八年级因式分解专项训练 (160)

合集下载

八年级数学因式分解典型题训练

八年级数学因式分解典型题训练

八年级数学因式分解典型题训练一、提取公因式法。

1. 分解因式:6ab + 8b解析:首先观察多项式各项,发现公因式为2b。

提取公因式2b后得到2b(3a + 4)。

2. 分解因式:9x^2y 18xy^2解析:公因式为9xy。

提取公因式后得到9xy(x 2y)。

3. 分解因式:3a(x y)-6b(y x)解析:先将(y x)变形为-(x y),则原式变为3a(x y)+6b(x y)。

公因式为3(x y),提取后得到3(x y)(a + 2b)。

二、公式法(平方差公式a^2-b^2=(a + b)(a b))4. 分解因式:x^2-9解析:可写成x^2-3^2,根据平方差公式,分解为(x + 3)(x 3)。

5. 分解因式:16y^2-25即(4y)^2-5^2,根据平方差公式分解为(4y + 5)(4y 5)。

6. 分解因式:(x + 2)^2-(y 3)^2解析:根据平方差公式a=(x + 2),b=(y 3),分解为(x+2 + y 3)(x + 2-(y 3))=(x+y 1)(x y+5)。

三、公式法(完全平方公式a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9解析:其中a = x,b = 3,2ab=2× x×3 = 6x,符合完全平方公式a^2+2ab + b^2的形式,分解为(x + 3)^2。

8. 分解因式:4y^2-20y+25解析:这里a = 2y,b = 5,2ab = 2×2y×5=20y,符合完全平方公式a^2-2ab + b^2的形式,分解为(2y 5)^2。

9. 分解因式:x^2-4xy+4y^2解析:其中a = x,b = 2y,2ab=2× x×2y = 4xy,符合完全平方公式a^2-2ab + b^2的形式,分解为(x 2y)^2。

四、综合运用。

人教版八年级数学上册因式分解专项练习(含知识点)

人教版八年级数学上册因式分解专项练习(含知识点)

八年级数学因式分解专项练习一、填空题:1、=-222y y x ; 2、=+-3632a a3、2x ²-4xy -2x = (x -2y -1)4、4a ³b ²-10a ²b ³ = 2a ²b ² ( )5、(1-a)mn +a -1=( )(mn -1)6、m(m -n)²-(n -m)²=( )( )7、x ²-( )+16y ² =( ) ²8、a ²-4(a -b)²=( )·( )9、16(x -y)²-9(x +y)² =( )·( ) 10、(a +b)³-(a +b)=(a +b)·( )·( ) 11、x ²+3x +2=( )( )12、已知x ²+px +12=(x -2)(x -6),则p= 13、若。

=,,则b a b b a ==+-+-0122214、若()22416-=+-x mx x ,那么m=15、如果。

,则=+=+-==+2222,7,0y x xy y x xy y x16、已知31=+a a ,则221a a +的值是 17、如果2a+3b=1,那么3-4a-6b=18、若n mx x ++2是一个完全平方式,则n m 、的关系是 19、分解因式:2212a b ab -+-=20、如果()()22122163a b a b +++-=,那么a b +的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(22、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是.................................................( )A 、46-bB 、64b -C 、46+bD 、46--b23、下列各式是完全平方式的是...........................( ) A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x24、把多项式)2()2(2a m a m -+-分解因式等于...............( ) A 、))(2(2m m a +- B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)25、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是.........( ) A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -26、下列多项式中,含有因式)1(+y 的多项式是.............( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y 27、分解因式14-x 得....................................( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x28、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为.................................................( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b29、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是.............................................( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形30、()()22x a x ax a -++的计算结果是....................( )(A)、3232x ax a +-(B)、33x a -(C)、3232x a x a +-(D)、222322x ax a a ++-31、用提提公因式法分解因式5a(x -y)-10b ·(x -y),提出的公因式应当为...........................................( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x32、把-8m ³+12m ²+4m 分解因式,结果是..................( ) A 、-4m(2m ²-3m) B 、-4m(2m ²+3m -1) C 、-4m(2m ²-3m -1) D 、-2m(4m ²-6m +2) 33、把16-x4分解因式,其结果是..........................( ) A 、(2-x)4 B 、(4+x ²)( 4-x ²) C 、(4+x ²)(2+x)(2-x) D 、(2+x)³(2-x)34、把a4-2a ²b ²+b4分解因式,结果是......................( ) A 、a ² (a ²-2b ²)+b4 B 、(a ²-b ²)² C 、(a -b)4 D 、(a +b)²(a -b)²35、把多项式2x ²-2x +21分解因式,其结果是..............( )A 、(2x -21)²B 、2(x -21)²C 、(x -21)²D 、21(x -1) ²36、若9a ²+6(k -3)a +1是完全平方式,则 k 的值是.........( ) A 、±4 B 、±2 C 、3 D 、4或237、-(2x -y )(2x +y)是下列哪个多项式分解因式的结果...( ) A 、4x ²-y ² B 、4x ²+y ² C 、-4x ²-y ² D 、-4x ²+y ²38、多项式x2+3x -54分解因式为........................( ) A 、(x +6)(x -9) B 、(x -6)(x +9)C 、(x +6)(x +9)D 、 (x -6)(x -9)39、若a 、b 、c 为一个三角形的三边,则代数式(a -c )²-b ²的值为.................................................( ) A 、一定为正数 B 、一定为负数 C 、可能为正数,也可能为负数 D 、可能为零40、下列分解因式正确的是..............................( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-. 41、如图:矩形花园ABCD 中,a AB =,b AD =, 花园中建有一条矩形道路LMPQ 及一条平行 四边形道路RSTK 。

求初二上册因式分解练习题

求初二上册因式分解练习题

求初二上册因式分解练习题初二上册数学课本中的因式分解是一个重要的学习内容,它在解决数学问题中扮演着重要的角色。

因式分解可以将一个多项式表达式分解成乘积的形式,从而更好地理解和解决数学问题。

为了巩固这一知识点,本文将提供一些初二上册因式分解的练习题供同学们练习。

1. 将下列多项式进行因式分解:a) x² + 5x + 6b) 3x² - 12c) 2x³ + 14x² + 20x2. 进行因式分解,并求出因式分解式的值:a) x² + 4x + 4b) x² - 4c) x² - 6x + 93. 将下列多项式进行因式分解,并确定分解式的因数:a) x² - 10x + 25b) x² + 7x + 10c) x² + 8x + 164. 根据给定的因式分解式,还原出原始的多项式表达式:a) (x + 1)(x + 2)b) (x - 3)(x + 3)c) (x + 4)(x + 4)5. 解决以下实际问题,使用因式分解的方法:a) 甲有一块矩形土地,长和宽的比例是3:5,其面积为180平方米,求土地的长和宽。

b) 乙想用木棍围成一个正方形的花坛,每根木棍的长度为x厘米,若花坛的周长为20厘米,求每根木棍的长度x。

c) 丙有一块长方形地毯,长和宽的比例是4:7,若地毯的面积为98平方米,求地毯的长和宽。

通过以上练习题,同学们可以巩固和提升在初二上册学习的因式分解内容。

希望同学们能认真思考并独立完成每一个练习题,相信经过一番努力,你们一定能够掌握因式分解的方法和应用,取得优异的成绩!加油!。

八年级数学上册《因式分解》计算题专项练习

八年级数学上册《因式分解》计算题专项练习

八年级数学上册《因式分解》计算题专项练习提取公因式是因式分解的基础,掌握了提取公因式的方法,就能够更好地解决因式分解问题。

下面是一些提取公因式的练题,供大家练:1、提取公因式:c(x-y+z),得到结果:c(x-y+z)2、提取公因式:p(x-qx-rx^2),得到结果:p(x-q-rx)3、提取公因式:5a^2(3a-2),得到结果:15a^3-10a^24、提取公因式:3bc(4a-25),得到结果:12abc-75bc5、提取公因式:xy(4x-y^2),得到结果:4x^2y-xy^36、提取公因式:7pq(9-2q),得到结果:63pq-14pq^27、提取公因式:6a^2m(4m-3n+7),得到结果:24a^3m-18a^2m^2+42a^2mn8、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)9、提取公因式:x-y(5x+2y),得到结果:(x-y)(5x+2y)10、提取公因式:-2ab(a^2-3ab+b^2),得到结果:-4a^3b+6a^2b^2-2ab^311、提取公因式:-8x^3+56x^2-32x^3,得到结果:-8x^2(x-7)+56x(x-7)12、提取公因式:3mn(2m-5n+10),得到结果:6m^2n-15mn^2+30m^2n13、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)14、提取公因式:(x-y)(5x+2y),得到结果:(x-y)(5x+2y)15、提取公因式:2q(p+q)-4p(p+q),得到结果:-2p(p+q)16、提取公因式:(m+n)(p+q)-(m+n)(p-q),得到结果:2(m+n)q17、提取公因式:a(a-b)+(a-b)2,得到结果:(a-b)(a+b)18、提取公因式:x(x-y)^2-y(x+y)2,得到结果:(x-y)(x^2+xy+y^2)-y(x+y)^219、提取公因式:(2a+b)(2a-3b)-3a(2a+b),得到结果:(2a-b)(2a-3b)20、提取公因式:x(x+y)(x-y)-x(x+y),得到结果:x(x-y)(x+y-1)21、提取公因式:p(x-y)-q(y-x),得到结果:2p(x-y)22、提取公因式:m(a-3)+2(3-a),得到结果:-m(a-3)-2(a-3)23、提取公因式:(a+b)(a-b)-(b+a),得到结果:-(a-b)^224、提取公因式:a(x-a)+b(a-x)-c(x-a),得到结果:(a-c)(a-x)-(a-c)(x-a)25、提取公因式:10a(x-y)^2-5b(y-x),得到结果:10a(x-y)^2+5b(x-y)26、提取公因式:3(x-1)^3y-(1-x)^3z,得到结果:3(x-1)^3(y+z-x)27、提取公因式:x(a-x)(a-y)-y(x-a)(y-a),得到结果:(x-y)(a-x)(a-y)28、提取公因式:-ab(a-b)^2+a(b-a)^2,得到结果:-2ab(a-b)^229、提取公因式:2x(x+y)^2-(x+y)^3,得到结果:(x+y)^2(x-2)30、提取公因式:21×3.14+62×3.14+17×3.14,得到结果:100×3.1431、提取公因式:2.186×1.237-1.237×1.186,得到结果:0掌握了提取公因式的方法,就能够更好地解决因式分解问题。

百思特教育八年级数学上册《因式分解》计算题专项练习

百思特教育八年级数学上册《因式分解》计算题专项练习

、15 81a4-b4
、 16 8y4-2y2
、17 3ax2-3ay4
、 18 m4-1
、 19 x2-2x+1
、 20 a2+8a+16
、 21 1-4t+4t2
、 22 m2-14m+49
、 、 23 b2-22b+121 24 y2+y+1 4
、 25 25m2-80m+64
、 26 4a2+36a+81
5
2
2
、 36 (m+n) +4(m+n)+4m
、 37 2xy-x2-y2
、 、 、 38 4xy2-4x2y-y3 39 3-6x+3x2 40 -a+2a2-a3
分组分解法因式分解:
、1 am+an+bm+bn
、2 xy-xz+y-z
、3 a2+ab+ac+bc
、4 ax-2bx+ay-2by
、5 4xy-3xz+8y-6z
2
2
57、 ( x - 5 x ) - 36
2
2
2
58、( x + 2 x) - 2( x + 2 x ) - 3
2222 2 2
、 60 x y-y z+z x-x z+y x+z y-2xyz
2
、 61 (x+1)(x+2)(x+3)(x+6)+x
、 62 1999x2-(19992-1)x-1999
、 、 、 、 13 x(a+b)-y(a+b) 14 5x(x-y)+2y(x-y) 15 6q(p+q)-4p(p+q) 16 (m+n)(p+q)-(m+n)(p-q)

【八年级上册】因式分解专项训练(30道)(含答案)

【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

八年级因式分解练习题

八年级因式分解练习题

八年级因式分解练习题在八年级数学学习中,因式分解是一个重要的知识点。

掌握因式分解的方法对于解决数学问题和提高解题能力非常有帮助。

下面将为大家呈现一些八年级因式分解的练习题,希望能够帮助大家巩固这一知识点。

题目一:因式分解1. 将xy + 4y分解为两个因式的乘积。

解析:首先我们观察到xy和4y都有一个共同的因子y。

因此,我们可以将xy + 4y写为y(x + 4)。

2. 将4x^2 - 12x分解为两个因式的乘积。

解析:首先,我们可以找出4x^2和12x的最大公因数为4x。

将4x^2和12x同时除以4x,得到4x^2 ÷ 4x = x 和 12x ÷ 4x = 3。

因此,4x^2 - 12x可以分解为4x(x - 3)。

3. 将9a^2 - 25b^2分解为两个因式的乘积。

解析:观察到9a^2是一个完全平方数,可以写成(3a)^2。

类似地,25b^2也是一个完全平方数,可以写成(5b)^2。

因此,9a^2 - 25b^2可以分解为(3a + 5b)(3a - 5b)。

题目二:因式分解应用1. 一个长方形的长是2a + 3,宽是a - 1。

将其周长表示为一个因式的乘积。

解析:长方形的周长是将长和宽的两倍相加,即周长 = 2(2a + 3 + a - 1) = 2(3a + 2) = 6a + 4。

因此,周长可以表示为2(3a + 2),即2(2a + 3+ a - 1)。

2. 化简表达式6x^2 - 9xy + 15x。

解析:观察到6x^2,-9xy和15x都有一个最大公因数为3x。

因此,可以将表达式化简为3x(2x - 3y + 5)。

3. 将4x^3y^2 + 6xy^2 + 9x^2y分解为两个因式的乘积。

解析:观察到4x^3y^2,6xy^2和9x^2y都有一个最大公因数为xy。

因此,可以将表达式分解为xy(4x^2y + 6y + 9x)。

这些练习题涵盖了八年级因式分解的基本概念和常见应用。

因式分解练习题带答案初二

因式分解练习题带答案初二

因式分解练习题带答案初二1. 题目:因式分解练习题带答案初二因式分解是初中数学中的重要内容,本文将提供一些初二年级的因式分解练习题,每道题都附带详细答案,帮助学生巩固和提高因式分解的能力。

一、基础练习题1. 将下列代数式进行因式分解:a) 4x^2 - 9y^2b) 2xy + 6x解答:a) 4x^2 - 9y^2 = (2x + 3y)(2x - 3y)b) 2xy + 6x = 2x(y + 3)2. 将下列代数式进行因式分解:a) 2x^3 - 8x^2b) 3x^2 + 12x + 9解答:a) 2x^3 - 8x^2 = 2x^2(x - 4)b) 3x^2 + 12x + 9 = (x + 3)(3x + 3)二、应用练习题1. 将以下代数式进行因式分解,并求解方程:a) x^2 + 6x + 9 = 0b) 2x^2 - 18 = 0解答:a) x^2 + 6x + 9 = (x + 3)(x + 3) = (x + 3)^2解方程:(x + 3)^2 = 0x + 3 = 0x = -3b) 2x^2 - 18 = 2(x^2 - 9) = 2(x + 3)(x - 3)解方程:2(x + 3)(x - 3) = 0x + 3 = 0 或者 x - 3 = 0x = -3 或者 x = 32. 将以下代数式进行因式分解,并求解方程:a) 4x^2 + 12x + 9 = 0b) x^2 + 8x - 20 = 0解答:a) 4x^2 + 12x + 9 = (2x + 3)(2x + 3) = (2x + 3)^2解方程:(2x + 3)^2 = 02x + 3 = 0x = -1.5b) x^2 + 8x - 20 = (x + 10)(x - 2)解方程:(x + 10)(x - 2) = 0x + 10 = 0 或者 x - 2 = 0x = -10 或者 x = 2以上是一些初二年级的因式分解练习题及答案,通过练习这些题目,学生可以更好地理解因式分解的概念和方法,并能够熟练地应用于实际问题的解决中。

八年级数学因式分解专项训练带答案

八年级数学因式分解专项训练带答案

因式分解专项训练一、计算题1.(1)因式分解:(2)计算:2.因式分解:(1)x2﹣5x﹣6(2)9a2(x﹣y)+4b2(y﹣x)(3)y2﹣x2+6x﹣9(4)(a2+4b2)2﹣16a2b23.将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣154.分解因式:(1)(2)(3)5.分解因式:2m3﹣8mn26.分解因式:(1)(2)7.因式分解:(1)(2)8.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:乙:(分成两组)(分成两组)(直接提公因式)(直接运用公式). (再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1);(2).9.因式分解:(1)(2)10.因式分解:(1);(2)11.因式分解(1)(2)12.在实数范围内分解因式:(1)(2)13.分解因式(1)(2)14.分解因式①4x2-16②16- m2③-4x3+16x2-16x④⑤9a2(x﹣y)+4b2(y﹣x)⑥ ;15.将下列各式分解因式(1);(2);(3).16.分解因式:.17.把下列各式因式分解:(1)(2)18.分解因式:(1);(2)19.分解因式(1)a3b﹣9ab(2)4ab2﹣4ab+a20.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)答案解析部分一、计算题1.【答案】(1)=(xy)2-4xy+22=(xy-2)2(2)=== .2.【答案】(1)解:x2﹣5x﹣6=(x﹣6)(x+1)(2)解:9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b)(3)解:y2﹣x2+6x﹣9=y2﹣(x2﹣6x+9)=y2﹣(x﹣3)2=(y+x﹣3)(y﹣x+3)(4)解:(a2+4b2)2﹣16a2b2=(a2+4b2+4ab)(a2+4b2﹣4ab)=(a+2b)2(a﹣2b)23.【答案】(1)解:原式=x2(m﹣2)﹣y2(m﹣2)=(m﹣2)(x+y)(x﹣y);(2)解:原式=(x+5)(x﹣3).4.【答案】(1)原式(2)原式(3)原式.5.【答案】解:2m3﹣8mn2=2m(m2﹣4n2)=2m(m﹣2n)(m+2n).6.【答案】(1)解:.(2)解:.7.【答案】(1)解:(2)解:8.【答案】(1)解:.(2)解:.9.【答案】(1)解:;(2)解:.10.【答案】(1)解:原式=a(x﹣y)+b(x﹣y)=(x﹣y)(a+b)(2)解:原式=3a(x2+2xy+y2)=3a(x+2y)2.11.【答案】(1)解:原式(2)解:原式.12.【答案】(1)解:x(x﹣10)+25=x2﹣10x+25=(x﹣5)2.(2)解:2ax4﹣8ay4=2a(x4﹣4y4)=2a(x2+2y2)(x2﹣2y2)=2a(x2+2y2)(x+ y)(x﹣y)13.【答案】(1)解:x2-9,=x 2-32,=(x+3)(x-3);(2)解:,=b(4a2-4ab+b2),=b(2a-b)2.14.【答案】①原式= =②原式=③原式= =④原式= =⑤原式= =⑥原式= =15.【答案】(1)解:5a2(3a+2);(2)解:;(3)解:=3a( .16.【答案】解:原式=3(x2-2x+1)=3(x-1)2.17.【答案】(1)解:原式;(2)解:原式.18.【答案】(1)解:;(2)解:.19.【答案】(1)解:a3b﹣9ab=ab(a2﹣9)=ab(a﹣3)(a+3)(2)解:4ab2﹣4ab+a=a(4b2﹣4b+1)=a(2b﹣1)220.【答案】(1)解:﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2(2)解:x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2。

初二数学《因式分解》练习题

初二数学《因式分解》练习题

初二数学《因式分解》练习题因式分解练习题分解因式是初中数学的基础知识之一,它在解决多项式运算和方程求解中起着重要的作用。

本文将给大家提供一些初二数学的因式分解练习题,通过解答这些问题,巩固自己的因式分解技巧。

一、基础练习题1. 分解因式:$2x^2 + 4x$解析:首先观察到该多项式的每一项都含有公因子$2x$,因此可以先提取公因子,得到$2x(x+2)$。

2. 分解因式:$3y(y+4) + 2(y+4)$解析:观察到该多项式的两项都含有公因子$(y+4)$,因此可以先提取公因子,得到$(y+4)(3y+2)$。

3. 分解因式:$4x^2 - 9$解析:这是一个差的平方形式,可以利用平方差公式分解,得到$(2x+3)(2x-3)$。

4. 分解因式:$m^2 - 25$解析:这是一个差的平方形式,可以利用平方差公式分解,得到$(m+5)(m-5)$。

二、综合练习题1. 分解因式:$x^2 - 5x + 6$解析:观察到该多项式的第一项和最后一项都是平方形式,因此可先尝试将其分解为两个一次因式的乘积。

注意到$2 \times 3 = 6$,而$2+3=5$,所以可将该多项式分解为$(x-2)(x-3)$。

2. 分解因式:$x^2 + 6x + 8$解析:观察到该多项式的首项和末项都是平方形式,因此可先尝试将其分解为两个一次因式的乘积。

注意到$2 \times 4 = 8$,而$2+4=6$,所以可将该多项式分解为$(x+2)(x+4)$。

3. 分解因式:$4y^2 - 12y - 16$解析:观察到该多项式的首项和末项都是平方形式,因此可先尝试将其分解为两个一次因式的乘积。

注意到$4 \times (-4) = -16$,而$4 + (-4) = 0$,所以可将该多项式分解为$(2y-4)(2y+4)$。

4. 分解因式:$a^2 + 8a + 15$解析:观察到该多项式的首项和末项都是平方形式,因此可先尝试将其分解为两个一次因式的乘积。

初二的因式分解练习题

初二的因式分解练习题

初二的因式分解练习题题目一:因式分解1. 将下列各式进行因式分解:a) 3x + 9yb) 6x² - 12xc) 5a - 20d) 2m² + 5m + 32. 将下列各式进行因式分解,并求出因式:a) 4x² - 12xy + 9y²b) 2a² - 18ab + 40b²c) 9m² - 36d) 16x² - 25y²题目二:应用问题1. 某活动中,每个学生要穿n条腰带和4件上衣,规定每条腰带价格为x元,每件上衣价格为y元。

写出每个学生需付的金额的表达式,并进行因式分解。

2. 一块长方形草坪的长为x+3,宽为x,若要绕草坪围上一圈宽度为3米的路,求围路的总长度,并进行因式分解。

3. 小明花费了60元购买苹果和橙子,苹果每斤x元,橙子每斤y 元。

已知小明购买了a斤苹果和b斤橙子,写出小明花费的总金额表达式,并进行因式分解。

解答:1. 因式分解:a) 3x + 9y = 3(x + 3y)b) 6x² - 12x = 6x(x - 2)c) 5a - 20 = 5(a - 4)d) 2m² + 5m + 3 = (2m + 3)(m + 1)2. 因式分解:a) 4x² - 12xy + 9y² = (2x - 3y)²b) 2a² - 18ab + 40b² = 2(a - 4b)(a - 5b)c) 9m² - 36 = 9(m - 2)(m + 2)d) 16x² - 25y² = (4x - 5y)(4x + 5y)3. 应用问题:a) 每个学生需付的金额表达式为:nxy + 4xy = xy(n + 4)b) 围路的总长度为:2(x+3) + 2x + 6 = 4x + 12,并进行因式分解为4(x + 3)c) 小明花费的总金额表达式为:ax + by = (a + b)xy,并进行因式分解为xy(a + b)通过上述练习题,初二学生可以巩固和提升因式分解的能力。

初二数学因式分解练习题

初二数学因式分解练习题

初二数学因式分解练习题初二数学因式分解练习题数学因式分解是初中数学中的一个重要知识点,它是解决代数式的关键。

因式分解是将一个代数式写成几个因式的乘积的形式,它在解决方程、计算等方面都有广泛的应用。

下面我们来练习一些初二数学因式分解的题目。

1. 将下列代数式进行因式分解:a) 4x^2 - 9b) 6xy + 9xc) 2a^2 - 8ab + 6b^2解答:a) 4x^2 - 9 可以写成 (2x)^2 - 3^2 的形式,这是一个差的平方,可以因式分解为 (2x + 3)(2x - 3)。

b) 6xy + 9x 可以因式分解为 3x(2y + 3)。

c) 2a^2 - 8ab + 6b^2 可以因式分解为 (a - b)(2a - 3b)。

2. 将下列代数式进行因式分解:a) 9x^2 - 16y^2b) 3a^3 - 27ac) 5x^2 - 10xy + 5y^2解答:a) 9x^2 - 16y^2 可以写成 (3x)^2 - (4y)^2 的形式,这是一个差的平方,可以因式分解为 (3x + 4y)(3x - 4y)。

b) 3a^3 - 27a 可以因式分解为 3a(a^2 - 9),再进一步因式分解为 3a(a - 3)(a +3)。

c) 5x^2 - 10xy + 5y^2 可以因式分解为 (x - y)^2。

3. 将下列代数式进行因式分解:a) 16x^2 - 49b) 8a^3 + 12a^2 - 20ac) x^2 + 4xy + 4y^2解答:a) 16x^2 - 49 可以写成 (4x)^2 - 7^2 的形式,这是一个差的平方,可以因式分解为 (4x + 7)(4x - 7)。

b) 8a^3 + 12a^2 - 20a 可以因式分解为 4a(a^2 + 3a - 5),再进一步因式分解为4a(a + 5)(a - 1)。

c) x^2 + 4xy + 4y^2 可以因式分解为 (x + 2y)^2。

初二数学因式分解 练习题

初二数学因式分解 练习题

初二数学因式分解练习题1. 将下列多项式进行因式分解:a) 4x^2 - 16y^2b) 9a^2 - 4b^2c) 25x^2 - 362. 利用综合法将下列多项式进行完全因式分解:a) x^2 - 5x + 6b) 4x^2 + 12x + 9c) 2x^3 - 8x^2 - 6x + 243. 根据公式 ax^2 + bx + c = (px + q)(rx + s),求下列多项式的因式分解形式:a) 6x^2 + 7x - 20b) x^2 - 4x - 12c) 2x^2 + 5x + 24. 解方程:(x - 2)(x + 3) = 05. 解方程:2x^2 - 7x + 3 = 06. 解方程:3x^2 + 5x - 2 = 07. 解方程:2x^3 - 7x^2 - 8x + 28 = 08. 计算下列多项式的值:a) 3x^2 + 4x + 2,当 x = 2 时b) 2x^3 + 5x^2 - x,当 x = -1 时c) 6x^4 - 3x^3 + 4x^2,当 x = 0 时9. 利用因式分解计算下列表达式的值:a) (x + 2)^2 - 4,当 x = 5 时b) (2x + 3)(2x - 3),当 x = -2 时c) (3x - 4)(3x + 4),当 x = 1 时10. 利用因式分解简化下列分式:a) (9x^2 + 12x) / (3x^2 + 6x)b) (4x^2 - 16) / (x^2 - 4x + 3)11. 将下列分式进行合并和简化:a) (x^2 - 3x + 2) / (4x^2 - 8x)b) (6x^2 - 18) / (4x^2 - 8x)12. 化简下列根式:a) √(16x^2)b) √(9y^2 + 12y + 4)13. 将下列分数进行部分分解:a) (x^2 + 5x + 6) / (x^2 - 1)b) (2x^2 + 10x) / (x^3 + 4x^2 + 4x)14. 求下列分式的和或差:a) (4x^2 + 3x - 10) + (2x^2 + 5x + 8)b) (6x^3 - 2x^2 + 9x) - (3x^2 - 5x + 4)15. 求下列乘法和除法的结果:a) (3x + 4)(2x - 5)b) (x^2 - 4x + 4) / (x - 2)以上是关于初二数学因式分解的练习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档