高考数学(文)真题分类解析:平面向量

合集下载

2022年高考全国乙卷数学(文)真题—试卷分析

2022年高考全国乙卷数学(文)真题—试卷分析
7
0.94
识记
根据循环结构框图计算输出结果;
8
0.65
理解
识别三角函数的图象(含正、余弦,正切);根据函数图象选择解析式;
9
0.65
理解
证明线面垂直;线面垂直证明线线垂直;空间位置关系的向量证明;
10
0.65
理解
等比数列通项公式的基本量计算;等比数列前n项和的基本量计算;利用等比数列的通项公式求数列中的项;
2022年高考全国乙卷数学(文)真题—试卷分析
整体难度:一般
考试范围:集合与常用逻辑用语、复数、平面向量、计数原理与概率统计、等式与不等式、平面解析几何、算法与框图、三角函数与解三角形、函数与导数、空间向量与立体几何、数列、坐标系与参数方程、不等式选讲
细 / 目 / 表 / 分 / 析
题号
难度系数
能力维度分析
21
0.4
理解
根据椭圆过的点求标准方程;椭圆中的直线过定点问题;
22
0.65
理解
普通方程与极坐标方程的互化;利用圆锥曲线的参数方程求最值问题;参数方程综合;
23
0.65
理解
三元基本(均值)不等式;利用基本不等式证明不等式;
知 / 识 / 点 / 分 / 析
知识模块
题量
题号
难度系数
详细知识点
集合与常用逻辑用语
1
1
0.94
交集的概念及运算;复数ຫໍສະໝຸດ 120.94
复数的相等;复数代数形式的乘法运算;
平面向量
1
3
0.94
平面向量线性运算的坐标表示;向量模的坐标表示;
计数原理与概率统计
3
4
0.94

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。

全国卷历年高考平面向量真题归类分析

全国卷历年高考平面向量真题归类分析

全国卷历年高考平面向量真题归类分析(2015年-2019年共14套)一、代数运算(3题)1.(2015全国2卷13)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 解:因为向量λa+b 与a+2b 平行,所以λa+b=k(a+2b),则所以.答案:2.(2017全国1卷13)已知向量,的夹角为,, ,则.解解,所以3.(2018全国2卷4)已知向量,满足,,则A. 4B. 3C. 2D. 0 解:因为所以选B.4.(2019全国1卷7)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3 C. 2π3 D. 5π6解:因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【归类分析】这类题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.解决问题的关键是熟悉公式及运算法则,求夹角公式为:121222221122cos x x y y a b a bx y x y θ+⋅==++,注意向量夹角范围为[0,]π.求模长则利用公式22a a a a ⋅==转化为向量数量积运算,注意运算结果开平方才是模长.这类题基本解题思路如下: 12,k k λ=⎧⎨=⎩,12λ=12a b 602=a 1=b 2+=a b ()22222(2)22cos602+=+=+⋅⋅⋅+a b a b a a b b 221222222=+⨯⨯⨯+=444++=122+=a b 所有相关向量统一用同一个基底表示22a a a a ⋅==求模,模长记得开平方二、几何运算(3题) 1.(2018全国1卷6)在解中,为边上的中线,为的中点,则A.B.C.D.解:根据向量的运算法则,可得,所以,故选A.2.(2015全国1卷7)设D 为解ABC 所在平面内一点,BC →=3CD →,则 ( )A. B. C. D. 解:选A.由题知3.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B. C. D. 解:方法一:如图所示,取的中点,联结,取的中点,由, 则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=,当且仅当,即点与点重合时,取得最小值为,故选B.(方法二见模块三第8题)AC AB AD 3431+-=AC AB AD 3431-=AC AB AD 3134+=AC AB AD 3134-=11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-BC D AD AD E 2PB PC PD +=()222PE ED-=2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭20PE =P E 32-【归类分析】这类题主要考查利用平面向量的线性运算,解题时尽量画出符合要求的图形.平面向量基本定理是解决向量问题的出发点,通过线性运算可将平面内相关向量用同一基底表示.题目如果没有选定基底,则如何选取基底是关键,一般是选已知模长及夹角的两个不共线向量为基底,且其它向量便于用该基底表示.三、坐标运算(7题)1.(2016全国2卷3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m= ( ) A.-8 B.-6 C.6 D.8 解:a+b=(4,m-2),因为(a+b)⊥b,所以(a+b)·b=12-2(m-2)=0,解得m=8.选D.2.(2016全国3卷3)已知向量1BA 2=⎛ ⎝⎭,31BC ,2=⎛⎫ ⎪ ⎪⎝⎭,则∠ABC= ( )A.30°B.45°C.60°D.120°解:选A.因为BA BC ⋅=12×12=,BA =BC =1,所以cos ∠ABC=BA BC 3=2BA BC⋅,即∠ABC=30°3.(2019全国2卷3)已知AB =(2,3),AC =(3,t),||BC =1,则AB BC ⋅= A. -3B. -2C. 2D. 3解:由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .4.(2016全国1卷13)(2016·全国卷Ⅰ高考理科·T13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .解:由已知得:a+b=(m+1,3),所以|a+b|2=|a|2+|b|2⇔(m+1)2+32=m 2+12+12+22,解得m=-2.答案:-25.(2018全国3卷13)已知向量,,.若,则________. 解:由题可得 ,即,故答案为6.(2019全国3卷13)已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 解:因为25c a b =-,0a b ⋅=,所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅.7.(2017全国3卷12)在矩形中,,,动点在以点为圆心且与相切的圆上.若,则的最大值为( ). A .3B .C.D .2解:由题意,作出图像,如图所示.设与切于点,联结.以点为坐标原点,为轴正半轴,为轴正半轴建立直角坐标系,则点坐标为 .因为,.所以.因为切于点. 所以⊥.所以是斜边上的高., 即的半径为.因为点在上.所以点的轨迹方程为.设点的坐标为,可以设出点坐标满足的参数方程,而,,. 因为, 所以,. 两式相加得2sin()3θϕ++≤ (其中), 当且仅当,时,取得最大值为3.故选A.8.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B.C. D. 方法二:如图所示建立直角坐标系,则()3,0A ,()0,1-B ,()0,1C ,设()y x P ,, 则()y x PA --=3,,()y x PB ---=,1,()y x PC --=,1,ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+BD C E CE A AD x AB y C (2,1)||1CD =||2BC =BD =BD C E CE BD CE Rt BCD △BD 1222BCD BC CD S EC BD BD ⋅⋅⋅==△C P C P 224(2)(1)5x y -+-=P 00(,)x y P 0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0112x μθ==01y λθ==+(22255112sin 55λμθθθϕ⎛⎫⎛⎫+=++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭sin ϕcos ϕπ2π2k θϕ=+-k ∈Z λμ+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-()()()23232232222,23,2222-⎪⎪⎭⎫ ⎝⎛-+=-+=----=+⋅y x y y x y x y x PC PB PA所以,当23,0==y x ,即⎪⎪⎭⎫ ⎝⎛23,0P 时,取得最小值为,故选B. 【归类分析】这类题主要考查利用平面向量的坐标运算,渗透了数学运算、直观想象素养.对于向量坐标运算,一定要弄清楚坐标运算的本质.由于选取了平面上两个互相垂直的单位向量作为基底(单位正交基底),这大大的降低了解题的难度.因此,遇到平面向量难题时要想到建立直角坐标系,用坐标法.32-相关点尽量在坐标轴上或成对称关系,向量坐标零越多越好 (1x AB =,写出所有相关向量的坐标。

2024年高考数学真题分类汇编03:复数和平面向量

2024年高考数学真题分类汇编03:复数和平面向量

复数和平面向量一、单选题1.(2024·全国)若1i 1zz =+-,则z =()A .1i--B .1i-+C .1i-D .1i+2.(2024·全国)已知向量(0,1),(2,)a b x ==,若(4)b b a ^-,则x =()A .2-B .1-C .1D .23.(2024·全国)已知1i z =--,则z =()A .0B .1C D .24.(2024·全国)已知向量,a b 满足1,22a a b =+=,且()2b a b -^,则b =()A .12B C D .15.(2024·全国)设z =,则z z ×=()A .-iB .1C .-1D .26.(2024·全国)设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-7.(2024·全国)已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ^”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ^”的充分条件D .“1x =-”是“//a b ”的充分条件8.(2024·北京)已知i 1iz=-,则z =().A .1i-B .i-C .1i--D .19.(2024·北京)已知向量a ,b ,则“()()·0a b a b +-=”是“a b =或a b =-”的()条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024·天津)已知i 是虚数单位,复数))i 2i ×=.11.(2024·天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r l m ,则l m +=;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×的最小值为.12.(2024·上海)已知()(),2,5,6,k a b k Î==R ,且//a b ,则k 的值为.13.(2024·上海)已知虚数z ,其实部为1,且()2z m m z+=ÎR ,则实数m 为.参考答案:1.C【分析】由复数四则运算法则直接运算即可求解.【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.D【分析】根据向量垂直的坐标运算可求x 的值.【解析】因为()4b b a ^-,所以()40b b a ×-=,所以240b a b -×=即2440x x +-=,故2x =,故选:D.3.C【分析】由复数模的计算公式直接计算即可.【解析】若1i z =--,则z ==故选:C.4.B【分析】由()2b a b -^得22b a b =×,结合1,22a a b =+=,得22144164a b b b +×+=+=,由此即可得解.【解析】因为()2b a b -^,所以()20b a b -×=,即22b a b =×,又因为1,22a a b =+=,所以22144164a b b b +×+=+=,从而22=b .故选:B.5.D【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【解析】依题意得,z =,故22i 2zz =-=.故选:D 6.A【分析】结合共轭复数与复数的基本运算直接求解.【解析】由5i 5i,10z z z z =+Þ=-+=,则()i 10i z z +=.故选:A 7.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【解析】对A ,当a b ^时,则0a b ×=,所以(1)20x x x ×++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ×=,所以a b ^,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误.故选:C.8.C【分析】直接根据复数乘法即可得到答案.【解析】由题意得()i i 11i z =-=--,故选:C.9.A【分析】根据向量数量积分析可知()()0a b a b +×-=等价于a b =,结合充分、必要条件分析判断.【解析】因为()()220a b a b a b +×-=-=,可得22a b =,即a b =,可知()()0a b a b +×-=等价于a b =,若a b =或a b =-,可得a b =,即()()0a b a b +×-=,可知必要性成立;若()()0a b a b +×-=,即a b =,无法得出a b =或a b =-,例如()()1,0,0,1a b ==,满足a b =,但a b ¹且a b ¹-,可知充分性不成立;综上所述,“()()0a b a b +×-=”是“a b ¹且a b ¹-”的必要不充分条件.故选:A.10.7【分析】借助复数的乘法运算法则计算即可得.【解析】))i 2i 527×=-+=.故答案为:7.11.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE ,即可得l m +,设BF BEk =uu u r uur,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ×的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ×的最小值.【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Î,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èø,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèø,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëû22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èø,因为(),BE BA BC l m l m =+=-,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èø,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèø,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×取到最小值为518-;故答案为:43;518-.12.15【分析】根据向量平行的坐标表示得到方程,解出即可.【解析】//a b ,256k \=´,解得15k =.故答案为:15.13.2【分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案.【解析】设1i z b =+,b ÎR 且0b ¹.则23222231i i 1i 11b b b z b m z b b b æöæö+-+=++=+=ç÷ç÷+++èøèø,mÎR,2232310 1bmbb bbì+=ïï+\í-ï=ï+î,解得2m=,故答案为:2.。

全国卷2011-高考—平面向量试题带答案

全国卷2011-高考—平面向量试题带答案

新课标全国卷I 文科数学分类汇编5.平面向量(含解析)一、 选择题【2015, 2] 2.已知点A(0.1), B(3,2),向MAC = (-4,-3),则向g :BC = ()A. (-7,-4)B. (7.4)C. (-1,4)D. (1.4)【2014,6】设D,E,F 分别为MBC 的三边BC,CA,AB 的中点,则EB + FC = ()A. ADB. -~ADC. -BCD. ~BC 2 2 二、 填空题【2017, 13】已知向量& =(一1,2), /;=(〃?」),若向量刁+方与&垂直,则m =.【2016, 13】设向= (x, X+l) , b = (L2),且〃丄方,则兀=・【2013, 13】已知两个单位向量“,b 的夹角为60。

,c=ta+(\-t)b.若b ・c=O,则尸 ___________ .【2012, 15】15.已知向量方,乙夹角为45。

,且帀1=1, 12方一力=应,贝ljl5l= ______________ . (2011, 13】已知“与方为两个不共线的单位向量,R 为实数,若向^a+b 与向萤ka-b 垂直,则k =.2011-2017年新课标全国卷2文科数学试题分类汇编4.平面向量一、选择题(2017-4)设非零向量0 b ,满足\a+b\=\a-b\则()A. “丄〃B. \a\=\b\C. a // bo. |a|>|Z»|(2015-4)向量a=(l, -I), M-b 2),则(2a +b)a=(A.-lB. 0C. 1 (2014-4)设向量ag 满足+比一方1=拆,则H-b=( )A ・1B ・2C ・3D ・5二、填空题 (2016-13)己知向虽 a=(fn /4)t b==(3厂2),且 a//b.则 m= ______________ ・(2013-14)已知正方形ABCD 的边长为2, E 为CD 的中点,则疋 丽= ________________ ・(2012-15)已知向量a, b 夹角为 45。

十年高考分类解析:第5章 平面向量与直线、平面、简单几何体

十年高考分类解析:第5章 平面向量与直线、平面、简单几何体

十年高考分类解析第五章 平面向量与直线、平面、简单几何体一、选择题1.(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c )2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OCβα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( ) A.3x +2y -11=0 B.(x -1)2+(y -2)2=5 C.2x -y =0 D.x +2y -5=0 3.(2001江西、山西、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( )A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)4.(2001江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅等于( )A.43B.-43 C.3 D.-35.(2001上海)如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1=a ,11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 6.(2001江西、山西、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A.-21a +23bB.21a -23b C.23a -21bD.-23a +21b 7.(2000江西、山西、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直 ④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )A.-31 B.-3 C.31 D.3二、填空题 9.(2002上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____. 10.(2001上海春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.11.(2000上海,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . 12.(1999上海理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为_____.13.(1997上海,14)设a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则m =_____. 14.(1996上海,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.15.(1996上海,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____. 三、解答题16.(2003上海春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图5—2.(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱;(2)若m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.17.(2002上海春,19)如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:(1)二面角O 1—AB —O 的大小;(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示)18.(2002上海,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)图5—3 图5—4 图5—519.(2002天津文9,理18)如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ⋅,PN PM ⋅NP NM ⋅成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.21.(2001江西、山西、天津理)如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .(1)求cos<DE BE , >;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED .图5—6 图5—7 图5—822.(2001上海春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.(1)求证:A 1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)23.(2001上海)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.(1)求证:A ′F ⊥C ′E .(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)24.(2000上海春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形, ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.25.(2000上海,18)如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos 1010,求四面体ABCD 的体积.图5—9 图5—10 图5—1126.(2000天津、江西、山西)如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .27.(2000全国理,18)如图5—11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.28.(1999上海,20)如图5—12,在四棱锥P —ABCD 中,底面ABCD是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且P A ⊥底面ABCD ,PD 与底面成30°角.(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.29.(1995上海,21)如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值.●答案解析 1.答案:D解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.评述:向量的积运算不满足结合律. 2.答案:D解析:设OC =(x ,y ),OA =(3,1),OB =(-1,3),αOA =(3α,α),β=(-β,3β)又α+β=(3α-β,α+3β)∴(x ,y )=(3α-β,α+3β),∴⎩⎨⎧+=-=βαβα33y x又α+β=1 因此可得x +2y =5评述:本题主要考查向量法和坐标法的相互关系及转换方法. 3.答案:D解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法. 4.答案:B解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -21),则⋅=x 1x 2+y 1y 2.又⎪⎩⎪⎨⎧=-=x y x k y 2)21(2,得k 2x 2-(k 2+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)=k 2(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=41-1=-43.解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2=-1.x 1·x 2同上. 评述:本题考查向量的坐标运算,及数形结合的数学思想.5.答案:A解析:)(21111BC BA A A BM B B MB ++=+==c +21(-a +b )=-21a +21b +c评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.答案:B解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).∴⎩⎨⎧=--=+21n m n m ∴⎪⎪⎩⎪⎪⎨⎧-==2321n m 评述:本题考查平面向量的表示及运算.7.答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假; ④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真. 评述:本题考查平面向量的数量积及运算律. 8.答案:A解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-31. 评述:本题考查平移变换与函数解析式的相互关系. 9.答案:13解析:∵(2a -b )·a =2a 2-b ·a =2|a |2-|a |·|b |·cos120°=2·4-2·5(-21)=13. 评述:本题考查向量的运算关系. 10.答案:90°解析:由|α+β|=|α-β|,可画出几何图形,如图5—14.|α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.答案:4解析:∵OA ={-1,2},OB ={3,m },OA OB AB -=={4,m -2},又OA ⊥AB , ∴-1×4+2(m -2)=0,∴m =4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件. 12.答案:(223,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为4π,由复数乘法的几何意义,得OB =OA (cos4π+isin4π)=(2+i )i i 22322)2222(+=+. ∴b =(223,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.13.答案:-2∵(a +b )⊥(a -b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2.评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件. 14.得∴a ·b =(-3)×5+4×(-12)=-63.评述:本题考查平面向量数量积的坐标表示及求法. 15.答案:(4,2)解析:设P (x ,y ),由定比分点公式12113210,22116210=+⋅+==+⋅+=y x , 则P (2,1),又由中点坐标公式,可得B (4,2).16.(1)证明:∵}0,23,2{mm AB AC BC =-=,∴| BC |=m , 又}0,0,{},0,23,2{m AC m m AB =-= ∴|AB |=m ,|AC |=m ,∴△ABC 为正三角形.又·1AA =0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =23m ,CA 1=22n m +, ∴sin CA 1O =221=CA CO ,即∠CA 1O =45°. 17.解:(1)取OB 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面OBB 1O 1⊥平面OAB , ∴O 1D ⊥平面OA B.过D 作AB 的垂线,垂足为E ,连结O 1E . 则O 1E ⊥A B.∴∠DEO 1为二面角O 1—AB —O 的平面角. 由题设得O 1D =3,sin OBA =72122=+OB OA OA , ∴DE =DB sin OBA =721 ∵在R t △O 1DE 中,tan DEO 1=7,∴∠DEO 1=arctan7,即二面角O 1—AB —O 的大小为arctan 7.(2)以O 点为原点,分别以OA 、OB 所在直线为x 、y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系如图5—15.则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0).设异面直线A 1B 与AO 1所成的角为α, 则}3,1,3{},31,3{1111-=-=--=-=OO OA A O OA OB B A , cos α71||||1111=⋅A O B A A O B A , ∴异面直线A 1B 与AO 1所成角的大小为arccos71.18.解法一:如图5—16,以O 点为原点建立空间直角坐标系. 由题意,有B (3,0,0),D (23,2,4),设P (3,0,z ),则 ={-23,2,4},OP ={3,0,z }.∵BD ⊥OP ,∴BD ·OP =-29+4z =0,z =89.∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. tan POB =83,∴∠POB =arctan 83. 解法二:取O ′B ′中点E ,连结DE 、BE ,如图5—17,则DE ⊥平面OBB ′O ′,∴BE 是BD 在平面OBB ′O ′内的射影. 又∵OP ⊥B D.由三垂线定理的逆定理,得OP ⊥BE .在矩形OBB ′O ′中,易得Rt △OBP ∽Rt △BB ′E , ∴B B OBE B BP '=',得BP =89. (以下同解法一)19.解:(1)如图5—18,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2 a ),C 1(a aa 2,2,23-). (2)坐标系如图,取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1有 1MC =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,0,2 a ) 由于1MC ·AB =0,1MC ·1AA =0,所以MC 1⊥面ABB 1A 1. ∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(a a a 2,2,23-),AM =(0,2,2a a ),∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=a a a a 32443222=++. |AM |=a a a 232422=+. ∴cos <1AC ,AM >=23233492=⋅aa a. 所以1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.20.解:(1)记P (x ,y ),由M (-1,0),N (1,0)得PM =-MP =(-1-x ,-y ),PN =-NP =(1-x ,-y ),MN =-NM =(2,0)∴MP ·MN =2(1+x ),PM ·PN =x 2+y 2-1,NM ·NP =2(1-x ). 于是,MP ·MN ,PM ·PN ,NM ·NP 是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即⎩⎨⎧>=+0,322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0).·PN =x 02+y 02-1=2.|PM |·|PN |=20202020)1()1(y x y x +-⋅++.∴cos θ2202043tan .41||||x x x PB PM PN PM --=-=⋅θ 21.解:(1)由题意知B (a ,a ,0),C (-a ,a ,0),D (-a ,-a ,0),E (2,2,2ha a -).由此得,)2,23,2(),2,2,23(h a a DE h a a BE =--= ∴42322)232()223(22h a h h a a a a +-=⋅+⋅-+⋅-=⋅, 222221021)2()2()23(||||h a h a a +=+-+-==. 由向量的数量积公式有cos<DE BE , >222222222210610211021423||||h a h a h a h a h a DE BE DE BE ++-=+⋅++-=⋅ (2)若∠BED 是二面角α—VC —β的平面角,则CV BE ⋅,则有CV BE ⊥=0.又由C (-a ,a ,0),V (0,0,h ),有=(a ,-a ,h )且)2,2,23(ha a BE --=,∴02223222=++-=⋅h a a CV BE . 即h =2a ,这时有cos<DE BE ,>=31)2(10)2(610622222222-=++-=++-a a a a h a h a , ∴∠BED =<DE BE ,>=arccos (31-)=π-arccos 31评述:本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE . 同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE , 所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角.由已知,计算得DG =49. 如图5—19建立直角坐标系,则得点A (0,0,0),G (49,3,0),A 1(0,0,5), C (4,3,0).AG ={49,3,0},A 1C ={4,3,-5}. 因为AG 与A 1C 所成的角为α, 所以cos α=25212arccos ,25212||||11==⋅⋅αC A AG C A AG .由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos25212. 注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=AEFABDS S ∆∆. 评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.建立坐标系,如图5—20.(1)证明:设AE =BF =x ,则A ′(a ,0,a ),F (a -x ,a ,0),C ′(0,a ,a ),E (a ,x ,0)∴A '={-x ,a ,-a },E C '={a ,x -a ,-a }. ∵F A '·E C '=-xa +a (x -a )+a 2=0 ∴A ′F ⊥C ′E(2)解:设BF =x ,则EB =a -x 三棱锥B ′—BEF 的体积 V =61x (a -x )·a ≤6a (2a )2=241a 3 当且仅当x =2a时,等号成立. 因此,三棱锥B ′—BEF 的体积取得最大值时BE =BF =2a,过B 作BD ⊥EF 于D ,连B ′D ,可知B ′D ⊥EF .∴∠B ′DB 是二面角B ′—EF —B 的平面角在直角三角形BEF 中,直角边BE =BF =2a ,BD 是斜边上的高.∴BD =42a .∴tan B ′DB =22='BDBB 故二面角B ′—EF —B 的大小为arctan22.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于F A '·E C '=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.25.解:如图5—21建立空间直角坐标系由题意,有A (0,2,0)、C (2,0,0)、E (1,1,0) 设D 点的坐标为(0,0,z )(z >0)则BE ={1,1,0},AD ={0,-2,z },设BE 与AD 所成角为θ. 则AD ·BE =2·224+cos θ=-2,且AD 与BE 所成的角的大小为arccos1010.∴cos 2θ=101422=+z ,∴z =4,故|BD |的长度为4. 又V A —BCD =61|AB |×|BC |×|BD |=38,因此,四面体ABCD 的体积为38.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.26.解:如图5—22,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA . (3)证明:依题意,得C 1(0,0,2)、M (21,21,2),A 1={-1,1,2}, M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.27.(1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD -==b -a , ∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0,∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角.∵21)(21=+=CD BC CO(a +b ),2111=-=CC C (a +b )-c∴CO ·211=OC (a +b )·[21(a +b )-c ]=41(a 2+2a ·b +b 2)-21a ·c -21b ·c=41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23.则|CO |=3,|O C 1|=23,∴cos C 1OC 3311=⋅O C CO (3)解:设1CC CD =x ,CD =2, 则CC 1=x2. ∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,=c , ∵A 1=a +b +c ,C 1=a -c ,∴C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=x x 242+-6,令6-242x x -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.28.(1)证明:∵P A ⊥平面ABCD ,∴P A ⊥AB ,又AB ⊥AD .∴AB ⊥平面P AD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵P A ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a,EF =23a ,∴E (0,23,21a a )于是,CD a a AE },23,21,0{=={-a ,a ,0} 设AE 与CD 的夹角为θ,则由cos θ||||CD AE CDAE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a ∴θ=arccos42,即AE 与CD 所成角的大小为arccos 42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.29.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量OD [TX →]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==, 所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量AD 和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 评述:本题考查空间向量坐标的概念,空间向量数量积的运算及空间向量的夹角公式.解决好本题的关键是对空间向量坐标的概念理解清楚,计算公式准确,同时还要具备很好的运算能力.。

2010-2019十年高考数学(文)真题专题5平面向量第13讲平面向量的概念与运算分类汇编

2010-2019十年高考数学(文)真题专题5平面向量第13讲平面向量的概念与运算分类汇编

专题五平面向量第十三讲平面向量的概念与运算一、选择题1.(2018全国卷Ⅰ)在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EBA .3144AB AC B .1344AB AC C .3144ABACD .1344ABAC2.(2018全国卷Ⅱ)已知向量a ,b 满足||1a ,1a b,则(2)a ab A .4B .3C .2D .03.(2018天津)在如图的平面图形中,已知1OM ,2ON ,120MON ,2BM MA ,2CN NA ,则·BC OM 的值为A .15B .9C .6D .04.(2017新课标Ⅱ)设非零向量a ,b 满足||||ab ab 则A .a b B .||||a b C .∥a bD .||||a b 5.(2017北京)设m , n 为非零向量,则“存在负数,使得m n ”是“0m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.(2016年天津)已知△ABC 是边长为1的等边三角形,点E D,分别是边BC AB ,的中点,连接DE 并延长到点F,使得EF DE 2,则AF BC的值为A .85B .81C .41D .811NMOCBA7.(2016全国III 卷)已知向量,则A .30°B .45°C .60°D .120°8.(2015重庆)已知非零向量,a b 满足||=4||b a ,且(+)2aa b ,则a 与b 的夹角为A .3B .2C .23D .569.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是A .||||||≤a b a bB .||||||||≤ab a b C .22()||ab a b D .22()()a b ab ab10.(2015新课标2)向量(1,1)a,(1,2)b ,则(2)a b aA .B .C .D .11.(2014新课标1)设FE D ,,分别为ABC 的三边AB CA BC ,,的中点,则FCEB A .ADB .AD21C .BC21D .BC12.(2014新课标2)设向量a ,b 满足|+|=10a b ,||=6ab ,则a bA .1B .2C .3D .513.(2014山东) 已知向量(1,3),(3,)m ab . 若向量,a b 的夹角为6,则实数mA .23B .3C .0D .314.(2014安徽)设,a b 为非零向量,2ba ,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y 所有可能取值中的最小值为24a ,则a 与b 的夹角为A .23B .3C .6D .015.(2014福建)在下列向量组中,可以把向量3,2a表示出来的是A .12(0,0),(1,2)e e B .12(1,2),(5,2)e e 13(,)22BAuu v31(,),22BCuu u v ABC112C .12(3,5),(6,10)e e D .12(2,3),(2,3)e e 16.(2014浙江)设为两个非零向量a ,b 的夹角,已知对任意实数t ,||t b a 是最小值为1 A .若确定,则||a 唯一确定B .若确定,则||b 唯一确定C .若||a 确定,则唯一确定D .若||b 确定,则唯一确定17.(2014重庆)已知向量(,3)k a ,(1,4)b ,(2,1)c ,且(23)ab c ,则实数kA .92B .0C .3D .15218.(2013福建)在四边形中,,则该四边形的面积为A .B .C .5D .1019.(2013浙江)设ABC ,0P 是边上一定点,满足014PB AB ,且对于边上任一点,恒有00PB PC P B PC ≥.则A .B .C .D .20.(2013辽宁)已知点(1,3)A ,(4,1)B ,则与向量AB 同方向的单位向量为A .B .C .D .21.(2013湖北)已知点、、、,则向量在方向上的投影为A .B .C .D .22.(2013湖南)已知,a b 是单位向量,0a b =.若向量c 满足1c a b,则c 的最大值为A .B .C .D .23.(2013重庆)在平面上,,,.若,则的取值范围是ABCD )2,4(),2,1(BDAC552AB AB P 090ABC 090BAC ACAB BCAC 3455,-4355,-3455,4355,(1,1)A (1,2)B (2,1)C (3,4)D AB CD 32231523223152212212212AB AB 121OB OB 12AP AB AB 12OPOAA 、B 、C 、D 、24.(2013广东)设a 是已知的平面向量且0a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a b c ;②给定向量b 和c ,总存在实数和,使ab c ;③给定单位向量b 和正数,总存在单位向量c 和实数,使ab c ;④给定正数和,总存在单位向量b 和单位向量c ,使abc ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .425.(2012陕西)设向量a =(1,)与b =(1,2)垂直,则等于A .B .C .0D .-126.(2012浙江)设a ,b 是两个非零向量A .若||||||a b a b ,则abB .若a b ,则||||||ab a b C .若||||||a b a b ,则存在实数,使得b aD .若存在实数,使得b a ,则||||||a b a b 27.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若为实数,()∥a b c ,则=A .14B .12C .1D .228.(2011辽宁)已知向量(2,1)a ,(1,)k b,(2)0a a b ,则kA .12B .6C .6D .1229.(2010辽宁)平面上O ,A ,B 三点不共线,设OA=a ,OB b ,则△OAB 的面积等于A .222|||()|a b a b B .222|||()|a b a b 50,257,225,227,22cos cos cos22212C .2221|||()2|a b a b D .2221|||()2|a b a b 30.(2010山东)定义平面向量之间的一种运算“”如下:对任意的(,)m n a ,(,)p q b ,令mq np ab ,下面说法错误的是A .若a 与b 共线,则0a b B .a b b aC .对任意的R ,有()()a ba b D .2222()()||||a b a b a b 二、填空题31.(2018全国卷Ⅲ)已知向量(1,2)a,(2,2)b ,(1,)c.若2c a b ,则_.32.(2018北京)设向量(1,0)a,(1,)m b ,若()m aa b ,则m =_______.33.(2017新课标Ⅰ)已知向量(1,2)a ,(,1)m b .若向量a b 与a 垂直,则m =__.34.(2017新课标Ⅲ)已知向量(2,3)a,(3,)m b,且ab ,则m =.35.(2017天津)在△ABC 中,60A ,AB=3,AC=2.若2B DD C ,AEACAB(R ),且4AD AE,则的值为.36.(2017山东)已知向量(2,6)a ,(1,)b ,若a ∥b ,则.37.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA与OC 的夹角为,且tan 7,OB 与OC 的夹角为45。

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。

2022届全国高考数学真题分类(平面向量)汇编(附答案)

2022届全国高考数学真题分类(平面向量)汇编(附答案)

2022届全国高考数学真题分类(平面向量)汇编一、选择题 1.(2022∙全国乙(文)T3) 已知向量(2,1)(2,4)a b ==- ,,则a b -r r ( )A. 2B. 3C. 4D. 52.(2022∙全国乙(理)T3) 已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅= ( ) A. 2- B. 1- C. 1 D. 2 3.(2022∙新高考Ⅰ卷T3) 在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB =( )A. 32m n -B. 23m n -+C. 32m n +D. 23m n +4.(2022∙新高考Ⅱ卷T4) 已知(3,4),(1,0),t ===+ a b c a b ,若,,<>=<> a c b c ,则t =( )A. 6-B. 5-C. 5D. 6二、填空题 1.(2022∙全国甲(文)T13) 已知向量(,3),(1,1)a m b m ==+ .若a b ⊥ ,则m =______________.2.(2022∙全国甲(理)T13) 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.参考答案一、选择题1.【答案】D【答案解析】【名师分析】先求得a b - ,然后求得a b -r r .【答案详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D2.【答案】C【答案解析】【名师分析】根据给定模长,利用向量的数量积运算求解即可. 【答案详解】解:∵222|2|||44-=-⋅+ a b a a b b ,又∵||1,||2|3,==-= a b a b ∴91443134=-⋅+⨯=-⋅ a b a b , ∴1a b ⋅= 故选:C.3. 【答案】B【答案解析】【名师分析】根据几何条件以及平面向量的线性运算即可解出.【答案详解】因为点D 在边AB 上,2BD DA =,所以2BD DA = ,即()2CD CB CA CD -=- , 所以CB =3232CD CA n m -=- 23m n =-+.故选:B .4.【答案】C【答案解析】【名师分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【答案详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =, 故选:C二、填空题1. 【答案】34-或0.75- 【答案解析】 【名师分析】直接由向量垂直的坐标表示求解即可.【答案详解】由题意知:3(1)0a b m m ⋅=++= ,解得34m =-. 故答案为:34-. 2. 【答案】11【答案解析】【名师分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【答案详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=, 又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= , 所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= . 故答案为:11.。

三年高考(2019-2021)数学(文)真题分类汇编——平面向量(原卷版)

三年高考(2019-2021)数学(文)真题分类汇编——平面向量(原卷版)

!!!" AC
×
!B!C!"=1,则
点 C 的轨迹为
A.圆
B.椭圆
C.抛物线
D.直线
!!!" !!!" 6.【2020 年新高考全国Ⅰ卷】已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则 AP × AB
的取值范围是
A. (-2, 6)
B. (-6, 2)
C. (-2, 4)
D. (-4, 6)
AE
=
BE
,则
!!!" BD
×
!!!" AE
= _____________.
23.【2019 年高考江苏卷】如图,在 △ABC 中,D 是 BC 的中点,E 在边 AB 上,BE=2EA,
21.【2019 年高考全国 III 卷文数】已知向量 a = (2, 2), b = (-8, 6),则
cos a, b =___________.
22.【2019 年高考天津卷文数】在四边形 ABCD中,
AD ∥ BC, AB = 2 3, AD = 5, ÐA = 30° ,点 E 在线段 CB的延长线上,且
P2 (cos b , - sin b ), P3 (cos (a + b ),sin (a + b )), A(1, 0),则( )
!!!" !!!" A. OP1 = OP2
!!!" !!!" B. AP1 = AP2
!!!" !!!" !!!" !!!" C. OA × OP3 = OP1 × OP2
2
|
!!!" PD
|=
_________;

专题11 平面向量-三年(2017-2019)高考真题数学(文)分项汇编(带解析)

专题11 平面向量-三年(2017-2019)高考真题数学(文)分项汇编(带解析)

专题11 平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |= A 2 B .2 C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b , 所以22||(1)12-=-+=a b , 故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++u u u r u u u r u u u r u u u r u uu r u u u r u u u r u u u v1113124444BA BA AC BA AC =++=+u uu r u u u r u u u r u u u r u u u r ,所以3144EB AB AC =-u u u r u u u r u u u r ,故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学运算.5.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1 B .3+1 C .2 D .2−3【答案】A【解析】设,则由得,由b 2−4e ·b +3=0得因此|a −b |的最小值为圆心到直线的距离23=3减去半径1,为选A.【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算. 6.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r则·BC OM u u u r u u u u r 的值为A .15-B .9-C .6-D .0【答案】C【解析】如图所示,连结MN ,由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 7.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥bB .=a bC .a ∥bD .>a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.【答案】210-【解析】222228262cos ,||||1022(8)6⨯-+⨯⋅===-⋅+⨯-+a b a b a b . 【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD 中,,23,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=u u u r u u u r_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,23,5,AB AD ==则(23,0)B,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE 的斜率为3,其方程为3(23)3y x =-, 直线AE 的斜率为3-,其方程为3y x =-. 由3(23),33y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-u u u r u u u rg g .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则ABAC的值是_____.【答案】3.【解析】如图,过点D作DF//CE,交AB于点F,由BE=2EA,D为BC的中点,知BF=FE=EA,AO=OD.()()()3632AO EC AD AC AE AB AC AC AE=-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g,()223131123233AB AC AC AB AB AC AB AC AB AC⎛⎫⎛⎫=+-=-+-⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g22223211323322AB AC AB AC AB AC AB AC AB AC⎛⎫=-+=-+=⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g,得2213,22AB AC=u u u r u u u r即3,AB=u u u r u u r故3ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019年高考浙江卷】已知正方形ABCD的边长为1,当每个(1,2,3,4,5,6)iiλ=取遍±1时,123456||AB BC CD DA AC BDλλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】0;25【解析】以,AB AD分别为x轴、y轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-u u u r u u u r u u u r u u u r u u u r u u u r,令()()2212345613562456y AB BC CD DA AC BD λλλλλλλλλλλλλλ=+++++=-+-+-++≥u u u r u u u r u u u r u u u r u u u r u u u r 00.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值, 所以当1256341,1λλλλλλ======-时,有最大值22max242025y =+==.故答案为0;25.【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.【答案】12【解析】由题可得()24,2+=a b ,()2Q ∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.【答案】【解析】,,由得:,,即.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0. 16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u ur ,则AE BF ⋅u u u r u u u r的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,; ∴2AE BF ab ⋅=-+u u u r u u u r;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r ;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________.【答案】2【解析】由题意可得02330,m ⋅=⇒-⨯+=a b 解得2m =. 【名师点睛】(1)向量平行:1221∥x y x y ⇒=a b ,,,∥≠⇒∃∈=λλ0R a b b a b ,111BAAC OA OB OC λλλλ=⇔=+++u u u r u u u r u u u r u u u r u u u r .(2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量的运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =. 【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC u u u r 的模分别为1,1,2,OA u u u r 与OCu u u r的夹角为α,且tan α=7,OB uuu r 与OC u u u r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得2sin 10α=,2cos 10α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222102720n m n m +=⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________. 【答案】4,25【解析】设向量,a b 的夹角为θ,则2212212cos 54cos θθ-=+-⨯⨯⨯=-a b ,2212212cos 54cos θθ+=++⨯⨯⨯=+a b则54cos 54cos θθ++-=+-a b a b 令54cos 54cos y θθ=+-,则[]221022516cos 16,20y θ=+-,据此可得:()()maxmin 2025,164++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是25【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得54cos θ++-=+a b a b54cos θ-能力有一定的要求.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,AE AC λ=-u u u r u u u r ()AB λ∈R u u u r ,且4AD AE ⋅=-u u u r u u u r,则λ的值为________.【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+u u u r u u u r u u u r u u u r u u u r ,则12()33AD AE AB AC ⋅=+u u u r u u u r u u u r u u u r 2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=u u u r u u u r .【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC u u u r u u u r已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.。

高考文科数学真题汇编平面向量高考题老师版

高考文科数学真题汇编平面向量高考题老师版

a 、b 都是非零向量||||a b a b =成立的充分条件是a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =2.2014新标1文设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A AD B. 12AD C. 12BC D. BC 3. 2014福建文设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点OA OB OC OD +++等于 D4.2012大纲ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =A .1133a b -B 23a b -C .3355a b -D .4455a b - 简解由0a b ⋅=可得ACB ∠︒,故5AB =,用等面积法求得255CD =,所以455AD =,故4444()5555AD AB CB CA a b ==-=-,故选答案5.2012浙江 设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥b ;B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λb.若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |a +b |=|a |-|b |,两边平方得到a b ⋅=-|a ||b |,则a 与b 反向,选C2013四川 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,错误!+错误7.2014新标1理 已知A,B,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为历年高考试题集锦——平面向量a ()2,4a =,()1,1b =-,a b -= AB.()5,9C.()3,7D.()2,3BA =,()4,7CA =,则BC = AB.()2,4C.()6,10 已知向量(1,2)a =,(3,1)b =,则b a -= B 1,1)、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为 C .322- D .3152- a = 1,—1,b = 2,x.若a ·b = 1,则x = DC 12D1 1,3,B 4,-1,则与向量A 错误!同方向的单位向量为(1,2)AC =(4,2)BD =- C .5 D ,a b 满足32a b a b ==+,则,a b 夹角的余弦值为错误!sin x ,sin x ,b →=cos x ,sin x ,x ∈错误!的值; 2设函数fx =a →·b →,求fx 的最大值..b →b →AP AC = 18 .解析设AC BD O =,则2()AC AB BO =+,AP AC = 2()AP AB BO +=22AP AB AP BO +222()2AP AB AP AP PB AP ==+=18=.23.2012江苏如图,在矩形ABCD 中,AB=,BC=2,点E 为BC 的中点,点F 在边CD 上,若=,则的值是 . 24.2014江苏如图,在□ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是 . 简解AP AC -=3AD AP -,14AP AD AB =+;34BP AD AB =-;列式解得结果22 25.2015北京文设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件26.2015年广东文在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = DA .2B .3C .4D .527.2015年安徽文ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC +=→2,则下列结论中正确的是 ①④⑤ ;写出所有正确结论得序号①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( ;28.2013天津在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若错误!·错误!=1,则AB 的长为________.简解如图建系:由题意AD=1, 60=∠DAB ,得)0,21(-A ,),23,0(D 设DE=x,)23,(x E ,)0,212(-x B , 13(2,)22AC x =+,13(,)22BE x =-由题意 .1AD BE = 得:143)21)(212(=+-+x x ,得41=x ,∴AB 的长为21; 29.2012福建文已知向量)2,1(-=→x a,)1,2(=→b ,则→→⊥b a 的充要条件是 D A .21-=x B .1-=x C .5=x D .0=x 30.2012陕西文设向量a =1.cos θ与b =-1, 2cos θ垂直,则cos2θ等于 C(1,OA =|||OA OB =0OA OB ⋅=||AB =51,t ,错误2,2,若∠ABO =90°,则实数t 的值为=90°,即错误!错误!,所以错误!·错误!=错误!(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 53- C .53 D .32文已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a C.1 D .2,a b ,下列关系式中不恒成立的是|||||a b a b •≤ B .|||||||a b a b -≤- C .22()||a b a b +=+ D .22)()a b a b a b +-=- 37.2015年天津文在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠= 点E 和点F 分别在线BC 和CD 上,且21,,36BE BC DF DC == 则AE AF ⋅的值为 2918 . 38.2015年江苏已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-R n m ∈,, n m -的值为___-3___.已知△ABC 是边长为1的等边三角形,点E D ,分别是边,则AF BC •的值为 B81 C 41 卷已知向量1(,2BA =3(2BC = B 450 C 60 D1203),(=b ,则a 与b 夹角的大小为30.______.中,D 是BC 的中点,F 是AD 上的两个三等分点4BC CA ⋅=,1BF CF ⋅=-BE CE ⋅ 的值是、2016年山东已知向量5-____.。

【新高考数学】平面向量(含答案解析)

【新高考数学】平面向量(含答案解析)

①单位向量都相等;
②模相等的两个平行向量是相等向量;
③若 a
,b
满足
a
b
且 a 与 b 同向,则 a
b

④若两个向量相等,则它们的起点和终点分别重合;
⑤若 a ∥ b,b ∥ c ,则 a∥c .
A.0 个
B.1 个
C.2 个
D.3 个
2.巩固提升综合练习 【练习 1】给出下列命题:
量线性运算求参数.解题过程中应注意:
1.例题
【例 1】在 ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB ( )
A. 3 AB 1 AC 44
B. 1 AB 3 AC C. 3 AB 1 AC
44
44
【例 2】在梯形 ABCD 中,A→B=3D→C,则B→C等于( )
B.1
3
2
C.2
D.3
3
4
【练习 2】设向量 a , b 不平行,向量 a b 与 a 2b 平行,则实数 _________.
【四】平面向量基本定理及应用
1如.平果面e1向,量e2基是本一定平理面: 内的两个不共线向量,那么对于这个平面内任意向量 a ,有且只有一对实数 1,2 ,使 a 1e1 2e2 .其中,不共线的向量 e1,e2 叫做表示这一平面内所有向量的一组基底.
D. 1 AB 3 AC 44
A.-1A→B+2A→D 33
B.-2A→B+4A→D 33
C.2A→B-A→D 3
D.-2A→B+A→D 3
2.巩固提升综合练习
【练习
1】在正方形
ABCD
中,
E

DC
的中点,若

高考数学各地名校试题解析分类汇编(一)6 平面向量 文

高考数学各地名校试题解析分类汇编(一)6 平面向量 文

各地解析分类汇编:平面向量1.【云南省玉溪一中2013届高三第四次月考文】已知平面向量,a b满足3,2,a b a b == 与的夹角为60°,若(),a m b a -⊥则实数m 的值为( )A.1B.32C.2D.3【答案】D【解析】因为(),a m b a -⊥ 所以()0a mb a -= ,即20a m a b -=,所以2c o s 600a m a b -=,解得3m =,选D.2【云南省玉溪一中2013届高三上学期期中考试文】在△ABC 中,若2···AB AB AC BA BC CA CB =++ ,则△ABC 是( )A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形 【答案】D 【解析】因为2···()AB AB AC BA BC CA CB AB AC BC CA CB =++=-+AB AB CA CB =+ ,所以0CA CB = ,即CA CB ⊥,所以三角形为直角三角形,选D.3【山东省实验中学2013届高三第一次诊断性测试 文】已知向量,1),(0,(,3),2,a b c a b c k===+=若与垂直则A .—3B .—2C .lD .-l【答案】A【解析】因为2a bc + 与垂直,所以有2=0a b c + (),即2=0a c b c + ,所以30++=,解得3k =-,选A.4【云南省昆明一中2013届高三新课程第一次摸底测试文】已知点(5,6)(1,2),3M a M N a -=-=-和向量若,则点N 的坐标为A .(2,0)B .(-3,6)C .(6,2)D .(—2,0)【答案】A【解析】33(1,2)(3,6)M N a =-=--=- ,设(,)N x y ,则(5,(6))(3,6)M N x y =---=-,所以5366x y -=-⎧⎨+=⎩,即2=0x y =⎧⎨⎩,选A.5【山东省济南外国语学校2013届高三上学期期中考试 文科】 已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( )A. -12B. -6C. 6D. 12 【答案】D【解析】因为(2)0a a b -=,即(2,1)(5,2)0k -= ,所以10+20k -=,即12k =,选D. 6【山东省聊城市东阿一中2013届高三上学期期初考试 】已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A. 5B.10C.5D.25 【答案】C【解析】因为222a (2,1),ab 10,a b (a b )50a 2a b b →→→→→→→→→→→=⋅=+=+==++ ,解得可知=→b 5,选C7【山东省临沂市2013届高三上学期期中考试 数学文】如图,已知4,,,3A P AB O A O B O P O P =用表示则等于A .1433O A O B -B .1433O A O B +C .1433O A O B -+D .1433O A O B --【答案】C【解析】OP OA AP =+ 4414()3333O A AB O A O B O A O A O B =+=+-=-+,选C.8 【山东省青岛市2013届高三上学期期中考试数学(文)】已知非零向量a 、b ,满足a b ⊥,则函数2()()f x a x b =+(R)x ∈是A. 既是奇函数又是偶函数B. 非奇非偶函数C. 奇函数D. 偶函数【答案】D【解析】因为a b ⊥ ,所以0a b = ,所以2222()()f x ax b ax b =+=+,所以2()()f x a x b =+为偶函数,选D.9 【山东省青岛市2013届高三上学期期中考试数学(文)】已知O 是A B C △所在平面内一点,D 为B C 边中点,且20OA OB OC ++=,则A .2AO OD =B .AO O D =C .3AO OD =D .2AO OD =【答案】B【解析】因为D 为B C 边中点,所以由20OA OB OC ++= 得22OB OC OA AO +=-=,即22OD AO = ,所以AO O D =,选B.10 【山东省烟台市2013届高三上学期期中考试文】若向量)6,12(),2,4(),6,3(--==-=w v u ,则下列结论中错误的是 A .v u ⊥ B .w v //C .v u w 3-=D .对任一向量AB ,存在实数b a ,,使v b u a AB +=【答案】C【解析】因为0=⋅v u ,所以v u ⊥;又因0)12(2)6(4=---⨯,所以w v //;u 与v 为不共线向量,所以对任一向量AB ,存在实数b a ,,使v b u a AB +=. 故选C.11 【天津市新华中学2013届高三上学期第一次月考数学(文)】若向量a 与b 不共线,0≠⋅b a ,且()a a c a b a b=-,则向量a 与c 的夹角为( )A. 0B.6πC.3πD.2π【答案】D【解析】因为()a a c a b a b =- ,所以222[()]0a a c a ab a a a b =-=-=,所以a c ⊥ ,即向量夹角为2π,选D.12 【山东省烟台市2013届高三上学期期中考试文】已知向量),sin ,(cos θθ=a 向量),1,3(-=b 则|2|b a -的最大值、最小值分别是A .24 ,0B .4, 24C .16,0D .4,0 【答案】D【解析】)6cos(88)sin cos 3(44444|2|222πθθθ+-=--+=⋅-+=-b a b a b a ,故|2|b a -的最大值为4,最小值为0.故选D.13 【山东省师大附中2013届高三12月第三次模拟检测文】已知平面内一点P 及ABC ∆,若AB PC PB PA =++,则点P 与ABC ∆的位置关系是A.点P 在线段AB 上B.点P 在线段BC 上C.点P 在线段AC 上D.点P 在ABC ∆外部【答案】C【解析】由AB PC PB PA =++得PA PC AB PB AP +=-= ,即2PC AP PA AP =-= ,所以点P 在线段AC 上,选C.14 【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】若()1,a b a a b ==⊥- 且,则向量,a b的夹角为A.45°B.60°C.120°D.135°【答案】A【解析】因为()a ab ⊥- ,所以()0a ab -= ,即20a a b -=,即2a b a=,所以向量,ab的夹角为21cos ,2a a b a b a b a b<>====,所以,45a b <>=,选A. 15 【云南师大附中2013届高三高考适应性月考卷(三)文】已知(2,)a m = ,(1,)b m =-,若(2)a b b -⊥ ,则||a=A .4B .3C .2D .1【答案】B 【解析】因为(2a b b-⊥),所以(20a b b -⋅= ),即250m -+=,即25m =,所以||3a = ,故选B . 16. 【山东省师大附中2013届高三上学期期中考试数学文】如图,正六边形ABCDEF 中,BA CD EF ++=A.0B.BEC.ADD.CF【答案】D【解析】因为BA DE =,所以B A C D E F C DD E E++=++=,选 D.17 【山东省师大附中2013届高三12月第三次模拟检测文】平面向量a与b 的夹角为060,)0,2(=a,1=b ,则=+b aA .9B .3 D . 7 【答案】B【解析】2a =,1cos ,2112a b a b a b =<>=⨯⨯= ,所以22224127a b a b a b +=++=++= ,所以a b += ,选B.18. 【山东省德州市乐陵一中2013届高三10月月考数学(文)】已知向量a ),2(x =,b)8,(x =,若a ∥b,则x =A.4-B.4C.4±D.16【答案】C【解析】因为//a b,所以2160x -=,即4x =±,选C.19 【天津市新华中学2012届高三上学期第二次月考文】若向量)2,1(),1,1(),1,1(--=-==c b a ,则=cA. b a 2321--B. b a 2321+-C.b a 2123-D. b a 2123+-【答案】D【解析】设c x a y b =+ ,则(1,2)(1,1)(1,1)(,)x y x y x y --=+-=+-,所以12x y x y +=-⎧⎨-=-⎩,解得3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即3122c a b =-+ ,选D.20 【山东省实验中学2013届高三第一次诊断性测试 文】已知点O 为△ABC 内一点,且230,O A O B O C ++=则△A OB 、△AOC、△BOC 的面积之比等于A .9:4:1B .1:4:9C .3:2:1D .1:2:3【答案】C【解析】延长O B 到'B ,使'2O B O B =,延长O C 到'C ,使'3O C O C =,连结''B C ,取''B C 的中点'A ,则232',O B O C O A O A +==-所以,,'A O A 三点共线且O 为三角形''A B C 的重心,则可以证明''''=AO B AO C B O C S S S ∆∆∆=。

平面向量-三年(2017-2019)高考真题数学(文)专题

平面向量-三年(2017-2019)高考真题数学(文)专题

平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π62.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .503.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1 BC .2D .26.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .07.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥bD .>a b8.【2017年高考北京卷文数】设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________. 16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________. 19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-,故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学运算.5.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1B C.2 D .2【答案】A【解析】设 ,则由 得,由b 2−4e ·b +3=0得 因此|a −b |的最小值为圆心 到直线的距离21,为 选A. 【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算.6.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .0【答案】C【解析】如图所示,连结MN ,由 可知点 分别为线段 上靠近点 的三等分点,则, 由题意可知:, , 结合数量积的运算法则可得: . 本题选择C 选项.【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 7.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥bB .=a bC .a ∥bD .>a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.【答案】10-【解析】2826cos ,||||10⨯-+⨯⋅===-⋅a b a b a b .【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE,其方程为y x =-, 直线AE的斜率为y x =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)12BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-, ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;【解析】以, AB AD 分别为x 轴、y 轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-, 令(123456y AB BC CD DA AC BD λλλλλλλ=+++++=0.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.【答案】【解析】 , ,由 得: , ,即 .【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-,;∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a = 【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________.【答案】2【解析】由题意可得02330,m ⋅=⇒-⨯+=a b 解得2m =.【名师点睛】(1)向量平行:1221∥x y x y ⇒=a b ,,,∥≠⇒∃∈=λλ0R a b b a b ,111BA AC OA OB OC λλλλ=⇔=+++. (2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量的运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且t a n α=7,OB 与OC 的夹角为45°.若O C m O A n O B =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==, 所以3m n +=. 【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+, 据此可得:()()max min 4++-==++-==a b a b a b a b , 即++-a b a b 的最小值是4,最大值是【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得++-=a b a b能力有一定的要求.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2B D D C =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________. 【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.。

2023年高考数学真题分训练 平面向量的概念、线性运算、平面向量基本定理(含答案含解析)

2023年高考数学真题分训练  平面向量的概念、线性运算、平面向量基本定理(含答案含解析)

专题 15 平面向量的概念、线性运算、平面向量根本定理年 份 题号考 点考 查 内 容2023卷 1 文6平面向量的概念与线性运算主要考查平面向量的线性运算卷 1 理 7平面向量根本定理及其应用 主要考查平面向量的线性运算及平面向量根本定理卷 2 理 13平面向量的概念与线性运算主要考查平面向量共线的充要条件2023卷1文 2平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的坐标与点坐标的关系、平面向量坐 标运算2023卷 2 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标的线性运算及向量共线的充要 条件卷1理 6 文 7平面向量根本定理及其应用主要考查平面向量的线性运算及平面向量根本定理2023卷 3理 13 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的线性运算及向量共线的充要条件2023 卷 2文 3平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标运算及模公式考点 47 平面向量的概念与线性运算1.(2023 新课标 I ,文 6)设 D , E , F 分别为∆ABC 的三边 BC , CA , AB 的中点,则 EB + FC =33A. BCB .(答案)C 1 AD2C . ADD . 1 BC2(解析) EB + FC =1 (CB + AB ) + 1 (BC + AC ) = 1( AB + AC ) = AD ,应选 C . 2 2 22.(2023 福建)在以下向量组中,可以把向量a =(3,2) 表示出来的是A .e 1 =(0,0),e 2 = (1,2) C .e 1 =(3,5),e 2 =(6,10) (答案)BB .e 1 =(-1,2),e 2 =(5,-2) D .e 1 =(2,-3),e 2 =(-2,3) (解析)对于 A ,C ,D ,都有e 1 ∥ e 2 ,所以只有 B 成立.考点 48 平面向量根本定理及其应用1.(2023 江苏 13)在∆ABC 中, AB = 4 , AC = 3 , ∠BAC = 90︒, D 在边 BC 上,延长 AD 到 P ,使得3AP = 9 ,假设 PA = mPB + (2- m )PC ( m 为常数),则CD 的长度是 .18 (答案)53 (解析)由向量系数m + ( - m ) = 为常数,结合等和线性质可知 2 2 PA PD= 2 ,1故 PD =2PA = 6 , AD = PA - PD = 3 = AC ,故∠C = ∠CDA ,故∠CAD =π- 2C .3AC 3 CD AD在∆ABC 中, cos C = = ;在∆ADC 中,由正弦定理得 = ,BC 5 sin ∠CAD sin Csin(π- 2C ) sin 2C 3 18即CD = ⋅ AD = ⋅ AD = 2 cos C ⋅ AD = 2 ⨯ ⨯ 3 = .sin C sin C5 52.(2023•新课标Ⅰ,理 6 文 7)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB = ()A . 3 - 1B . 13C . 31D . 13AB AC4 4(答案)AAB - AC4 4AB + AC4 4AB + AC4 42EB AB AE AB AD =11AB AC (解析)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,∴ = - = - 12AB - ⨯ 2 2( AB + AC ) = 3 - 1,应选 A . 4 43.(2023 新课标Ⅰ,理 7)设 D 为ABC 所在平面内一点 BC = 3CD ,则( )(A) AD = - 1 AB + 4AC (B) AD = 1 AB - 4AC3 3 3 3(C) AD =4 1AB + AC (D) AD =4 1AB - AC 3 33 3(答案)A1114 (解析)由题知 AD = AC + CD = AC + BC = AC + 3 3 ( AC - AB ) = = - AB + 3 3AC ,应选 A . 4.(2023 广东)设a 是已知的平面向量且a ≠ 0 ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量 c ,使 a = b + c ; ②给定向量b 和c ,总存在实数λ和μ,使a = λb + μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a = λb + μc ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a = λb + μc ;上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .4(答案)B(解析)利用向量加法的三角形法则,易的①是对的;利用平面向量的根本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不肯定能满足,③是错的;利用向量加法的三 角形法则,结合三角形两边的和大于第三边,即必须 λb + μc =λ+μ≥ a ,所以④是假命题.综上,此题选 B .5.(2023 江苏)如图,在同一个平面内,向量OA , OB , OC 的模分别为 1,1, , OA 与OC 的夹角为α , 且 tan α= 7 , OB 与 OC 的夹角为 45. 假设 OC = m OA + n OB ( m , n ∈ R ) , 则m + n =.(答案)3(解析)由tan α= 7 可得sin α=7 2, cos α=2,由OC = m OA + n OB 得1010⎧ 2 ⎧⎪OC ⋅OA = mOA + nOB ⋅OA ⎪ 2 cos α= m + n c os(α+ 45 ) ⎨ 2 ,即⎨ ,两式相加得,2 cos 45 = m cos(α+ 45 ) + n ⎩OC ⋅OB = mOB ⋅OA + nOB⎩ 2(cos α+ cos 45 ) = (m + n )(1+ cos(α+ 45 )) ,所以2 ⨯2+ 2 ⨯2m + n = 2 cos α+ 2 cos 45 = 10 2 = 3 ,所以 m + n = 3 . 1+ cos(α+ 45)2 2 7 2 2 1+ ⨯ - ⨯ 10 2 10 2λ6.(2023 北京)向量 a ,b ,c 在正方形网格中的位置如下图,假设c = λa + μb (λ,μ∈R ),则 μ=.(答案)41 (解析) 如图建立坐标系,则 a = (-1,1) ,b = (6, 2) ,c = (-1, 3) .由c = λa + μb ,可得λ= -2,μ= -,2λ∴ μ= 47.(2023 北京)在△ABC 中,点 M , N 满足 AM = 2MC , BN = NC ,假设 MN = x AB + y AC ,则 x =2AB c / /(2a a | a b | ; y = .1(答案) 2 1 - 61 1 11 1 1 (解析)由 MN = MC + CN = AC + CB = AC + ( AB - AC ) = AB - AC = x AB + y AC .所3 2 3 2 2 61 1 以 x = , y = - .2 6考点 49 平面向量的坐标运算及平面向量共线的充要条件1.(2023•新课标Ⅱ,文 3)已知向量 a = (2, 3) , b = (3, 2) ,则| a - b |= ( )A . (答案)AB.2 C . 5 D .50(解析) a = (2, 3) ,b = (3, 2) ,∴- b = (2 ,3) - (3 ,2) = (-1 ,1) ,∴ -= ,应选 A .2.(2023 辽宁)已知点 A (1, 3) , B (4, -1) ,则与向量 AB 同方向的单位向量为⎛ 34 ⎫⎛ 43 ⎫⎛ - 3 4 ⎫⎛ 4 3 ⎫A . ,- ⎪B . ,- ⎪C . , ⎪D . - , ⎪⎝ 55 ⎭ (答案)A⎝ 55 ⎭ ⎝ 5 5 ⎭⎝ 5 5 ⎭(解析) AB = (3, -4) ,所以| AB |= 5 ,这样同方向的单位向量是 1 = (3 , - 4) . 5 5 53.(2011 广东)已知向量a =(1,2), b =(1,0), c =(3,4).假设λ为实数, (a + λb )∥c ,则λ=A.14(答案)BB.12C .1D .2(解析)a + λb = (1+ λ, 2) ,由(a + λb ) ∥ c ,得6 - 4(1+ λ) = 0 ,解得λ= 124.( 2023•新课标Ⅲ,理 13)已知向量 a = (1, 2) , b = (2, -2) , c = (1,λ) .假设+ b ) ,则λ= .(答案) 12(解析) 向量 a = (1, 2) , b = (2, -2) ,∴+ b = (4, 2) , c = (1,λ) ,+ b ) , 2a∴ 1 = λ,解得λ= 1.c / /(2a4 2 25.(2023 新课标,文 13) 已知向量 a =(m ,4),b =(3,−2),且 a ∥b ,则 m = .(答案) -6225⎨⎩1(解析) 向量 a , b 不平行,向量λa + b 与 a + 2b 平行, a + b = t (a + 2b ) = ta + 2tb ,(解析)因为 a ∥b ,所以-2m - 4 ⨯ 3 = 0 ,解得 m = -6 .6.(2023•新课标Ⅱ,理 13)设向量 a , b 不平行,向量λ + b 与+ 2b 平行,则实数λ= .(答案) 12 a a∴λ∴ ⎧λ= t ⎩1 = 2t,解得实数λ= 1 .27.(2023 江苏)已知向量a = (2,1) , b = (1, -2) ,假设 m a + n b = (9, -8) ( m , n ∈R),则 m - n的值为 .(答案)-3(解析)由题意得: 2m + n = 9, m - 2n = -8 ⇒ m = 2, n = 5, m - n = -3.8.(2023 北京)已知向量a 、b 满足 a = 1 , b = (2,1) ,且λa + b = 0 (λ∈ R ),则 λ = (答案) ⎧cos θ= - 2(解析)∵| a |= 1,∴可令 a = (cos θ, s in θ) ,∵ λa + b = 0 ,∴⎧λcos θ+ 2 = 0,即⎪λ,解⎨λsin θ+1 = 0⎨⎪sin θ= - 1 ⎩ λ得λ2 = 5 得| λ|=.9.(2023 陕西) 设0 <θ< π,向量a = (sin 2θ,cos θ) , b (cos θ,1),假设a ∥b ,则2tan θ= .1(答案)2(解析)∵ a ∥b ,∴ sin 2θ= cos2θ,∴ 2 sin θcos θ= cos 2θ,∵θ∈π(0, ) 2,∴tan θ= . 25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,分值约为 5
分 ,属中低档题 .
考点
内容解读
要求 常考题型 预测热度
1. 平面向量基本 定理
了解平面向量的基本定理及其意义
2. 平面向量的坐 标运算
①掌握平面向量的正交分解及其坐标 表示 ; ②会用坐标表示平面向量的加法、减 法与数乘运算 ; ③理解用坐标表示的平面向量共线的
了解
选择题 填空题
★☆☆
,则点 A 的横坐标为 ________.
【答案】 3 【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积
求结果 .
点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相 结合的一类综合问题 .通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决 这类问题的一般方法 .
T,若
,那么两向量的夹角为
向,即不一定存在负数 ,使得 【考点】 1.向量; 2.充分必要条件 .
,所以是充分不必要条件,故选 A.
,并不一定反
【名师点睛】 判断充分必要条件的的方法: 1. 根据定义,若
,那么 是 的充分不必
要 ,同时 是 的必要不充分条件,若
,那互为充要条件,若
,那就是既不充分
也不必要条件, 2. 当命题是以集合形式给出时,那就看包含关系,若 那么 是 的充分必要条件,同时 是 的必要不充分条件,若
,

的值为
A.
B.
C.
D. 0
【答案】 C
【解析】分析:连结 MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果
.
详解:如图所示,连结 MN,由 等分点,

,由题意可知:
可知点 分别为线段
上靠近点 的三


结合数量积的运算法则可得:
.
本题选择 C 选项 .
点睛:求两个向量的数量积有三种方法: 利用定义; 利用向量的坐标运算; 利用数量积的几何意义. 具 体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.

,
(2)向量垂直:

(3)向量加减乘:
3. 【 2017 浙江, 10】如图,已知平面四边形 ABCD ,AB⊥ BC,AB= BC=AD = 2, CD=3,AC 与 BD
3.【 2018 年文北京卷】设向量 a=( 1,0),b=( - 1,m) ,若
,则 m=_________.
【答案】
点睛:此题考查向量的运算,在解决向量基础题时,常常用到以下:设
,则

;②
.
4.【 2018 年江苏卷】在平面直角坐标系
中, A 为直线
上在第一象限内的点,

以 AB 为直径的圆 C 与直线 l 交于另一点 D .若
考点
内容解读
要求
常考题型
预测热度
1. 数量积的定 义
2. 平面向量的 长度问题
(1) 平面向量的数量积 ①理解平面向量数量积的含义及其物
理解
理意义 ;
②了解平面向量的数量积与向量投影 的关系 ;
掌握
ห้องสมุดไป่ตู้
③掌握数量积的坐标表达式 , 会进行
选择题 填空题
选择题 填空题
★★★ ★★★
平面向量数量积的运算 ;
考纲解读明方向
考点
内容解读
要求 常考题型 预测热度
1. 平面向量的
①了解向量的实际背景 ; ②理解平面向量的概念 , 理解两个向量相等的
基本 概念与线性运

含义 ; 掌握
③理解向量的几何表示 ;
④掌握向量加法、减法的运算 , 并理解其几何
意义
选择题 填空题
★★☆
2. 向量的共线 问题
①掌握向量数乘的运算及其几何意义 , 理解两
,若

,互为充要条件,若没有包
含关系, 就是既不充分也不必要条件, 3. 命题的等价性, 根据互为逆否命题的两个命题等价, 将 是
条件的判断,转化为
是 条件的判断 .
2.【 2017 课标 II ,文 4】设非零向量 , 满足

A. ⊥
B.
【答案】 A
C. ∥
D.
【考点】向量数量积 【名师点睛】
(1)向量平行:
3. 平面向量的 ④能运用数量积表示两个向量的夹
夹角、 两向量垂直及
数 量积的应用
角 , 会用数量积判断两个平面向量的 垂直关系 . (2) 向量的应用 ①会用向量方法解决某些简单的平面 几何问题 ; ②会用向量方法解决简单的力学问题
掌握
选择题 填空题
★★★
与其他一些实际问题
分析解读 1.理解数量积的定义、几何意义及其应用 .2.掌握向量数量积的性质及运算律 ;掌握求向量长
个向量共线的含义 ;
掌握
②了解向量线性运算的性质及其几何意义
选择题 填空题
★★☆
分析解读 1.从 “方向 ”与“大小 ”两个方面理解平面向量的概念 .2.结合图形理解向量的线性运算 ,熟练掌
握平行四边形法则与三角形法则 .3.向量共线的条件要结合向量数乘的意义去理解
,并能灵活应用 .4.向
量的概念与运算是必考内容 .5.本节在高考中主要考查平面向量的线性运算及其几何意义
A. - 1 B. +1 C. 2 D. 2【答案】 A
【解析】分析 :先确定向量 系求最小值 .
所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关
点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结
合的一类综合问题 .通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲 线的位置关系,是解决这类问题的一般方法 . 2.【 2018 年天津卷文】在如图的平面图形中,已知
度的方法 .3.会用向量数量积的运算求向量夹角 ,判断或证明向量垂直 .4.利用数形结合的方法和函数的
思想解决最值等综合问题 .
2018年高考全景展示
1.【2018 年浙江卷】已知 a,b,e 是平面向量, e 是单位向量.若非零向量 满足 b2- 4e·b+3=0 ,则 |a- b|的最小值是
a 与 e 的夹角为,向量 b
2017年高考全景展示
1. 【 2017 北京,文 7】设 m, n 为非零向量,则 “存在负数 ,使得 m=λn”是 “m·n<0”的
( A )充分而不必要条件
( B)必要而不充分条件
( C)充分必要条件
( D)既不充分也不必要条件
【答案】 A 【解析】 试题分析:若
,使
,即两向量反向,夹角是
,那么
掌握
选择题 填空题
★★☆
条件
分析解读 1.理解平面向量基本定理的实质 ,理解基底的概念 ,会用给定的基底表示向量 .2.掌握求向量
坐标的方法 ,掌握平面向量的坐标运算 .3.能够根据平面向量的坐标运算解决向量的共线、解三角形等
有关问题 .4.用坐标表示的平面向量共线的条件是高考考查的重点
,分值约为 5 分 ,属中低档题 .
相关文档
最新文档