八年级数学试题及答案

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

2022~2023学年济南市高新区八年级上学期数学期末考试试题(含答案)

2022~2023学年济南市高新区八年级上学期数学期末考试试题(含答案)

济南市高新区八年级上学期数学期末考试试题(满分150分时间120分钟)一.单选题。

(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A (1,0),B (3,0),M (4,3),动点P 从点A 出发,沿x 轴每秒1个单位长度的速度向右移动,且过点P 的直线y=﹣x+b 也随之平移,设移动时间为t 秒,若直线与线段BM 有公共点,则t 的取值范围是( )A.3≤t ≤7B.3≤t ≤6C.2≤t ≤6D.2≤t ≤5(第10题图)二.填空题。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

2021-2022学年辽宁省本溪市八年级(下)期末数学试题及答案解析

2021-2022学年辽宁省本溪市八年级(下)期末数学试题及答案解析

2021-2022学年辽宁省本溪市八年级(下)期末数学试卷一、选择题(本大题共10小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若x>y,则下列各式正确的是( )A. x−5<y−5B. 2x+1>2y+1C. 3x<3yD. −2x>−2y2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 下列因式分解正确的是( )A. 2x2−2=2(x+1)(x−1)B. x3−9x=x(x2−9)C. a2−2a+4=(a−1)2+3D. x2−x+2=x(x−1)+24. 一个多边形的外角和和与它的内角和相等,则多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形5. 如图,▱ABCD的对角线AC,BD相交于点O,EF,GH过点O,且点E,H在边AB上,点G,F在边CD上,则阴影区域的面积与▱ABCD的面积比值是( )A. 12B. 13C. 14D. 156. 如图,AB是线段CD的垂直平分线,垂足为点G,E,F是AB上两点.下列结论不正确的是( )A. EC=CDB. EC=EDC. CF=DFD. CG=DG7. 如果x2+mx+9是一个完全平方式,则m的值为( )A. 3B. 6C. ±3D. ±68. 如图,在同一平面直角坐标系中,一次函数y=−2x+4的图象与正比例函数y=kx(k> 0)的图象相交于点A,且点A的纵坐标是2,则不等式kx>−2x+4的解集是( )A. x>2B. x<2C. x>1D. x<19. 如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,分别以点A和点D为圆心,大于12则∠ACF的度数是( )A. 54°B. 36°C. 27°D. 18°10. 如图,在△ABC中,AM是∠CAB的平分线,CN是外角∠GCB的平分线,BE⊥AM于点E,BD⊥CN于点D,连接DE.若AB=4,BC=5,AC=6,则DE的长是( )A. 32B. 52C. 72D. 4二、填空题(本大题共8小题,共16.0分)11. 不等式2x−3≥5的解集是______.12. 分解因式:3ax2+6axy+3ay2=______.13. 若分式1有意义,则x的取值范围是______.2x−114. 如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是______.15. 如图,一艘船从A处出发向正北航行50海里到达B处,分别从A,B望灯塔C,测得∠NAC= 42°,∠NBC=84°,则B处到灯塔C的距离是______海里.16. 如图,在▱ABCD中,AB=4,BC=5,∠B=30°,则▱ABCD的面积是______.17. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,点P为斜边AB上的一个动点(点P不与点A,B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是______.18. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,延长BC 至点E ,使得CE =BC ,连接AE 交CD 于点G ,连接OG.下列结论:①OG =12AD ;②AE 平分∠CAD ;③以点A ,C ,E ,D 为顶点构成的四边形是平行四边形;④S ▱ABCD =6S △OCG .其中正确的是______(填写所有正确结论的序号).三、解答题(本大题共7小题,共64.0分。

八年级数学分试题及答案

八年级数学分试题及答案

八年级数学分试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √(-1)D. √(2x+1)答案:A2. 如果a > 0,b < 0,那么a - b的符号是:A. 正B. 负C. 零D. 不能确定答案:A3. 解方程2x - 3 = 7,x的值是:A. 5B. 10C. 2D. 3答案:A4. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A5. 下列哪个是完全平方数?A. 3.14B. 7C. 9D. 2.5答案:C6. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 1答案:A7. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 0答案:A8. 计算(-2)^3的结果是:A. -8B. 8C. -6D. 6答案:A9. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D10. 计算(-3) × (-2)的结果是:A. 6B. -6C. 3D. -3答案:A二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______。

答案:±52. 一个数的立方是-8,那么这个数是______。

答案:-23. 一个数的绝对值是7,那么这个数是______。

答案:±74. 一个数的倒数是2,那么这个数是______。

答案:1/25. 计算√(9)的结果是______。

答案:36. 计算√(16)的结果是______。

答案:47. 计算(-5)^2的结果是______。

答案:258. 计算(-3)^3的结果是______。

答案:-279. 计算2^3的结果是______。

答案:810. 计算(-2)^3的结果是______。

答案:-8三、解答题(每题10分,共40分)1. 解方程:x + 5 = 10答案:x = 10 - 5x = 52. 计算:(-2) × (-3) × (-4)答案:(-2) × (-3) = 66 × (-4) = -243. 计算:√(49) + √(16) - √(9)答案:7 + 4 - 3= 11 - 3= 84. 已知a = 3,b = -2,求a^2 - 2ab + b^2答案:a^2 - 2ab + b^2 = 3^2 - 2 × 3 × (-2) + (-2)^2 = 9 + 12 + 4= 25。

八年级上册数学测试题及答案

八年级上册数学测试题及答案

八年级上册数学测试题及答案八年级上册数学测试题及答案一、选择题1、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长度为() A.2.5 B. 3 C. 4 D. 52、已知等腰三角形的一边长为3,腰长为4,则这个三角形的周长为() A. 9 B. 10 C. 11 D. 123、一个正多边形的内角和为1800°,则这个多边形的边数为() A.6 B. 8 C. 10 D. 124、已知一次函数y=kx+b的图象经过点(2,-1)和点(-2,3),则这个函数的表达式为() A. y=-2x+3 B. y=x-2 C. y=x+2 D. y=-x+3二、填空题5、在等腰三角形中,已知底角的度数和腰的长度,则顶角的度数为_______。

51、在直角三角形中,已知一个锐角的度数,以及两直角边的长度,则另一个锐角的度数为_______。

511、等边三角形的边长为4,则它的高为_______。

5111、已知一次函数y=kx+b的图象与x轴的交点为(-2,0),则方程kx+b=0的解为_______。

三、解答题9、在△ABC中,∠A=70°,∠B=60°,CD是∠ACB的角平分线。

求∠BCD的度数。

91、等腰三角形的一个角是70°,求这个等腰三角形的另外两个角的度数。

911、等腰三角形的一边长为4cm,另一边的长为8cm,求这个等腰三角形的周长。

9111、已知一次函数y=kx+b的图象经过点(0,-3),且与x轴相交于点(2,0)。

求这个一次函数的表达式。

四、附加题13、等边三角形的边长为6cm,将它每条边六等分,然后连接每个分点形成新的三角形,求这些新三角形的面积之和。

答案:一、1. D 2. C 3. B 4. C二、5. arcsin(√3/3)或约为35.26° 6. 90°-arcsin(邻边/斜边)或用三角函数计算 7. √(4²-2²)=√12=2√3 8. x=-2三、9. ∵∠A=70°,∠B=60°,∴∠ACB=50°,又CD平分∠ACB,∴∠BCD=25°。

八年级(初二)数学(一次函数)试卷试题附答案解析

八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

八年级数学试题及答案

八年级数学试题及答案

八年级数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 计算下列哪个表达式的结果是正数?A. -1 + (-2)B. 3 - 5C. 4 × (-2)D. -3 ÷ 2答案:D3. 如果a > b > 0,那么下列哪个不等式是正确的?A. a < bB. a > bC. b > aD. a = b答案:B4. 一个数的平方根是它本身,这个数可以是:A. 0B. 1C. -1D. 2答案:A5. 下列哪个分数是最简分数?A. 6/12B. 8/16C. 5/10D. 7/3答案:D二、填空题(共10分,每题2分)6. 一个长方形的长是10厘米,宽是5厘米,它的周长是________厘米。

答案:307. 如果一个数的立方根是2,那么这个数是________。

答案:88. 一个数的绝对值是5,这个数可以是________或________。

答案:5或-59. 一个圆的半径是7厘米,它的面积是________平方厘米。

答案:153.9410. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是________平方厘米。

答案:12三、计算题(共30分,每题6分)11. 计算下列表达式的值:(1) (-3) × 2 + 5(2) √(16) - 4答案:(1) -6 + 5 = -1(2) 4 - 4 = 012. 解下列方程:(1) 2x + 5 = 13(2) 3y - 7 = 8答案:(1) 2x = 8,x = 4(2) 3y = 15,y = 513. 计算下列多项式的值,当x = -2时:(1) 3x^2 - 2x + 1(2) x^3 + 4x - 5答案:(1) 3 × (-2)^2 - 2 × (-2) + 1 = 12 + 4 + 1 = 17(2) (-2)^3 + 4 × (-2) - 5 = -8 - 8 - 5 = -21四、解答题(共50分,每题10分)14. 一个班级有40名学生,其中30名学生参加了数学竞赛。

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试题一、单选题1.要使分式7x x -有意义,则x 的取值范围是( ) A .7x = B .7x > C .7x < D .7x ≠2.下列图形中不是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .428x x x =B .235m m m +=C .933x x x ÷=D .32264()a b a b -=-4.下列命题中,不正确的是( )A .有一个外角是120°的等腰三角形是等边三角形B .一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形C .等腰三角形的对称轴是底边上的中线D .等边三角形有3条对称轴5.满足下列条件的三条线段,,a b c 能构成三角形的是( )A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =6.在平面直角坐标系中,点A (-2,3)关于y 轴对称的点的坐标( )A .(2,3)B .(2,-3)C .(-2,-3)D .(3,2) 7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( ) A .360480140x x =- B .360480140x x=- C .360480140x x += D .360480140x x -= 8.已知:如图,∠1=∠2,则不一定能使∠ABD∠∠ACD 的条件是( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 9.如图,∠ABC 中,12AB BC AC ===cm ,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2cm/s .当点N 第一次到达B 点时,M 、N 同时停止运动.点M 、N 运动( )s 后,可得到等边三角形∠AMN .A .4B .6C .8D .不能确定 10.如图,已知∠1=∠2,要得到结论ABC∠ADC ,不能添加的条件是( )A . BC =DCB .∠ACB =∠ACDC .AB =AD D .∠B =∠D二、填空题11.数据0.000000005用科学记数法表示为______.12.当x =______时,分式21628x x --的值为0.13.因式分解ab 3-4ab =_____.14.已知2m a =,32n b =,m ,n 为正整数,则5102m n +=______.15.化简:()2184416x x x ⎛⎫-⋅+= ⎪--⎝⎭__________. 16.如图,∠AEB∠∠DFC ,AE∠CB ,DF∠BC ,垂足分别为E 、F ,且AE=DF ,若∠C=28°,则∠A=__________.17.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.18.若方程4x 2+(m+1)x+1=0的左边可以写成一个完全平方式,则m 的值为__. 19.如图,在∠ABC 中,14AB =,8BC =,AM 平分∠BAC ,15BAM ∠=︒,点D 、E 分别为线段AM 、AB 上的动点,则BD DE +的最小值是______.20.如图,已知30PMQ ∠=︒,点123,,A A A ...在射线MQ 上,点123,,B B B ...均在射线MP 上,112223334,,A B A A B A A B A △△△...均为等边三角形,若11MA =,则202120212022A B Az △的边长为__________.三、解答题21.先化简再求值22121(1)24x x x x ++-÷+-,其中x= -3.22.解方程:21133x x x x =+++.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD =PE .(不写作法,保留作图痕迹)25.如图,在∠ABC 中,D 是AB 上一点,CF//AB ,DF 交AC 于点E ,DE EF =.(1)求证:ADE CFE ≌(2)若5AB =,3CF =,求BD 的长.26.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,∠ABC 的顶点均在格点上,点 C 的坐标为(0,-1),(1)写出A,B 两点的坐标;(2)画出∠ABC 关于y 轴对称的∠A1B1C1;(3)求出∠ABC 的面积.27.如图,已知点D,E分别是ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∠BC.(1)求证:ABC是等腰三角形(2)作∠ACE的平分线交AF于点G,若40∠=,求∠AGC的度数.B28.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?29.列方程解应用题:一批学生志愿者去距学校8km的老人院参加志愿服务活动,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知骑车学生的速度是汽车速度的一半,求骑车学生的速度.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:∠已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.∠计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.D【分析】直接利用分式有意义的条件分析得出答案. 【详解】解:要使分式7x x -有意义, 则70x -≠,解得:7x ≠.故选:D .【点睛】本题主要考查了分式有意义的条件,正确把握定义是解题关键.2.B【分析】根据轴对称图形的定义,即可一一判定.【详解】解:等腰三角形、等腰梯形、矩形都是轴对称图形,直角三角形不一定是轴对称图形,故选:B .【点睛】本题考查了轴对称图形的定义,轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴.3.B【分析】计算出各个选项中的式子的结果,本题得以解决.【详解】2428x x x =,故选项A 错误;235m m m +=,故选项B 正确;936x x x ÷=,故选项C 错误;32264()a b a b -=,故选项D 错误;故选B .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.C【分析】根据等边三角形的判定定理、轴对称图形的概念判断即可.【详解】解:A 、一个三角形的外角是120°,则内角为60°,∠这个等腰三角形是等边三角形,本选项说法正确,不符合题意;B 、一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形,本选项说法正确,不符合题意;C 、等腰三角形的对称轴是底边上的中线所在的直线,本选项说法错误,符合题意;D 、等边三角形有3条对称轴,本选项说法正确,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断以及等边三角形的判定,轴对称图形的概念等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6.A【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点A (-2,3)关于y 轴对称点的坐标是(2,3).故选:A .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-, 故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.8.B【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A 、∠∠1=∠2,AD 为公共边,若AB=AC ,则∠ABD∠∠ACD (SAS );故A 不符合题意;B 、∠∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定∠ABD∠∠ACD ;故B 符合题意;C 、∠∠1=∠2,AD 为公共边,若∠B=∠C ,则∠ABD∠∠ACD (AAS );故C 不符合题意;D 、∠∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则∠ABD∠∠ACD (ASA );故D 不符合题意.故选:B .9.A【分析】设点M ,N 运动t 秒时,得到等边三角形AMN ,表示出AM ,AN 的长,根据60A ∠=︒ ,只要AM AN =,三角形AMN 就是等边三角形.【详解】解:设点M ,N 运动t 秒时,得到等边三角形AMN ,如图所示,则AM t =,2BN t =, ∠12AB BC AC ===,∠122AN AB BN t =-=-,∠AMN ∆是等边三角形,∠AM AN =,即122t t =-,解得4t =,∠点M ,N 运动4秒时,得到等边三角形AMN .故选:A【点睛】本题考查了等边三角形的性质和判定,根据题意分析出AM AN =时得到等边三角形AMN 是解题的关键.10.A【分析】根据全等三角形的判定方法,逐项判断即可求解.【详解】解:根据题意得:AC AC = ,∠1=∠2,A 、当BC =DC 时,是边边角,不能得到结论ABC∠ADC ,故本选项符合题意;B 、当∠ACB =∠ACD 时,是角边角,能得到结论ABC∠ADC ,故本选项不符合题意; C 、当AB =AD 时,是边角边,能得到结论ABC∠ADC ,故本选项不符合题意; D 、当∠B =∠D 时,是角角边,能得到结论ABC∠ADC ,故本选项不符合题意; 故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.11.9510-⨯【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为10n a -⨯(1≤|a|< 10, n 为正整数)的形式,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n 就是负几.【详解】解:90.0000000052 10-=⨯,故选:B .【点睛】此题主要考查了用科学记数法表示绝对值小于1的数,一般形式为10n a -⨯(1≤|a|< 10, n 为正整数), n 为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键.12.-4【分析】根据分式等于0可知2160x -=,且280x -≠.求出x 即可.【详解】根据题意可知2160280x x ⎧-=⎨-≠⎩,解得:4x =-.故答案为:-4.【点睛】本题考查分式的值为零的条件:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.13.ab (b+2)(b -2).【详解】试题解析:ab 3-4ab=ab (b 2-4)=ab (b+2)(b -2).考点:提公因式法与公式支的综合运用.14.52a b【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:∠2m=a ,32n=b=25n ,m ,n 为正整数,∠25m+10n=(2m)5×(25n)2=a5b2,故答案是:a5b2.【点睛】本题主要考查了幂的乘方运算以及同底数幂的乘法运算,解题的关键是正确掌握相关运算法则.15.1【分析】先将小括号内的式子进行通分计算,然后再算括号外面的.【详解】解:218()(4)416x x x -⋅+-- 48(4)(4)(4)x x x x +-=⋅++- 4(4)(4)(4)x x x x -=⋅++- 1=,故答案为:1.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.16.62°【详解】∠∠AEB∠∠DFC ,∠∠C=∠B=28°,∠AE∠CB ,∠∠AEB=90°,∠∠A=62°.故答案为62°.17.6【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:∠一个正多边形的一个内角是120º,∠这个正多边形的一个外角为:180º-120º=60º,∠多边形的外角和为360º,∠360º÷60º =6,则这个多边形是六边形.故答案为:6.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.-5或3【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∠4x 2+(m+1)x+1可以写成一个完全平方式,∠4x 2+(m+1)x+1=(2x±1)2=4x 2±4x+1,∠m+1=±4,解得:m =-5或3,故答案为:-5或3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.19.7【分析】作E关于AM的对称点E',连接DE',根据角平分线的性质以及轴对称的性质,垂线段最短,进而根据含30度角的直角三角形的性质求解即可.【详解】∴如图,作E关于AM的对称点E′,连接DE′,∠ED=E′D∠BD+DE≥BE′,当B,D,E′共线,且BE′∠AC时,BD+DE最小∠AM平分∠BAC,∠E′在AC上,∠AM平分∠BAC,∠BAM=15°,∠∠BAE′=30°∠AB=14,BE′∠AC∠BE′=12AB=7故答案为:7.【点睛】本题考查了角平分线的定义,轴对称的性质求最短距离,垂线段最短,含30度角的直角三角形的性质,正确的作出图形是解题的关键.20.22020.【详解】解:∠∠A1B1A2为等边三角形,∠∠B1A1A2=60°,∠∠PMQ=30°,∠∠MB1A1=∠B1A1A2-∠PMQ=30°,∠∠MB1A1=∠PMQ,∠A 1B 1=MA 1=1,同理可得:A 2B 2=MA 2=2,A 3B 3=MA 3=4=22,A 4B 4=MA 4=23,…∠∠A 2021B 2021A 2022的边长=22020,故答案为:22020.21.52. 【详解】原式221(1)2(2)(2)x x x x x +-+=÷++- 21(2)(2)·2(1)x x x x x ++-=++ 21x x -=+. 当3x =-时,原式325312--==-+ 22.32x =- 【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+, 解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验. 23.135度.【详解】试题分析:首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.解:设这个多边形边数为n ,则(n ﹣2)•180=360+720,解得:n=8,∠这个多边形的每个内角都相等,∠它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.24.见解析.【分析】作线段DE 的垂直平分线MN ,作∠ABC 的角平分线BO 交MN 于点P ,点P 即为所求.【详解】如图,点P 即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键.25.(1)见解析(2)2BD =【分析】(1)由题意易得,A ECF ADE F ∠=∠∠=∠,然后问题可求证;(2)由(1)可得3AD CF ==,然后问题可求解.(1)证明:∠CF//AB ,∠,A ECF ADE F ∠=∠∠=∠,在ADE ∆和CFE ∆中,A ECF ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ADE CFE ≌(AAS );(2)解:∠ADE CFE ∆∆≌,CF=3,∠3AD CF ==,∠532BD AB AD =-=-=.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质及判定是解题的关键.26.(1) A (-1,2),B (-3,1).(2)见解析;(3)见解析【分析】(1)根据 A ,B 的位置写出坐标即可;(2)分别画出 A ,B ,C 的对应点 A 1,B 1,C 1 即可;利用分割法求面积即可;【详解】(1)由题意 A (-1,2),B (-3,1).(2)如图∠A1B1C1 即为所求.(3)S ABC =3×3 -12×1×2 -12×1×3 -12×2×3= 3.527.(1)证明见解析;(2)70AGC ∠=【分析】(1)根据角平分线的定义,得到∠DAF=∠CAF ,又根据//BC AF ,得到∠DAF=∠ABC ,∠CAG=∠ACB ,进一步得到∠ABC=∠ACB ,即可证明ABC 是等腰三角形;(2)在ACG 中,分别求得ACG ∠和CAG ∠的度数,利用三角形内角和求解即可.【详解】(1)证明:∠AF 是∠DAC 的角平分线∠∠DAF=∠CAF又∠//BC AF∠∠DAF=∠ABC ,∠CAG=∠ACB∠∠ABC=∠ACB∠AB=AC∠ABC 是等腰三角形(2)∠CG 是∠ACE 的角平分线∠∠ACG=∠ECG又∠40B ∠=,∠ACB=∠B∠40ACB ∠= ∠∠ACG=∠ECG=()118040702⨯-= 又∠∠CAG=∠ACB∠∠AGC=180407070--=【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等相关知识点,牢记知识点是解题关键.28.10米【分析】设原计划每天铺设管道x 米,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【详解】解:设原计划每天铺设管道x 米, 依题意得:12030012027(120%)x x-+=+, 解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.考点:分式方程的应用.29.骑车学生的速度16㎞/h .【分析】设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h ,根据骑车所用时间- 15分钟=汽车所用时间,列方程x x 81842,解方程即可. 【详解】解:设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h,根据题意得:x x 81842, 方程两边都乘以4x 得:x 3216, 解得16x =,经检验得16x =是原方程的根,且符合题意,答:骑车学生的速度16㎞/h .【点睛】本题考查列分式方程解行程问题应用题,掌握列分式方程解行程问题应用题方法与步骤,抓住等量关系:骑车所用时间- 15分钟=汽车所用时间列方程是解题关键.30.(1)B;(2)∠3;∠21 40.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)∠把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;∠利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)∠∠x2﹣4y2=(x+2y)(x﹣2y),∠12=4(x﹣2y)得:x﹣2y=3;∠原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+120)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。

八年级(上)期末数学试卷有答案解析

八年级(上)期末数学试卷有答案解析

八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.186.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是527.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是三角形.12.已知a,b为两个连续整数,且,则a+b=.13.如图所示,数轴上的A点表示的数是.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有(把所有正确结论的序号都填在横线上)三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.16.解方程组:.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.六、本题满分12分21.八(1)班组织了一次汉字听写比赛,甲、乙两队各10人,其比赛成绩如下表(10分制):甲队7 8 9 10 10 10 10 9 9 8乙队7 7 8 9 10 10 9 10 10 10(1)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是队.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机120 80乙型挖掘机100 60(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个【考点】无理数.【专题】计算题.【分析】有理数包括整数,分数,无理数包括无限不循环小数,只有π、是无限不循环小数,是无理数.【解答】解:0为整数,是有理数,π为无理数,是分数是有理数,﹣=﹣2,是整数是有理数,是无理数,故共有2个无理数.故选:B.【点评】题目考查了无理数的定义,无理数是无限不循环小数,学生理解这个知识点,即可以求出此类题目.2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根【考点】立方根;平方根.【分析】分别结合平方根以及立方根的定义分析得出答案.【解答】解:A、1的平方根是±1,正确,不合题意;B、1的立方根是1,正确,不合题意;C、2是4的算术平方根,故此选项错误,符合题意;D、﹣是﹣3的立方根,正确,不合题意.故选:C.【点评】此题主要考查了立方根与平方根,正确把握相关定义是解题关键.3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入正比例函数的解析式进行检验即可.【解答】解:A、∵当x=5时,y=﹣10,∴此点在函数图象上,故本选项错误;B、∵当x=2时,y=﹣4≠﹣1,∴此点不在函数图象上,故本选项正确;C、∵当x=0时,y=0,∴此点在函数图象上,故本选项错误;D、∵当x=1时,y=﹣2,∴此点在函数图象上,故本选项错误.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.18【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,再根据同角的余角相等可得∠EDF=∠HFG,然后证明△EDF≌△HFG,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:如图,由于A、B、C都是正方形,所以DF=FH,∠DFH=90°;∵∠DFE+∠HF G=∠EDF+∠DFE=90°,即∠EDF=∠HFG,在△DEF和△HGF中,,∴△ACB≌△DCE(AAS),∴DE=FG,EF=HG;在Rt△ABC中,由勾股定理得:DF2=DE2+EF2=DE2+HG2,即S B=S A+S C=8+6=14,故选:C.【点评】此题主要考查全等三角形的判定和性质,和勾股定理,关键是证明△DEF≌△HGF.6.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是52【考点】条形统计图;中位数;众数.【分析】先根据图形确定一定车速的车的数量,再根据中位数和众数的定义求解.【解答】解:小明统计了2+5+8+6+4+2=27辆车,∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52.∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52.故选:D.【点评】此题考查条形图,掌握中位数、众数的意义和求法是解决问题的关键.7.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数所得方程组的解,即为两函数图象的交点坐标.【解答】解:∵一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),∴x=3,y=4就同时满足两个函数解析式,则是二元一次方程组即的解.故选A.【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°【考点】平行线的性质.【分析】根据余角的性质得到∠3=65°,根据平行线的性质得到结论.【解答】解:如图,∵∠2+∠3=90°,∴∠3=65°,∵AB∥CD,∴∠1=∠3=65°.故选C.【点评】本题考查了平行线的性质,直角三角形的性质,余角的性质,熟记平行线的性质是解题的关键.9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【专题】数形结合.【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点评】此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】由题意可知:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解即可.【解答】解:设x张铁皮制盒身,y张铁皮制盒底,由题意得.故选:B.【点评】此题考查从实际问题中抽象出二元一次方程组,找出题目蕴含的数量关系是正确列出方程组的关键.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是直角三角形三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:∵12+22=()2,∴三角形是直角三角形.故答案为:直角三角形.【点评】此题主要考查了勾股定理逆定理,已知三角形三边的长,只要利用勾股定理的逆定理即可判断是否是直角三角形.12.已知a,b为两个连续整数,且,则a+b=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.【点评】此题考查无理数的估算,利用平方估算出根号下的数值的取值,进一步得出无理数的取值范围,是解决这一类问题的常用方法.13.如图所示,数轴上的A点表示的数是﹣1.【考点】实数与数轴.【分析】根据数轴可以得到BD、DC的长度,根据勾股定理可以得到BC的长度,从而可以得到BA 的长度,进而可以得到点A在数轴上表示的数.【解答】解:如下图所示,BD=3,CD=1,则BC=,∴BA=BC=,点A表示的数是:,故答案为:.【点评】本题考查实数与数轴、勾股定理,解题的关键是明确题意,利用数形结合的思想解答问题.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有①④(把所有正确结论的序号都填在横线上)【考点】一次函数的应用.【分析】设桌子高度为xcm,每本字典的厚度为ycm根据题意列方程组求得x、y的值,再逐一判断即可.【解答】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,,解得:,则每本字典的厚度为5cm,故①正确;桌子的高度为85cm,故②错误;把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:85+11×5=140cm,故③错误;若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+85,故④正确;故答案为:①④.【点评】本题主要考查二元一次方程组和一次函数的应用能力,根据题意列方程组求得桌子高度和每本字典厚度是解题关键.三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.【考点】实数的运算.【分析】首先根据乘法分配律去括号,然后化简二次根式计算.【解答】解:原式==3﹣6﹣3=﹣6.【点评】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.16.解方程组:.【考点】解二元一次方程组.【分析】先把方程组中的方程化为不含分母的方程,再用加减消元法或代入消元法求解即可.【解答】解:原方程组可化为,①+②得,9x=9,解得x=1,把x=1代入①得,5﹣3y=﹣3,解得y=,故方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.【考点】坐标与图形性质.【专题】计算题.【分析】(1)由AB∥x轴,可以知道A、B两点纵坐标相等,解关于m的一元一次方程,求出m 的值;(2)由(1)求得m值求出点A、B坐标,由A、B两点横坐标相减的绝对值即为AB的长度.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.【点评】题目考查了平面直角坐标系中图形性质,题目较为简单.学生在解决此类问题时一定要灵活运用点的特征.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.【考点】平行线的性质.【分析】根据平行线的性质求出∠ACB,根据角平分线定义求出即可.【解答】解:∵DE∥BC,∠AED=52°,∴∠ACB=∠AED=52°,∵CD平分∠ACB,∴∠ECD=∠ACB=26°,∴∠EDC=26°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.【考点】翻折变换(折叠问题).【分析】(1)由翻折的性质可知∠A=∠DBA=25°,由三角形外角的性质可知∠CBD=50°;(2)设BD=x,由翻折的性质可知DA=x,从而求得CD=4﹣x,最后在△BCD中由勾股定理可求得BD的长.【解答】解:(1)由翻折的性质:∠A=∠DBA=25°.∠BDC=∠A+∠ABD=25°+25°=50°.(2)设BD=x.由翻折的性质可知DA=BD=x,则CD=4﹣x.在Rt△BCD中,由勾股定理得;BD2=CD2+BC2,即x2=(4﹣x)2+22.解得:x=2.5.即BD=2.5.【点评】本题主要考查的是翻折的性质,依据勾股定理列出关于x的方程是解题的关键.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两个方程进行解答即可;(2)根据三角形的面积公式计算即可.【解答】解:(1)联立两个方程可得:,解得:,所以点B的坐标为(1,2);(2)把y=0代入y=中,可得:x=﹣3,所以△AOB的面积=.【点评】本题主要考查了两条直线相交的问题,关键是根据两条直线相交时交点为方程组的解进行解答.六、本题满分12分21.八(1)班组织了一次汉字听写比赛,甲、乙两队各10人,其比赛成绩如下表(10分制):甲队7 8 9 10 10 10 10 9 9 8乙队7 7 8 9 10 10 9 10 10 10(1)甲队成绩的中位数是9分,乙队成绩的众数是10分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是甲队.【考点】方差;加权平均数;中位数;众数.【分析】(1)利用中位数的定义以及众数的定义分别求出即可;(2)首先求出平均数进而利用方差公式得出即可;(3)根据方差的意义即可得出答案.【解答】解:(1)把这组数据从小到大排列7,8,8,9,9,9,10,10,10,10,甲队成绩的中位数是=9;∵在乙队中,10出现了5次,出现的次数最多,∴乙队成绩的众数是10;故答案为:9,10;(2)甲队的平均成绩是:(7+8+9+10+10+10+10+9+9+8)=9,方差是:[(7﹣9)2+2×(8﹣9)2+3×(9﹣9)2+4×(10﹣9)2]=1.(3)∵乙队成绩的方差是1.4,甲队成绩的方差是1,∴成绩较为整齐的是甲队.故答案为:甲.【点评】本题考查了中位数、方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机120 80乙型挖掘机100 60(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲、乙两种型号的挖掘机各需x台、y台,根据甲、乙两种型号的挖掘机共8台和每小时挖掘土石方540m3,列出方程求解即可;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.【解答】解:设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需3台、5台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:80m+60n=540,化简得:4m+3n=27.∴n=9﹣m,∴方程的解为或.当m=3,n=5时,支付租金:120×3+100×5=860元>850元,超出限额;当m=6,n=1时,支付租金:120×6+100×1=820元<850元,符合要求.答:有一种租车方案,即租用6辆甲型挖掘机和1辆乙型挖掘机.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了0.5h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.【考点】一次函数的应用.【专题】数形结合;待定系数法.【分析】(1)根据待定系数法,可得y甲的解析式,根据函数值为200千米时,可得相应自变量的值,根据自变量的差,可得答案;(2)根据待定系数法,可得y乙的函数解析式;(3)分类讨论,0≤x≤2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米,可得答案.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,400),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣80x+400,当y=200时,x=2.5(h),2.5﹣2=0.5(h),故答案为:0.5;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x(2.5≤x≤5);(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于40千米,即400﹣80x﹣100x=40,解得x=2;2.5≤x≤5时,y乙减y甲等于40千米,即2.5≤x≤5时,80x﹣(﹣80x+400)=40,解得x=,综上所述:x=2或x=.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

八年级数学试题及解析

八年级数学试题及解析

八年级数学试题及解析一、填空:(每题2分,共20分)考点:镜面对称.专题:几何图形问题.分析:关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相对应数字的对称性可得实际数字.解答:解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.点评:考查镜面对称,得到相对应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.2.(2分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE .(不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案能够是:DF=DE.点评:考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3.(2分)如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= 10 cm.考点:全等三角形的性质.分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解答:解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.4.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.考点:全等三角形的判定与性质.分析:求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解答:解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.点评:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.5.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.解答:解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.点评:本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相对应线段相等并实行等量代换.6.(2分)如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.考点:全等三角形的判定与性质.分析:先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.解答:解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4 个.考点:全等三角形的判定;角平分线的性质.分析:根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别实行分析即可.解答:解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;所以其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2分)如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45 度.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,能够根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.解答:解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质.注意,在证明△ACE≌△BCD时,一定要找准相对应的边与角.9.(2分)如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,实行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.考点:全等三角形的判定与性质.分析:数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.解答:解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想水平和分析问题和解决问题的水平,题目具有一定的代表性,是一道比较好的题目.10.(2分)长为20,宽为a的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为12或15 .考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:首先根据题意可得可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,第二次操作时正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.然后分别从20﹣a>2a﹣20与20﹣a<2a﹣20去分析求解,即可求得答案.解答:解:由题意,可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,所以第二次操作时剪下正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.此时,分两种情况:①如果20﹣a>2a﹣20,即a<,那么第三次操作时正方形的边长为2a﹣20.则2a﹣20=(20﹣a)﹣(2a﹣20),解得a=12;②如果20﹣a<2a﹣20,即a>,那么第三次操作时正方形的边长为20﹣a.则20﹣a=(2a﹣20)﹣(20﹣a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.点评:此题考查了折叠的性质与矩形的性质.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用,注意折叠中的对应关系.二、选择:(每题3分,共27分)11.(3分)下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.解答:解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.点评:轴对称的关键是寻找对称轴,两边图象折叠后可重合.12.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,所以测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角考点:全等三角形的应用.分析:由已知能够得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.解答:解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.点评:本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.13.(3分)如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD 于E,图中全等三角形有()A.3对B.5对C.6对D. 7对考点:全等三角形的判定.分析:根据题目的意思,能够推出△ABE≌△CDF,△AOE≌△COF,△ABO≌△CDO,△BCO≌△DOA,△ABC≌△CDA,△ABD≌△CDB,△ADE≌△CBF.再分别实行证明.解答:解:①△ABE≌△CDF∵AB∥CD,AD∥BC∴AB=CD,∠ABE=∠CDF∵AE⊥BD于E,CF⊥BD于E∴∠AEB=∠CFD∴△ABE≌△CDF;②△AOE≌△COF∵AB∥CD,AD∥BC,AC为ABCD对角线∴OA=OC,∠EOA=∠FOC∵∠AEO=∠CFO∴△AOE≌△COF;③△ABO≌△CDO∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠AOB=∠COD,OA=OC∴△ABO≌△CDO;④△BOC≌△DOA∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠BOC=∠DOA,OC=OA∴△BOC≌△DOA;⑤△ABC≌△CDA∵AB∥CD,AD∥BC∴BC=AD,DC=AB,∠ABC=∠CDA∴△ABC≌△CDA;⑥△ABD≌△CDB∵AB∥CD,AD∥BC∴∠BAD=∠BCD,AB=CD,AD=BC∴△ABD≌△CDA;⑦△ADE≌△CBF∵AD=BC,DE=BF,AE=CF∴△DEC≌△BFA.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同时考查了平行四边形的性质,题目比较容易.14.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.15.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D. 15cm考点:轴对称的性质.分析:先根据轴对称的性质得出PA=AG,PB=BH,由此可得出结论.解答:解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=AG,PB=BH,∴△PAB的周长=AP+PB+AB=AG+AB+BH=GH=10cm.故选B.点评:本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.16.(3分)下列各条件不能作出唯一直角三角形的是()A.已知两直角边B.已知两锐角C.已知一直角边和一锐角D.已知斜边和一直角边考点:全等三角形的判定.分析:根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.解答:解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选B.点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.(3分)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB 于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.专题:压轴题.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.18.(3分)如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ)B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ)D.∠G=∠α考点:全等三角形的判定与性质;三角形的外角性质.分析:由于∠α是△BEC的外角,可以得到∠α=∠β+∠G ①,而∠γ是△CFG的外角,可以得到∠γ=∠CFG+∠G ②,而∠AFE和∠CFG是对顶角,由∠AD平分∠BAC,EG⊥AD于H可以推出∠α=∠AFE,然后利用①②即可得到答案.解答:解:∵∠α是△BEC的外角,∴∠α=∠β+∠G ①,∵∠γ是△CFG的外角,∴∠γ=∠CFG+∠G ②∵AD平分∠BAC,EG⊥AD于H,AH公共边,∴△AEH≌△AFH,∴AE=AF,∴∠α=∠AFE,而∠AFE=∠CFG,∴∠AFE=∠CFG=∠α,∴∠γ=∠α+∠G ③,①﹣③得∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,即∠α=(∠β+∠γ).故选A.点评:此题利用了全等三角形的判定与性质,三角形的内角和外角的关系等知识解题,综合性比较强.做题时,要结合已知条件与全等的判定方法对选项逐一验证.19.(3分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68考点:全等三角形的判定与性质.专题:压轴题.分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解答:解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.点评:本题考查的是全等三角形的判定的相关知识,是中考常见题型.三、作图(4+6=10分):20.(4分)现有三个村庄甲、乙、丙,现要新建一个水泵站P,使它到三个村庄的距离相等,应建在何处?(尺规作图,不写作法,保留痕迹)考点:作图—应用与设计作图;线段垂直平分线的性质.分析:利用线段垂直平分线的作法以及其性质得出,连接各点作出任意两边垂直平分线进而得出交点即可.解答:解:如图所示:P点即为所求.点评:此题主要考查了应用设计与作图,熟练利用线段垂直平分线的性质得出是解题关键.21.(6分)已知一个三角形的两边长分别是1cm和2cm,一个内角为40°.(1)请你借助图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在下图画这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°,”那么满足这一条件,且彼此不全等的三角形共有几个?分别画出草图,并在图中相应位置标明数据.(画图请保留作图痕迹,并把符合条件的图形用黑色笔画出来)考点:作图—应用与设计作图;全等三角形的判定.分析:(1)利用已知条件画出符合要求的图形即可;(2)利用已知条件画出符合要求的图形即可;(3)利用已知条件画出符合要求的图形即可.解答:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图所示:.点评:此题主要考查了应用设计与作图,利用三角形的形状不确定得出是解题关键.三、解答:(共43分)22.(6分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:考点:全等三角形的判定与性质;命题与定理.专题:压轴题.分析:此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.解答:情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.点评:此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.23.(6分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.考点:等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.解答:证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.点评:本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.24.(6分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC 于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.考点:线段垂直平分线的性质.分析:(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.解答:解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.25.(6分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.26.(11分)(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=120;如图2,∠BOC=90°;如图3,∠BOC=72°;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)考点:全等三角形的判定与性质;等边三角形的性质;多边形内角与外角;正方形的性质.分析:根据等边三角形的性质可以得出△DAC≌△BAE,再根据三角形的外角与内角的关系就可以求出∠BOC的值,在图2中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作n边形的时候就可以求出图4∠BOC的值.解答:①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.点评:本题考查了全等三角形的判定与性质,根据正多边形的性质证明三角形全等是解题关键.27.(8分已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.考点:旋转的性质;直角三角形全等的判定.专题:综合题.分析:先作出恰当的辅助线,再利用全等三角形的性质进行解答.解答:解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.点评:利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.。

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

人教版八年级数学下册试题及参考答案

人教版八年级数学下册试题及参考答案

人教版八年级(下册)数学学科试题(考试时间:90分钟 总分:120分)题 号 一 二 三 总分 得 分一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是( ) A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( )A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( )A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( )A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、30010、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

八年级数学测试题及答案

八年级数学测试题及答案

八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333…(循环小数)答案:C2. 已知a > 0,b < 0,c < 0,下列不等式成立的是:A. a + b < 0B. a - c > 0C. b - c < 0D. a × b < 0答案:D3. 若x² + 5x + 6 = 0,下列哪个是方程的解?A. x = -1B. x = -6C. x = -2 或 x = -3D. x = 2 或 x = 3答案:C4. 下列哪个是二次根式?A. √3x²C. √xD. √x²答案:B5. 函数y = 3x + 5的斜率是:A. 3B. 5C. -3D. -5答案:A6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A7. 已知一个数列1, 3, 5, 7, ...,这个数列的第10项是:A. 17B. 19C. 21D. 23答案:B8. 下列哪个是完全平方数?B. 25C. 27D. 29答案:B9. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B10. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是:A. 24B. 12C. 36D. 48答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。

答案:1612. 一个数的相反数是-7,这个数是________。

答案:713. 一个数的绝对值是5,这个数可能是________或________。

答案:5 或 -514. 一个二次方程的一般形式是________。

答案:ax² + bx + c = 0(a≠0)15. 一个正数的倒数是1/8,这个正数是________。

八年级数学测试题及答案

八年级数学测试题及答案

八年级数学测试题及答案一、选择题(本大题共12题,每小题3分,共36分)1.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().a、21:10b、10:21c、10:51d、12:01u第1题图2、点m(1,2)关于x轴对称点的座标为().a.(-1,-2)b.(-1,2)c.(1,-2)d.(2,-1)3.例如图△abc中,ab=ac,∠b=30°,ab⊥ad,ad=4cm,则bc的短为().a、8mb、4mc、12md、6m4、若等腰三角形的周长为26cm,一边为6cm,则腰长为().a.6cmb.10cmc.6cm或10cmd.以上都不对5.如图,∠bac=110°若mp和nq分别垂直平分ab和ac,则∠paq的度数是()a、70°b、40°c、50°d、60°6.等腰三角形一腰上的低与另选贤任能的夹角为300,则顶上角度数为()a、300b、600c、900d、1200或6007.下面是某同学在一次测验中的计算摘录①3a?2b?5ab;②4m3n?5mn3??m3n;③3x3?(?2x2)??6x5④4a3b?(?2a2b)??2a;⑤?a3?2?a5;⑥??a?3aa2.其中正确的个数有()a.1个b.2个c.3个d.4个8.下列各式是完全平方式的是().a.x2-x+14b.1+x2c.x+xy+1d.x2+2x-1;9.例如(x+m)与(x+3)的乘积中不不含x的一次项,则m的值().a.-3b.3c.0d.1[来源学科网z.x.x.k]10.(?5a2?4b2)(______)?25a4?16b4括号内应填()a、5a?4bb、5a?4bc、?5a?4bd、?5a?4b11.以下水解因式恰当的就是()a.x3?x?x(x2?1).b.(a?3)(a?3)?a2?9c.a2?9?(a?3)(a?3).d.x2?y2?(x?y)(x?y).12.下列各式从左到右的变形,正确的是().a.-x-y=-(x-y)b..(y?x)2?(x?y)2c.(x?y)2?(?x?y)2d.(a?b)3?(b?a)3二、填空题(每小题4分后,共24分后)13、等腰三角形的一内角等于50°,则其它两个内角各为.14.计算(-3x2y)2(222222221231xy)=__________.()2021?(?1)2021?34315.若3x=10,3y=5,则32x―y=.216.已知4x+mx+9是完全平方式,则m=_________17、例如图:点p为∠aob内一点,分别做出p点关于oa、ob的对称点p1,p2,相连接p1p2交oa于m,交ob于n,△pmn的周长为15cm,p1p2=.18.a+1+a(a+1)+a(a+1)+......+a(a+1)2021=.三、解答题:(602p1mpa分)第17题图onp2b19.(6分)如图:某地有两所大学和两条相交叉的公路,(点m,n表示大学,ao,bo表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度第一学期期末调研考试八年级数学试卷注意:本试卷共8页,三道大题,26个小题,总分120分。

时间120分钟。

一、 选择题(本大题共12个小题,每小题2分,共24分。

在每小题给出的四个选项中,只有一个正确,请1、9的算术平方根是A .3B .-3C .3±D .81 2、绝对值最小的实数是A .-1B .0C .1D .不存在 3、使9-x 有意义的x 的取值范围是A .9≤xB .9<xC .9≥xD .9>x4、下列各式中,能用平方差公式分解因式的是 A .y 2-4y+4 B .9x 2+ 4y 2 C .- x 2-4y 2 D .-4y 2+ x25、下列运算正确的是 A .532x x x=+ B .632x x x =⋅ C .623)(x x -=- D .538x x x =÷6、如果a x x +-62是一个完全平方式,则a 的值为 A .-3 B .3 C .-9 D .97、Rt △ABC 中,∠C=90°,∠A=30°,BC=3cm ,则斜边AB 的长为 A .2cm B .4cm C .6cm D .8cm8、 下列说法错误..的是A .平面上任意不重合的两点一定成轴对称B .成轴对称的两个图形一定能完全重合C .设点A 、B 关于直线N M 对称,则AB 垂直平分N MD .两个图形成轴对称,其对应点连线的垂直平分线就是它的对称轴 9、如果两个图形全等,则这两个图形必定是A .形状相同,但大小不同B .形状大小均相同C .大小相同,但形状不同D .形状大小均不相同 10、在ABC ∆中,︒=∠90C,10=AB ,点D 在AB 上,且ADC ∆是等边三角形,则AD 的长是A .4B .5C .6D .711、如图,∠AOP=∠BOP=40°,CP 平行OB , CP=4,则OC= A .2 B . 3 C .4 D . 5 12、已知直线653+-=x y 和2-=x y ,则它们与y 轴所围成的三角形的面积是A .6B .10C .12D .20二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13、因式分解:=+-3222y xy y x 。

14、函数65-=x y中自变量x 的取值范围是 。

15、(2,-3)关于y 轴对称点的坐标是 。

16、一个等腰三角形的两边长分别是5和10,则其周长为 。

17、将函数32+=x y 的图像平移,使它经过点(0,7),则平移后的直线的函数关系式为=y 。

18、如右图,已知ABC ∆和直线m ,画出与ABC ∆关于直线m 对称的图形(不要求写画法,但应保留作图痕迹)。

三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)化简,求值:)32)(32()32(2y x y x y x -+-+,其中23-==y x , 20、(本小题满分8分)已知:如图,ACD BCE EC BC CA CD ∠=∠==,, 求证:AB DE =21、(本小题满分9分)已知,一次函数的图象过点(3,-5)与(-4,9),求这个函数的解析式.22、(本小题满分9分)如图,要测量池塘两岸相对的两点A 、B 的距离,可以在AB 的垂线AD 上取两点C 、E ,使AC=CE ,再画出AD 的垂线EF ,使F 与B 、C 在一条直线上,这时测得EF 的长就是AB 的长。

为什么? 23、(本小题满分10分)(1)在同一个坐标系下,画出函数62-=x y 和3+-=x y 的图像; (2)借助62-=x y 图像,写出不等式2x -6>0的解集;(3)借助62-=x y 和3+-=x y 的图像,写出方程362+-=-x x 的解. (4) 借助62-=x y 和3+-=x y 的图像,写出不等式362+-<-x x 的解集.24、(本小题满分10分)如图,是某汽车在公路上行驶的路程s(千米)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列各题。

(1)汽车在前8分钟内的平均速度是多少? (2)汽车在中途停了多少时间? (3)当4020≤≤t时,求s 与时间t 的函数关系式。

25 、(本小题满分12分)近海处有一可疑船只A 正向公海方向行驶,我边防局接到情报后迅速派出快艇B 追赶.图中21,l l 分别表示A 船和B 艇相对于海岸的距离y (海里)与追赶时间x (分)之间的一次函数关系.根据图像,解决下列问题:(1) 分别求出21,l l 的函数关系式。

(2) 求出直线21,l l 的交点坐标.(3) 当A 船逃到离海岸12海里的公海时,B 艇将无法对其进行检查,问B 艇能否在A 船逃入公海前将其拦截?(A 、B 速度均保持不变)26、(本小题满分12分)从A 、B 两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A 、B 两水库各可调出水14万吨,从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:千米万吨∙)尽可能小。

⑴设从A 水库调往甲地的水量为x 万吨,请你在下面表格空白处填上适当的数或式子.⑵请你注意:影响水的调运量的因素有两个,即水量(单位:万吨)和运程(单位:千米),水的调运量是两者的乘积(单位:千米万吨∙)。

因此,从A 到甲地有个调运量,从A 到乙地也有个调运量;从B 地……。

设水的调运总量为y 千米万吨∙,则y 与x 的函数关系式为y =_________________________________________(要求最简形式)求自变量的⑶对于(2)中y 与x 的函数关系式,若取值范围,应该列不等式组:⎪⎪⎩⎪⎪⎨⎧ ,解这个不等式组得:_______________,据此,在给出的坐标系中画出这个函数的图象(不要求写作法)。

(4)结合函数解析式及其图象说明水的最佳调运方案,水的最小调运总量为多少?2010-2011学年度第一学期期末调研考试八年级数学参考答案一、 选择题(本大题共10个小题,每小题2分)二、填空题(每小题3分,共24分) 13. 2)(y x y - 14.6≠x15.(2,3)16. 25 17. 72+=x y 18.略 三、解答题(解答应写出文字说明、证明过程或演算步骤) 19.(8分) 解:原式=)94(91242222y x y xy x --++ (4)分 =21812y xy + …………………………6分 当x=3,y =-2时,原式=……= 0 …………………8分 20、(8分)证明: ∵ACD BCE ∠=∠∴ECA ACD ECA BCE ∠+∠=∠+∠…………3分 ∴ECD BCA ∠=∠………………………………4分 又∵EC BC CA CD ==,………………………6分∴ECD BCA ∆≅∆………………………………7分 ∴AB DE =……………………………………8分21、(9分)解:设这个函数的解析式为b kx y += ……1分根据题意得:⎩⎨⎧+-=+=-b k bk 4935 ……………4分解得:⎩⎨⎧=-=12b k …………………………8分所以,这个函数的解析式为12+-=x y ……9分22、(9分)解:这是因为,在ACB ∆和ECF ∆中 ………2分⎪⎩⎪⎨⎧∠=∠︒=∠=∠=ECF ACB FEC BAC CE AC 90。

6分 ∴ECF ACB ∆≅∆…………………………8分 ∴AB EF =………………………………………9分23、(10分)解:(1)过点(0,-6)与(3,0)画出直线62-=x y ;过(0,3)与(3,0)画出直线 3+-=x y 如图(略)。

4分 (2) 不等式2x -6>0的解集是3>x。

…………6分 (3) 方程362+-=-x x 的解是3=x。

………… 8分(4)不等式362+-<-x x 的解集是3<x 。

……10分 24、(10分)解:(1)汽车在前8分钟内的平均速度是5.1812=(千米/分)…………3分 (2)汽车在中途停的时间是20-8=12(分钟)…………………………6分 (3)设所求的函数关系式为b kt s+=,………………………………7分将坐标(20,12)和(40,40)代入解析式得:⎩⎨⎧+=+=b k bk 40402012……8分解得:⎪⎩⎪⎨⎧-==1657b k …………………………………………………………9分所以,当4020≤≤t时,s 与时间t 的函数关系式是1657-=t s ……10分25、(12分)解:(1)分别设21,l l 的函数式为11b x k y +=和x k y 2=,……2分将坐标(0,5)和(8,6)代入11b x k y +=得:⎩⎨⎧+==111865b k b ,解得⎪⎩⎪⎨⎧==58111b k将坐标(8,4)代入x k y 2=得:284k =,解得212=k ………………6分 所以,21,l l 的函数关系式分别为581+=x y 和x y 21=…………………8分 (2)解方程组⎪⎪⎩⎪⎪⎨⎧=+=x y x y 21581 得:⎪⎪⎩⎪⎪⎨⎧==320340y x 所以,直线21,l l 的交点坐标是(340,320)………………………………10分 (3)因为21,l l 交点坐标是(340,320),所以340分钟快艇就能追上A 船,追上时的位置距海岸320海里(小于12)。

因此,B 艇能在A 船逃入公海前将其拦截。

12分 26、(12分)解:(1)3分(2)127010+=x y 。

6分(3)自变量的取值范围是⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥010140150x x x x ,解得141≤≤x ,图像略。

……9分(4)结合函数解析式及其图象,当x =1时,即从A 到甲地调运1万吨,从A 到乙地调运13万吨;从B 地到甲地调运14万吨,从B 地到乙地调运0万吨时,水的调运总量最小,最小值是127010+=x y =1280(万吨)……………………12分。

相关文档
最新文档