平方差公式专项练习
平方差公式专题练习50题有答案
平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方差特点: 具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a ”和“b ”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b )(a-2b )不要计算成a 2-2b 24、最好先把能用平方差的式子变形为(a+b )(a-b )的形式,再利用公式进行计算。
专项练习:1.9.8×10.22.(x-y+z )(x+y+z )3.(12x+3)2-(12x -3)2 4.(2a-3b )(2a+3b ) 5.(-p 2+q )(-p 2-q )6.(-1+3x )(-1-3x )7.(x+3) (x 2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b ) 13. (a+b)(a-b )(a ²+b ²)14.. 15.. 16.. 17.. ,则18. 1.01×0.9919.20.21.22.23.25.26.27.28.29.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案:1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z)(x+y+z)=x2+z2-y2+2xz3.(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.4.(2a-3b)(2a+3b)= 4a2-9b2;5.(-p2+q)(-p2-q)=(-p2)2-q2=p4-q26.(-1+3x)(-1-3x)=1-9x²7.(x+3) (x 2+9) (x-3) =x 4-81 8.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )= 13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17.. ,则19.= 20. = 21.= 22.= 23. =8096 23. = 24. =1 25. = 26.= 27. =28.= 29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b2.图1 图249.解; 提示:可以乘以再除以.50.解:=。
平方差公式经典25题型
平方差公式经典25题型一、平方差公式基础题型。
1. 计算(a + 3)(a - 3)- 解析:根据平方差公式(x + y)(x - y)=x^2-y^2,这里x = a,y = 3。
- 所以(a + 3)(a - 3)=a^2-3^2=a^2-9。
2. 计算(2x+5)(2x - 5)- 解析:对于(2x+5)(2x - 5),其中x = 2x,y = 5。
- 根据平方差公式可得(2x)^2-5^2=4x^2-25。
3. 计算(-m + n)(-m - n)- 解析:这里x=-m,y = n。
- 则(-m + n)(-m - n)=(-m)^2-n^2=m^2-n^2。
4. 计算(3a - 2b)(3a+2b)- 解析:令x = 3a,y = 2b。
- 由平方差公式得(3a)^2-(2b)^2=9a^2-4b^2。
5. 计算(x+1)(x - 1)(x^2+1)- 解析:- 先计算(x + 1)(x - 1),根据平方差公式(x + 1)(x - 1)=x^2-1。
- 再计算(x^2-1)(x^2+1),这里把x^2看作一个整体,根据平方差公式可得(x^2)^2-1^2=x^4-1。
6. 计算(a + b)(a - b)+(b + c)(b - c)+(c + a)(c - a)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,(b + c)(b - c)=b^2-c^2,(c + a)(c - a)=c^2-a^2。
- 则原式=a^2-b^2+b^2-c^2+c^2-a^2=0。
7. 若x + y = 5,x - y=3,求x^2-y^2的值。
- 解析:- 因为x^2-y^2=(x + y)(x - y)。
- 已知x + y = 5,x - y = 3,所以x^2-y^2=5×3 = 15。
8. 计算(2m - 3n)(3n+2m)- 解析:- 可变形为(2m - 3n)(2m+3n),这里x = 2m,y = 3n。
(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。
平方差公式练习题精选(含答案)
平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。
下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。
(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。
下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。
平方差公式专题练习50题有答案
平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差特点:具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a”和“b”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b)(a-2b)不要计算成a2-2b24、最好先把能用平方差的式子变形为(a+b)(a-b)的形式,再利用公式进行计算。
专项练习:1.9.8×10.22.(x-y+z)(x+y+z)3.(12x+3)2-(12x-3)24.(2a-3b)(2a+3b)5.(-p2+q)(-p2-q)6.(-1+3x)(-1-3x)7.(x+3) (x2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b )13. (a+b)(a-b )(a ²+b ²)14..15..16..17..,则18. 1.01×0.9919.20.21.22.23.23.24.25.26.27.28.29.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案: 1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z )(x+y+z )=x 2+z 2-y 2+2xz3.(12x+3)2-(12x -3)2=(12x+3+12x -3)[12x+3-(12x -3)]=x ·6=6x .4.(2a-3b )(2a+3b )= 4a 2-9b 2;5.(-p 2+q )(-p 2-q )=(-p 2)2-q 2=p 4-q 26.(-1+3x )(-1-3x )=1-9x ²7.(x+3) (x 2+9) (x-3) =x 4-818.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )=13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17..,则18.1.01×0.99=0.9999 19.= 20.= 21.=22.= 23. =8096 23. =24. =125. =26. =27. =28. =29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.百度文库- 让每个人平等地提升自我44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b 2.图1 图249.解; 提示:可以乘以再除以.50.解:=11。
平方差公式专项练习题
平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.4、已知m2+n2-6m+10n+34=0,求m+n的值。
平方差公式练习题
平方差公式练习题一、选择题1. 平方差公式是指()A. (a + b)² = a² + 2ab + b²B. (a b)² = a² 2ab + b²C. a² b² = (a + b)(a b)D. a² + b² = (a + b)²2. 下列哪个式子可以用平方差公式进行分解?()A. x² + 4x + 4B. x² 4x + 4C. x² 9D. x² + 6x 93. 已知a² b² = 16,那么下列哪个选项可能是 a 和 b 的值?()A. a = 5, b = 3B. a = 4, b = 8C. a = 6, b = 2D. a = 9, b = 3二、填空题1. 平方差公式是:a² b² = (______)(______)2. 若x² 9 = 0,则 x 的值为(______)和(______)。
3. 已知 a = 5, b = 3,那么a² b² 的值为(______)。
三、解答题1. 利用平方差公式分解因式:x² 4。
2. 已知a² b² = 25,求 a 和 b 的可能值。
3. 计算:(3x + 4y)² (2x 3y)²。
4. 分解因式:9m² 16n²。
5. 已知a² b² = 28,且 a + b = 10,求 a 和 b 的值。
四、应用题1. 小明家的花园是一个长方形,长比宽多 3 米,面积比宽多225 平方米,求花园的长和宽。
2. 一块正方形土地的面积比一个长方形土地的面积大 48 平方米,已知正方形土地的边长为 8 米,求长方形土地的长和宽。
五、综合题1. 已知一组数据中有两个数的平方差为 81,这两个数的和为 18。
平方差公式练习题
平方差公式练习题平方差公式题型一】利用平方差公式计算1.位置变化:1) $(5+2x)(-5+2x)$2) $(ab+x)(x-ab)$符号变化:3) $(-x+1)(-x-1)$4) $-3a-2b)(-3a+2b)$指数变化:7) $(-3x+y)^2$8) $(-2a+5b)^2$改写:1) $(2x+5)^2-25$2) $(x+ab)(ab-x)$3) $(x+1)^2-1$4) $(2b-3a)(2b+3a)$7) $9x^2-6xy+y^2$8) $4a^2-20ab+25b^2$2.增项变化1) $(x-y+z)(-x+y+z)$2) $(-x+y+z)(x+y-z)$3) $(x+2y-1)(x-2y+1)$4) $13x+9$改写:1) $-x^2+y^2-z^2$2) $-x^2-y^2+z^2$3) $x^2-3y^2+2x-2y$4) $4x^2+13x+9$3.增因式变化1) $(x+1)(x-1)(x+12)$2) $\frac{(x-1)(x+1)}{4}+\frac{1}{2}$ 改写:1) $(x^2-1)(x+12)$2) $\frac{x^2}{4}-\frac{1}{4}$题型二】利用平方差公式判断正误4.下列计算正确的是()A。
$(5x+2y)(5x-2y)=25x^2-4y^2$B。
$(-1+3a)(-1-3a)=1-9a^2$C。
$(-2x-3y)(3y-2x)=9y^2-4x^2$D。
$(x+4)(x-2)=x^2+2x-8$改写:A。
正确B。
正确C。
正确D。
正确题型三】运用平方差公式进行一些数的简便运算例5.用平方差公式计算。
1) $403\times397$2) $\frac{29}{31}\times\frac{30}{44}$3) $99\times101\times$4) $2007-2006\times2008$改写:1) $(400+3)(400-3)=-9=$2) $\frac{(31-2)^2}{31\times44}=\frac{729}{1352}$3) $(+1)(-1)(99)=xxxxxxxx$4) $2007-2006\times2008=2007-(2004+2)\times2008=-4011$ 题型四】平方差公式的综合运用6.计算:1) $x-(x-2y)(x+2y)+(x-y)(y+x)$2) $\frac{(x-1)(x+1)}{x+1}-x+\frac{24}{x+1}$改写:1) $4y^2$2) $\frac{x^2}{x+1}-x+24-\frac{24}{x+1}$题型五】利用平方差公式进行化简求值与解方程7.化简求值:2b+3a)(3a-2b)-(2b-3a)(2b+3a)$,其中$a=-1,b=2$。
平方差公式练习题精选(含答案)
平方差公式1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算 (1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2 (4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。
平方差公式练习题精选(含答案)
平方差公式之欧侯瑞魂创作1、利用平方差公式计算: (1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算(1)(1)(-41x-y)(-41x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 24、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797 (2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列计算中,毛病的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 10.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较年夜的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a 2+4)(a 4+16)(a -2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算: (1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9.5已知x≠0且x+1x =5,求441xx的值.平方差公式练习题精选(含谜底)一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-62.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x) B.(12a+b)(b-12a)C.(-a+b)(a-b) D.(x2-y)(x+y2)3.对任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-10×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空空中积;用两种方法暗示出来,比力这两种暗示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±214.已知a+1a =3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2 C.25x2+20xy+4y2 D.-25x2+20xy-4y217.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).参考谜底1.C 点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当呈现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:利用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先利用平方差公式,•然后运用完全平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•运用完全平方公式展开.9.6x 点拨:把(12x+3)和(12x-3)分别看做两个整体,运用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在运用平方差公式时,要注意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:运用完全平方公式时,要注意中间项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当呈现三个或三个以上多项式相乘时,根据多项式的结构特征,•先进行恰当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y ·2z=4yz .点拨:此题若用多项式乘多项式法则,会呈现18项,书写会非常繁琐,认真观察此式子的特点,恰被选择公式,会使计算过程简化.12.解法一:如图(1),剩余部份面积=m 2-mn-mn+n 2=m 2-2mn+n 2.解法二:如图(2),剩余部份面积=(m-n )2. ∴(m-n )2=m 2-2mn+n 2,此即完全平方公式.点拨:解法一:是用边长为m 的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n 的正方形.解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n )•的正方形面积.做此类题要注意数形结合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2.14.B 点拨:a 2+21a =(a+1a)2-2=32-2=7.15.A 点拨:(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)] 2+(c-a)2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x-•2y)2•=25x2-20xy+4y2.17.2 点拨:(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式.18.(1)a2+b2=(a+b)2-2ab.∵a+b=3,ab=2,∴a2+b2=32-2×2=5.(2)∵a+b=10,∴(a+b)2=102,a2+2ab+b2=100,∴2ab=100-(a2+b2).又∵a2+b2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是利用完全平方公式(a+b)2=a2+2ab+b2中(a+)、ab、(a2+b2)•三者之间的关系,只要已知其中两者利用整体代入的方法可求出圈外人.19.(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<4.3点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.八年级数学上学期平方差公式同步检测练习题1.(2004·青海)下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算正确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003·河南)下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的计算结果是( )A.x4+16B.-x4-16C.x4--x42-1991×1993的计算结果是( )A.1B.-1C.2D.-2n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )7.()(5a+1)=1-25a2,(2x-3)=4x2-9,(-2a2-5b)()=4a4-25b2×101=()()=.9.(x-y+z)(-x+y+z)=[z+()][]=z2-()2.x2+kx+25是另一个多项式的平方,则k=.11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),a2+b2=(a+b)2+,a2+b2=(a-b)2+.12.计算.(1)(a +b)2-(a -b)2; (2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;2+0.76552+×0.7655;(5)(x+2y)(x-y)-(x+y)2. m 2+n 2-6m+10n+34=0,求m+n 的值 14.已知a +a1=4,求a 2+21a 和a 4+41a 的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值. (1-3x)2+(2x-1)2>13(x-1)(x+1).a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.参考谜底1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5-1100+1 99999.x-yz-(x-y) x-y10.±a b 21 - 2a b 2a b12.(1)原式=4a b ;(2)原式=-30xy+15y ;(3)原式=-8x 2+99y 2;(4)提示:原式=1.23452+2×1.2345×+2=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y 2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m 2+n 2-6m+10n+34=0, ∴(m 2-6m+9)+(n 2+10n+25)=0, 即(m-3)2+(n+5)2=0, 由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a +2=16.∴a 2+21a =14.同理a 4+41a =194.15.提示:应用整体的数学思想方法,把(t 2+116t)看作一个整体.∵(t+58)2=654481,∴t 2+116t+582=654481. ∴t 2+116t=654481-582.∴(t+48)(t+68)=(t2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.316.x<217.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-a b-a c-be1(2a2+2b2+2c2-2a b-2bc-2a c)=21[(a2-2a b+b2)+(b2-2bc+c2)+(c2-2a c+a2)]=21[(a-b2)+(b-c)2+(c-a)2]=21[(-1)2+(-1)2+22]=21(1+1+4)=2=3.18.解:∵(2a+2b+1)(2a+2b-1)=63,∴[(2a+2b)+1][(2a+2b)-1]=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4,∴a+b的值为4或一4.19.a2+b2=70,a b=-5.。
平方差公式专项练习
平方差公式专项练习题知识梳理:(在第二页)一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).11.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.12.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.13.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).14.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?15.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a216.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.知识梳理:1、掌握公式特点:从左到右,符号没发生变化的是a,符号发生变化的是b.结果是没发生变化的平方减去发生变化的平方。
平方差公式练习题
平方差公式练习题随着数学知识的学习深入,平方差公式是一个必须要掌握的重要概念。
本文将通过一些练习题,帮助读者提高对平方差公式的理解和运用能力。
练习题1:计算以下平方差的结果:1. (7 + 3)² - (7 - 3)²2. (5x + 2)² - (5x - 2)²3. (2a - b)² - (2a + b)²解答1:1. (7 + 3)² - (7 - 3)²= 10² - 4²= 100 - 16= 842. (5x + 2)² - (5x - 2)²= (25x² + 20x + 4) - (25x² - 20x + 4)= 25x² + 20x + 4 - 25x² + 20x - 4= 40x3. (2a - b)² - (2a + b)²= (4a² - 4ab + b²) - (4a² + 4ab + b²)= 4a² - 4ab + b² - 4a² - 4ab - b²= -8ab练习题2:根据已知条件,用平方差公式计算下列问题:1. 用平方差公式计算 (3 + 4)²。
2. 如果 a = 5,b = 2,求 (a + b)² - (a - b)²的结果。
3. 如果 x = -2,y = 3,计算 (2x - 3y)² - (2x + 3y)²。
解答2:1. (3 + 4)² = 7² = 492. (5 + 2)² - (5 - 2)²= 7² - 3²= 49 - 9= 403. (2(-2) - 3(3))² - (2(-2) + 3(3))²= (-4 - 9)² - (-4 + 9)²= (-13)² - 5²= 169 - 25= 144练习题3:结合已学习的知识,用平方差公式计算下列式子:1. (2 + x)² - (2 - x)²2. (a + b)² - (a - b)²3. (2x - 3y)² - (2x + 3y)²解答3:1. (2 + x)² - (2 - x)²= (2² + 2x + x²) - (2² - 2x + x²)= 4 + 2x + x² - 4 + 2x - x²= 4x2. (a + b)² - (a - b)²= (a² + 2ab + b²) - (a² - 2ab + b²)= 4ab3. (2x - 3y)² - (2x + 3y)²= (4x² - 12xy + 9y²) - (4x² + 12xy + 9y²)= -24xy通过以上的练习题,读者不仅可以巩固对平方差公式的理解,还能够进一步熟练运用该公式进行计算。
10道平方差公式的计算题
10道平方差公式的计算题一、10道平方差公式计算题。
1. 计算(3x + 2)(3x - 2)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 3x,b=2。
- 计算过程:(3x + 2)(3x - 2)=(3x)^2-2^2=9x^2-4。
2. 计算(5y-1)(5y + 1)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 5y,b = 1。
- 计算过程:(5y-1)(5y + 1)=(5y)^2-1^2=25y^2-1。
3. 计算(2m+3n)(2m - 3n)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 2m,b = 3n。
- 计算过程:(2m + 3n)(2m-3n)=(2m)^2-(3n)^2=4m^2-9n^2。
4. 计算(x + 5)(x - 5)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=x,b = 5。
- 计算过程:(x + 5)(x - 5)=x^2-5^2=x^2-25。
5. 计算(4a - 3b)(4a+3b)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 4a,b = 3b。
- 计算过程:(4a - 3b)(4a + 3b)=(4a)^2-(3b)^2=16a^2-9b^2。
6. 计算(-x+2y)(-x - 2y)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-x,b = 2y。
- 计算过程:(-x + 2y)(-x-2y)=(-x)^2-(2y)^2=x^2-4y^2。
7. 计算((1)/(2)m+(1)/(3)n)((1)/(2)m-(1)/(3)n)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=(1)/(2)m,b=(1)/(3)n。
平方差公式专项练习
平方差公式专练(a+b)(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方差特点: 具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a ”和“b ”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b )(a-2b )不要计算成a 2-2b 24、最好先把能用平方差的式子变形为(a+b )(a-b )的形式,再利用公式进行计算。
平方差公式基础练习题1.下列可用平方差公式计算的是( )A 、(x-y)(x+y )B 、(x-y)(-y+x )C 、(x-y)(-y+x)D 、(x-y)(-x+y)2.计算(a+m )(a+21)的结果中不含字母a 的一次项,则m 等于( ) A.2 B.-2 C. 21 D.- 21 3.(-4a-1)(4a-1)的乘积结果是4.20072-2006⨯2008的计算结果是( )A.-1B.1C.0D.2⨯20072-15.计算()()22-+x x = ()()=+-b a b a 336. (2m-1)(2m+1)(4m 2+1)=7. 先化简,再求值:(3x+2)(3x-2)-5x (x-1)-(2x-1)2,其中x=-31 8.已知x-y=2,y-z=4,x+z=14,求x 2-z 2的值。
9.计算:(-1+3x )(-1-3x ) (-2b-5)(2b+5)(x+3) (x 2+9) (x-3) (x+2y-1)(x+1-2y)平方差公式提高题一、选择题:1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个2.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以二、解答题4.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1). 计算:2481511111(1)(1)(1)(1)22222+++++. 5.计算:22222110099989721-+-++- .6.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+13)=2. 7.计算:2222211111(1)(1)(1)(1)(1)23499100-----. 8.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少? 完全平方公式一、点击公式1、()2a b ±= ,()2a b --= ,()()a b b a --= .2、()222a b a b +=++ =()2a b -+ .3、()()22a b a b +--= .二、公式运用1、计算化简(1) ()()()2222x y x y x y ⎡⎤+-+-⎣⎦(2)2)())((y x y x y x ++--- (3)2)21(1x --- (4)()()z y x z y x 3232+--+ (5)()()2121a b a b -+--2、简便计算:(1)(-69.9)2 (2)472-94×27+2723、公式变形应用:在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么 只要知道其中两项的值,就可以求出第三项的值.(1)已知a+b =2,代数式a 2-b 2+2a +8b +5的值为 ,已知1125,,7522x y ==代数式 (x +y )2-(x -y )2的值为 ,已知2x -y -3=0,求代数式12x 2-12xy +3y 2的值是 ,已知x=y +4,求代数式2x 2-4x y+2y 2-25的值是 .(2)已知3=+b a ,1=ab ,则22b a += ,44a b += ;若5a b -=,4ab =,则22b a +的值为______;()28a b -=,()22a b +=,则ab =_______.(3)已知:x+y =-6,xy =2,求代数式(x-y )2的值.(4)已知x+y =-4,x-y =8,求代数式x 2-y 2的值.(5已知a+b =3, a 2+b 2=5,求ab 的值.(6)若()()222315x x -++=,求()()23x x -+的值.(7)已知x-y =8,xy =-15,求的值. (8)已知:a 2+b 2=2,ab =-2,求:(a-b )2的值.4、配方法(整式乘法的完全平方公式的反用)我们知道,配方是一种非常重要的数学方法,它的运用非常广泛.学好它,对于中学生来说显得尤为重要.试用配方法解决下列问题吧!(1) 如果522+-=x x y ,当x 为任意的有理数,则y 的值为( )A 、有理数B 、可能是正数,也可能是负数C 、正数D 、负数(2)多项式192+x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式 是 .(填上所有你认为是正确的答案)(3)试证明:不论x 取何值,代数x 2+4x +92的值总大于0. (4)若 2x 2-8x +14=k ,求k 的最小值. (5)若x 2-8x +12-k =0,求2x +k 的最小值.(6)已知2)()1(2-=---y x x x ,求xy y x -+222的值. (7)已知ab b a b a 10162222=+++,那么=+22b a ;(8)若关于x 的一元一次方程50ax b +-=的解为2x =,求224423a b ab a b ++--+的 值.(9)若m 2+2mn+2n 2-6n+9=0,求m 和n 的值.(10)若△ABC 的三边为a,b,c,并满足222a b c a b b c c a ++=++,试问三角形ABC 为何种三角形?。
(完整word版)平方差公式练习题精选(含答案)
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2 —— 4xy,其中x=12,y=9。
初三平方差公式练习题
初三平方差公式练习题平方差公式是初三数学中重要的一个知识点,它在解决代数式的平方差问题中起到了关键作用。
本文将通过一些练习题来帮助学生们更好地理解和应用平方差公式。
练习题一:计算以下代数式的平方差:(a+b)^2 - (a-b)^2解答:根据平方差公式,(a+b)^2 - (a-b)^2 可以展开为 (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2)。
接下来,我们合并同类项:= a^2 + 2ab + b^2 - a^2 + 2ab - b^2= 4ab所以,(a+b)^2 - (a-b)^2 的结果为 4ab。
练习题二:计算以下代数式的平方差:(2x+3y)^2 - (3x-2y)^2解答:根据平方差公式,(2x+3y)^2 - (3x-2y)^2 可以展开为 (4x^2 + 12xy + 9y^2) - (9x^2 - 12xy + 4y^2)。
接下来,我们合并同类项:= 4x^2 + 12xy + 9y^2 - 9x^2 + 12xy - 4y^2= -5x^2 + 24xy + 5y^2所以,(2x+3y)^2 - (3x-2y)^2 的结果为 -5x^2 + 24xy + 5y^2。
练习题三:计算以下代数式的平方差:(a^2 - b^2) - (a+b)(a-b)解答:根据平方差公式,(a^2 - b^2) - (a+b)(a-b) 可以展开为 a^2 - b^2 - (a^2 - b^2)。
接下来,我们合并同类项:= a^2 - b^2 - a^2 + b^2= 0所以,(a^2 - b^2) - (a+b)(a-b) 的结果为 0。
练习题四:计算以下代数式的平方差:(2x^2 + 3y^2)^2 - (3xy + 2y^2)(3xy - 2y^2)解答:根据平方差公式,(2x^2 + 3y^2)^2 - (3xy + 2y^2)(3xy - 2y^2) 可以展开为 (4x^4 + 12x^2y^2 + 9y^4) - (9x^2y^2 - 4y^4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式专练
(a+b)(a-b)=a 2-b 2
两数和与这两数差的积,等于它们的平方差
特点: 具有完全相同的两项
具有互为相反数的两项
使用注意的问题:
1、是否符合平方差公式使用的特点
2、判断公式中的“a ”和“b ”是一个数还是一个代数式
3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b )(a-2b )不要计算成a 2-2b 2
4、最好先把能用平方差的式子变形为(a+b )(a-b )的形式,再利用公式进行计算。
平方差公式基础练习题
1.下列可用平方差公式计算的是( )
A 、(x-y)(x+y )
B 、(x-y)(-y+x )
C 、(x-y)(-y+x)
D 、(x-y)(-x+y)
2.计算(a+m )(a+2
1)的结果中不含字母a 的一次项,则m 等于( ) A.2 B.-2 C. 21 D.- 2
1 3.(-4a-1)(4a-1)的乘积结果是
4.20072-2006⨯2008的计算结果是( )
A.-1
B.1
C.0
D.2⨯20072-1
5.计算()()
22-+x x = ()()=+-b a b a 33
6. (2m-1)(2m+1)(4m2+1)=
1 7. 先化简,再求值:(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=-
3
8.已知x-y=2,y-z=4,x+z=14,求x2-z2的值。
9.计算:
(-1+3x)(-1-3x)(-2b-5)(2b+5)
(x+3) (x2+9) (x-3) (x+2y-1)(x+1-2y)
平方差公式提高题
一、选择题:
1.下列式中能用平方差公式计算的有( )
①(x-12y)(x+12
y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个
2.下列式中,运算正确的是( )
①222(2)4a a =, ②2111(1)(1)1339
x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.
A.①②
B.②③
C.②④
D.③④
3.乘法等式中的字母a 、b 表示( )
A.只能是数
B.只能是单项式
C.只能是多项式
D.单项式、•多项式都可以
二、解答题
4.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1). 计算:2481511111(1)(1)(1)(1)22222
+++++.
5.计算:22222110099989721-+-+
+- .
6.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.
(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+13
)=2.
7.计算:2222211111(1)(1)(1)(1)(1)23499100
-
----.
8.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?
完全平方公式
一、点击公式
1、()2a b ±= ,()2a b --= ,()()a b b a --= .
2、()222a b a b +=++ =()2a b -+ .
3、()()22a b a b +--= .
二、公式运用
1、计算化简
(1) ()()()2222x y x y x y ⎡⎤+-+-⎣⎦
(2)2)())((y x y x y x ++--- (3)2)21(1x ---
(4)()()z y x z y x 3232+--+ (5)()()2121a b a b -+--
2、简便计算:
(1)(-69.9)2 (2)472-94×27+272
3、公式变形应用:
在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么 只要知道其中两项的值,就可以求出第三项的值.
(1)已知a+b =2,代数式a 2-b 2+2a +8b +5的值为 ,已知1125,,7522
x y ==代数式 (x +y )2-(x -y )2的值为 ,已知2x -y -3=0,求代数式12x 2-12xy +3y 2的值 是 ,已知x=y +4,求代数式2x 2-4x y+2y 2-25的值是 .
(2)已知3=+b a ,1=ab ,则22b a += ,44a b += ;若5a b -=,4ab =,则22b a +的值为______;()28a b -=,()2
2a b +=,则ab =_______. (3)已知:x+y =-6,xy =2,求代数式(x-y )2的值.
(4)已知x+y =-4,x-y =8,求代数式x 2-y 2的值.
(5已知a+b =3, a 2+b 2=5,求ab 的值.
(6)若()()22
2315x x -++=,求()()23x x -+的值.
(7)已知x-y =8,xy =-15,求的值. (8)已知:a 2+b 2=2,ab =-2,求:(a-b )2的值.
4、配方法(整式乘法的完全平方公式的反用)
我们知道,配方是一种非常重要的数学方法,它的运用非常广泛.学好它,对于中学生来说显得尤为重要.试用配方法解决下列问题吧!
(1) 如果522+-=x x y ,当x 为任意的有理数,则y 的值为( )
A 、有理数
B 、可能是正数,也可能是负数
C 、正数
D 、负数
(2)多项式192+x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式 是 .(填上所有你认为是正确的答案)
(3)试证明:不论x 取何值,代数x 2+4x +
92
的值总大于0. (4)若 2x 2-8x +14=k ,求k 的最小值.
(5)若x 2-8x +12-k =0,求2x +k 的最小值.
(6)已知2)()1(2-=---y x x x ,求xy y x -+22
2的值. (7)已知ab b a b a 10162222=+++,那么=+22b a ;
(8)若关于x 的一元一次方程50ax b +-=的解为2x =,求224423a b ab a b ++--+的 值.
(9)若m 2+2mn+2n 2-6n+9=0,求m 和n 的值.
(10)若△ABC 的三边为a,b,c,并满足222a b c a b b c c a ++=++,试问三角形ABC 为何种三角形?
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。