相交线、平行线复习1
(必考题)初中七年级数学下册第五章《相交线与平行线》经典复习题(1)
一、选择题1.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a∥b,b⊥c,那么a⊥c,正确,为真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.2.如图,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.3.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4)A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°B解析:B【分析】 作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 5.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.6.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS 定理,故该项正确; ③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA 定理,故该项正确. 故选:B .【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键. 7.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12C解析:C【分析】 如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF SS +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.8.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3B解析:B【分析】 通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B 正确.C. ∠2+∠3=180°,不能证明a ∥b ,故C 错误.D.虽然∠1=∠3,但是不能证明a ∥b ;故D 错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.9.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.如图,下列条件中,不能判断AD∥BC的是()A.∠FBC=∠DAB B.∠ADC+∠BCD=180°C.∠BAC=∠ACE D.∠DAC=∠BCA C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.二、填空题11.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A 解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.12.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.13.小明在楼上点A 处行到楼下点B 处的小丽的俯角是32︒,那么点B 处的小丽看点A 处的小明的仰角是_______________度.【分析】根据题意画出图形然后根据平行线的性质可以求得点B 处的小丽看点A 处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC =32°∵AC ∥BO ∴∠ABO =∠BAC ∴∠ABO =32°即点B 处解析:32【分析】根据题意画出图形,然后根据平行线的性质可以求得点B 处的小丽看点A 处的小明的仰角的度数,本题得以解决.【详解】解:由题意可得,∠BAC =32°,∵AC ∥BO ,∴∠ABO =∠BAC ,∴∠ABO=32°,即点B处的小丽看点A处的小明的仰角等于32度,故答案为32.【点睛】本题利用平行线间角的关系求仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.14.过直线AB上一点O作射线OC、OD,使OC⊥OD,当∠AOC=50°时,则∠BOD的度数__.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC=50°时,∠AOD=90°-50°=40°,此时,∠BOD=180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.15.如图,请你添加一个条件....使得AD∥BC,所添的条件是__________.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).16.用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.17.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).18.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ∴AB ∥CD 故本小题正确;②∵∠2=∠5∴AB ∥CD 故本小题正确;③∵∠3=∠4∴AD ∥BC 故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ,∴AB ∥CD ,故本小题正确;②∵∠2=∠5,∴AB ∥CD ,故本小题正确;③∵∠3=∠4,∴AD ∥BC ,故本小题错误;④∵∠1=∠D ,∴AD ∥BC ,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB ∥CD ,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.19.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,2AOD BOD =∠∠.(1)求DOE ∠的度数;(2)求BOF ∠的度数.解析:(1)30°,(2)45°.【分析】(1)根据邻补角的和等于180°求出∠BOD 的度数,然后根据角平分线的定义解答; (2)先求出∠COE 的度数,再根据角平分线的定义求出∠EOF ,再根据∠BOF =∠EOF -∠BOE ,代入数据进行计算即可得解.【详解】解:(1)∵2AOD BOD =∠∠,∠AOD +∠BOD =180°,∴∠BOD =13×180°=60°, ∵OE 平分∠BOD , ∴∠DOE =∠BOE=12∠BOD =12×60°=30°; (2)∠COE =∠COD ﹣∠DOE =180°﹣30°=150°,∵OF 平分∠COE ,∴∠EOF =12∠COE =12×150°=75°, 由(1)得,∠BOE =30°,∴∠BOF =∠EOF -∠BOE =75°-30°=45°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上. ()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ; ()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).解析:(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG <<【分析】(1)将AB 沿着BC 方向平移,使其过点C ,此时经过的格点即为所求;(2)延长CB ,作AE 与CB 交于F 点,此时E 点即为所求;(3)过B 点作AB 的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.23.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.解析:40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠,12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.24.如图,//AD BC,∠1=∠C,∠B=60°,DE平分∠ADC交BC于点E,试说明//AB DE.请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC,(已知)∴∠1=∠ =60°.()∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵//AD BC,(已知)∴∠C+∠ =180°.()∴∠ =180°-∠C=180°-60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=12∠ADC=12×120°=60°.()∴∠1=∠ADE.(等量代换)∴//AB DE.()解析:B;两直线平行,同位角相等;ADC;两直线平行,同旁内角互补;ADC;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.(角平分线性质) ∴∠1=∠ADE .(等量代换)∴//AB DE .(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理.25.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.解析:∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.26.图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF//CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF//CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC//()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG//BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.解析:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;(2)①DG∥BC,∠B=∠BCD,DG平分∠ADC,②证明见解析【分析】(1)根据平行线的判定定理和性质定理解答;(2)根据真命题的概念写出命题的条件和结论,根据平行线的判定定理和性质定理、角平分线的定义解答.【详解】(1)证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);(2)①条件:DG∥BC,∠B=∠BCD,结论:DG平分∠ADC,②证明:∵DG∥BC,∴∠ADG=∠B,∠CDG=∠BCD,∵∠B=∠BCD,∴∠ADG=∠CDG,即DG平分∠ADC.故答案为:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;【点睛】本题考查了命题的真假判断、平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.27.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半(1)在图中按照下面“已知”的要求,画出符合题意的图形,并根据题设和结论,结合图形,用符号语言补充写出“己知”和“求证”.已知:在锐角ABC中,AB AC,______求证:______(2)证明上述命题解析:(1 )BD⊥AC于点D,∠DBC=12∠A;(2)见解析【分析】(1)先根据命题内容确定命题的题设和结论,画出符合条件的图形,并写出已知,根据结论写出求证内容;(2)根据等腰三角形的性质,可得出底角与顶角的数量关系,再由内角和定理证明出结论.【详解】(1)解:已知:如图,在锐角△ABC中,AB=AC,BD⊥AC于点D.求证:∠DBC=12∠A.故答案为:BD⊥AC于点D,∠DBC=12∠A.(2)证明:∵AB=AC,∴∠ABC=∠C.∵∠A+∠ABC+∠C=180°,∴2∠C=180°-∠A.即∠C=12(180°-∠A).∵BD⊥AC,∴∠DBC+∠C=90°.∴∠DBC=90°-∠C=90°-12(180°-∠A)=12∠A.即等腰三角形腰上的高与底边的夹角等于顶角的一半.【点睛】本题考查了命题与证明,掌握命题的证明方法和基本步骤,并结合题设和结论画出符合条件的图形是解题的关键.28.试用举反例的方法说明下列命题是假命题.例如:如果ab<0,那么a+b<0.反例:设a=4,b=-3,ab=4⨯(-3)=-12<0,而a+b=4+(-3)=1>0,所以这个命题是假命题.(1)如果a+b>0,那么ab>0.(2)如果a是无理数,b也是无理数,那么a+b也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a、b均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。
新版七下数学第五章相交线与平行线复习题五套
第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
第五章_相交线与平行线复习(人教新课标七年级上第一课时)
B D
C
∠4与∠5; ∠3与∠6.
F D C
如图: ∠ A和哪个角是同位角?
(∠COE、 ∠COB)
∠ A和哪个角是 内错角?
(∠C、 ∠AOD)
O
E
∠ A和哪个角是同旁内角? A
(∠B 、 ∠AOB、 ∠AOE)
B
一、判断题 1、有公共顶点且相等的两个角是对顶角。( × ) 2、两条直线相交,有两组对顶角。 ( √ ) 3、两条直线相交所构成的四个角中有一个角是直角, 那么其余的三个角也是直角。 ( √ ) 二、选择题 1、如右图直线AB、CD交于点O,OE为射线,那么(C) A。∠AOC和∠BOE是对顶角; B。∠COE和∠AOD是对顶角; A D C。∠BOC和∠AOD是对顶角; O D。∠AOE和∠DOE是对顶角。 2、如右图中直线AB、CD交于O, C B E OE是∠BOC的平分线且∠BOE=50度, 那么∠AOE=( C)度 (A)80;(B)100;(C)130(D)150。
概念辨析
1、下面四种判定两条直线的垂直的方法,正确 的有( A )个 (1)两条直线相交所成的四个角中有一个角是 直角,则这两条直线互相垂直 (2)两条直线相交,只要有一组邻补角相等, 则这两条直线互相垂直 (3)两条直线相交,所成的四个角相等,这两 条直线互相垂直 (4)两条直线相交,有一组对顶角互补,则这 两条直线互相垂直 ( A) 4 (B) 3 (C) 2 (D) 1
1、如图,过点P把两条笔直的公路连接 起来,在图中画出最短连接的路线.
P m
n
2、过一个角的顶点作这个角两边的垂线, 若这两条垂线的夹角为α,求原来已知 角的大小.
如图:直线a、b被直线 l 截的8个角中
l
相交线与平行线单元复习训练题(1)
相交线与平行线单元复习训练题(1)一.选择题(共10小题)1.将含有45°角的三角板和直尺按如图方式叠放在一起,若∠1=30°,则∠2度数()A.30°B.20°C.15°D.10°2.小华将一副三角板(∠C=∠D=90°,∠B=30°,∠E=45°)按如图所示的方式摆放,其中AB∥EF,则∠1的度数为()A.45°B.60°C.75°D.105°3.如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a∥b,∠1=55°,则∠2=()A.55°B.45°C.35°D.25°4.如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°5.如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠3=148°,则∠2的度数为()度.A.56B.66C.98D.1046.下列各选项中能用“垂线段最短”来解释的现象是()A.测量跳远成绩B.木板上弹墨线C.两钉子固定木条D.弯曲河道改直7.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°8.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°9.在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是()A.23°B.53°C.60°D.67°10.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.30°B.40°C.45°D.50°二.填空题(共10小题)11.如图所示,∠ABC=36°,DE∥BC,DF⊥AB于点F,则∠D=.12.长方形如图折叠,D点折叠到D′的位置.已知∠D′FC=76°,则∠EFC=.13.如图,点B是△ADC的边AD的延长线上一点,DE∥AC.若∠C=50°,∠BDE=55°,则∠BDC的度数为.14.如图,一条公路两次转弯后,和原来的方向相同.第一次的拐角∠ABC是140°,第二次的拐角∠BCD是°.15.如图,直线AB∥CD,∠C=45°,AE⊥CE,则∠1=.16.光线从空气射入水中时,光线的传播方向会发生改变,这就是折射现象.如图,水面MN与底面EF平行,光线AB从空气射入水里时发生了折射,变成光线BC射到水底C 处射线BD是光线AB的延长线,∠1=60°,∠2=43°,则∠DBC的度数为.17.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE 经过顶点A,若DE∥CB,则∠DAB的度数为度.18.将一个三角尺(∠A=30°)按如图所示的位置摆放,直线a∥b,若∠ABD=20°,则∠α的度数是.19.如图,AB∥CD,∠E=30°,∠ABE=130°,则∠DCE的度数为.20.已知AB 、BC 是两面互相垂直的平面镜,一束光线沿DE 经AB 、BC 反射后沿FG 射出,若DE ∥FG ,∠AED =65°,则∠GFC = °三.解答题(共5小题)21.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上.(1)如图2,现把三角板绕B 点逆时针旋转n °,当0<n <90,且点C 恰好落在DG 边上时,请直接写出∠1= °,∠2= °(结果用含n 的代数式表示);(2)在(1)的条件下,若∠2恰好是∠1的54倍,求n 的值. (3)如图1三角板ABC 的放置,现将射线BF 绕点B 以每秒2°的转速逆时针旋转得到射线BM ,同时射线QA 绕点Q 以每秒3°的转速顺时针旋转得到射线QN ,当射线QN 旋转至与QB 重合时,则射线BM 、QN 均停止转动,设旋转时间为t (s ).在旋转过程中,是否存在BM ∥QN 若存在,求出此时t 的值;若不存在,请说明理由.22.已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.23.如图,已知∠A+∠ADC=180°,∠B=∠D,求证:∠E=∠DFE.24.如图,已知AB∥CD,∠2+∠3=180°,DA平分∠BDC,CE⊥FE于点E,∠1=70°.(1)求证:AD∥CE;(2)求∠F AB的度数.25.如图,△ABC中,已知BD⊥AC,EF⊥AC,点D、F是分别为垂足,∠GDB=∠CEF.(1)求证:DG∥BC;(2)若BG=2AG,直接写出△AGD和△ABC的周长比.。
初中数学相交线与平行线知识点总复习(1)
初中数学相交线与平行线知识点总复习(1)一、选择题1.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.2.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.如图,直线AB AC ⊥,AD BC ⊥,如果4AB cm =,3AC cm =, 2.4AD cm =,那么点C 到直线AB 的距离为( )A .3cmB .4cmC .2.4cmD .无法确定【答案】A【解析】【分析】 根据点到直线的距离是指垂线段的长度,根据AB ⊥AC ,得出点C 到直线AB 的距离为AC .【详解】解:∵AB ⊥AC ,∴点C 到直线AB 的距离是指AC 的长度,即等于3cm .故选:A .【点睛】此题考查点到直线的距离,解题关键在于掌握点到直线的距离是指垂线段的长度,难度适中.4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.5.已知△ABC 中,BC=6,AC=3,CP ⊥AB ,垂足为P ,则CP 的长可能是( )A .2B .4C .5D .7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC <3,∴CP 的长可能是2,故选A .考点:垂线段最短.6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.7.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.8.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A.75°B.90°C.105°D.120°【答案】C【解析】【分析】延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE交AB于点F,∵AB∥CD,∴∠AFE=∠C=60°,在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.11.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.12.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识13.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()A.1对B.2对C.3对D.4对【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.故选B.【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可14.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.15.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角16.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC =180°﹣72°﹣36°=72°,∴∠A =∠ABD ,∠DBE =∠BDE ,∠DEC =∠C ,∠BDC =∠C ,∠ABC =∠C ,∴△ABC 、△ABD 、△DEB 、△BDC 、△DEC 都是等腰三角形,共5个,故选C .【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF ∥MN (已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D .【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.20.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°【答案】B【解析】【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。
最新初中数学相交线与平行线知识点总复习有解析(1)
最新初中数学相交线与平行线知识点总复习有解析(1)一、选择题1.如图,下列说法一定正确的是()A.∠1和∠4是内错角B.∠1和∠3是同位角C.∠3和∠4是同旁内角D.∠1和∠C是同位角【答案】D【解析】【分析】根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A、∠2和∠4是内错角,故本选项错误;B、∠1和∠C是同位角,故本选项错误;C、∠3和∠4是邻补角,故本选项错误;D、∠1和∠C是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.下列说法中,正确的是( )A .过一点有且只有一条直线与已知直线垂直B .过直线外一点有且只有一条直线与已知直线平行C .垂于同一条直线的两条直线平行D .如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A 、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B 、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C 、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D 、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意; 故选:B .【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A.2个B.3个C.4个D.5个【答案】C【解析】【分析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.6.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠D=∠DCE B.∠D+∠ACD=180° C.∠1=∠2 D.∠3=∠4【答案】C【解析】【分析】根据平行线的判定方法逐项进行分析即可得.【详解】A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;B. 由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.8.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.8【答案】C【解析】解:∵FM平分∠EFD,∴∠EFM=∠DFM=12∠CFE.∵EG平分∠AEF,∴∠AEG=∠GEF=12∠AEF.∵EM平分∠BEF,∴∠BEM=∠FEM=12∠BEF,∴∠GEF+∠FEM=12(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=12(∠BEF+∠CFE).∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF,∴∠FEM+∠EFM=12(∠BEF+∠CFE)=12(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.13.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB ⊥CD ,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C .【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.14.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.15.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .16.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.17.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.18.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.19.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.20.如图,在下列四组条件中,不能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠ABD =∠BDCD .∠ABC+∠BCD =180°【答案】A【解析】【分析】 根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB 、CD 是否平行即可.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行),故A 不能判断;B 、∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),故B 能判断;C 、∵∠ABD =∠BDC ,∴AB ∥CD (内错角相等,两直线平行),故C 能判断; D 、∵∠ABC +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行),故D 能判断,【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.。
新初中数学相交线与平行线知识点总复习附答案(1)
新初中数学相交线与平行线知识点总复习附答案(1)一、选择题1.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC 和直线BC 被直线AB 截得的同位角,所以①正确;②∠3和∠5是直线BC 和直线AB 被直线AC 截得的内错角,所以②正确;③∠2和∠6是直线AB 和直线AC 被直线CB 截得的内错角,所以③错误;④∠5和∠2是直线AC 和直线BC 被直线AB 截得的同位角,所以④正确;⑤∠1和∠3是直线BC 和直线AB 被直线AC 截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.3.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=【答案】D【解析】【分析】 根据题意,结合图形对选项一一分析,排除错误答案.【详解】A 、∠1=∠3正确,内错角相等两直线平行;B 、∠2+∠4=180°正确,同旁内角互补两直线平行;C 、∠4=∠5正确,同位角相等两直线平行;D 、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行. 故选:D .【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.4.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.下列结论中:①若a=b ,则a =b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥,则a =b②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离④|3-2|=2-3,正确正确的个数有②④两个故选B7.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )A .3.6B .4.8C .1.8D .7.2【答案】A【解析】【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.【详解】证明:∵OC 平分∠AOB ,∴∠BOC=∠DOC .∵CD ∥OB ,∴∠BOC=∠DCO ,∴∠DOC=∠DCO ,∴OD=CD=3.∵C 到OB 的距离是2.4,∴C 到OA 的距离是2.4,∴ODC ∆的面积=13 2.4=3.62⨯⨯.故选A.【点睛】本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C到OA的距离是2.4是解题的关键.8.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C .D .【答案】D【解析】【分析】 根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.11.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略12.下列说法中,正确的是( )A .不相交的两条直线是平行线B .过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A 、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A 选项错误;B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.故选:D .【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠=∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.15.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角17.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b ∥d 时;②当b 和d 相交但不垂直时;③当b 和d 垂直时;即可得出a 与c 的关系.【详解】当b ∥d 时a ∥c ;当b 和d 相交但不垂直时,a 与c 相交;当b 和d 垂直时,a 与c 垂直;a 和c 可能平行,也可能相交,还可能垂直.故选:D .【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.。
平行线与相交线复习(一)
《平行线与相交线》复习(一)一.知识梳理:1、知识点:公理、垂直、两点之间的距离、点与线的距离、平行线间的距离2、数学思想方法:数形结合、方程的思想、建模。
二。
典例精析:1、如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.34l 3l 2l 1122.(2011,郑州模拟,5分)如图,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数; (2)试判断OD 与AB 的位置关系.C ADB3.(7分)如图:在三角形ABC 中,∠BCA =900,CD ⊥AB 于点D ,线段AB 、BC 、CD 的大小顺序如何?并说明理由.三。
强化练习1.如果一个角的补角是150°,那么这个角的余角的度数是( ) A.30°B.60°C.90°D.120°2.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个3.下列语句说法正确的个数是( )①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直; ②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直; ③一条直线的垂线可以画无数条;④在同一平面内, 经过一个已知点能画一条且只能画一条直线和已知直线垂直. A.1个 B.2个 C.3个 D.4个D C B A4.画一条线段的垂线,垂足在( )A.线段上B.线段的端点;C.线段的延长线上D.以上都有可能 5.要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________. 6.猜谜语:剩下十分钱: ;斗牛 .五四三二一:_______7.如图,∠ADE 和∠CED 是( ) A .同位角 B .内错角 C .同旁内角 D .互为补角8.(5分)已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE 的度数.9.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.OE DCBA10.已知一个角的余角的补角比这个角的补角的一半大90°,则这个角的度数等于多少度?第(11)题EDC B A F E OD C B A 321。
期末复习(1)——相交线与平行线
【考点 4】三线八角 5.如图: (1)∠1 和∠5 是__同__位____角; (2)∠2 和∠5 是__同__旁__内__角; (3)∠2 和∠8 是___内__错___角; (4)∠6 和∠8 是___对__顶___角; (5)∠6 和∠7 是___互__补___角.
【考点 5】平行线的性质 6.如图,AB∥CD,∠1=70°,则∠5=___7_0____°,
解:∵AB∥CD,∴∠BOD=∠ODC=30°. ∴∠AOE=180°-∠EOF-∠BOD =180°-90°-30° =60°. ∵DM∥OE,∴∠AOE=∠AND, ∴∠ANM=180°-∠AND =180°-∠AOE =80°-60°
=120°.
24.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°, 则∠2 的度数为( D ) A.45° B.30° C.20° D.15°
【考点 7】命题 9.命题“对顶角相等”的题设是
__两__角__为__对__顶__角________________________, 结论是__它__们__的__大__小__相__等________________.
【考点 8】平移 10.下列生活中的各个现象,属于平移变换现象的是( A )
A.拉开抽屉 B.用放大镜看文字 C.时钟上分针的运动 D.你和平面镜中的像
21.如图,BC 与 DE 相交于 O 点,给出下列三个论断:①∠B
=∠E,②AB∥DE,③BC∥EF.请以其中的两个论断为条
件,一个论断为结论,写出一个正确的命题,并说明理由.
条件是,条件是:①② 结论是:③ 结论是.理由:∵AB∥DE,
∴∠B=∠DOC. 理由: ∵∠B=∠E,
∴∠E=∠DOC, ∴BC∥EF.
最新初中数学相交线与平行线知识点总复习含答案解析(1)
最新初中数学相交线与平行线知识点总复习含答案解析(1)一、选择题1.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.6.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.8.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()A.30o B.60o C.90o D.120o【答案】B【解析】∵AD ∥BC ,∴∠ADB=∠DBC ,∵DB 平分∠ADE ,∴∠ADB=∠ADE ,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A.75°B.90°C.105°D.120°【答案】C【解析】【分析】延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE交AB于点F,∵AB∥CD,∴∠AFE=∠C=60°,在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,下列说法一定正确的是()A.∠1和∠4是内错角B.∠1和∠3是同位角C.∠3和∠4是同旁内角D.∠1和∠C是同位角【答案】D【解析】【分析】根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A、∠2和∠4是内错角,故本选项错误;B、∠1和∠C是同位角,故本选项错误;C、∠3和∠4是邻补角,故本选项错误;D、∠1和∠C是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.13.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.14.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.8【答案】C【解析】解:∵FM平分∠EFD,∴∠EFM=∠DFM=12∠CFE.∵EG平分∠AEF,∴∠AEG=∠GEF=12∠AEF.∵EM平分∠BEF,∴∠BEM=∠FEM=12∠BEF,∴∠GEF+∠FEM=12(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=12(∠BEF+∠CFE).∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF,∴∠FEM+∠EFM=12(∠BEF+∠CFE)=12(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.15.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.16.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A .1个B .2个C .3个D .4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.20.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.。
相交线与平行线复习及练习题
相交线与平行线复习及练习题二、知识点梳理一、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
,同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
@平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
)三、经典例题题型一互余与互补例1 一个角的余角比它的补角的少20°.则这个角为()°°°°分析若设这个角为x,则这个角的余角是90°-x,补角是180°-x,于是构造出方程即可求解.解设这个角为x,则这个角的余角是90°-x,补角是180°-x.则根据题意,得(180°-x)-(90°-x)=20°.解得:x=40°.故应选B.说明处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下不要引进未知数,构造方程求解.题型二平行线的性质与判定:例2判断题:1)不相交的两条直线叫做平行线。
第二章平行线与相交线复习(初备)
第二环节
知识梳理
活动内容:请同学们展示自己的知识网络图,开展小组交流和全班交流,使学生在反思 和交流的过程中逐渐建立完整的知识体系,师生共同总结,完成活动单元一。
平面内两条直线的位置关系 相交线 平行线
两线四角
三线八角
平行公理及推论
邻 补 角
对 顶 角
垂 线 及 性 质
同 斜 位 线 角
内 错 角
同 旁 内 角
平 行 线 的 判 定
平 行 线 的 性 质
第三环节:活动单元一-----相交线
活动内容: 1. 如图 1,直线 AB,CD,EF 相交于 O,∠AOE 的对顶角 是 ,邻补角是 ,∠COF 的对顶角是 , 邻补角是 。 2.如图 2,∠BDE 的同位角是 ,内错角是 ,同旁内角是 ∠DGC 是直线 被 所截 成的 角。
教学方法与媒体
小组讨论法,小组展示法 以小组为单位,在总结讨论的基础上,使学生掌握本章的内容。
教
学
过
程
复备修改 及设计意 图
第一环节
课前准备 平面内两条直线的位置关系 活动内容: (1) 让学生课前独立回顾所学内容,并尝试回答教科书提出的问题。在独
立思考的基础上,开展小组交流和自评活动,并让学生自己尝试着建立知识框架图。 (2)对于在复习中出现的困惑的问题,进行记录并与同学进行交流。对于无法解决的 问题,可以课堂上师生共同探讨
课题
ቤተ መጻሕፍቲ ባይዱ
第二章平行线与相交线(复习)
课型
复 习 1 课时 课
课标与教材
教材分析:平行线、相交线在现实生活中随处可见,同时,它们又构成平面内两 条直线的基本位置关系。学习平行、垂直的有关内容,不仅是“空间与图形”内容的 基础和必经途径, 而且是积累学生空间与图形的活动经验、 掌握平面图形的基础知识、 学习简单而初步的说理、推理等内容所必需的。学生在七年级(上)中已经学习了有 关直线、线段、角、平行与垂直的简单内容,积累了初步的观察、操作等活动经验, 在此基础上,本章将进一步直观探究平行、垂直的有关内容,并在其中学习简单的说 理;本章内容是七年级“第四章平面图形及其位置关系”的进一步发展,如果说上次 的学习以直观和操作活动为主,那么,本次的学习虽以数学活动为主线,但已经逐步 穿插说理和简单推理(一步推理) ,要求学生进行有简单说明理由的推断,而不是仅 仅得到结论。在教学中,教师可以采取灵活的方式,一是引导学生通过自己的思考将 有关内容条理化,二是交流各自在本章学习中的体会和感受,尤其是,自己的成功体 验,三是将本章问题的特点,尤其是,在探究中进行适当的说理、绝大多数问题都要 求说明理由的特点加以明确和强化。 教科书基于学生对本章知识的认识, 提出了本课 的具体学习任务: 1.掌握平行线与相交线的相关知识,梳理本章内容,建立一定的知识体系;并 能够综合运用这些知识解决相关的问题。 2.在丰富的情景中,抽象出平行线、相交线等几何模型,通过讨论角与角之间 的关系,进一步认识平行线和相交线。 3.在认识操作基础上锻炼学生的语言表达能力以及逻辑思维能力。 课标分析:了解补角、余角、对顶角的概念及其性质并能够进行简单的应用。让 学生经历观察、操作、推理、想象等探索过程,发展学生的空间观念及推理能力,同 时也应力图在学习中逐步达成学生的有关情感态度目标。 经历探索直线平行的条件以 及平行线的特征的过程,掌握直线平行的条件以及平行线的特征。 教学重点:补角、余角、对顶角的概念及其性质;直线平行的条件以及平行线的特征 教学难点:几何语言的理解以及用自己的语言表述理由,书写自己的理由。 知识储备: 学生已经完成了平行线与相交线有关的知识学习, 并能初步应用这些 知识解决一些简单的问题; 在相关知识的学习过程中, 学生通过教科 书提供的多种活动能够进行一定的几何表达; 同时经历了一系列的数 学活动,并积累了一定的活动经验;对数形结合的数学思想和类比、 转化、归纳等数学方法有了一定的了解。 学习优势:具备了一定的合情说理的能力。 学困生分析:本章的内容较抽象,而学生的有条理的思考及观察、概括、表达能 力还比较薄弱, 不能很好的用语言表述理由, 对知识之间的联系理解 还比较肤浅,从而易造成概念模糊,理解不深透;特别是对于“三线
最新初中数学相交线与平行线知识点总复习附答案(1)
最新初中数学相交线与平行线知识点总复习附答案(1)一、选择题1.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.2.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是( )A .①②③④B .①②③④C .①②③④⑤D .①②④⑤【解析】如图,①∠1和∠4是直线AC 和直线BC 被直线AB 截得的同位角,所以①正确;②∠3和∠5是直线BC 和直线AB 被直线AC 截得的内错角,所以②正确;③∠2和∠6是直线AB 和直线AC 被直线CB 截得的内错角,所以③错误;④∠5和∠2是直线AC 和直线BC 被直线AB 截得的同位角,所以④正确;⑤∠1和∠3是直线BC 和直线AB 被直线AC 截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.3.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.4.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.5.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA的度数是()A.28°B.30°C.38°D.36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB,根据三角形的内角和求出∠CDB的度数从而得到∠DFA的度数.【详解】解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.6.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是( )A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.7.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.8.如图AD ∥BC ,∠B =30o ,DB 平分∠ADE ,则∠DEC 的度数为 ( )A .30oB .60oC .90oD .120o【答案】B【解析】∵AD ∥BC ,∴∠ADB=∠DBC ,∵DB 平分∠ADE ,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()244∠=o,则1α-A.14o B.16o C.90α-o D.44o【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A .点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.11.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.12.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.13.如图,下列说法一定正确的是( )A .∠1和∠4是内错角B .∠1和∠3是同位角C.∠3和∠4是同旁内角D.∠1和∠C是同位角【答案】D【解析】【分析】根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A、∠2和∠4是内错角,故本选项错误;B、∠1和∠C是同位角,故本选项错误;C、∠3和∠4是邻补角,故本选项错误;D、∠1和∠C是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.14.A、B、C是直线L上三点,P为直线外一点,若PA=2cm,PB=3cm,PC=5cm,则P 到直线L的距离是()A.等于2cm B.大于2cm C.不小于2cm D.不大于2cm【答案】D【解析】【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】∵PA=2cm,PB=3cm,PC=5cm,∴PA<PB<PC.∴①当PA⊥L时,点P到直线L的距离等于2cm;②当PA与直线L不垂直时,点P到直线L的距离小于2cm;综上所述,则P到直线L的距离是不大于2cm.故选:D.【点睛】本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.15.如图,11,,33AB EF ABP ABC EFP EFC∠=∠∠=∠∥,已知60FCD∠=︒,则P∠的度数为()A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.16.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .17.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中OE′=BE′·tan ∠OBE ′=12a ×3=6a∴S △ODE 22 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=212∵248=14×212a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.18.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,故①正确;②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.19.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.20.如图,直线a ∥b ,直角三角开的直角顶点在直线b 上,一条直角边与直线a 所形成的∠1=55°,则另外一条直角边与直线b 所形成的∠2的度数为( )A .25°B .30°C .35°D .40°【答案】C【解析】如图所示:∵直线a ∥b ,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C .。
初三中考复习资料基础知识
相交线、平行线1 . 对顶角相等;2 .同角(或等角)的余角(或补角)相等.3 .垂线、垂线段最短(点到直线的距离);4 .过一点(直线上或直线外)有且只有_>直线和己他直线垂直;5 . 会过一点画(作)已知直线的垂线;(一落,二靠,三画) 6・过直线外一点,有且只有雀直线与已知直线平行;7.如果两条直线都与第三条直线平行,那么这两条直线也互札I 平行.10.会过直线外一点,画已知直线的平行线 全等三角形的性质:全等三角形的对应边相等,对应角相等 全等三角形的判定1、两边和它们的夹角对应相等的两个三角形全等。
简写成“边角边”或“SAS”2、有三边对应相等的两个三角形全等.SSS (边边边)3、有两角和它们的夹边对应相等的两个三角形全等.ASA (角边角)4、有两角和及其中一个角所对的边对应和等的两个三角形全等.AAS (角角边)5、斜边和一条直角边对应相等的两个直角三角形全等。
HL (斜边直角边)角的平分线的性质 1、 角的平分线上的点到角的两边的距离相等.2、 角的内部到角的两边的距离和等的点在角平分线上、 对称轴1、 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2、 轴对称图形的对称轴,是任何一对对应点所在连线的垂直平分线、初三中考复习资料基础知识8. 三线八角与平行线的关系;%1判定公理:同位角相等,两直线平行. %1判定定理内错角相等,两直线平行. %1判定定理2:同旁内角互补,两直线平行. %1性质公理:两直线平行,同位角相等. %1性质定理1:两直线平行,内错角相等.:・・• Z1=Z2, • Z1=Z2,VZ1+Z2=18O° ,a//b.・・• a// b, AZ1=Z2. ・・• a/ b, AZ1=Z2.a//b, :. Zl+Z2=180°•I a// b. • • • a// b.3、线段垂直平分线上的点与这条直线两端点的距离相等。
相交线与平行线易错点复习
相交线与平行线易错点复习一、 平行线的判定与性质1、如图1所示,能判断AB ∥CD 的条件是( )A .∠3=∠4B .∠1=∠2C .∠B=∠D D .∠BAD+∠B=180°2、如图2,直线a 与直线b 互相平行,直线l 与直线a 、b 相交,则∠α的度数是( )A .40°B .60°C .140°D .160°3、已知如图3,∠A=135°,∠B= 45°,在下面的说法中,一定正确的是 ( )A .AD ∥BCB .AB ∥CDC .∠C =135°,∠D = 45° D .∠C =45°,∠D = 135°4、如图4,下列判定中正确的有( )①若∠1=∠3,AD ∥BC ,则BD 是∠ABC 的平分线;②若AD ∥BC ,则∠1=∠2 =∠3; ③若∠1=∠3,则AD ∥BC ;④若∠C + ∠3 +∠4 = 180°,则AD ∥BCA .1个B .2个C .3个D .4个5、如图5,∠1=∠2,则 ∥ ,理由是 __6、如图6,AB ∥CD ,那么∠B +∠E +∠D = °.7、解答题(1)如图,已知AB ⊥BD ,CD ⊥BD ,且∠1+∠2 =180°,求证:CD ∥EF证明: ∵ AB ⊥BD ,CD ⊥BD (已知)∴ AB ∥CD ( )又∵ ∠1+∠2 =180°(已知)∴ AB ∥EF ( )∴ CD ∥EF ( )(2)如图,已知EF ∥BC ,∠1=∠B 。
问DF 与AB 平行吗?请说明理由。
图1 图2 图3 图4 图5 图6(3)如图,已知∵AC⊥AB,BD⊥AB,且∠CAE=∠DBF,求证:AE∥BF。
如图,∵AC⊥AB,BD⊥AB(已知)∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______ ()∴AE∥BF()(4)如图,已知AD∥BC,∠A=100°,BD平分∠ABC,求∠DBC的度数。
初中数学相交线与平行线知识点复习(1)
初中数学相交线与平行线知识点复习(1)一、选择题1.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角2.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55 ,故选:B.【点睛】此题考查平行线的性质,折叠的性质.3.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.4.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.5.下列结论中:①若a=b a b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】a b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离33正确的个数有②④两个故选B6.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.7.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.8.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()A.1对B.2对C.3对D.4对【答案】B【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.故选B.【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.13.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.14.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.15.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.16.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A.4个B.3个C.2个D.1个【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.19.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.20.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.。
初中数学相交线与平行线知识点总复习含答案(1)
初中数学相交线与平行线知识点总复习含答案(1)一、选择题1.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.2.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.3.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.6.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.7.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )A .∠BAO 与∠CAO 相等B .∠BAC 与∠ABD 互补 C .∠BAO 与∠ABO 互余D .∠ABO 与∠DBO 不等【答案】D【解析】【分析】【详解】 解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B 正确;因AO 、BO 分别是∠BAC 、∠ABD 的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A 正确,选项D 不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO 即可得∠BAO+∠ABO=90°,选项A 正确,故选D.8.如图,将一张含有30o 角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=o ,则1∠的大小为( )α-A.14o B.16o C.90α-o D.44o【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°【答案】D【解析】分析:根据平行线的性质,可得∠DBC=56°,∠E=∠EBC,根据角平分线的定义,可得∠EBC=12∠DBC=28°,进而得到∠E=28°.详解:∵AE∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC,∵BE平分∠DBC,∴∠EBC=12∠DBC=28°,∴∠E=28°,故选D.点睛:本题主要考查了角平分线的定义和平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题的关键.13.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A 选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B 选项:强调了在平面内,正确;C 选项:不符合对顶角的定义,错误;D 选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.14.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.15.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.16.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.17.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略20.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )A .3.6B .4.8C .1.8D .7.2【答案】A【解析】【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.【详解】证明:∵OC 平分∠AOB ,∴∠BOC=∠DOC .∵CD ∥OB ,∴∠BOC=∠DCO ,∴∠DOC=∠DCO ,∴OD=CD=3.∵C 到OB 的距离是2.4,∴C 到OA 的距离是2.4,∴ODC ∆的面积=13 2.4=3.62⨯⨯. 故选A .【点睛】本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.。
初中数学相交线与平行线知识点总复习附解析(1)
初中数学相交线与平行线知识点总复习附解析(1)一、选择题1.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。
其中正确的结论有( )个A .1B .2C .3D .4【答案】B【解析】【分析】 根据平行四边形的性质、三角形的面积公式、平行线的性质、等腰三角形的性质、直线之间的距离逐个判断即可得.【详解】Q 四边形ABCD 是平行四边形//,//,,AB CD AD BC AB CD OB OD ∴==,则①正确AOB ∆Q 边OB 上的高与AOD ∆边OD 上的高是同一条高,且OB OD =AOB AOD S S ∆∆∴=,则②正确//AD BC QADB CBD ∴∠=∠若ABD CBD ∠=∠,则ABD ADB ∠=∠AD AB ∴=,这与已知条件AD AB >矛盾,则③错误如图,过点A 作AE CD ⊥于点E//AB CD Q∴对边,AB CD 之间的距离相等,且等于AE 的长BC Q 不一定垂直于CDBC ∴不一定等于AE ,则④错误综上,结论正确的个数为2个故选:B .【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的性质等知识点,熟练掌握并灵活运用各性质是解题关键.2.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.3.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.4.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED=( )A .65°B .115°C .125°D .130°【答案】B【解析】 试题分析:∵AB ∥CD ,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB ,∴∠EAB=65°,∵AB ∥CD ,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B .考点:平行线的性质.5.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )A .3.6B .4.8C .1.8D .7.2【答案】A【解析】【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.【详解】证明:∵OC 平分∠AOB ,∴∠BOC=∠DOC .∵CD ∥OB ,∴∠BOC=∠DCO ,∴∠DOC=∠DCO ,∴OD=CD=3.∵C 到OB 的距离是2.4,∴C 到OA 的距离是2.4,∴ODC ∆的面积=13 2.4=3.62⨯⨯. 故选A .【点睛】本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.6.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.8.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;9.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )A .∠α+∠β+∠γ=180°B .∠α+∠β﹣∠γ=360°C .∠α﹣∠β+∠γ=180°D .∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF ∥AB ,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .10.如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°,则∠E 的度数为( )A .56°B .36°C .26°D .28°【答案】D【解析】 分析:根据平行线的性质,可得∠DBC=56°,∠E=∠EBC ,根据角平分线的定义,可得∠EBC=12∠DBC=28°,进而得到∠E=28°. 详解:∵AE ∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC ,∵BE 平分∠DBC , ∴∠EBC=12∠DBC=28°, ∴∠E=28°,故选D. 点睛:本题主要考查了角平分线的定义和平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题的关键.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A.100°B.130°C.140°D.160°【答案】B【解析】【分析】连接BD,因为AB∥CD,所以∠ABD+∠CDB=180°;又由三角形内角和为180°,所以∠ABE+∠E+∠CDE=180°+180°=360°,所以∠ABE+∠CDE=360°−100°=260°;又因为BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD,∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABE+∠E+∠CDE=180°+180°=360°,∴∠ABE+∠CDE=360°−100°=260°,又∵BF、DF平分∠ABE和∠CDE,∴∠FBE+∠FDE=130°,∴∠BFD=360°−100°−130°=130°,故选B.【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD这条辅助线.12.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.13.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.14.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.8【答案】C【解析】解:∵FM 平分∠EFD ,∴∠EFM =∠DFM =12∠CFE .∵EG 平分∠AEF ,∴∠AEG =∠GEF =12∠AEF .∵EM 平分∠BEF ,∴∠BEM =∠FEM =12∠BEF ,∴∠GEF +∠FEM =12(∠AEF +∠BEF )=90°,即∠GEM =90°,∠FEM +∠EFM =12(∠BEF +∠CFE ).∵AB ∥CD ,∴∠EGF =∠AEG ,∠CFE =∠AEF ,∴∠FEM +∠EFM =12(∠BEF +∠CFE )=12(BEF +∠AEF )=90°,∴在△EMF 中,∠EMF =90°,∴∠GEM =∠EMF ,∴EG ∥FM ,∴与∠DFM 相等的角有:∠EFM 、∠GEF 、∠EGF 、∠AEG 以及∠GEF 、∠EGF 、∠AEG 三个角的对顶角.故选C . 点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.15.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .16.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.17.如图,在△ABC 中,AB =AC ,∠A =36°,D 、E 两点分别在边AC 、BC 上,BD 平分∠ABC ,DE ∥AB .图中的等腰三角形共有( )A .3个B .4个C .5个D .6个【答案】C【解析】【分析】 已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 平分∠ABC ,∴∠ABD =∠DBC =36°,∴∠BDC =180°﹣36°﹣72°=72°,∵DE ∥AB ,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.18.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.19.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.∠=∠,那么20.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12∠的度数为()1A.50︒B.60︒C.70︒D.80︒【答案】B【解析】【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】∵AB∥CD,∴∠3=∠2,∠1=∠2,∴∠1=∠3,∴2∠3+60°=180°,∴∠3=60°,∴∠1=60°,故选:B.【点睛】此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.。
新初中数学相交线与平行线知识点总复习附答案解析(1)
新初中数学相交线与平行线知识点总复习附答案解析(1)一、选择题1.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.2.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.3.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.4.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.5.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是( )A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.6.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.7.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.8.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.13.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.14.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.15.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.16.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.20.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A F E
4 2 1 3
5
∴
DF (2)、 ∵AB ∥______, (已知)
B
D
性质
C
两直线平行, 内错角相等。 ∴ ∠2= ∠4,(______________________)
AB∥___, DF (3)、∵ ___ ∴ ∠B= ∠3.
1. 平移变换的定义: 把一个图形整体沿某一方向移动,会得到 一个新图形,这样的图形运动,叫做平移变换,简称平移。 2. 平移的特征: (1)平移不改变图形的形状和大小。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到
的,这两个点是对应点,对应点连结而成的线段平行且相等。
3. 决定平移的因素是平移的方向和距离。 4. 经过平移,图形上的每一点都沿同一方向移动相同的距离。 5. 经过平移,对应角相等;对应线段平行且相等;对应点所连的线 段平行且相等。
5.下列说法正确的有( B ) ①对顶角相等;②相等的角是对顶角;③若 两个角不相等,则这两个角一定不是对顶角; ④若两个角不是对顶角,则这两个角不相等. A. 1个 B. 2个 C. 3个 D. 4个 6. 如图OA⊥OC,OB⊥OD, 且∠BOC=α ,则 B 0 180 -α ∠AOD=________
如图给出下列论断: (1)AB//CD (2)AD//BC (3)∠A=∠C
以上,其中两个作为题设,另一个作为结论,用 “如果……, 那么……”的形式,写出一个你认为正确的命题。
A
D 分析: 不妨选择(1)与(2)作条件,由平
行性质 “两直线平行,同旁内角互补”
可得∠A=∠C,故满足要求。由(1)与 (3)也能得出(2)成立,由(2)与(3)也 能得出(1)成立。
B
C
解: 如果在四边形ABCD中,AB//DC、AD//BC,那么∠A=∠C。
例1. 在以下生活现象中,不是平移现象的是
A. 站在运动着的电梯上的人
B. 左右推动的推拉窗扇
C. 小李荡秋千运动 D. 躺在火车上睡觉的旅客 分析: A、B、D属平移,在一个位置取两点连成一条线 ,在另一个位置再观察这条线段,发现是平行的,而C
知识系统
一般情况
1
3
4
2
对顶角相等
两 条 直 线 相 交
特殊情况
邻补角互补
对顶角和邻补角的存在 前提是两条直线相交
垂 直
过一点有且只有一条直线与已知直线垂直
垂线段最短
点到直线的距离
E
三线八角
A
34 2 1 6 5 7 8
B D
C
F
同位角是:∠1和∠8; ∠2和∠7; ∠3和∠6; ∠4和∠5. 内错角是:∠1和∠6; ∠2和∠5. 同旁内角是: ∠1和∠5;∠2和∠6.
题设是已知事项;结论是由已知事项推出的事项。命题常写成
“如果……,那么……”的形式。或 “若……,则……”等形式。 3. 真命题和假命题: 命题是一个判断,这个判断可能是正确的, 也可以是错误的。由此可以把命题分成真命题和假命题。 真命题就是: 如果题设成立,那么结论一定成立的命题。
假命题就是: 如果题设成立时,不能保证结论总是成立的命题。
B
二、问题研讨
3.如图,不能判别AB∥CD的条件是( A. ∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5
A 3 1 D
B)
C M
N
2 B
4 C
5 E
A
O
B
4.如图,已知AOB是一条直线,OM平分∠BOC,ON 平分 ∠AOC,则图中互为邻补角的角有几对?互 补的角有几对?则其中互余的角有几对?
平 条件 行 线 的 两直线平行 性 质 平 行 线 的 判 定 条件
同位角相等 内错角相等 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
间夹 的在 距两 离平 。行 线 间 的 垂 线 段 的 长 度 叫 做 两 平 行 线 ,
1. 命题的概念: 判断一件事情的句子,叫做命题。 命题必须是一个完整的句子; 这个句子必须对某件事情做出肯 定或者否定的判断。两者缺一不可。 2. 命题的组成: 每个命题是由题设、结论两部分组成。
同样取两点连成一条线段,运动到另一位置时,可能已
不平行
解: 选C
2.下列生活中的物体的运动情况可以看成
平移的是(
)
(1)摆动的钟摆
(2)在笔直的公路上行驶的汽车
(3)随风摆动的旗帜
(4)摇动的大绳
(5)汽车玻璃上雨刷的运动 (6)从楼梯自由落下的球(球不旋转)
例2. 如图所示,△ABC平移到△A′B′C′的位置,则点A的
命,(5)是假命题。
练习
1、下列命题是真命题的有( C、E、G ) A、相等的角是对顶角 B、不是对顶角的角不相等 C、对顶角必相等 D、有公共顶点的角是对顶角 E 、邻补角的和一定是180度 F、互补的两个角一定是邻补角 G、两条直线相交,只要其中一个角的大小确 定了,那么另外三个角的大小就确定了
二、问题研讨
1.在同一平面内,两条直线的位置关系是( A.相交 B.平行 C.相交或平行 D.相交、平行或垂直
c)
2.三条直线两两相交,当三条直线相交于一点时, 对顶角的对数为m,当三条直线不相交于一点时, 对顶角的对数为n,则m与n的关系是( ) A.m>n B.m=n C.m<n D.无法确定
A′ ,点B的对应点是______ B′ ,点C的对应点是____ C′ 对应点是______
A'B ' 。线段AB的对应线段是___________ ,线段BC的对应线段是
B 'C ' A 'C ' _________ ,线段AC的对应线段是___________ 。∠BAC的对应
B ' A ' C ' ,∠ABC的对应角是____________ A ' B ' C ' ,∠ACB的 角是 __________
A
C D
O
平行线的判定应用练习:
7.如图: 填空,并注明理由。 F (1)、∵ ∠1= ∠2 (已知) 内错角相等。两 ∴ —— AB ∥—— ED ( ) 直线平行, ∵ ∠3= ∠4 (已知) 3
A
1 4
B 6 C
5
E
2
D
∴
∵ ∴
AF ∥—— BE —— ( 同位角相等,两直线平行。 )
∠5= ∠6 (已知)C ' B ' 。△ABC的平移方向是________________ 沿着射线AA′ 对应角是___________
( 或BB′,或CC′)的方向 ___________________________ ,平移距离是_______________ 线段AA′的长 (_____________________________ 或线段BB′的长或线段CC′的长 。
2.如图,已知:AD∥BC, ∠AEF=∠B, 求证:AD∥EF。
E A D F
B
C
2. 如图,已知:AC∥DE,∠1=∠2, 试证明AB∥CD。
证明:
A 1 2 E D
B
C
3.已知 EF⊥AB,CD⊥AB,∠EFB=∠GDC, 求证:∠AGD=∠ACB。
证明
A D E B F
C
G
7.如图,已知AB∥CD,直线EF分别交AB、CD 于点E 、F, ∠BEF的平分线与∠DFE的平分线 相交于点P,你能说明∠P的度数吗?为什么?
(已知)
两直线平行, ___________) 同位角相等. (___________
性质
9. 如图,直线EF过点A, D是BA延长线上的
点 ,具备什么条件时,可以判定EF
为什么 ?
E A
D
BC ?
F
B
C
1. 如图 已知:∠1+∠2=180°, E 求证:AB∥CD。
证明:
A C 1 3 4 2 D F B
A E B
P C F D
8.如图,AB ∥CD,若∠ABE=120o ∠DCE=35o ,求∠ BEC的度数
A B E C D
9.如图,在长方形ABCD中,∠ADB=20°, 现将这一长方形纸片沿AF折叠,若使AB’ ∥BD, 则折痕AF与AB的夹角∠BAF应为多少度?
B'
A
D
B F
C
例1. 判断下列语句,是不是命题,如果是命题,是真命题, 还是假命题? (1)画线段AB=2cm (2)直角都相等; (3)两条直线相交,有几个交点? (4)如果两个角不相等,那么这两个角不是对顶角。 (5)相等的角都是直角; 分析: 因为(1)、(3)不是对某一件事作出判断的句子,所以(1)、 (3)不是命题。 解. (1)、(3)不是命题; (2)、(4)、(5)是命题; (2)、(4)都是真
BC EF —— ∥—— ( ) 内错角相等,两直线平行。
∵ ∠5+ ∠AFE=180 (已知)
AF ∥—— BE (同旁内角互补,两直线平行。) ∴ ——
∵ AB ∥FC,
ED ∥FC (已知)
AB ED ∴ —— ∥—— ( 平行于同直线的两条直线互相平行。 )
综合应用:
8、填空: (1)、∵ ∠4 (已知) ∠A=____,