一次函数考点归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、考点归纳

考点1:一次函数的概念.

相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.

1、已知一次函数k

x k y )1(-=+3,则k = . 2、函数n m x

m y n +--=+1

2)2(,当m= ,n= 时为正比例函数;当m= ,

n 时为一次函数.

考点2:一次函数图象与系数

相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上,

0

1. 直线y=x -1的图像经过象限是( )

A.第一、二、三象限

B.第一、二、四象限

C.第二、三、四象限

D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

3. 一次函数y = -3 x + 2的图象不经过第 象限.

4. 一次函数2y x =+的图象大致是( )

5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )

6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.2

7.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围

是 .

8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )

A.m >0,n <2

B. m >0,n >2

C. m <0,n <2

D. m <0,n >2

9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.

10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。 考点3:一次函数的增减性

相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0

规律总结:从图象上看只要图象经过一、三象限,y 随x 的增大而增大,经过二、四象限,y 随x 的增大而减小.

1.写出一个具体的y 随x 的增大而减小的一次函数解析式_ _

2.一次函数y=-2x+3中,y 的值随x 值增大而____ ___.(填“增大”或“减小”)

3.已知关于x 的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y 随x 的增大而减小,则k 的取值范围是________.

4.若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )

A. 0

B. 0>m

C. 2

D. 2>m

5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。(填“>”、“<”或“=”号)

6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ).

A .y ≥-7

B .y ≥9

C .y >9

D .y ≤9

7.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).

考点4:函数图象经过点的含义

相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x ,纵坐标代y ,方程成立。 1.已知直线y kx b =+经过点(,3)k 和(1,)k ,则k 的值为( ).

A .3

B .3±

C .2

D .2±

2. 坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?

A .-1

B . 2

C .3

D . 9

3. 一次函数y =2x -1的图象经过点(a ,3),则a = .

4.在平面直角坐标系xOy 中,点P(2,

a )在正比例函数1

2

y x =的图象上,则点Q( 35a a -,)位于第_____象限.

5.直线y =kx -1一定经过点( ).

A .(1,0)

B .(1,k )

C .(0,k )

D .(0,-1)

7. 如图所示的坐标平面上,有一条通过点(-3,-2)的直线L 。若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确? ( )

A .a =3

B 。b >-2

C 。c <-3

D 。d =2

考点5:函数图象与方程(组)

相关知识:两个函数图象的交点坐标就是两个解析式组成的方程组的解。 1. 点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.

2. 如表1给出了直线l 1上部分点(x ,y )的坐标值,表2给出了直线l 2上部分(x ,y )的坐标值.那么直线l 1和直线l 2交点坐标为___ __.

考点5:图象的平移

1. 在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为( )

A .y=x+1 B.y=x-1 C.y=x D. y=x-2

2. 将直线2y x =向右平移1个单位后所得图象对应的函数解析式为 ( ) A. 21y x =- B. 22y x =- C. 21y x =+ D. 22y x =+

3. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4

B .8

C .16

D .82

考点6

:函数图象与不等式(组)

相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。 1. 如图所示,函数x y =1和3

4

312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )

A .x <-1

B .—1<x <2

C .x >2

D . x <-1或x >2

2. 已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是 。

表1 表2

A B C

O y x