈M ). 因为 x 1+x 2=f (y 1)+f (y 2)=f (y 1y 2), 所以 y 1y 2=f −1(x 1+x 2).又 y 1y 2=f −1(x 1)f −1(x 2),所以 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2). (3) 因为 y =f (x ) 在 M 上是严格减函数, 所以 f −1(x ) 在区间 [0,2] 上也是严格减函数.f −1(x 2−x )⋅f −1(x +2)≤14 等价于 f −1(x 2−x +x +2)≤f −1(2).转化为 {0≤x 2−x ≤2,0≤x +2≤2,x 2+2≥2,解得 {−1≤x ≤0或1≤x ≤2,−2≤x ≤0,x ∈R. 即 −1≤x ≤0.所以,不等式的解集为 [−1,0].【知识点】函数的单调性、抽象函数、反函数19. 【答案】(1) 由已知 f (x +y )=f (x )+f (y ), 令 y =−x 得 f (0)=f (x )+f (−x ), 令 x =y =0 得 f (0)=2f (0), 所以 f (0)=0, 所以 f (x )+f (−x )=0, 即 f (−x )=−f (x ), 故 f (x ) 是奇函数.(2) 由(1)知 f (x ) 为奇函数. 所以 f (−3)=−f (3)=a , 所以 f (3)=−a .又 f (12)=f (6)+f (6)=2f (3)+2f (3)=4f (3), 所以 f (12)=−4a .【知识点】函数的奇偶性20. 【答案】若 x >0,则 −x <0,f (−x )=−(−x )2−2(−x )−3=−x 2+2x −3=−f (x ); 若 x =0,则 −x =0,f (−x )=f (0)=0=−f (0);若 x <0,则 −x >0,f (−x )=(−x )2−2(−x )+3=x 2+2x +3=−f (x ). 综上所述 f (−x )={−x 2+2x −3,x >0,0,x =0,x 2+2x +3,x <0.所以 f (−x )=−f (x ),所以 f (x ) 是奇函数.【知识点】函数的奇偶性21. 【答案】(1) 当 a =0 时,y =f (x ) 为偶函数;当 a ≠0 时,y =f (x ) 为非奇非偶函数;(2) a ∈(0,1].【知识点】函数的单调性、函数的最大(小)值22. 【答案】(1) 因为对于任意 x 1,x 2∈[−1,1],x 1≠x 2,总有 f (x 1)−f (x 2)x 1−x 2>0,所以函数 f (x ) 在 [−1,1] 上是递增的奇函数.不等式 f (x 2−3ax )+f (2a 2)<0 变形为不等式 f (x 2−3ax )<−f (2a 2)=f (−2a 2), 所以 x 2−3ax +2a 2<0⇒(x −2a )(x −a )<0. ①当 a >0 时,不等式解集为 {x∣ a <x <2a }; ②当 a =0 时,不等式解集为 ⌀;③当 a <0 时,不等式解集为 {x∣ 2a <x <a }.(2) 所以函数 f (x ) 在 [−1,1] 上是增函数,且 f (x )max =f (1)=1.所以问题转化为 t 2−2αt −1≥f (x )max =f (1)=1 对任意的 α∈[−1,1] 恒成立. 令 g (α)=m 2−2αm +1,α∈[−1,1],只需 {g (1)=m 2−2m +1≥1,g (−1)=m 2+2m +1≥1, 解得 m =0 或 m ≥2 或 m ≤−2.所以实数 m 的取值范围为 {m∣ m =0 或 m ≥2 或 m ≤−2}. 【知识点】函数的单调性、函数的奇偶性。
人教A版高中数学必修一 1-1-1同步练习题(含答案解析)
1.1.1一、选择题1.方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27的解集是( ) A.⎩⎪⎨⎪⎧x =3y =-7 B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7}[答案] D[解析] 解方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7 用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D.2.集合A ={x ∈Z |y =12x +3,y ∈Z }的元素个数为( ) A .4B .5C .10D .12 [答案] D[解析] 12能被x +3整除.∴y =±1,±2,±3,±4,±6,±12,相应的x 的值有十二个:9,-15,3,-9,1,-7,0,-6,-1,-5,-2,-4.故选D.3.集合A ={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A .2B .3C .4D .无数个 [答案] C[解析] 两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素,因此选C.4.已知a 、b 、c 为非零实数,代数式a |a |+b |b |+c |c |+abc |abc |的值所组成的集合为M ,则下列判断中正确的是( )A .0∉MB .-4∉MC .2∈MD .4∈M [答案] D[解析] a 、b 、c 皆为负数时代数式值为-4,a 、b 、c 二负一正时代数式值为0,a 、b 、c 一负二正时代数式值为0,a 、b 、c 皆为正数时代数式值为4,∴M ={-4,0,4}.5.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}[答案] C[解析] 在x 轴上的点(x ,y ),必有y =0;在y 轴上的点(x ,y ),必有x =0,∴xy =0.6.集合M ={(x ,y )|xy ≤0,x ,y ∈R }的意义是( )A .第二象限内的点集B .第四象限内的点集C .第二、四象限内的点集D .不在第一、三象限内的点的集合[答案] D[解析] ∵xy ≤0,∴xy <0或xy =0当xy <0时,则有⎩⎪⎨⎪⎧ x <0y >0或⎩⎪⎨⎪⎧ x >0y<0,点(x ,y )在二、四象限, 当xy =0时,则有x =0或y =0,点(x ,y )在坐标轴上,故选D.7.方程组⎩⎪⎨⎪⎧ x +y =1x 2-y 2=9的解(x ,y )构成的集合是( )A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 首先A ,B 都不对,将x =5,y =-4代入检验知是方程组的解.∴选D.*8.集合S ={a ,b ,c }中的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是() A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合元素的互异性知,a 、b 、c 两两不等.9.设a 、b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a 等于( )A .1B .-1C .2D .-2[答案] C[解析] ∵{1,a +b ,a }={0,b a,b }, ∴a ≠0,∴a +b =0,∴a =-b ,∴b a=-1, ∴a =-1,b =1,∴b -a =2.故选C.10.设集合A ={0,1,2},B ={-1,1,3},若集合P ={(x ,y )|x ∈A ,y ∈B ,且x ≠y },则集合P 中元素个数为( )A .3个B .6个C .9个D .8个[答案] D[解析] x ∈A ,对于x 的每一个值,y 都有3个值与之对应,但由于x ≠y ,∴x =1,y =1,不合题意,故共有3×3-1=8个.[点评] 可用列举法一一列出:P ={(0,-1),(0,1),(0,3),(1,-1),(1,3),(2,-1),(2,1),(2,3)}.二、填空题11.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________.[答案] {(2,4),(5,2),(8,0)}[解析] ∵3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∴y 为偶数且y ≤5,∴当x =2时,y =4,当x =5时y =2,当x =8时,y =0.12.已知A ={1,0,-1,2},B ={y |y =|x |,x ∈A },则B =________.[答案] {1,0,2}[解析] 当x =1时,y =1;x =0时,y =0;x =-1时,y =1;x =2时,y =2,∴B ={1,0,2}.13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________.[答案] 2或4[解析] ∵a ∈A ,∴a =2或a =4或a =6,而当a =2和a =4时,6-a ∈A ,∴a =2或a =4.三、解答题14.用列举法表示集合.(1)平方等于16的实数全体;(2)比2大3的实数全体;(3)方程x 2=4的解集;(4)大于0小于5的整数的全体.[解析] (1){-4,4} (2){5} (3){-2,2} (4){1,2,3,4}.15.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.[解析] (1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N +}.(3){x |x =2n -12n,n ∈N +}. (4){x |x =5n +2,n ∈Z }.*16.设A 表示集合{2,3,a 2+2a -3},B 表示集合{|a +3|,2},若已知5∈A ,且5∉B ,求实数a 的值.[解析] ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,|a +3|≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8,∴a =-4. 17.已知集合A ={x |ax 2-3x -4=0,x ∈R }:(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.[分析] 集合A 是方程ax 2-3x -4=0的解集.A 中有两个元素,即方程有两个相异实根,必有a ≠0;A 中至多有一个元素,则a ≠0时,应有Δ≤0;a =0时,恰有一个元素.[解析] (1)∵A 中有两个元素,∴关于x 的方程ax 2-3x -4=0有两个不等的实数根,∴⎩⎪⎨⎪⎧Δ=9+16a >0a ≠0,即a >-916且a ≠0. (2)当a =0时,A ={-43};当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,∴Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a ≤-916或a =0. *18.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2008+b 2007.[解析] 解法1:∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0,或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2008+b 2007=1.解法2:由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab ,即⎩⎪⎨⎪⎧ab (a 3-1)=0 ①(a -1)(a +b +1)=0 ②因为集合中的元素互异,所以a≠0,a≠1.解方程组得,a=-1,b=0.故a2008+b2007=1.。
人教A版高一数学必修第一册全册复习训练题卷含答案解析(33)
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8122. 若 a 为实数,则“a <1”是“1a >1”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3. 若函数 f (x )=x 2−4x +8,x ∈[1,a ],它的最大值为 f (a ),则实数 a 的取值范围是 ( ) A . (1,2] B . (1,3) C . (3,+∞) D . [3,+∞)4. 已知函数 f (x )=√3sinωx −cosωx (ω>0),y =f (x ) 的图象与直线 y =2 的两个相邻交点的距离等于 π,则 f (x ) 的一条对称轴是 ( ) A . x =−π12B . x =π12C . x =−π3D . x =π35. 已知函数 f (x )={ln (x +1),0<x ≤21−2x ,−2≤x ≤0,若函数 y =∣f (x )∣ 图象与直线 y =kx +k 有 3 个交点,则实数 k 的取值范围是 ( ) A .(0,1e )B .(0,12e )C .[ln33,12e )D .[ln33,1e )6. 如果 a <b <0,那么下列不等式中不正确的是 ( ) A .1a>1bB .1a−b>1bC . √−a >√−bD . ∣a∣>−b7. 若函数 f (x )={1−x 2,x ≤1x 2−x −3,x >1,则 f (1f (3)) 的值为 ( )A .1516B . −2716C . 89D . 188. 设函数 f (x ) 的定义域为 R ,有下列三个命题:(1)若存在常数 M ,使得对任意 x ∈R ,有 f (x )≤M ,则 M 是函数 f (x ) 的最大值;(2)若存在 x 0∈R ,使得对任意 x ∈R ,且 x ≠x 0,有 f (x )<f (x 0),则 f (x 0) 是函数 f (x ) 的最大值;(3)若存在 x 0∈R ,使得对任意 x ∈R ,有 f (x )≤f (x 0),则 f (x 0) 是函数 f (x ) 的最大值. 这些命题中,真命题的个数是 ( ) A . 0 个 B . 1 个 C . 2 个 D . 3 个9. 已知函数 f (x )=6x −log 2x 在下列区间中,包含 f (x ) 零点的区间是 ( )A . (0,1)B . (1,2)C . (2,4)D . (4,+∞)10. 函数 f (x ) 满足是 f (x +2)=4f (x ),且 x ∈R ,当 x ∈[0,2],f (x )=x 2−4x +16,则当 x ∈[−4,−2] 时,f (x ) 的最小值为 ( ) A . −18B . 18C . −34D . 34二、填空题(共10题)11. 能说明“若 a >b ,则 1a <1b ”为假命题的一组 a ,b 的值依次为 .12. 已知函数 f (x )=x 2−2(a +2)x +a 2,g (x )=−x 2+2(a −2)x −a 2+8.设 H 1(x )=max {f (x ),g (x )},H 2(x )=min {f (x ),g (x )}(max {p,q } 表示 p ,q 中的较大值,min {p,q } 表示 p ,q 中的较小值).记 H 1(x ) 的最小值为 A ,H 2(x ) 的最大值为 B ,则 A −B = .13. 已知 θ∈(0,π),且 sin (θ+π4)=√210,则 cos (θ−π4)= ,tanθ= .14. 已知函数 f (x ) 的定义域为 R ,且 f (x )⋅f (−x )=1 和 f (1+x )⋅f (1−x )=4 对任意的 x ∈R都成立.若当 x ∈[0,1],f (x ) 的值域为 [1,2],则当 x ∈[−100,100] 时,函数 f (x ) 的值域为 .15. 对一定义域为 D 的函数 y =f (x ) 和常数 c ,若对任意正实数 ξ,∃x ∈D 使得 0<∣f (x )−c ∣<ξ 成立,则称函数 y =f (x ) 为“敛 c 函数”,现给出如下函数:① f (x )=x (x ∈Z );② f (x )=(12)x+1(x ∈Z );③ f (x )=log 2x ;④ f (x )=x−1x.其中为“敛 1 函数”的有 .(填序号)16. 设函数 f (x )={√x,x ≥0(12)x,x <0,则 f(f (−4))= ,f (f(f (−4))) .17. 某卡车在同一时间段里速度 v (km/h ) 与耗油量 Q (kg/h ) 之间近似地满足函数表达式 Q =0.0025v 2−0.175v +4.27,要使卡车的耗油量最少,则车速为 .18. 定义在 R 上的奇函数 f (x ) 满足 f (x +4)=f (x ) 上,且在区间 [2,4) 上,f (x )={2−x,2≤x <3x −4,3≤x <4,则函数 y =f (x )−log 5∣x ∣ 的零点的个数为 .19. 已知 a >0,函数 f (x )={x 2+2ax +a,x ≤0−x 2+2ax −2a,x >0.若关于 x 的方程 f (x )=ax 恰有 2 个互异的实数解,则 a 的取值范围是 .20. 已知 cos (508∘−α)=1213,则 cos (212∘+α)= .三、解答题(共10题)21. 已知 f (x )=mx +3,g (x )=x 2+2x +m .(1) 求证:关于 x 的方程 f (x )−g (x )=0 有解;(2) 设 G (x )=f (x )−g (x )−1,求函数 y =G (x ) 在区间 [0,+∞) 上的最大值;(3) 对于(2)中的 G (x ),若函数 y =∣G (x )∣ 在区间 [−1,0] 上是严格减函数,求实数 m 的取值范围.22. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x >0 时,f (x )=1−2−x ,(1) 写出 f (x ) 的单调区间; (2) 求不等式 f (x )<−12 的解集.23. 求证:1cos2θ−tanθtan2θ=1.24. 已知集合 A ={x∣ ∣ x −2∣ <a },集合 B ={x∣ 2x−1x+2≤1},且 A ⊆B ,求实数 a 的取值范围.25. 求函数 y =tan (2x −π4) 的周期和单调区间.26. 已知函数 f (x )=x∣x −a∣+2x (a ∈R ).(1) 若函数 f (x ) 在 R 上单调递增,求实数 a 的取值范围;(2) 若存在实数a∈[−4,4]使得关于x的方程f(x)−tf(a)=0恰有三个不相等的实数根,求实数t的取值范围.−x)−√3sin2x+sinxcosx.27.已知函数f(x)=2cosxcos(π6(1) 求f(x)的最小正周期;(2) 将函数y=f(x)的图象上各点的横坐标缩短到原来的1倍,纵坐标不变,得到函数y=2g(x)的图象,求函数g(x)在(0,π)上的取值范围.4(p>0)的单调性.28.判断函数f(x)=x+px29.已知函数f(x)的定义域为[0,2],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的实数m且0<m<2,存在x0∈[0,2−m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).),并说明理由;(1) 已知函数f(x)=√1−(x−1)2,判断f(x)是否具有性质P(12(2) 求证:任取m∈(0,2),函数f(x)=(x−1)2,x∈[0,2]具有性质P(m);(3) 已知函数f(x)=sinπx,x∈[0,2],若f(x)具有性质P(m),求m的取值范围.30.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(15−0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1) 每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2) 每套丛书售价定为多少元时,单套丛书的利润最大?答案一、选择题(共10题)1. 【答案】B【解析】当m=2时,f(x)=(n−8)x+1,要使其在区间[12,2]上单调递减,则n−8<0⇒n<8,于是mn<16,则mn无最大值.当m∈[0,2)时,f(x)的图象开口向下,要使f(x)在区间[12,2]上单调递减,需−n−8m−2≤12,即2n+m≤18,又n≥0,则mn≤m(9−m2)=−12m2+9m.而g(m)=−12m2+9m在[0,2)上为增函数,所以m∈[0,2)时,g(m)<g(2)=16,故m∈[0,2)时,mn无最大值.当m>2时,f(x)的图象开口向上,要使f(x)在区间[12,2]上单调递减,需−n−8m−2≥2,即2m+n≤12,而2m+n≥2√2m⋅n,所以mn≤18,当且仅当{2m+n=12,2m=n.即{m=3,n=6.时,取“=”,此时满足m>2.故(mn)max=18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性2. 【答案】B【知识点】充分条件与必要条件3. 【答案】D【知识点】函数的最大(小)值4. 【答案】D【解析】由题,得f(x)=√3sinωx−cosωx=2sin(ωx−π6),因为y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,所以函数y=f(x)的最小正周期T=π,则ω=2πT=2,所以f(x)=2sin(2x−π6),当x=π3时,2x−π6=π2,所以x=π3是函数f(x)=2sin(2x−π6)的一条对称轴.【知识点】Asin(ωx+ψ)形式函数的性质5. 【答案】D【解析】因为函数 y =∣f (x )∣ 图象与直线 y =kx +k 有 3 个交点, 所以 f (x )={ln (x +1),0<x ≤21−2x ,−2≤x ≤0,与 y =k (x +1) 有 3 个不同交点,作 y =f (x ) 与 y =k (x +1) 的图象如下,易知直线 y =k (x +1) 过定点 A (−1,0),斜率为 k .当直线 y =k (x +1) 与 y =ln (x +1) 相切时是一个临界状态, 设切点为 (x 0,y 0),则 {k =yʹ=1x0+1,k (x 0+1)=ln (x 0+1),解得,x 0=e −1,k =1e ,又函数过点 B (2,ln3),k AB =ln32−(−1)=ln33,故ln33≤k <1e .【知识点】函数的零点分布6. 【答案】B【知识点】不等式的性质7. 【答案】C【解析】因为 f (x )={1−x 2,x ≤1x 2−x −3,x >1,所以 f (3)=32−3−3=3, 所以 f (1f (3))=f (13)=1−(13)2=89.【知识点】分段函数8. 【答案】C【解析】对于(1),M 不一定是函数 f (x ) 中的值,可能“=”不能取到,故其不正确; 因为函数最大值的定义是存在一个函数值不小于其它所有的函数值, 则此函数值是函数的最大值,故(2)(3)正确. 综上可知正确的有 2 个. 【知识点】函数的最大(小)值9. 【答案】C【解析】因为f(x)在(0,+∞)上单调递减,且f(1)=6−log21=6>0,f(2)=3−log22=2>0,f(4)=32−log24=−12<0,所以由函数零点存在定理知函数f(x)在区间(2,4)内必存在零点.【知识点】零点的存在性定理10. 【答案】D【解析】因为x∈[0,2]时,f(x)的对称轴为x=2,所以f(x)在[0,2]单调递减,所以f(x)min=f(2)=12,所以x∈[−4,−2]时,f(x)min=116f(2)=34.故选D.【知识点】函数的最大(小)值二、填空题(共10题)11. 【答案】1,−1(答案不唯一)【知识点】命题的概念与真假判断12. 【答案】−16【解析】f(x)=[x−(a+2)]2−4−4a,g(x)=−[x−(a−2)]2+12−4a.由f(x)=g(x),解得x=a+2或x=a−2.又H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},所以H1(x)的最小值A=−4−4a,H2(x)的最大值B=12−4a,所以A−B=(−4−4a)−(12−4a)=−16.【知识点】二次函数的性质与图像13. 【答案】√210;−43【解析】由诱导公式sinα=cos(π2−α),cos(−α)=cosα.所以sin(θ+π4)=cos[π2−(θ+π4)]=cos(π4−θ)=cos(θ−π4),即sin(θ+π4)=cos(θ−π4),所以cos(θ−π4)=sin(θ+π4)=√210.由sin(θ+π4)=√210,利用正弦和角公式展开可得 sinθcos π4+cosθsin π4=√210. 即 sinθ+cosθ=15,两边同时平可得 2sinθcosθ=125−1=−2425.则 sinθ 与 cosθ 异号,且 sinθ+cosθ=15>0,由 θ∈(0,π),所以 sinθ>0,cosθ<0,且 ∣sinθ∣>∣cosθ∣. 由 sinθ+cosθ=15,可知 sinθ=15−cosθ.由同角三角函数关系式 sin 2θ+cos 2θ=1 代入可得 (15−cosθ)2+cos 2θ=1.化简可得 25cos 2θ−5cosθ−12=0,即 (5cosθ+3)(5cosθ−4)=0. 解得 cosθ=−35,cosθ=45(舍).所以 sinθ=15−(−35)=45.所以 tan =sinθcosθ=45−35=−43.【知识点】两角和与差的正弦14. 【答案】 [2−100,2100]【解析】由 f (x )⋅f (−x )=1 可得,f (x )=1f (−x ),由 f (1+x )⋅f (1−x )=4 可得 f (1+x )=4f (1−x ), 令 1−x =t 可得 f (t )=4f (2−t ), ⋯⋯①由 f (x )⋅f (−x )=1 可得,f (x )=1f (−x ),所以 f (t )=1f (−t ), ⋯⋯② ①② 联立可得 f (t +2)=4f (t ),所以 f (x +2)=4f (x ), 因为当 x ∈[0,1],f (x ) 的值域为 [1,2], 设 x ∈[−1,0] 时,−x ∈[0,1],则 f (x )=1f (−x)∈[12,1], 所以 x +2∈[1,2] 时,f (x +2)=4f (x )∈[2,4],以此类推,区间每增加 2 个长度,值域变为上个区间的 4 倍,且 x ∈[−1,1] 时,值域为 [12,2],则当 x ∈[−100,100] 时,函数 f (x ) 的值域 [2−100,2100]. 【知识点】抽象函数、函数的值域的概念与求法15. 【答案】②③④【解析】由新定义知,对任意正实数 ξ,∃x ∈D 使得 0<∣f (x )−c ∣<ξ 成立,即 0<∣f (x )−c ∣<ξ 有解.对于函数①解得,1−ξ<x <1+ξ,且 x ≠1,x ∈Z ,因为 ξ 为任意正实数,所以无解,故函数①不是“敛 1 函数”;对于函数②解得,x >−log 2ξ 且 x ∈Z ,故函数 ②是“敛 1 函数”; 对于函数③解得,21−ξ<x <21+ξ,且 x ≠2,故函数③是“敛 1 函数”; 对于函数④解得,∣x ∣>1ξ,故函数④是“敛 1 函数”.因此正确答案为②③④. 【知识点】函数的相关概念16. 【答案】 4 ; 2【解析】因为 x =−4<0, 所以 f (−4)=(12)−4=16,因为 x =16>0,所以 f (16)=√16=4,f (4)=2. 【知识点】分段函数17. 【答案】 35 km/h【知识点】建立函数表达式模型18. 【答案】 5【知识点】函数的周期性、函数的零点分布、函数的奇偶性19. 【答案】 (4,8)【知识点】函数的零点分布20. 【答案】1213【解析】因为 cos (508∘−α)=cos (360∘+148∘−α)=cos (148∘−α)=1213,所以 cos (212∘+α)=cos (360∘+α−148∘)=cos (α−148∘)=cos (148∘−α)=1213. 【知识点】诱导公式三、解答题(共10题) 21. 【答案】(1) f (x )−g (x )=−x 2+(m −2)x +3−m ,令 f (x )−g (x )=0, 则 Δ=(m −2)2−4(m −3)=m 2−8m +16=(m −4)2≥0.(2) G(x)=−x2+(m−2)x+(2−m),当m−22≤0时,即m≤2时,G(x)max=G(0)=2−m,当m−22>0时,即m>2时,G(x)max=G(m−22)=−(m−2)24+(m−2)22+(2−m).G(x)max=(m−2)24+(2−m)=14m2−2m+3.(3) (方法一)G(x)=f(x)−g(x)−1=−x2+(m−2)x+2−m,①令G(x)=0,Δ=(m−2)2−4(m−2)=(m−2)(m−6),当Δ≤0,即2≤m≤6时,G(x)=−x2+(m−2)x+2−m≤0恒成立,所以∣G(x)∣=x2−(m−2)x+m−2,因为∣G(x)∣在[−1,0]上是减函数,所以m−22≥0.解得m≥2.所以2≤m≤6.当Δ>0,即m<2或m>6时,∣G(x)∣=∣x2−(m−2)x+m−2∣.因为∣G(x)∣在[−1,0]上是减函数,所以方程x2−(m−2)x+m−2=0的两根均大于零或一根大于零另一根小于零且x=m−22≤−1,所以{m−2>0,m−22>0或{m−2<0,m−22≤−1.解得m>2或m≤0.所以m≤0或m>6.综上可得,实数m的取值范围为(−∞,0]∪[2,+∞).(方法二)G(x)=f(x)−g(x)−1=−x2+(m−2)x+2−m,因为函数∣G(x)∣在[−1,0]上是减函数,所以{m−22≤−1,G(0)≥0或{m−22≥0,G(0)≤0.即{m−22≤−1,2−m≥0或{m−22≥0,2−m≤0.解得m≤0或m≥2.所以实数m的取值范围为(−∞,0]∪[2,+∞).【知识点】函数的单调性、函数的最大(小)值、二次函数的性质与图像22. 【答案】(1) 因为f(x)是定义在R上的奇函数,所以 f (0)=0.因为 f (x ) 在 [0,+∞) 上是增函数, 所以 f (x ) 在 (−∞,+∞) 上是增函数, (2) f (x )<−12=−f (1)=f (−1), 由(1)知 f (x ) 在 R 上是增函数, 所以 x <−1,即 f (x )<−12 的解集为 (−∞,−1).【知识点】指数函数及其性质23. 【答案】左边=1cos2θ−sinθsin2θcosθcos2θ=cosθ−2sin 2θcosθcosθcos2θ=1−2sin 2θcos2θ=cos2θcos2θ=1=右边,所以原等式成立. 【知识点】二倍角公式24. 【答案】当 a ≤0 时,A =∅,则 A ⊆B 满足题意,当 a >0 时,A ={x∣ ∣ x −2∣ <a }={x∣ −a <x −2<a }={x∣ 2−a <x <2+a },由2x−1x+2≤1⇒x−3x+2≤0⇒{(x +2)(x −3)≤0,x +2≠0⇒−2<x ≤3,所以 B ={x∣ −2<x ≤3},A ⊆B , {a >0,2−a ≥−2,2+a ≤3⇒0<a ≤1, 综上实数 a 的取值范围是 a ≤1. 【知识点】包含关系、子集与真子集25. 【答案】 y =tan (2x −π4) 的周期是 π2,单调递增区间是 (−π8+kπ2,3π8+kπ2)(k ∈Z ).【知识点】Asin(ωx+ψ)形式函数的性质26. 【答案】(1) f (x )=x∣x −a∣+2x ={x 2+(2−a )x,x ≥a−x 2+(2+a )x,x <a.由 f (x ) 在 R 上是增函数,则 {a ≥−2−a2,a ≤2+a2,即 −2≤a ≤2,则 a 范围为 −2≤a ≤2.(2) 当 −2≤a ≤2 时,f (x ) 在 R 上是增函数,则关于 x 的方程 f (x )−tf (a )=0 不可能有三个不等的实数根. 则当 a ∈(2,4] 时,由 f (x )={x 2+(2−a )x,x ≥a−x 2+(2+a )x,x <a ,得 x ≥a 时,f (x )=x 2+(2−a )x 对称轴 x =a−22,则 f (x ) 在 x ∈[a,+∞) 为增函数,此时 f (x ) 的值域为 [f (a ),+∞)=[2a,+∞); x <a 时,f (x )=−x 2+(2+a )x 对称轴 x =a+22,则 f (x ) 在 x ∈(−∞,a+22] 为增函数,此时 f (x ) 的值域为 (−∞,(a+2)24],f (x ) 在 x ∈[a+22,+∞) 为减函数,此时 f (x ) 的值域为 (2a,(a+2)24];由存在 a ∈(2,4],方程 f (x )=tf (a )=2ta 有三个不相等的实根, 则 2ta ∈(2a,(a+2)24),即存在 a ∈(2,4],使得 t ∈(1,(a+2)28a) 即可,令 g (a )=(a+2)28a,只要使 t <(g (a ))max 即可,而 g (a ) 在 a ∈(2,4] 上是增函数,g (a )max =g (4)=98,故实数 t 的取值范围为 (1,98); 当 a ∈[−4,−2) 时,由a+22>a−22>a ,则 f (x ) 在 (−∞,a ) 单调递增,值域为 (−∞,2a ); 在 (a,a−22) 单调递减,值域为 (−(a−2)24,2a); 在 (a−22,+∞) 单调递增,值域为 (−(a−2)24,+∞).由存在 a ∈[−4,−2),方程 f (x )=tf (a )=2ta 有三个不相等的实根, 则 2ta ∈(−(a−2)24,2a),即 t ∈(1,(a−2)28a),令 ℎ(a )=(a−2)28a,只要使 t <ℎ(a )max 即可,而 ℎ(a ) 在 a ∈[−4,−2) 单调递减,ℎ(a )max =ℎ(−4)=98, 所以 t 的取值范围为 (1,98).综上所述,实数t的取值范围为(1,98).【知识点】函数的奇偶性、函数的零点分布、函数的单调性27. 【答案】(1) 函数f(x)=2cosxcos(π6−x)−√3sin2x+sinxcosx=√3(cos2x−sin2x)+2sinxcosx=2sin(2x+π3),所以函数的最小正周期为π.(2) 将函数y=f(x)的图象上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数g(x)的图象,所以g(x)=2sin(4x+π3).因为x∈(0,π4),所以4x+π3∈(π3,4π3),所以g(x)∈(−√3,2].【知识点】Asin(ωx+ψ)形式函数的性质28. 【答案】任取x1,x2∈(0,+∞),且x1<x2,则f(x1)−f(x2)=x1+px1−(x2+px2)=(x1−x2)+p(x2−x1)x1x2=(x1−x2)⋅x1x2−px1x2. ⋯⋯①当x1,x2∈(0,√p)时,0<x1x2<p,x1−x2<0,所以①式大于0,即f(x1)−f(x2)>0,所以f(x2)<f(x1),即f(x)在(0,√p)上单调递减;当x1,x2∈[√p,+∞)时,x1x2>p,x1−x2<0,所以①式小于0,即f(x1)−f(x2)<0,所以f(x2)>f(x1),即f(x)在[√p,+∞)上单调递增.同理可得,当x∈(−√p,0)时,f(x)=x+px单调递减;当x∈(−∞,−√p]时,f(x)=x+px单调递增.综上所述,f(x)=x+px(p>0)在(−∞,−√p]和[√p,+∞)上单调递增,在 (−√p,0) 和 (0,√p) 上单调递减.【知识点】函数的单调性29. 【答案】(1) f (x ) 具有性质 P (12).设 x 0∈[0,32],令 f (x 0)=f (x 0+12), 则 (x 0−1)2=(x 0−12)2,解得 x 0=34,又 34∈[0,32],所以 f (x ) 具有性质 P (12).(2) 任取 x 0∈[0,2−m ],令 f (x 0)=f (x 0+m ), 则 (x 0−1)2=(x 0+m −1)2,因为 m ≠0,解得 x 0=−m2+1,又 0<m <2,所以 0<−m2+1<1, 当 0<m <2,x 0=−m 2+1 时,(2−m )−x 0=(2−m )−(−m 2+1)=1−m 2>0,即 0<−m2+1<2−m ,即任取实数 m ∈(0,2),f (x ) 都具有性质 P (m ).(3) m ∈(0,1].首先,若 m ∈(0,1],取 x 0=1−m 2,则1−m 2≥0 且 2−m −1−m 2=3−m 2>0,故 x 0∈[0,2−m ].又 f (x 0)=sin (π2−mπ2),f (x 0+m )=sin (π2+mπ2)=sin (π2−mπ2)=f (x 0),所以 f (x ) 具有性质 P (m );假设存在 m ∈(1,2) 使得 f (x ) 具有性质 P (m ), 即存在 x 0∈[0,2−m ],使得 f (x 0)=f (x 0+m ),若 x 0=0,则 x 0+m ∈(1,2),f (x 0)=0,f (x 0+m )<0,f (x 0)≠f (x 0+m );若 x 0∈(0,2−m ],则 x 0+m ∈(m,2],进而 x 0∈(0,1), x 0+m ∈(1,2],f (x 0)>0,f (x 0+m )≤0,f (x 0)≠f (x 0+m ), 所以假设不成立,所以 m ∈(0,1].【知识点】二次函数的性质与图像、函数的相关概念、Asin(ωx+ψ)形式函数的性质30. 【答案】(1) 每套丛书售价定为 100 元时,销售量为 15−0.1×100=5 (万套),所以每套丛书的供货价格为 30+105=32 (元),故书商所获得的总利润为 5×(100−32)=340 (万元).(2) 每套丛书售价定为 x 元时,由 {15−0.1x >0,x >0, 得 0<x <150 .设单套丛书的利润为 P 元,则 P =x −(30+1015−0.1x )=x −100150−x −30, 因为 0<x <150,所以 150−x >0, 所以 P =−[(150−x )+100150−x]+120,又 (150−x )+100150−x ≥2√(150−x )⋅100150−x =2×10=20, 当且仅当 150−x =100150−x ,即 x =140 时等号成立, 所以 P max =−20+120=100 .故每套丛书售价定为 140 元时,单套丛书的利润最大,为 100 元.【知识点】函数的模型及其实际应用、函数的最大(小)值、均值不等式的应用。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 已知不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1},则函数 y =ax 2+x +c 的图象大致为 ( )A .B .C .D .2. 已知函数 f (x ) 为定义在 R 上的奇函数,当 x <0 时,f (x )=x (x −1),则 f (2)= ( ) A . −6 B . 6 C . −2 D . 23. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 a,b,c ∈R ,则下列命题正确的是 ( ) A .若 ab ≠0 且 a <b ,则 1a >1b B .若 a >b >0,则b+1a+1>baC .若 a +b =2,则 ab <1D .若 c <b <a 且 ac <0,则 cb 2<ab 24. 定义全集 U 的子集 A 的特征函数 f A (x )={1,x ∈A0,x ∉A ,对于任意的集合 A,B ⊆U ,下列说法错误的是 ( )A .若 A ⊆B ,则 f A (x )≤f B (x ),对于任意的 x ∈U 成立B . f A∩B (x )=f A (x )f B (x ),对于任意的 x ∈U 成立C . f A∪B (x )=f A (x )+f B (x ),对于任意的 x ∈U 成立D .若 A =∁U B ,则 f A (x )+f B (x )=1,对于任意的 x ∈U 成立5. 已知 −π2<α<0,sinα+cosα=15,则 1cos 2α−sin 2α= ( )A . 75B .257C .725D .24256. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]7. 设 a ,b ,c 是实数,下列条件中可以推出“a =b ”的是 ( ) A .1a=1bB . a 2=b 2C . ac =bcD . a −c =c −b8. 定义在 R 上的函数 f (x ) 满足:f (x −2) 的对称轴为 x =2,f (x +1)=4f (x )(f (x )≠0),且 f (x ) 在区间 (1,2) 上单调递增,已知 α,β 是钝角三角形中的两锐角,则 f (sinα) 和 f (cosβ) 的大小关系是 ( ) A . f (sinα)>f (cosβ) B . f (sinα)<f (cosβ) C . f (sinα)=f (cosβ)D .以上情况均有可能9. 若函数 f (x ) 为定义在 D 上的单调函数,且存在区间 [a,b ]⊆D ,使得当 x ∈[a,b ] 时,f (x ) 的取值范围恰为 [a,b ],则称函数 f (x ) 是 D 上的正函数.若函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,则实数 m 的取值范围为 ( ) A . (−54,−1) B . (−54,−34) C . (−1,−34)D . (−34,0)10. 定义函数 [x ] 为不大于 x 的最大整数,对于函数 f (x )=x −[x ] 有以下四个结论:① f (2019.67)=0.67;②在每一个区间 [k,k +1),k ∈Z 上,f (x ) 都是增函数; ③ f (−15)<f (15);④ y =f (x ) 的定义域是 R ,值域是 [0,1).其中正确的个数是 ( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6题)11. 关于函数 f (x )=∣x∣∣∣x∣−1∣,给出以下四个命题:(1)当 x >0 时,y =f (x ) 单调递减且没有最值;(2)方程 f (x )=kx +b (k ≠0) 一定有实数解;(3)如果方程 f (x )=m ,(m 为常数)有解,则解的个数一定是偶数;(4)y =f (x ) 是偶函数且有最小值.其中假命题的序号是 .12. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .13. 给出下列四个命题:① f (x )=sin (2x −π4) 的对称轴为 x =kπ2+3π8,k ∈Z ;②函数 f (x )=sinx +√3cosx 的最大值为 2; ③ ∀x ∈(0,π),sinx >cosx ;④函数 f (x )=sin (π3−2x) 在区间 [0,π3] 上单调递增. 其中正确命题的序号为 .14. 设函数 f (x )=sin2x +2cos 2x ,则函数 f (x ) 的最小正周期为 ;若对于任意 x ∈R ,都有f (x )≤m 成立,则实数 m 的最小值为 .15. 若对任意 x >3,x >a 恒成立,则 a 的取值范围是 .16. 若 log a (a +1)<log a (2√a)<0(a >0 且 a ≠1),则实数 a 的取值范围是 .三、解答题(共6题)17. 求下列函数的定义域与值域.(1) y =21x−1;(2) y =3√5x−1; (3) y =(12)x−1.18. 已知函数 f (x )=2x +2−x .(1) 求证:函数f(x)是偶函数;(2) 设a∈R,求关于x的函数y=22x+2−2x−2af(x)在x∈[0,+∞)时的值域g(a)的表达式;(3) 若关于x的不等式mf(x)≤2−x+m−1在x∈(0,+∞)时恒成立,求实数m的取值范围.19.定义:若函数f(x)的定义域为R,且存在实数a和非零实数k(a,k都是常数),使得f(2a−x)=k⋅f(x)对x∈R都成立,则称函数f(x)是具有“理想数对(a,k)”的函数.比如,函数f(x)有理想数对(2,−1),即f(4−x)=−f(x),f(4−x)+f(x)=0,可知函数图象关于点(2,0)成中心对称图形.设集合M是具有理想数对(a,k)的函数的全体.(1) 已知函数f(x)=2x−1,x∈R,试判断函数f(x)是否为集合M的元素,并说明理由;(2) 已知函数g(x)=2x,x∈R,证明:g(x)∉M;(3) 数对(2,1)和(1,−1)都是函数ℎ(x)的理想数对,且当−1≤x≤1时,ℎ(x)=1−x2.若正比例函数y=mx(m>0)的图象与函数ℎ(x)的图象在区间[0,12]上有且仅有5个交点,求实数m的取值范围.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 设π12<x<11π12,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.某广告公司要为客户设计一幅周长为l(单位:m)的矩形广告牌,如何设计这个广告牌可以使广告牌的面积最大?22.化简1−cos4α−sin4α.1−cos6α−sin6α答案一、选择题(共10题) 1. 【答案】C【解析】因为 不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1}, 所以 a <0,故 x 2−1ax +ca<0 的解集为 {x∣ −2<x <1},所以 −2 和 1 是方程 x 2−1ax +c a=0 的两个根,故 −2+1=1a,−2×1=ca,解得 a =−1,c =2.故函数 y =ax 2+x +c =−x 2+x +2=−(x +1)(x −2),其图象大致为 C . 【知识点】二次函数的性质与图像2. 【答案】A【知识点】函数的奇偶性3. 【答案】B【解析】对于A ,取 a =−2,b =1,可知1a>1b不成立,因此选项A 不正确;对于B ,因为 a >b >0,所以 b+1a+1−ba =a−ba (a+1)>0,所以 b+1a+1>ba ,因此选项B 正确; 对于C ,取 a =b =1 时,ab =1,因此选项C 不正确; 对于D ,取 b =0 时,cb 2<ab 2 不正确,因此选项D 不正确. 【知识点】不等式的性质4. 【答案】C【知识点】函数的表示方法5. 【答案】B【解析】因为 sinα+cosα=15, 所以 1+2sinαcosα=125,所以 2sinαcosα=−2425,(cosα−sinα)2=1+2425=4925,又因为 −π2<α<0, 所以 cosα>0>sinα, 所以 cosα−sinα=75, 所以1cos 2α−sin 2α=1(cosα+sinα)(cosα−sinα)=115×75=257.故选B .【知识点】同角三角函数的基本关系6. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.7. 【答案】A【知识点】充分条件与必要条件8. 【答案】A【知识点】抽象函数、函数的单调性9. 【答案】C【解析】因为函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,所以存在 a <b <0,使得当 x ∈[a,b ] 时,g (x )∈[a,b ],且函数单调递减, 则 g (a )=b ,g (b )=a , 即 a 2+m =b ,b 2+m =a , 两式左右分别相减得 a 2−b 2=b −a , 即 b =−(a +1),代入 a 2+m =b 得 a 2+a +m +1=0, 因为 a <b <0,且 b =−(a +1), 所以 a <−(a +1)<0, 解得 −1<a <−12.故关于 a 的方程 a 2+a +m +1=0 在区间 (−1,−12) 内有实数根,把新定义的正函数问题转化为方程有解问题,采用了转化与化归思想.记 ℎ(a )=a 2+a +m +1,则 ℎ(−1)=1−1+m +1>0 且 ℎ(−12)=14−12+m +1<0,解得 m >−1 且 m <−34,即 −1<m <−34. 【知识点】函数的单调性、抽象函数10. 【答案】C【解析】 f (2019.67)=2019.67−2019=0.67,故①正确;设 k ≤x 1≤x 2<k +1,则 f (x 1)−f (x 2)=x 1−k −x 2+k =x 1−x 2<0, 所以 f (x 1)<f (x 2),所以 f (x ) 在 [k,k +1),k ∈Z 上是增函数,故②正确; 因为 f (−15)=−15−(−1)=45,f (15)=15−0=15,所以 f (−15)>f (15),故③错误; 因为 x −[x ]∈[0,1), 所以④正确. 故选C .【知识点】函数的值域的概念与求法、函数的单调性二、填空题(共6题) 11. 【答案】(1)、(3)【解析】(1)当 x >1 时,y =f (x )=xx−1=1+1x−1 在区间 (1,+∞) 上是单调递减函数,当 0<x <1 时,y =f (x )=−xx−1=−1−1x−1 在区间 (0,1) 上是单调增函数.所以(1)是假命题. (2)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,当 x >0 时,y =f (x ) 在区间 (0,1) 上单调递增,在 (1,+∞) 上单调递减.当 k >0 时,函数 y =f (x ) 与 y =kx 的图象在第一象限内有交点,由对称性可知,当 x <0 且 k <0 时,函数 y =f (x ) 与 y =kx 的图象在第二象限内有交点.所以,方程 f (x )=kx +b (k ≠0) 一定有解.所以(2)是真命题.(3)因为函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,且最小值 f (0)=0,举例:当 m =0 时,函数 y =f (x ) 与 y =m 的图象只有一个交点.此时方程 f (x )=m 的解是奇数.所以(3)是假命题. (4)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,y =f (x )=∣x∣∣∣x∣−1∣ 在区间 (0,1) 上单调递增,(1,+∞) 上单调递减.且 f (0)=0,x >0 时,f (x )>0 恒成立,由对称性可知,函数 f (x ) 有最小值 f (0)=0.所以( 4 )是真命题.【知识点】函数的零点分布、函数的最大(小)值、函数的单调性12. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞)上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点; ② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布13. 【答案】①②【解析】① y =sinx 的对称轴为 x =kπ+π2(k ∈Z ),故 f (x )=sin (2x −π4) 的对称轴由 2x −π4=kπ+π2(k ∈Z ),解得 x =kπ2+3π8(k ∈Z ),故①正确;②函数f(x)=sinx+√3cosx=2sin(x+π3),故该函数的最大值为2,故②正确;③ ∀x∈(0,π),sinx>cosx;当x=π4时,sinx=cosx,故③错误;④函数f(x)=sin(π3−2x)在区间[0,π3]上单调递减,故④错误.故答案为:①②.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】π;√2+1【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】a≤3【知识点】恒成立问题16. 【答案】(14,1)【解析】当0<a<1时,函数y=log a x单调递减,由题意得{a+1>2√a,2√a>1,解得a>14,所以14<a<1;当a>1时,函数y=log a x单调递增,由题意得{a+1<2√a,2√a<1,无解.综上可知,实数a的取值范围是(14,1).【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由x−1≠0,得x≠1.所以函数的定义域为{x∣ x∈R且x≠1}.又1x−1≠0,所以21x−1>0,且21x−1≠1.所以函数的值域为{y∣ y>0且,y≠1}.(2) 由5x−1≥0,得x≥15.所以函数的定义域为{x∣ x≥15}.因为 5x −1≥0,所以 3√5x−1≥1.所以函数的值域为 {y∣ y ≥1}.(3) y =(12)x−1 的定义域是 R ,值域是 {y∣ y >−1}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法18. 【答案】(1) 函数 f (x ) 的定义域为 R ,对任意 x ∈R ,f (−x )=2−x +2x =f (x ), 所以函数 f (x ) 是偶函数.(2) y =22x +2−2x −2a (2x +2−x )=(2x +2−x )2−2a (2x +2−x )−2, 令 2x +2−x =t ,因为 x ≥0,所以 2x ≥1,故 t ≥2, 原函数可化为 y =t 2−2at −2,t ∈[2,+∞),y =t 2−2at −2=(t −a )2−a 2−2 图象的对称轴为直线 t =a ,当 a ≤2 时,函数 y =t 2−2at −2 在 t ∈[2,+∞) 时是增函数,值域为 [2−4a,+∞);当 a >2 时,函数 y =t 2−2at −2 在 t ∈[2,a ] 时是减函数,在 t ∈[a,+∞) 时是增函数,值域为 [−a 2−2,+∞).综上,g (a )={[2−4a,+∞),a ≤2[−a 2−2,+∞),a >2.(3) 由 mf (x )≤2−x +m −1 得 m [f (x )−1]≤2−x −1,当 x >0 时,2x >1,所以 f (x )=2x +2−x >2,所以 f (x )−1>1>0, 所以 m ≤2−x −1f (x )−1=2−x −12x +2−x −1=1−2x 22x +1−2x恒成立.令 t =1−2x ,则 t <0,1−2x 22x +1−2x=t (1−t )2+t=t t 2−t+1=1t+1t−1,由 t <0 得 t +1t≤−2,所以 t +1t−1≤−3,−13≤1t+1t−1<0.所以 m ≤−13,即 m 的取值范围为 (−∞,−13].【知识点】函数的奇偶性、指数函数及其性质、函数的值域的概念与求法19. 【答案】(1) 依据题意,知 f (x )=2x −1,若 f (2a −x )=k ⋅f (x ),即 2(2a −x )−1=k (2x −1). 化简得 −2x +4a −1=2kx −k ,此等式对 x ∈R 都成立,则 {2k =−2,4a −1=−k,解得 {k =−1,a =12.于是,函数 f (x )=2x −1 有理想数对 (12,−1).所以,函数 f (x )∈M . (2) 用反证法证明 g (x )∉M . 假设 g (x )∈M ,则存在实数对 (a,k )(k ≠0) 使得 g (2a −x )=k ⋅g (x ) 成立. 又 g (x )=2x ,于是,22a−x =k ⋅2x , 即 22a =k ⋅22x .一方面,此等式对 x ∈R 都成立;另一方面,该等式左边是正的常数,右边是随 x 变化而变化的实数.两方面互相矛盾,故假设不成立.因此,函数 g (x ) 不存在理想数对 (a,k )(k ≠0) 使 g (x )∈M , 即 g (x )∉M .(3) 因为数对 (2,1) 和 (1,−1) 都是函数 ℎ(x ) 的理想数对, 所以 ℎ(4−x )=ℎ(x ),ℎ(2−x )=−ℎ(x ),x ∈R , 所以ℎ(4+x )=ℎ(4−(4+x ))=ℎ(2−(2+x ))=−ℎ(2+x )=−ℎ(4−(2−x ))=−ℎ(2−x )=ℎ(x ).所以函数 ℎ(x ) 是以 4 为周期的周期函数.由 ℎ(2−x )=−ℎ(x ),ℎ(2−x )+ℎ(x )=0,x ∈R ,可知函数 ℎ(x ) 的图象关于点 (1,0) 成中心对称图形.又 −1≤x ≤1 时,ℎ(x )=1−x 2,所以 1<x ≤3 时,−1≤2−x <1,则 ℎ(x )=−ℎ(2−x )=(2−x )2−1.先画出函数 ℎ(x ) 在 [−1,3] 上的图象,再根据周期性,可得到函数 ℎ(x ) 的图象如图: 所以 ℎ(x )={1−(x −2k )2,k 为偶数,2k −1≤x <2k +1(x −2k )2−1,k 为奇数,2k −1≤x <2k +1,所以 ℎ(x )=1−(x −8)2,7≤x ≤9;ℎ(x )=1−(x −12)2,11≤x ≤13.由 {ℎ(x )=1−(x −8)2,y =mx (7≤x ≤9) 有且仅有一个交点,解得 m =16−6√7(m =16+6√7,舍去).由 {ℎ(x )=1−(x −12)2,y =mx (11≤x ≤13) 有且仅有一个交点,解得 m =24−2√143(m =24+2√143,舍去).所以函数 y =mx (m >0) 的图象与函数 ℎ(x ) 的图象在区间 [0,12] 上有且仅有 5 个交点时,实数 m 的取值范围是 24−2√143<m <16−6√7.【知识点】恒成立问题、函数的零点分布、反证法、函数的周期性20. 【答案】(1) 由函数图象知,A =2.因为图象过点 (0,1),所以 f (0)=1,所以 sinφ=12. 又因为 ∣φ∣<π2,所以 φ=π6. 由函数图象知T 2=2π3−π6=π2,所以 T =π,得 ω=2.所以函数 f (x ) 的解析式为 f (x )=2sin (2x +π6).(2) 由(1)知,函数 y =2sin (2x +π6),若 π12<x <11π12,在原图中标出 (π12,√3) 和 (11π12,0),如图所示: 当 −2<m <0 或 √3<m <2 时,直线 y =m 与曲线 y =2sin (2x +π6) 有两个不同的交点,即原方程有两个不同的实数根. 所以 m 的取值范围为 (−2,0)∪(√3,2). 由对称性可知,当 −2<m <0 时,两根和为 4π3;当 √3<m <2 时,两根和为 π3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】设矩形的一边长为 x ,广告牌面积为 S ,则 S =−(x −l 4)2+l 216,x ∈(0,l 2). 当 x =l4 时,S 取得最大值,且 S max =l 216,所以当广告牌是边长为 l4 的正方形时,广告牌的面积最大.【知识点】函数模型的综合应用22. 【答案】 1−cos 4α−sin 4α1−cos 6α−sin 6α=(sin 2α+cos 2α)2−cos 4α−sin 4α(sin 2α+cos 2α)3−cos 6α−sin 6α=2sin 2αcos 2α3sin 4αcos 2α+3sin 2αcos 4α=2sin 2αcos 2α3sin 2αcos 2α=23.【知识点】同角三角函数的基本关系。
(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案
第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。
人教版高一数学必修一第一学期期末测试A卷(含答案和解析)
期末测试卷02(本卷满分150分,考试时间120分钟) 测试范围:必修第一册(人教A 版2019)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则=B A ( )。
A 、)231(,B 、)31(, C 、)323(,D 、)1(∞+,【答案】C【解析】由题意得,}31|{<<=x x A ,}23|{>=x x B ,则)323(,=B A ,故选C 。
2.命题“全等三角形的面积一定都相等”的否定是( )。
A 、全等三角形的面积不一定都相等B 、不全等三角形的面积不一定都相等C 、存在两个不全等三角形的面积相等D 、存在两个全等三角形的面积不相等 【答案】D【解析】命题是省略量词的全称命题,故选D 。
3.已知0>a ,0>b ,且12=+b a ,则ba 11+的最小值为( )。
A 、223+ B 、243+ C 、263+ D 、283+ 【答案】A【解析】∵0>a ,0>b ,∴223221)11)(2(11+≥+++=++=+ab b a b a b a b a , 即最小值为223+,故选A 。
4.已知α为第三象限角,且α=-α2cos 22sin 2,则)42sin(π-α的值为( )。
A 、1027- B 、107- C 、107 D 、1027 【答案】D【解析】由已知得)1(cos 22sin 22-α=-α,则4tan 2=α,由α为第三象限角,得2tan =α,故552sin -=α,55cos -=α,∴1027)2cos 2(sin 22)42sin(=α-α=π-α,故选D 。
5.若函数)2lg()(2a x ax x f +-=的定义域为R ,则实数a 的取值范围为( )。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》单元练习题卷含答案解析(37)
第一章《集合与常用逻辑用语》单元练习题(共22题)一、选择题(共10题)1. 已知函数 f (x )=Asin (ωx +φ)(A >0,ω>0)的图象与直线 y =a (0<a <A )的三个相邻交点的横坐标分别为 2,4,8,则 f (x ) 的单调递减区间是 ( ) A . [6kπ,6kπ+3],k ∈Z B . [6kπ−3,6kπ],k ∈Z C . [6k,6k +3],k ∈ZD . [6k −3,6k ],k ∈Z2. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]3. 如图,某港口一天 6 时到 18 时的水深变化曲线近似满足函数 y =3sin (π6x +φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为 ( )A . 5B . 6C . 8D . 104. 已知函数 f (x )={2x,0≤x ≤122−2x,12<x ≤1 且 f 1(x )=f (x ),f n (x )=f(f n−1(x )),n =1,2,3,⋯,则满足方程 f n (x )=x 的根的个数为 ( ) A . 2n 个 B . 2n 2 个 C . 2n 个D . 2(2n −1) 个5. 设 f (x )=2x 2x+1,g (x )=6ax +1−2a ,若对于任意 x 1∈[0,1],总存在 x 0∈[0,1],使得 g (x 0)=f (x 1) 成立,则 a 的取值范围是 ( ) A . [4,+∞)B . [52,4] C . (−∞,−14]∪[12,+∞)D . [−14,12]6. 某公司 2020 一整年的奖金有如下四种方案可供员工选择(奖金均在年底一次性发放). 方案 1:奖金 10 万元方案 2:前半年的半年奖金 4.5 万元,后半年的半年奖金为前半年的半年奖金的 1.2 倍 方案 3:第一个季度奖金 2 万元,以后每一个季度的奖金均在上一季度的基础上增加 5000 元 方案 4:第 n 个月的奖金 = 基本奖金 7000 元 +200n 元 如果你是该公司员工,你选择的奖金方案是 ( ) A .方案 1 B .方案 2 C .方案 3 D .方案 47. 关于函数 f (x )=sin (2x +π6) 有下述三个结论: ① f (x ) 的最小正周期是 2π; ② f (x ) 在区间 (π6,π2) 上单调递减;③将 f (x ) 图象上所有点向右平行移动 π12个单位长度后,得到函数 g (x )=sin2x 的图象.其中所有正确结论的编号是 ( ) A .② B .③ C .②③ D .①②③8. 设函数 f (x )={∣2x −1∣,x ≤2−x +7,x >2.若互不相等的实数 a ,b ,c 满足 f (a )=f (b )=f (c ),则2a +2b +2c 的取值范围是 ( ) A . (8,9) B . (65,129)C . (64,128)D . (66,130)9. 已知定义在 R 上的函数 f (x )={sinxx,x >ax 2−1,x ≤a.给出下列四个命题:①函数 f (x ) 一定存在最大值; ②函数 f (x ) 一定存在最小值;③函数 f (x ) 一定不存在最大值; ④函数 f (x ) 一定不存在最小值. 其中正确的命题是 ( ) A .①②B .②③C .③④D .①④10. 汽车的“燃油效率”是指汽车每消耗 1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 ( )A .消耗 1 升汽油,乙车最多可行驶 5 千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以 80 千米/小时的速度行驶 1 小时,消耗 10 升汽油D .某城市机动车最高限速 80 千米/小时.相同条件下,在该市用丙车比用乙车更省油二、填空题(共6题)11. 定义在实数集 R 上的偶函数 f (x ) 满足 f (x +1)=1+√2f (x )−f 2(x ),则 f (20192)= .12. 若 a ,b 为正实数,且 a +b +3=ab ,则 ab 的最小值为 .13. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a的取值范围为 .14. 已知扇形的周长是 8 cm ,面积为 3 cm 2,那么这个扇形的圆心角的弧度数(圆心角为正)为 .15. 如果方程组 {sinx 1+sinx 2+⋯+sinx n =0,sinx 1+2sinx 2+⋯+nsinx n =2019 有实数解,则正整数 n 的最小值是 .16. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .三、解答题(共6题)17. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).18. 已知 tan2θ=−2√2,π<2θ<2π,求 2cos 2θ2−sinθ−1√2sin(θ+π4)的值.19. 已知函数 f (x )=1−22x +a(a 是常数).(1) 若 a =1,求函数 f (x ) 的值域;(2) 若 f (x ) 为奇函数,求实数 a ,并证明 f (x ) 的图象始终在 g (x )=2x+1−1 的图象的下方; (3) 设函数 ℎ(x )=[1f (x )−1]2,若对任意 x 1,x 2,x 3∈[0,1],以 ℎ(x 1),ℎ(x 2),ℎ(x 3) 为边长总可以构成三角形,求 a 的取值范围.20. 已知函数 y =f (x ),有限集合 S ,如果满足:当 x ∈S ,则 f (x )∈S ,且 S ⊂N .那么称集合 S是函数 f (x ) 的生成集.例如 f (x )=4−x ,那么集合 S 1={2},S 2={0,4},S 3={1,3},S 4={1,2,3},S 5={0,2,4},S 6={0,1,3,4},S 7={0,1,2,3,4} 是 f (x )=4−x 的所有生成集. (1) 已知 f (x )=−x 2+6x ,求 f (x ) 的单元素生成集 S ; (2) 已知 f (x )=4x+b x−1(b ∈N ),当 x ∈[2,+∞) 时 f (x ) 的取值范围组成的集合为 A ,且 A ⊆[b −4,b 2−6b ],求满足要求的 b 的值;并判断对满足要求的 b ,在 [2,+∞) 上是否存在 f (x ) 的生成集 S ,如果存在求出所有生成集 S ,若不存在说明理由; (3) 已知 f (x )=ax+b x−2(x >2),试写出一个严格减函数 f (x ) 和至少有 5 个元素的一个生成集 S .21. 已知函数 f (x )=2cos2x +3sin 2x −4cosx (x ∈R ).(1) 求 f (π3) 的值;(2) 求当 x 为何值时,函数 f (x ) 取到最大值,最大值为多少?22.已知函数f(x)=x−1.x(1) 判断f(x)的奇偶性.(2) 证明f(x)在(0,+∞)上是增函数.答案一、选择题(共10题)1. 【答案】D【解析】依题意可画出y=f(x)的大致图象与直线y=a,如图所示.由图象知T=8−2=6,当x=3时,f(x)取最大值,当x=6时,f(x)取最小值,因此f(x)的单调递减区间为[6k+3,6k+6],k∈Z,即[6k−3,6k],k∈Z.【知识点】Asin(ωx+ψ)形式函数的性质2. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x2+mx+1>0的解集为R,∴△=m2−4<0,解得−2<m<2.∴m的取值范围是(−2,2).故选:B.【点评】熟练掌握一元二次不等式的解法是解题的关键.3. 【答案】C【解析】由图象知y min=2.因为y min=−3+k,所以−3+k=2,解得k=5,所以这段时间水深的最大值是y max=3+k=3+5=8.故选C.【知识点】Asin(ωx+ψ)形式函数的性质、三角函数模型的应用4. 【答案】C【知识点】函数零点的概念与意义5. 【答案】B【解析】因为 f (x )=2x 2x+1,当 x =0 时,f (x )=0, 当 x ≠0 时,f (x )=2(1x +12)2−14,由 0<x ≤1, 所以 0<f (x )≤1, 故 0≤f (x )≤1.又因为 g (x )=ax +5−2a (a >0),且 g (0)=5−2a ,g (1)=5−a , 故 5−2a ≤g (x )≤5−a , 所以需满足 {5−2a ≤0,5−a ≥1,所以 52≤a ≤4.【知识点】函数零点的概念与意义6. 【答案】C【知识点】函数模型的综合应用7. 【答案】C【解析】由 f (x )=sin (2x +π6) 可得函数的最小正周期为 T =2π2=π,故①不正确;当 π6<x <π2 时,π2<2x +π6<7π6,所以 f (x ) 在区间 (π6,π2) 上单调递减,故②正确;将 f (x )=sin (2x +π6) 图象上所有点向右平行移动 π12 个单位长度后,得到 y =sin (2(x −π12)+π6)=sin2x 的图象,即 g (x )=sin2x ,故③正确.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】D【解析】由图可知:f (a )=f (b )=f (c ),设 a <b <c , 1−2a =2b −1,2a +2b =2,y =1 时,−x +7=1,x =6,0<f (a )=f (b )=f (c )<1, 所以 6<c <7, 所以 26<2c <27,所以64<2c<128,所以66<2a+2b+2c<130.【知识点】函数的零点分布、指数函数及其性质9. 【答案】B与y=x2−1的图象.【解析】分别画出y=sinxx当x≤a时,y=x2−1不存在最大值,存在最小值;当x>a时,y=sinx存在最大值,不存在最小值.x结合图象可得函数f(x)一定存在最小值,函数f(x)一定不存在最大值.【知识点】函数的最大(小)值、分段函数10. 【答案】D【解析】对于A选项:由题图可知,当乙车速度大于40km/h时,乙车每消耗1升汽油,行驶里程都超过5km,则A错;对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.【知识点】函数模型的综合应用二、填空题(共6题)11. 【答案】2+√22【解析】因为 f (x +1)=1+√2f (x )−f 2(x ),所以 f (x +1)−1=√2f (x )−f 2(x ),即 (f (x +1)−1)2=2f (x )−f 2(x ),即 f 2(x +1)−2f (x +1)=−[f 2(x )−2f (x )]−1, 令 g (x )=f 2(x )−2f (x ),则 g (x +1)=−g (x )−1,可得函数 g (x ) 的周期为 2, 所以 g (20192)=g (2×505−12)=g (−12),又为 f (x ) 偶函数,则 g (x )=f 2(x )−2f (x ) 为偶函数, 又因为 g (12)=−g (−12)−1,所以 g (−12)=−12, 即 g (20192)=−12,即 f 2(20192)−2f (20192)=−12,解得 f (20192)=2±√22, 又 f (x +1)=1+√2f (x )−f 2(x )≥1, 即 f (20192)≥1,即 f (20192)=2+√22,故答案为:2+√22.【知识点】函数的奇偶性、函数的周期性12. 【答案】 9【解析】 a ,b 为正实数,所以 a +b ≥√ab ,当且仅当 a =b 时等号成立,a +b +3=ab ≥2√ab +3,ab −2√ab −3≥0,所以 √ab ≥3,√ab ≤−1(舍去).ab ≥9,a =b =3 时等号成立,所以 ab 的最小值为 9. 【知识点】均值不等式的应用13. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0. 由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象14. 【答案】23或6【解析】设这个扇形的半径为r,弧长为l,圆心角的弧度数为α,由题意得{2r+l=8,12rl=3,解得{r=3l=2,或{r=1,l=6.因为α是扇形的圆心角的弧度数,所以0<α<2π.当r=3,l=2时,α=lr =23rad,符合题意;当r=1,l=6时,α=lr =61=6rad,符合题意.综上所述,这个扇形的圆心角的弧度数为23或6.【知识点】弧度制15. 【答案】90【知识点】函数的零点分布16. 【答案】1≤a≤√2【解析】因为函数f(x)满足f(x+2)=f(x)−2,所以若x∈(−6,−4]时,则x+2∈(−4,−2],x+4∈(−2,0],若x+6∈(0,2],即若x∈(−6,−5]时,则x+2∈(−4,−3],x+4∈(−2,−1],若x+6∈(0,1],则f(x)=2+f(x+2)=4+f(x+4)=6+f(x+6)=6+(x+6)2−(x+6)−6=x2+11x+30,若x∈(−5,−4]时,则x+2∈(−3,−2],x+4∈(−1,0],若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布三、解答题(共6题) 17. 【答案】(1) g (x )=x +sin x3,所以 cosg (x +6π)=cos (x +6π+sinx+6π3)=cos (x +sin x3)=cosg (x ),所以 g (x ) 是以 6π 为周期的余弦周期函数. (2) 因为 f (x ) 的值域为 R ; 所以存在 x 0,使 f (x 0)=c ; 又 c ∈[f (a ),f (b )],所以 f (a )≤f (x 0)≤f (b ),而 f (x ) 为增函数; 所以 a ≤x 0≤b ;即存在 x 0∈[a,b ],使 f (x 0)=c ;(3) 若 u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式18. 【答案】原式=√2sin(θ+π4)=√2sin(π4−θ)√2sin(π4+θ),又(π4−θ)+(π4+θ)=π2,所以原式=sin(π4−θ)cos(π4−θ)=tan(π4−θ)=1−tanθ1+tanθ.因为tan2θ=2tanθ1−tan2θ=−2√2,解得tanθ=√2或tanθ=√2,又π<2θ<2π,所以π2<θ<π,所以tanθ=√2,所以原式=1+√21−1√2=3+2√2.【知识点】两角和与差的正切、二倍角公式、两角和与差的正弦19. 【答案】(1) 由题意,f (x )=1−22x +a (a 是常数),当 a =1 时,此时 f (x )=2x −12x +1,即 y =2x −12x +1,整理可得 2x =−y−1y−1,因 2x >0,则−y−1y−1>0,即 (y +1)(y −1)<0,解得 −1<y <1,故函数 f (x ) 的值域为 (−1,1).(2) 由题意,f (x ) 为奇函数,则 f (x )+f (−x )=0,即 1−22x +a +1−22−x +a =0, 化简得 (a −1)(2x +2−x )+(a −1)2=0, 因为 2x +2−x 恒不零, 所以 a −1=0 且 (a −1)2=0,解得 a =1,此时 f (x )=2x −12x +1,所以 f (x )−g (x )=2x −12x +1−(2x+1−1)=−22x+12x +1<0, 即 f (x ) 的图象始终在 g (x )=2x+1−1 的图象的下方. (3) 由题意,得 2ℎ(x )min >ℎ(x )max ,ℎ(x )=[1f (x )−1]2=14(2x +a )2,令 t =2x ,t ∈[1,2],则 y =14(t +a )2,t ∈[1,2],其对称轴为 t =−a , ①当 −a ≥2,即 a ≤−2 时,此时 y =14(t +a )2,t ∈[1,2] 单调递减,所以 2ℎ(x )min >ℎ(x )max ,即 2⋅14(a +2)2>14(a +1)2,解得 a <−3−√2 或 a >−3+√2, 所以 a <−3−√2;②当 32≤−a <2,即 −2<a ≤−32 时,此时 y =14(t +a )2,t ∈[1,2] 先减后增左端点高, 所以 2ℎ(x )min >ℎ(x )max 即 2⋅0>14(a +1)2,无解;③当 1<−a <32,即 −32<a <−1 时,此时 y =14(t +a )2,t ∈[1,2] 先减后增右端点高,所以 2ℎ(x )min >ℎ(x )max 即 2⋅0>14(a +2)2,无解;④当 −a ≤1,即 a ≥−1 时,此时 y =14(t +a )2,t ∈[1,2] 单调递增, 所以 2ℎ(x )min >ℎ(x )max 即 2⋅14(a +1)2>14(a +2)2, 解得 a <−√2 或 a >√2, 所以 a >√2;综上,a ∈(−∞,−3−√2)∪(√2,+∞).【知识点】函数的最大(小)值、指数函数及其性质、函数的值域的概念与求法、函数的奇偶性20. 【答案】(1) 由 −x 2+6x =x ,解得 x =5 或 0, 所以满足条件的 S ={3} 或 S ={0} .(2) 因为 b ∈N ,所以 4+b ≥4>0. 因为 x ≥2,所以 x −1≥1,所以 0<1x−1≤1. 所以 0<4+b x−1≤4+b ,所以 f (x )=4+4+b x−1∈(4,8+b ].所以 A =(4,b +8],又 A ⊆[b −4,b 2−6b ], 于是 {b −4≤4,b +8≤b 2−6b ⇒{b ≤8,b ≤−1 或 b ≥8,解得 b =8,所以 f (x )=4+12x−1.因为 f (x )=4+12x−1∈N ,需验证 x =2,3,4,5,7,13, 注意到 S ⊆(4,16],故只需验证 x =5,7,13 即可.当 x =5 时,f (5)=7,f (7)=6,f (6)=625∉N ∗ 不满足要求;同理,经验证当 x =7,13 时,都不满足要求. 所以不存在生成集 S .(3) 方法一:设所求的集合 S 中的最小数为 m (m ≥3),最大数为 M , 因为函数 f (x ) 在 S 上是严格减函数, 所以 {f (m )=am+b m−2=M,f (M )=aM+b M−2=m⇒{am +b =M (m −2),⋯⋯①aM +b =m (M −2).⋯⋯②由① − ②得 a =2. 此时 f (x )=2x+b x−2=2(x−2)+b+4x−2=2+b+4x−2.构造一:令 b =8,得 f (x )=2+12x−2(x >2),取 x =3,4,5,6,8,14, 得 f (3)=14,f (4)=8,f (5)=6,f (6)=5,f (8)=4,f (14)=3; 所以 S ={3,4,5,6,8,14};构造二:令 b =12,得 f (x )=2+16x−2(x >2),取 x =3,4,5,6,10,18, 得 f (3)=18,f (4)=10,f (6)=6,f (10)=6,f (18)=3;所以S={3,4,6,10,18};构造三:令b=16,得f(x)=2+20x−2(x>2),取x=3,4,6,7,12,22,得f(3)=22,f(4)=12,f(6)=7,f(7)=6,f(12)=4,f(22)=3;所以S={3,4,6,7,12,22}.【知识点】包含关系、子集与真子集、函数的单调性21. 【答案】(1) 因为f(x)=2cos2x+3sin2x−4cosx,2(2cos2x−1)+3(1−cos2x)−4cosx=cos2x−4cosx+1,f(π3)=cos2π3−4cosπ3+1=14−4×12+1=−34.(2) 令t=cosx∈[−1,1],则g(t)=t2−4t+1=(t−1)2−3,t∈[−1,1],函数g(t)在[−1,1]上单调递减,所以当t=−1,此时x=π+2kπ,k∈Z时,g(t)max=(−1)2−4×(−1)+1=6,故当x=π+2kπ,k∈Z时,f(x)的最大值为6.【知识点】Asin(ωx+ψ)形式函数的性质22. 【答案】(1) f(x)=x−1x有意义时,x≠0定义域{x∣ x≠0}关于原点对称,f(−x)=(−x)−1(−x)=−x+1x=−(x−1x),所以f(−x)=−f(x),即f(x)=x−1x为奇函数.(2) 任取x1,x2∈(0,+∞),且令x1<x2,则f(x1)−f(x2)=(x1−1x1)−(x2−1x2)=x1−x2+1x2−1x1=x1−x2+x1−x2x1x2=(x1−x2)(1+1x1x2),因为x1<x2,所以x1−x2<0,又因为x1>0,x2>0,所以1x1x2>0,1+1x1x2>0,则f(x1)−f(x2)<0,即f(x1)<f(x2)成立,所以f(x)为(0,+∞)上的增函数.【知识点】函数的奇偶性、函数的单调性。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 幂函数的图象过点 (2,√2),则该幂函数的解析式是 ( ) A . y =x −1B . y =x 12C . y =x 2D . y =x 32. 函数 f (x )=ax +bx +5(a ,b 均正数),若 f (x ) 在 (0,+∞) 上有最大值 8,则 f (x ) 在(−∞,0) 上 ( ) A .有最大值 −8 B .有最小值 −8 C .有最小值 2D .有最大值 23. 下列函数中,在区间 (0,1) 上是增函数的是 ( ) A . y =−x 2+1 B . y =√xC . y =1xD . y =3−x4. 下列函数是偶函数的为 ( ) A . y =2x B . y =log 12xC . y =x −1D . y =x 25. 已知函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,则实数 k 的取值范围是 ( ) A . (−24,40)B . [−24,40]C . (−∞,−24]D . [40,+∞)6. 下列给出的函数是分段函数的是 ( ) A . f (x )={±x,x >0,x +1,x ≤0.B . f (x )={x 2+1,x ∈R,x,x ≥4.C . f (x )=|x +1|D . f (x )={x −1,0<x ≤5,4x,x ≤2.7. 下列函数中,定义域是 R 且为增函数的是 ( ) A . y =e −xB . y =x 3C . y =lnxD . y =∣x ∣8. “f (0)=0”是“y =f (x ) 是奇函数”的 ( ) A .充分非必要条件 B .必要非充分条件; C .非充分非必要条件D .充要条件;9. 设函数 f (x )={3−x,x <02g (x ),x >0,若 f (x ) 是奇函数,则 g (1) 等于 ( )A . −4B . −2C . 2D . 410. 已知函数 y =a x−3−23(a >0,且 a ≠1)的图象恒过点 P .若点 P 在幂函数 f (x ) 的图象上,则幂函数 f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 偶函数 f (x ) 的定义域为 [t −4,t ],则 t = .12. 2019 年 7 月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳 14 的质量 N 随时间 t (单位:年)的衰变规律满足 N =N 0⋅2−r 5730(N 0 表示碳 14 原有的质量),则经过 5730年后,碳 14 的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳 14 的质量是原来的 37 至 12,据此推测良渚古城存在的时期距今约在 5730 年到 年之间.(参考数据:lg2≈0.3,lg7≈0.84,lg3≈0.48)13. 函数 f (x )=√x−2x−3的定义域为 .14. 函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9),则实数 m 的取值范围是 .15. 如图,图中曲线是幂函数 y =x α 在第一象限的大致图象,已知 α 取 −2,−12,12,2 四个值,则相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 .16. 已知函数 f (x )={2x ,x <1log 2x,x ≥1,则 f (8)= ;若直线 y =m 与函数 f (x ) 的图象只有 1个交点,则实数 m 的取值范围是 .三、解答题(共6题)17. 北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000 万元从政府购得一块廉价土地,该土地可以建造每层 1000 平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高 0.02 万元,已知建筑第 5 层楼房时,每平方米建筑费用为 0.8 万元.(1) 若学生宿舍建筑为 x 层楼时,该楼房综合费用为 y 万元(综合费用是建筑费用与购地费用之和),写出 y =f (x ) 的表达式.(2) 为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?18. 已知函数 f (x )=3x 2−5x +2,求 f(−√2),f (−a ),f (a +3),f (a )+f (3) 的值.19. 如图(1)(2)所示的分别是函数 y 1=f (x ) 和 y 2=g (x ) 的图象,试分别写出函数 y 1=f (x )和 y 2=g (x ) 的单调递增区间.20. 如何理解区间的概念?21. 判断函数 f (x )={x 2+2x,x <01,x =0−x 2+2x,x >0 的奇偶性.22. 求下列函数的定义域:(1) f (x )=√3x −1+√1−2x +4; (2) f (x )=0√∣x∣−x.答案一、选择题(共10题) 1. 【答案】B【知识点】幂函数及其性质2. 【答案】C【解析】设 g (x )=ax +bx ,则 g (x ) 为奇函数,且在 (0,+∞) 上的最大值为 3, 所以 g (x ) 在 (−∞,0) 上的最小值为 −3, 故 f (x ) 在 (−∞,0) 上有最小值 2. 【知识点】函数的最大(小)值3. 【答案】B【知识点】函数的单调性4. 【答案】D【解析】A 项,y =2x 定义域为 R ,为非奇非偶函数; B 项,y =log 12x 定义域为 (0,+∞) 为非奇非偶函数;C 项,y =x −1 定义域为 {x∣ x ≠0},反比例函数 y =1x为奇函数;D 项,y =x 2=(−x )2,定义域为 R 为偶函数. 【知识点】函数的奇偶性5. 【答案】D【解析】因为函数 f (x )=4x 2−kx −8 的对称轴方程为 x =k8,且函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,所以根据二次函数的性质可知 k8≥5,解得 k ≥40.故 k 的取值范围为 [40,+∞). 【知识点】函数的单调性6. 【答案】C【解析】对于A ,取 x =1,得 f (1)=1 或 −1,不是分段函数; 对于B ,取 x =4,得 f (4)=17 或 4,不是分段函数; 对于C ,f (x )=|x +1|={x +1,x ≥−1,−x −1,x ≤−1是分段函数;对于D ,取 x =2,得 f (2)=1 或 8,不是分段函数,故选C . 【知识点】分段函数7. 【答案】B【解析】对于A ,y =e −x =(1e )x,是 R 上的减函数,不合题意; 对于B ,y =x 3 是定义域是 R 且为增函数,符合题意; 对于C ,y =lnx ,定义域是 (0,+∞),不合题意;对于D ,y =∣x ∣,定义域是 R ,但在 R 上不是单调函数,不合题,故选B . 【知识点】函数的单调性、函数的定义域的概念与求法8. 【答案】C【知识点】充分条件与必要条件、函数的奇偶性9. 【答案】B【解析】因为 f (x ) 是奇函数,且 f (x )={3−x,x <02g (x ),x >0,因为 f (1)=−f (−1)=−[3−(−1)]=−4, 所以 g (1)=12f (1)=−2.故选B . 【知识点】函数的奇偶性10. 【答案】A【解析】令 x −3=0,即 x =3, 所以 y =a 0−23=13, 所以 P (3,13). 设 f (x )=x α,因为点 P (3,13) 在幂函数 f (x ) 的图象上, 所以 f (3)=3α=13,解得 α=−1, 所以 f (x )=x −1,故幂函数 f (x ) 的图象大致同选项A . 【知识点】幂函数及其性质二、填空题(共6题) 11. 【答案】2【解析】由于偶函数 f (x ) 的定义域为 [t −4,t ],关于原点对称,故有 t +t −4=0, 所以 t =2.【知识点】函数的奇偶性12. 【答案】 12 ; 6876【知识点】函数模型的综合应用13. 【答案】 [2,3)∪(3,+∞)【知识点】函数的定义域的概念与求法14. 【答案】 (3,+∞)【解析】因为函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9), 所以 2m >−m +9,解得 m >3. 【知识点】函数的单调性15. 【答案】 2,12,−12,−2【解析】令 x =2,则 22>212>2−12>2−2,故相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 2,12,−12,−2.【知识点】幂函数及其性质16. 【答案】 3 ; {0}∪[2,+∞)【解析】 f (8)=log 28=3,作出函数 f (x ) 的图象,如图所示.若直线 y =m 与函数 f (x ) 的图象只有 1 个交点,则 m ≥2 或 m =0.【知识点】分段函数三、解答题(共6题) 17. 【答案】(1) 由题意知建筑第 1 层楼房时,每平方米建筑费用为 0.72 万元, 建筑第 1 层楼房的建筑费用为 0.72×1000=720(万元), 楼房每开高一层,整层建筑费用提高 0.02×1000=20(万元),则建筑第 x 层楼房的建筑费用为 720+(x −1)×20=(20x +700) 万元, 建筑 x 层楼房时,该楼房综合费用为 y =f (x )=(720+20x+700)x2+1000=10x 2+710x +1000,综上可知,y =f (x )=10x 2+710x +1000(x ≥1,x ∈Z ).(2) 设该楼房每平方米的平均综合费用为 g (x ), 则 g (x )=f (x )1000x =x 100+1x+71100≥2√x 100×1x+71100=0.91,当且仅当x 100=1x,即 x =10 时等号成立,综上可知,应把楼房建成 10 层,此时每平方米的平均综合费用最低为 0.91 万元.【知识点】建立函数表达式模型、均值不等式的实际应用问题18. 【答案】 f(−√2)=8+5√2; f (−a )=3a 2+5a +2;f (a +3)=3a 2+13a +14; f (a )+f (3)=3a 2−5a +16. 【知识点】函数的表示方法19. 【答案】由题图(1)可知,在 (1,4] 和 (4,6] 内,y 1=f (x ) 是单调递增的,所以 y 1=f (x ) 的单调递增区间是 (1,4] 和 (4,6].由题图(2)可知,在 (−1,0) 和 (1,2) 内,y 2=g (x ) 是单调递增的, 所以 y 2=g (x ) 的单调递增区间是 (−1,0) 和 (1,2).【知识点】函数的单调性20. 【答案】区间是表示数集的一种形式,因此对于集合的运算仍然成立;区间表示连续的数集,左端点必须小于右端点,开或闭不能混淆;∞ 是一个符号,而不是一个数,以“−∞”或“+∞”作为区间的一端时,这端必须用小括号.【知识点】函数的相关概念21. 【答案】当 x <0 时,−x >0,则 f (−x )=−(−x )2−2x =−(x 2+2x )=−f (x ).当 x >0 时,−x <0,则 f (−x )=(−x )2−2x =x 2−2x =−(−x 2+2x )=−f (x ). 而当 x =0 时,f (0)=1≠−f (0). 所以 f (x ) 既不是奇函数也不是偶函数.【知识点】函数的奇偶性22. 【答案】(1) 要使函数式有意义,必须满足 {3x −1≥0,1−2x ≥0, 即 {x ≥13,x ≤12.所以 13≤x ≤12,即函数的定义域为 {x∣ 13≤x ≤12}.(2) 要使函数式有意义,必须满足 {x +3≠0,∣x ∣−x >0,即 {x ≠−3,∣x ∣>x, 解得 {x ≠−3,x <0.所以函数的定义域为 {x∣ x <0且x ≠−3}.【知识点】函数的定义域的概念与求法。
人教a版数学必修1测试题答案及解析
人教a版数学必修1测试题答案及解析一、选择题1. 若函数f(x)=x^2-4x+c的图象与x轴有两个交点,则c的取值范围是()A. c>4B. c<4C. c≥4D. c≤4答案:B解析:函数f(x)=x^2-4x+c的判别式为Δ=16-4c,因为图象与x轴有两个交点,所以Δ>0,即16-4c>0,解得c<4。
2. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B=()A. {1,2}B. {2}C. {1}D. ∅答案:B解析:集合A={x|x^2-5x+6=0}={2,3},集合B={x|x^2-3x+2=0}={1,2},所以A∩B={2}。
二、填空题1. 已知函数y=x^2-6x+c的顶点坐标为(3,-2),则c的值为()。
答案:5解析:函数y=x^2-6x+c的顶点坐标为(-b/2a, f(-b/2a)),其中a=1,b=-6,代入得顶点坐标为(3,-2),所以c=-2+9=5。
2. 若直线y=2x+3与直线y=-x+m相交,则m的值为()。
答案:5解析:联立方程组y=2x+3和y=-x+m,解得x=(3-m)/3,y=(2m+3)/3。
因为两直线相交,所以x和y的值必须相等,即(3-m)/3=(2m+3)/3,解得m=5。
三、解答题1. 已知函数f(x)=x^3-3x+1,求f'(x)。
答案:f'(x)=3x^2-3解析:根据导数的定义,f'(x)=lim(h->0) [(f(x+h)-f(x))/h]。
将f(x)=x^3-3x+1代入,得到f'(x)=lim(h->0) [((x+h)^3-3(x+h)+1-(x^3-3x+1))/h],化简得f'(x)=3x^2-3。
2. 已知等差数列{an}的前三项分别为a1=1,a2=4,a3=7,求数列的通项公式。
答案:an=3n-2解析:已知等差数列{an}的前三项分别为a1=1,a2=4,a3=7,可以得出公差d=a2-a1=4-1=3。
人教版数学高中A版必修一全册课后同步练习(附答案)
(本文档资料包括高一必修一数学各章节的课后同步练习与答案解析)第一章1.1 1.1.1集合的含义与表示课后练习[A组课后达标]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.12.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.25.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________。
7.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________。
8.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________。
9.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A。
10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值。
[B组课后提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集。
其中正确说法是()A.①④B.②C.②③D.以上说法都不对2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P3.已知集合M={a|a∈N,且65-a∈N},则M=________。
高一数学 练习题及答案详解 新人教A版必修1
高一数学必修1测试题一、选择题(本大题共10小题,每小题5分,共60分) 1. 下列四个函数中,与y =x 表示同一函数的是A.y =(x )2B.y =33xC.y =2xD.y =x x 22.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 A.{x |x ∈R } B.{y |y ≥0}C.{(0,0),(1,1)}D.∅ 3.方程x 2-px +6=0的解集为M ,方程x 2+6x -q =0的解集为N ,且M ∩N ={2},那么p +q 等于A.21B.8C.6D.7 4. 下列四个函数中,在(0,+∞)上为增函数的是A.f (x )=3-xB.f (x )=x 2-3x C.f (x )=-11+xD.f (x )=-|x |5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值X 围是A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)6. 函数y =1-x +1(x ≥1)的反函数是A.y =x 2-2x +2(x <1)B.y =x 2-2x +2(x ≥1)C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)7. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值X 围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠. 某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是元元 元元9. 二次函数y =ax 2+bx 与指数函数y =(a b)x的图象只可能是D10. 已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于A.2B.4C.6D.711.如图,设a,b,c,d>0,且不等于1,y=a x , y=b x , y=c x ,y=d x在同一坐标系中的图象如图,则a,b,c,d 的大小顺序( ) A 、a<b<c<d B 、a<b<d<c C 、b<a<d<c D 、b<a<c<d12..已知0<a<1,b<-1,函数f(x)=a x+b 的图象不经过:( ) A.第一象限; B.第二象限; C.第三象限; D.第四象限第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知f (x )=x 2-1(x <0),则f -1(3)=_______.14.函数)23(log 32-=x y 的定义域为______________ 15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______.三、解答题17. 求函数y =12-x 在区间[2,6]上的最大值和最小值.(10分)18.(本小题满分10分) 试讨论函数f (x )=log a 11-+x x (a >0且a ≠1)在(1,+∞)上的单调性,并予以证明.答案1. BACCB BDCAD BA 二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学练习卷(必修1)
一、选择题:本大题共10小题,每小题5分,共50分. 1.若集合{0,1,2,3}A =,{1,2,4}B =则集合A
B =( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{1,2}
D .{0} 2.设集合{1,2,3,4,5,6}U =,{1,3,5}M = , 则U C M =( ) A.{1,2,4} B {1,3,5}. C . {2,4,6}} D .U 3.函数()lg(1)f x x =-的定义域是( )
A .(2,+∞)
B .(1,+∞)
C .[1,+∞)
D .[2,+∞) 4.二次函数2
25y x x =-+的单调递增区间是( )
A . (,4]-∞
B .(4,+∞)
C . [1,+∞)
D .(-∞,1) 5.若函数()33x
x
f x -=+与()33x
x
g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 6.偶函数)(x f y =在区间[0,4]上单调递减,则有( )
A.)()3
()1(ππ
->>-f f f
B. )()1()3
(ππ
->->f f f
C.)3
()1()(π
πf f f >->-
D. )3
()()1(π
πf f f >->-
7.设12
log 3a =,0.2
13b ⎛⎫
= ⎪⎝⎭,1
32c =,则:
A .c b a <<
B. a b c <<
C .c a b << D.b a c <<
8.若函数2
(),(0)0,(3)0f x x bx c f f =++==且,则()f -1=( ) A .1- B . 2- C .1 D .4
9.当a>1时,在同一坐标系中,函数x y a y a x
log ==-与的图象是( )
10.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,
下列函数中,最能近似刻画y 与t 之间关系的是( )
A.
2t y =
B. 22y t =
C.
3y t =
D. 2log y t =
二.填空题:本大题共6小题, 每小题5分, 共30分. 把答案填在答卷的相应位置。
11.已知幂函数)(x f 的图象经过128⎛
⎫ ⎪⎝⎭,,则()f x =______________.
12.2345log 3log 4log 5log 2⋅⋅⋅=_________.
13.已知函数21,0
(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为 .
14.设定义在R 上的函数()f x 同时满足以下三个条件:①()()0f x f x +-=;
②(2)()f x f x +=;③当01x <<时,()2
x f x =
,则3
()2f = .
三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)
15.(本小题满分14分)
已知全集{1,2,3,4,5,6,7,8}U =,{}1,2A =,{12345}B =,,,,,2()log ,f x x x A =∈
(1)求A B ; (2)求()U C A B .
(3)设集合{}|()C y y f x ==,请用列举法表示集合C ;
16.(本小题满分12分)计算下列各式的值:
(1)22
0.75323()(1(3)163
8-+--- ; ()21
lg163lg5lg 5
+-
17.(本题满分12分)全集为R ,集合{}|24A x x =≤≤,集合{}|B x x a =<. (1)求当3a =时,求A B ;
(2)若A B ⊆,求实数a 的取值范围.
18.(本题满分14分)
已知()y f x =是定义在R 上的偶函数,
当0≥x 时,2
()2f x x x =- (1)求)2(),1(-f f 的值;
⑵求()f x 的解析式并画出简图; ⑶根据图像写出函数()f x 的单调区间及值域。
19.(本小题14分)已知函数1
21
21)(+-=x
x f . (1)证明函数)(x f 是奇函数
(2)证明函数)(x f 在(,)-∞+∞上是增函数.
(3) 若(2)(22)0f b f b -+->,求实数b 的取值范围.
20.(14分)对于函数)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使
00)(x x f =成立,则称0x 为)(x f 的不动点. (1)当a =2,b=-2时,求)(x f 的不动点;
(2)若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围.
.
高二数学练习卷2(必修1)答案
一.选择题(本大题共10小题,每小题5分,共50分)
二、填空题(本大题共4小题,每题5分,共20分) 11.3
x - 12. 1 13. 5 1414
-
16. (本小题满分12分)
解:(1)2
20
0.75
32
3()(1(3)163
8-+---
=
2
1
3421
34
349271()16 (248)
931(())(2) (442)
99
1 2 (544)
1....................6=+--=+--=+--=分分分分
(2)1lg163lg5lg
5+-
41=lg 23lg 5lg 5...........74lg 23lg 5lg 5............84lg 24lg 5..................94(lg 2lg 5)..................104lg10........................114................................12-+-=++=+=+==分分分
分
分
分
(2)设,0x o x <->则
()y f x =是定义在R 上的偶函数,
当0≥x 时,2
()2f x x x =-
∴22(=f(-x)(-x)2()2f x x x x =--=+)
∴()f x = ⎩⎨⎧≤+≥-)
0(2)
0(222x x x x x x …………7分
(画出图象)……………….10分
(3)递增区间有[1,0],[1,)-+∞递减区间有(,1),(0,1)-∞- ………12分
值域为[1,)-+∞ ………… 14分
19.(本小题满分14分
)
12x x <12220x x ∴-<
12(21)0,(21)0x x +>+>∴12()()0f x f x -<
即12()()f x f x <
所以函数)(x f 在(,)-∞+∞上是增函数 ……10分
(3)解:
(2)(22)0f b f b -+->∴(2)(22)f b f b ->--
)(x f 是奇函数∴(2)(22)f b f b ->-+
函数)(x f 在(,)-∞+∞上是增函数
∴222b b ->-+
4
3
b ∴>
12
1
222(21)(21)
x x x x -=++
20.(本小题满分14分)。