小学奥数精讲试题集

合集下载

小学奥数总复习习题集

小学奥数总复习习题集
46.下面的 6×4 图中有多少条线段,多少个长方形,多少个正方形?
47.将一个等边三角形各边七等分后在连接相应的线段得到下图,问图 中共有多少个三角形?
14
48.有 20 个边长为 1 的小正方形拼成一个 4×5 的长方形中有一格有 “☆”。图中含有“☆”的所有长方形(含正方形)共有______个,他们 的面积总和是______。
18
59.如图,已知三角形 ABC 面积为 1,延长 AB 至 D,使 BD=AB,延长 BC 至 E,使 CE=2BC,延长 CA 至 F,使 AF=3AC,求三角形 DEF 的面积。
60.如图,正六边形的面积为 6,那么阴影部分的面积是多少?
61.如图,△ABC 中,BD=2DA,CE=2EB,AF=2FC,那么△ABC 的面 积是阴影三角形面积的_____倍。
11
40.在图中 1×5 的格子中填入 1,2,3,4,5,6,7,8 中的 5 个数, 要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大,共 有_____种不同的填法。
41.七个同学照相,分别求出在下列条件下有多少种站法: (1)七个人排成一排,张明站在最左边,有多少种站法? (2)七个人排成一排,某两个同学不能站在边上有多少种站法? (3)张明和李强至少有一人站在边上,有多少种站法? (4)张明和李强必须相邻,有多少种站法? (5)张明、李强、文华、赵悦四人任意两人都不相邻,有多少种站法?
□ □ □ □ □ □
7
30.各位数字均取自 1,2,3,4,5(可重复选取),并且任意相邻两位数字 (大减小)的差都是 1 的四位数共有_______个。
31.设 A、 E 为正八边形 ABCDEFGH 的相对顶点, 顶点A处有一只青蛙, 除顶点E外, 青蛙可以从正八边形的任一顶点跳到其相邻两 个顶点中任一个,落到顶点E时青蛙就停止跳动,则青蛙从 顶点A出发恰好跳 10 次后落到 E 的方法总数为_______种。

小学六年级奥数题集锦及答案

小学六年级奥数题集锦及答案

小学六年级奥数题集锦及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天;已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件;当师傅完成了1/2时,徒弟完成了120个;当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵;单份给男生栽,平均每人栽几棵7.一个池上装有3根水管;甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完;现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只三.数字数位问题2.A和B是小于100的两个非零的不同自然数;求A+B分之A-B的最小值...4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.;6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99一共有20个9分钟之后的时间将是几点几分四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:1某校25名学生参加竞赛,每个学生至少解出一道题;2在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:3只解出第一题的学生比余下的学生中解出第一题的人数多1人;4只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是A,5 B,6 C,7 D,83.一次考试共有5道试题;做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%;如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样答案为213.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同如果能请说明具体操作,不能则要说明理由七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它;问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,轨道是直的,声音每秒传340米,求火车的速度得出保留整数7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子; 8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出;第一次相遇后两车继续行驶,各自到达对方出发点后立即返回;第二次相遇时离B地的距离是AB全程的1/5;已知甲车在第一次相遇时行了120千米;AB两地相距多少千米从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米;如果二人分别至B地,A地后都立即折回;第二次相遇点第一次相遇点之间有千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时;如果水流速度是每小时2千米,求两地间的距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程;12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少答案为64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨;橘子正好占总数的13分之2;一共运来水果多少吨。

小学奥数知识点拨 精讲试题 植树问题(二).学生版

小学奥数知识点拨 精讲试题 植树问题(二).学生版

5-1-3.植树问题(二)教学目标1.封闭与非封闭植树路线的讲解及生活运用。

2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造知识点拨一、植树问题分两种情况:(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数段数全长株距 =1+=÷1+全长株距(棵数)=⨯1-株距全长(棵数)=÷1- ② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长株距棵数;=⨯棵数段数全长株距;==÷株距全长棵数.=÷③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数段数全长株距.=1-=÷1-株距全长(棵数).=÷1+全长株距(棵数+1)=⨯(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷”;41+(3)每向里一层每边棋子数减少;2(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

例题精讲模块一、封闭图形的植树问题【例 1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【例 2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。

小升初奥数精讲精练500题

小升初奥数精讲精练500题

小升初奥数精讲精练500题100题精讲(一)数论------100题数论(1)例题1:(第7题)一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数。

这个三位数最大是____。

例题2:(第8题)将被11除余1,被15除余12的自然数按从小到大的顺序排成一列:a1,a2,a3,……,则a1=____;若a m-1<2011<a m,则m=_____。

例题3:(第15题)请选择一个你喜欢的两位数,将它连续写5遍组成一个十位数(如:两位数12连续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是_____。

例题4:(第18题)六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能自己单独站在最后,没有人与他站一排。

则六年级1班共有_____人。

例题5:(第46题)如果现在是上午的10点21分,那么经过2879……9(共20个9)分钟之后的时间是____点____分。

100题精讲(一)数论------ 100题数论(2)例题1:(第49题)一个六位数的末位数字是2,如果将2移到首位,则原数就是新数的3倍。

原数是_____。

例题2:(第53题)有一个两位数,如果用它除以它的个位数字,商9余6;如果用它除以个位数字与十位数字的和,商5余3。

这个两位数是_____。

例题3:(第54题)一串数的前4项分别是2、0、1、0,从第5项开始,每一项都是它前面4项数字和的个位数字,那么该数列中_____(填“会”或“不会”)出现2、0、1、1连续4项。

例题4:(第64题)有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的,第三个箱子里的螺帽是全部螺帽的7(n是自然数)。

则第三个箱子里有螺帽_____只。

例题5:(第74题)由2011个9组成的多位数999……99除以74所得余数是_____。

100题精讲(一)数论------ 100题数论(3)例题1:(第75题)小萌在超市买了3种糖果,其中红色糖果每粒8分,绿色糖果每粒1角,黄色糖果每粒2角,她共付了1元2角2分。

北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)-优质试卷

北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)-优质试卷

小学六年级下册数学奥数知识点讲解第1课《列方程解应用题》试题附答案
小学六年级下册数学奥数知识点讲解第2课《关于取整计算》试题附答案
答案
六年级奥数下册:第二讲关于取整计算习题解答
小学六年级下册数学奥数知识点讲解第3课《最短路线问题》试题附答案
答案
六年级奥数下册:第三讲最短路线问题习题解答
小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案
答案
小学六年级下册数学奥数知识点讲解第5课《巧求面积》试题附答案
六年级奥数下册:第五讲巧求面积习题解答
小学六年级下册数学奥数知识点讲解第6课《最大与最小问题》试题附答案
答案。

完整)小学六年级奥数题集锦及答案

完整)小学六年级奥数题集锦及答案

完整)小学六年级奥数题集锦及答案小学六年级奥数题集锦及答案1.甲乙两个水管分别需要20小时和16小时才能注满一池水。

丙水管单独开,排一池水需要10小时。

如果同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。

如果两队合作,甲队的工作效率是原来的五分之四,乙队的工作效率是原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。

现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,恰好用整数天完工。

如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件。

共有多少个零件?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙、丙两管用了18分钟放完。

当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成。

若由甲队去做,恰好如期完成;若乙队去做,要超过规定日期三天完成;若先由甲乙合作二天,再由乙队单独做,恰好如期完成。

问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时。

一天晚上停电,XXX同时点燃了这两根蜡烛看书,若干分钟后来点了,XXX将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍。

小学四年级奥数题集(六)【盈亏问题试题及答案】

小学四年级奥数题集(六)【盈亏问题试题及答案】

小学四年级奥数题集(六)盈亏问题解析【篇一】例1.四(2)班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。

问:学生有多少人?分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。

假设船数固定不变,题目的条件"如果增加一条船……"表示"如果每船坐6人,那么有6人无船可坐";"如果减少一条船……"表示"如果每船坐9人,那么就空出一条船"。

这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9--6=3(人)。

解:(6+9)÷(9--6)=5(条),6×5+6=36(人),答:有36名学生。

例2.少先队员去植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。

问:一共要挖几个坑?分析:我们将"其中2人各挖4个坑,其余每人挖6个坑"转化为"每人都挖6个坑,就多挖了4个坑"。

这样就变成了"典型"的盈亏问题。

盈亏总额为4+3=7(个)坑,两次分配数之差为6--5=1(个)坑。

解:[3+(6-4)×2]÷(6-5)=7(人),5×7+3=38(个)。

答:一共要挖38个坑。

1、老师给幼儿园的小朋友分苹果。

如果每个小朋友分2个,还多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完。

一共有多少个苹果?2、在一次大扫除中,老师分配若干人擦玻璃。

如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,则正好擦完。

求擦玻璃的人数和玻璃的块数。

3、小红家买来一篮橘子分给全家人。

如果其中二人每人分4只,其余每人分2只,则多出4只;如果其中一人分6只,其余每人分4只,则又缺12只。

小红家买来多少只橘子?小红家一共有多少人?例3.在桥上用绳子测桥离水面的高度。

小学生三年级奥数试题集

小学生三年级奥数试题集

⼩学⽣三年级频道为⼤家整理的⼩学⽣三年级奥数试题集,供⼤家学习参考。

⼀、填空题1、如果○○●=△,□○○=●●●●,△●●●=□□□。

那么□= 个●,○= 个●,△= 个●。

2、光明⼩学买了2张桌⼦和5把椅⼦,共付110元,每张桌⼦的价钱是每把椅⼦价钱的3倍,每张桌⼦元。

3、⼀条长2000⽶的公路两旁每隔10⽶种⼀棵杨树,每两棵杨树之间等距离种3棵枫树,这条公路两旁⼀共种枫树棵。

4、⼀个数的8倍加上14,等于这个数的10倍,这个数是。

5、按规律在括号内填数:(1)1,2,3,5,8,,;(2)1,2,4,7,11,16,,;6、电*共有28排座位,第⼀排有20个座位,以后每排⽐前排多2个座位,最后⼀排有()个座位,这个电*共有个座位。

⼆、选择题。

1、计算:1000-81-19-82-18-83-17-84-16-85-15-84-16-83-17-82-18-81-19,得数是()A、100B、200C、300D、4002、计算:101+98+99+103+104,利⽤算式最简便计算。

()A、98×5+3+1+5+6B、100×5+1-2-1+3+4C、99×5+2-1+4+5D、104×5-3-6-5-1三、简便计算5000-2-4-6―…―98-100四、应⽤题。

1、合唱队中⼥⽣⽐男⽣多25⼈,如果再调⾛5名男⽣,那么⼥⽣⼈数正好是男⽣的4倍,合唱队中⼥⽣有多少⼈?2、今天是星期⽇,从今天算起,第60天是星期⼏?3、某建筑⼯地堆放着⼀些钢管,最上⾯⼀层有4根,最下⾯⼀层有40根,⽽且下⾯的每⼀层⽐上⾯的⼀层多2根,这些钢管⼀共多少根?4、某⾷堂新买了7桶油,且每桶油质量均相等,若从每桶油中各拿出40千克油,则剩下的油只有原来3桶那么多。

请问,原来每桶油重多少千克?5、买⼀枝钢笔、⼀枝圆珠笔、⼀枝铅笔共⽤94⾓,其中买圆珠笔和买铅笔的钱合起来⽐买钢笔的钱少6⾓,买⼀枝钢笔花了多少钱?6、四年级有三个班,⼀班和⼆班的平均⼈数是46⼈,三班⽐⼆班少5⼈,⼀班⽐三班多1⼈,问:三个班各有多少⼈?7、⼩明参加了期终六门学科的测试,在数学成绩公布之前,五门学科平均成绩是88分,数学成绩公布后,平均成绩是90分,⼩明期终数学成绩是多少分?8、每个铁环的直径是4厘⽶,把五个⼤⼩相同的铁环套在⼀起,它的长度是多少?⼗个这样的铁环套在⼀起有多长?(环厚4毫⽶)⼆年级数学竞赛题(⼆)班级__________ 姓名 __________⼀、填空。

小学奥数知识点拨 精讲试题 分数应用题(二).学生版

小学奥数知识点拨 精讲试题  分数应用题(二).学生版

分数应用题(二)教学目标1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”知识点拨一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多,乙比甲少几分之几?18方法一:可设乙为单位“”,则甲为,因此乙比甲少.119188+=191889÷=方法二:可设乙为份,则甲为份,因此乙比甲少.891199÷=二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

小学数学奥数入门100题及答案解析(完整版)

小学数学奥数入门100题及答案解析(完整版)

小学数学奥数入门100题及答案解析(完整版)1. 小红有8 个苹果,小明的苹果数是小红的2 倍,小明有()个苹果。

A. 16B. 10C. 18D. 14答案:A解析:小红有8 个苹果,小明的是小红的2 倍,小明有8×2 = 16 个苹果。

2. 一个数减去15 等于30,这个数是()A. 15B. 30C. 45D. 25答案:C解析:这个数= 30 + 15 = 453. 20 以内的质数有()个。

A. 7B. 8C. 9D. 10答案:B解析:20 以内的质数有2、3、5、7、11、13、17、19,共8 个。

4. 有一堆苹果,平均分给5 个小朋友,还剩2 个,这堆苹果至少有()个。

A. 7B. 12C. 17D. 22答案:A解析:平均分给5 个小朋友,每人1 个还剩2 个,至少有5 + 2 = 7 个。

5. 计算3 + 5 + 7 + 9 + 11 的结果是()A. 35B. 30C. 25D. 45答案:A解析:3 + 5 + 7 + 9 + 11 = 356. 一个两位数,十位上是7,个位上是5,这个数是()A. 57B. 75C. 70D. 50答案:B解析:十位是7 表示7 个十,个位是5 表示5 个一,这个数是75。

7. 下面能围成三角形的三条边是()A. 2cm、3cm、5cmB. 3cm、3cm、6cmC. 3cm、4cm、5cmD. 2cm、2cm、6cm答案:C解析:三角形任意两边之和大于第三边,只有C 选项 3 + 4 > 5 。

8. 小明早上7 时30 分起床,8 时20 分出发去上学,小明起床到出发经过了()分钟。

A. 50B. 40C. 30D. 60答案:A解析:8 时20 分- 7 时30 分= 50 分钟9. 被减数是50,减数是28,差是()A. 22B. 32C. 18D. 78答案:A解析:50 - 28 = 2210. 一个数加上6 ,再减去6 ,结果是10 ,这个数是()A. 10B. 6C. 16D. 4答案:C解析:设这个数为x ,则x + 6 - 6 = 10 ,解得x = 10 + 6 - 6 = 1011. 最大的一位数与最小的两位数的和是()A. 19B. 10C. 90D. 11答案:A解析:最大的一位数是9,最小的两位数是10,和是19。

小学数学奥数1--6年级培优讲座、习题集、与答案完整版

小学数学奥数1--6年级培优讲座、习题集、与答案完整版

小学数学奥数1--6年级培优讲座、习题集、与答案完整版小学数学奥数1--6年级培优讲座、习题集、与答案完整版计数问题排列组合讲义1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?分析:从5个元素中取3个的排列:P(5、3)=5×4×3=602、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;总和为240000+18000+1800+180=2599806、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?分析:共有10000个数,其中不含数字3的有:五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561所求为10000-6561=3439个7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?分析:1□3□结构:8×7=56,3□1□同样56个,计112个;2□4□结构:8×7=56,4□2□同样56个,计112个;3□5□结构:8×7=56,5□3□同样56个,计112个;4□6□结构:8×7=56,6□4□同样56个,计112个;5□7□结构:8×7=56,7□5□同样56个,计112个;6□8□结构:8×7=56,8□6□同样56个,计112个;7□9□结构:8×7=56,9□7□同样56个,计112个;2□0□结构:8×7=56,以上共112×7×56=840个8、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?分析:因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=479、某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?分析:方法一:一张车票包括起点和终点,原来有P(7、2)=42张,(相当于从7个元素中取2个的排列),现在有P(10、2)=90,所以增加90-42=48张不同车票。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲(补)数一数(一)例1 数一数,下图中有几个正方形、几个等边三角形、几个圆?例2 数一数,下图中共有多少点?1+3+6+9+12=31共有31个点。

例3 数一数,下图中有几条线段?照下面的方法数:3+2+1=6(条)。

例4 数一数,下图中有几个锐角?照下面的方法数:3+2+1=6(个)。

第五讲数一数(二)数复杂的图形需要较强的观察能力,要细心,做到不重不漏。

例1 数一数,右图中有多少个三角形?照书上的方法数,共4个三角形。

例2 数一数,右图中共有多少个三角形?照书上的方法数,共8个三角形。

例3 数一数,右图中共有多少个正方形?照书上的方法数,共有10个正方形4+5+1=10(个)。

例4 数一数,右图中共有多少个长方形?照书上的方法数共有5个长方形。

第十七讲发现图形的变化规律这是一种综合训练。

通过对图形的仔细观察、反复比较、大胆猜测、严格检验和不断修正等思考程序,就能发现下列图形的变化规律,得出正确的答案。

例1 下图是按一定规律排列的。

找出它的变化规律后,试填出所缺少的图形。

解:通过观察、比较可以发现,第一行和第二行的三个小图形是相同的,所不同的只是它们的排列顺序。

还可以发现,从第一行变到第二行,每个小图形都往右移动了一个图形的位置,而且第一行最左边的图形占了第二行最右边的位置。

所以第三行“?”处应填:例2 在下图的一组图形中,“?”处应填什么样的图形?解:仔细观察可发现,第一行和第二行中的最右边的完整图形是这样变来的:将最左边的半个图形,往右平移到中间图形位置,然后再去掉两个图形的重合部分。

按这个规律可知“?”处就填:例3 下图的一组图形的“?”应填什么样的图形?解:每行的第一和第二个平移重叠后变成第三个图形。

可见第三行“?”处为:习题十七下列各题中的图形都缺少一个,试根据对已给出的图形的观察思考,找出图形的变化规律,将所缺的图形补上1习题十七解答第一讲速算与巧算(一)一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=10 2+8=10 3+7=10 4+6=10 5+5=10巧用这些结果,可以使计算又快又准。

例1 计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3 3+3=6 6+4=10 10+5=1515+6=21 21+7=28 28+8=36 36+9=45 45+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。

若是利用凑十法,就能克服这种缺点。

二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=20 11+9=30 2+18=20 12+28=403+17=20 13+37=50 4+16=20 14+46=605+15=20 15+55=70 6+14=20 16+64=807+13=20 17+73=90 8+12=20 18+82=1009+11=20又如:15+85=100 14+86=100 25+75=100 24+76=10035+65=100 34+66=100 45+55=100 44+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。

像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。

例2 计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3 计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4 计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。

下面再举两个例子。

例5 计算1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例2和例3,已经知道从1开始的前10个单数之和以及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=(1+3+5+7+9+11+13+15+17+19)+(2+4+6+8+10+12+14+16+18+20)=100+110(这步利用了例2和例3的结果)=210例6 计算5+6+7+8+9+10解:可以利用前10个自然数之和等于55这一结果。

5+6+7+8+9+10=(1+2+3+4+5+6+7+8+9+10)-(1+2+3+4)(熟练后,此步骤可省略)=55-10=45四、改变运算顺序在只有加减运算的算式中,有时改变加、减的运算顺序可使计算显得十分巧妙!例7 计算10-9+8-7+6-5+4-3+2-1解:这题如果从左到右按顺序进行加减运算,是能够得出正确结果的。

但因为算式较长,多次加减又繁又慢且容易出错。

如果改变一下运算顺序,先减后加,就使运算显得非常“漂亮”。

下式括号中的算式表示先算,10-9+8-7+6-5+4-3+2-1=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)=1+1+1+1+1=5五、带着“+”、“-”号搬家例8 计算1-2+3-4+5-6+7-8+9-10+11解:这题只有加减运算,而且1-2不够减。

我们可以采用带着加减号搬家的方法解决。

要注意每个数自己的符号就是这个数前面的那个“+”号或“-”号,搬家时要带着符号一起搬。

1-2+3-4+5-6+7-8+9-10+11=1+3-2+5-4+7-6+9-8+11-10=1+(3-2)+(5-4)+(7-6)+(9-8)+(11-10)[先减后加]=1+1+1+1+1+1=6在这道题的运算中,把“+3”搬到“-2”的前面,把“+5”搬到了“-4”的前面,……把“+11”搬到了“-10”的前面,这就叫带着符号搬家。

巧妙利用这种搬法,可以使计算简便。

习题一1.计算:13+14+15+16+17+252.计算:2+3+4+5+15+16+17+18+203.计算:21+22+23+24+25+26+27+28+294.计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+205.计算:22-20+18-16+14-12+10-8+6-4+2-06.计算:10-20+30-40+50-60+70-80+907.计算:(2+4+6+8+10)-(1+3+5+7+9)8.计算:(2+4+6+...+20)-(1+3+5+ (19)9.计算:(2+4+6+...+100)-(1+3+5+ (99)习题一解答1.解:见下图:2.解:见下图:3.解:见下图:4.解:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20-(1+2+3+4)=210-10(利用例5的结果)=2005.解:22-20+18-16+14-12+10-8+6-4+2-0=(22-20)+(18-16)+(14-12)+(10-8)+(6-4)+(2-0)=2+2+2+2+2+2=126.解:10-20+30-40+50-60+70-80+90=10+30-20+50-40+70-60+90-80=10+(30-20)+(50-40)+(70-60)+(90-80)=10+10+10+10+10=507.解:(2+4+6+8+10)-(1+3+5+7+9)=(2-1)+(4-3)+(6-5)+(8-7)+(10-9)=1+1+1+1+1=58.解:(2+4+6+...+20)-(1+3+5+ (19)=109.解:(2+4+6+...+100)-(1+3+5+ (99)=50第二讲速算与巧算(二)例1 哥哥和妹妹分糖。

哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5 块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。

你说谁拿得多,多几块?解:方法1:先算哥哥共拿了多少块?再算妹妹共拿了多少块?72-64=8(块)方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。

(2-1)+(4-3)+(6-5)+(8-7)+(10-9)+(12-11)+(14-13)+(16-15)=1+1+1+1+1+1+1+1=8(块)可以看出方法2要比方法1巧妙!平时注意积累,记住一些有趣的和重要的运算结果,非常有助于速算。

比如,请同学记住几个自然数相加之和:1+2=31+2+3=61+2+3+4=101+2+3+4+5=151+2+3+4+5+6=211+2+3+4+5+6+7=281+2+3+4+5+6+7+8=361+2+3+4+5+6+7+8+9=451+2+3+4+5+6+7+8+9+10=55例2 星期天,小明家来了9名小客人。

小明拿出一包糖,里面有54块。

小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分?”结果大家都无法分,你能帮他们分好吗?解:按小明提的要求确实无法分。

因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块。

但是,这种分法共需要有1+2+3+4+5+6+7+8+9+10=55(块)而小明这包糖一共才54块,所以按这种方法无法分。

如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求。

(注意:“按小明提的要求无法分”就是此题的答案。

在数学上“无解”也叫问题的答案。

)例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12 点,这12个小时时钟共敲了几下?解:这是一道美国小学奥林匹克试题,要求在3分钟内就要得出答案。

方法1:凑十法方法2:如果能记住从1到10前十个自然数之和是55,计算会更快。

(1+2+3+4+5+6+7+8+9+10)+11+12=55+11+12=78(下)习题二1.三个小朋友分5块糖。

要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗?2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装?②按同样要求,把15只小鸡装进5个笼子能办得到吗?③按同样要求,把14只小鸡分装到5个笼子能办得到吗?3.①把100块糖分给10个小朋友。

相关文档
最新文档