2018_2019学年高中数学第二章平面向量2.4平面向量的数量积1课后习题新人教A版必修4

合集下载

版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版

版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版

第2课时平面向量数量积的坐标运算学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示ijxy轴的正半轴同向的单位向量.设,轴、是两个互相垂直且分别与iijjij分别是多少?·思考1 ··,,ijaxybxyabij,(,取思考2 ,,,试将为坐标平面内的一组基底,设)=(,用),=2112ab. 表示,并计算·abab坐标间有何关系?若⊥,,则思考3axybxy).==((,),,梳理若向量2112ab=·数量积____________________________向量垂直平面向量的模知识点二ayxa |(1 思考若=,),试将向量的模|用坐标表示.1→ABBxyxAy (,如何计算向量,,思考2 若(的模?,))2211梳理向量的模及两点间的距离→AB=||→AxyBxyAB 为端点的向量(以,(),,)211222yyxx+--1122向量的夹角知识点三a·b ba xy b y baa x=θ的夹角,则),都是非零向量,θ=(,是),cos =(,与设,2121|a||b|xxyy+2112. =2222yyxx+·+1221类型一平面向量数量积的坐标运算abb a·b=10. 已知(1,2)与,同向,=例1a的坐标;求(1)ca b·ca·b c. ),求(及)(1)(2(2)若=,-2此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一反思与感悟般有两种方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况cbbcaa )··≠,即向量运算结合律一般不成立.(下·(·)ababa________. )·1,2),则(2向量+=(1,-1),==(-1 跟踪训练向量的模、夹角问题类型二BAxOyO.-(16,12),在平面直角坐标系5,15)中,是原点(如图).已知点(例2→→ABOA ||,|(1)求|;OAB. 求∠(2)利用向量的数量积求两向量夹角的一般步骤:反思与感悟 (1)利用向量的坐标求出这两个向量的数量积.22yax|+|=求两向量的模.(2)利用θ的值.θ代入夹角公式求cos ,并根据θ的范围确定(3)baba的取值范λ的夹角α=(λ,1),若与为钝角,求2 跟踪训练已知(1=,-1),围.向量垂直的坐标形式类型三baabab的值为垂直,则实数λλ1,0)(3,2)((1)例3 已知=-,=-,若向量+与-2 _____. 3→→kABCABABCACk是直角三角形,求(2,3),,若△=(1,的值.(2)在△中,)=利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关反思与感悟于三角形的问题中,未明确哪个角是直角时,要分类讨论.→→→OCtOCBCABxOyA,--1),在平面直角坐标系若中,已知((1,4),)⊥(-2,3),,(2跟踪训练3t________.则实数=baba的夹角为,-2),则________1.已知与=(3,-1),.=(1????1331→→??ABCBABC=,________.2.已知向量==,则∠,????2222mnmnmn),则λ-2,2),若(+=)⊥(________. 3.已知向量=(λ+1,1),=(λ+abab a·b b=____________. =5|=14.已知平面向量,且,,若,则向量=(4,-3),|ab=(-1,2)=(4,3),.5.已知ab的夹角的余弦值;与(1)求abab),求实数λ(的值.-λ )⊥(2+(2)若1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.a x,(若可以对比学习、注意区分两向量平行与垂直的坐标形式,3.二者不能混淆,记忆.=1 4 yb xy ab xyxy ab xxyy=-=0,⊥+?0.,则,,)=()∥?221112112224.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.5答案精析 问题导学 知识点一jjiiij 0. =1×1×cos 0=1·,思考1 ·==1×1×cos 0=1,·jyxaxiyjbi =,++=,思考2 ∵221122yyjyyjxxxyjxiyjxixyxyabxii . ()·(+=++)∴=··=(+)++2121122222121111ybabxxya 0. ?=·+思考3 =⊥0?2112yxxy +梳理2112yabxxy 0⊥+?=2211 知识点二yxiyjxa +,∈∵,=R ,思考122222222jiyyjxyxaxiyji ·jxixyi ·j . )++((=)∴2=(+2+ +)=22i ·jji 1,0=1,又∵,==222222yaxyxa =|++=∴,∴|,22yax .∴||+=→→→yyyOAxyxxABOBx -,,)-(,,思考2 ∵)==(-)-=(11221221→22yxABxy.-|+-=∴|1212题型探究ba λλ)(>0)=λ,=(λ,21 例解 (1)设a ·b λ=10则有,=λ+4a =(2,4)λ∴=2,∴.a ·bb ·c 10,=1×2-2×1=0,(2)∵=aab ·c 0)=0,∴=(ca ·b .=(20,-(10))1)=10(2,-11 跟踪训练→OA =(16,12)例2 解 (1)由,→AB ,=-12)(-21,3)-=(-516,15→22OA =|20|=1612+,得→22AB 152.|-|=+3= 6→→ABAO ·→→ABOABAO. =(2)cos ∠cos =, →→ABAO ||||→→→→ABABAOOA 300. =-=-[16×(-其中21,3)··21)+12×3]==-(16,12)·(-2300OAB .故cos ∠==2220×15OAB ∴∠=45°.ba ,1)∵,=(1,-1),=(λ 跟踪训练2 解2baab 1. =|=1+λλ,∴|-|=2|,·ba 为钝角,又∵的夹角,α ,1<0λ-?? ∴2?,2·1+λλ≠1- ,λ<1?? 即?2+1≠0.λλ+2??1. λ≠-<1∴λ且 1,1).∴λ的取值范围是(-∞,-1)∪(-1 (1)例3 - 7133±211. -(2)或或 2331 -跟踪训练3当堂训练π3 3.-1. 2.30° 434????,- 4. ??552552 (2)(1)5. 925 720XX —019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案

2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。

人教a版必修4学案:2.4.1平面向量数量积的物理背景及其含义(含答案)

人教a版必修4学案:2.4.1平面向量数量积的物理背景及其含义(含答案)

2.4.1 平面向量数量积的物理背景及其含义自主学习知识梳理1.平面向量数量积(1)定义:已知两个非零向量a 与b ,我们把数量____________叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.(2)规定:零向量与任一向量的数量积为______.(3)投影:设两个非零向量a 、b 的夹角为θ,则向量a 在b 方向的投影是______________,向量b 在a 方向上的投影是__________.2.数量积的几何意义a ·b 的几何意义是数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影__________的乘积.3.向量数量积的运算律(1)a·b =________(交换律);(2)(λa )·b =________=__________(结合律);(3)(a +b )·c =__________(分配律).自主探究根据向量数量积的定义,补充完整数量积的性质.设a 与b 都是非零向量,θ为a 与b 的夹角.(1)a ⊥b ⇔__________;(2)当a 与b 同向时,a·b =________,当a 与b 反向时,a·b =________;(3)a·a =__________或|a |=a·a =a 2;(4)cos θ=__________;(5)|a·b |≤__________.对点讲练知识点一 求两向量的数量积例1 已知|a |=4,|b |=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为30°时,分别求a 与b 的数量积.回顾归纳 求平面向量数量积的步骤是:①求a 与b 的夹角θ,θ∈[0°,180°];②分别求|a|和|b|;③求数量积,即a·b =|a|·|b|·cos θ,要特别注意书写时a 与b 之间用实心圆点“·”连结,而不能用“×”连结,也不能省去.变式训练1 已知正三角形ABC 的边长为1,求:(1)AB →·AC →;(2)AB →·BC →;(3)BC →·AC →.知识点二 求向量的模长例2 已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |.回顾归纳 此类求解模问题一般转化为求模平方,与向量数量积联系,要灵活应用a 2=|a |2,勿忘记开方.变式训练2 已知|a |=|b |=1,|3a -2b |=3,求|3a +b |.知识点三 向量的夹角或垂直问题例3 设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.回顾归纳 求向量夹角时,应先根据公式把涉及到的量先计算出来再代入公式求角,注意向量夹角的范围是[0,π].变式训练3 已知|a |=5,|b |=4,且a 与b 的夹角为60°,则当k 为何值时,向量k a -b 与a +2b 垂直?1.两向量a 与b 的数量积是一个实数,不是一个向量,其值可以为正(当a ≠0,b ≠0,0°≤θ<90°时),也可以为负(当a ≠0,b ≠0,90°<θ≤180°时),还可以为0(当a =0或b =0或θ=90°时).2.数量积对结合律一般不成立,因为(a ·b )·c =|a ||b |·cos 〈a ,b 〉·c 是一个与c 共线的向量,而(a ·c )·b =|a |·|c |cos 〈a ,c 〉·b 是一个与b 共线的向量,两者一般不同.3.向量b 在a 上的投影不是向量而是数量,它的符号取决于θ角,注意a 在b 方向上的投影与b 在a 方向上的投影是不同的,应结合图形加以区分.课时作业一、选择题1.|a |=2,|b |=4,向量a 与向量b 的夹角为120°,则向量a 在向量b 方向上的投影等于( )A .-3B .-2C .2D .-12.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则λ等于( )A.32 B .-32 C .±32D .1 3.在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a·b +b·c +c·a 等于( )A .-32B .0 C.32D .3 4.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉等于( )A .150°B .120°C .60°D .30°5.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( )A .2B .4C .6D .12二、填空题6.已知向量a ,b 且|a |=5,|b |=3,|a -b |=7,则a·b =________.7.已知向量a 与b 的夹角为120°,且|a |=|b |=4,那么b ·(2a +b )的值为________.8.已知a 是平面内的单位向量,若向量b 满足b·(a -b )=0,则|b |的取值范围是________.三、解答题9.已知|a |=4,|b |=3,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为60°时,分别求a 与b 的数量积.10.已知|a |=1,|b |=1,a ,b 的夹角为120°,计算向量2a -b 在向量a +b 方向上的投影.§2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义答案知识梳理1.(1)|a ||b |·cos θ (2)0 (3)|a |cos θ |b |cos θ2.|b |cos θ3.(1)b·a (2)λ(a·b ) a ·(λb ) (3)a·c +b·c自主探究(1)a·b =0 (2)|a||b | -|a||b | (3)|a |2(4)a·b |a||b |(5)|a||b | 对点讲练例1 解 (1)a ∥b ,若a 与b 同向,则θ=0°,a ·b =|a |·|b |·cos 0°=4×5=20;若a 与b 反向,则θ=180°,∴a ·b =|a |·|b |cos 180°=4×5×(-1)=-20.(2)当a ⊥b 时,θ=90°,∴a ·b =|a |·|b |cos 90°=0.(3)当a 与b 的夹角为30°时,a ·b =|a |·|b |cos 30°=4×5×32=10 3. 变式训练1 解 (1)∵AB →与AC →的夹角为60°. ∴AB →·AC →=|AB →||AC →|cos 60°=1×1×12=12. (2)∵AB →与BC →的夹角为120°.∴AB →·BC →=|AB →||BC →|cos 120°=1×1×⎝⎛⎭⎫-12=-12. (3)∵BC →与AC →的夹角为60°,∴BC →·AC →=|BC →||AC →|cos 60°=1×1×12=12. 例2 解 a·b =|a||b |cos θ=5×5×12=252. |a +b |=(a +b )2=|a |2+2a·b +|b |2= 25+2×252+25=5 3. |a -b |=(a -b )2=|a |2-2a·b +|b |2= 25-2×252+25=5. 变式训练2 解 由|3a -2b |=3,得9|a |2-12a·b +4|b |2=9,∵|a |=|b |=1,∴a·b =13, ∴|3a +b |=(3a +b )2=9|a |2+6a·b +|b |2=2 3.例3 解 ∵|n |=|m |=1且m 与n 夹角是60°,∴m·n =|m||n |cos 60°=1×1×12=12. |a |=|2m +n |=(2m +n )2=4×1+1+4m·n= 4×1+1+4×12=7, |b |=|2n -3m |=(2n -3m )2=4×1+9×1-12m·n= 4×1+9×1-12×12=7, a·b =(2m +n )·(2n -3m )=m·n -6m 2+2n 2=12-6×1+2×1=-72. 设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-727×7=-12. 又θ∈[0,π],∴θ=2π3,故a 与b 的夹角为2π3. 变式训练3 解 要想(k a -b )⊥(a +2b ),则需(k a -b )·(a +2b )=0,即k |a |2+(2k -1)a·b -2|b |2=0,∴52k +(2k -1)×5×4×cos 60°-2×42=0,解得k =1415,即当k =1415时,向量k a -b 与a +2b 垂直. 课时作业1.D [a 在b 方向上的投影是|a |cos θ=2×cos 120°=-1.]2.A [∵(3a +2b )·(λa -b )=3λa 2+(2λ-3)a·b -2b 2=3λa 2-2b 2=12λ-18=0.∴λ=32.] 3.A [a·b =BC →·CA →=-CB →·CA →=-|CB →||CA →|cos 60°=-12. 同理b·c =-12,c·a =-12, ∴a·b +b·c +c·a =-32.] 4.B [∵a +b =c ,∴|c |2=|a +b |2=a 2+2a ·b +b 2.又|a |=|b |=|c |,∴2a ·b =-b 2,即2|a ||b |cos 〈a ,b 〉=-|b |2.∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=120°.] 5.C [∵a·b =|a|·|b |·cos 60°=2|a |,∴(a +2b )·(a -3b )=|a |2-6|b |2-a·b=|a |2-2|a |-96=-72.∴|a |=6.]6.-152解析 |a -b |2=|a |2-2a·b +|b |2=49,∴a·b =-152. 7.0解析 b ·(2a +b )=2a·b +|b |2=2×4×4×cos 120°+42=0.8.[0,1]解析 b·(a -b )=a·b -|b |2=|a|·|b |cos θ-|b |2=0,∵a 是单位向量,∴|a |=1,∴|b |=|a |cos θ=cos θ (θ为a 与b 的夹角),θ∈[0,π], ∴0≤|b |≤1.9.解 (1)当a ∥b 时,若a 与b 同向,则a 与b 的夹角θ=0°, ∴a·b =|a||b |·cos θ=4×3×cos 0°=12.若a 与b 反向,则a 与b 的夹角为θ=180°,∴a·b =|a||b |cos 180°=4×3×(-1)=-12.(2)当a ⊥b 时,向量a 与b 的夹角为90°,∴a·b =|a||b |·cos 90°=4×3×0=0.(3)当a 与b 的夹角为60°时,∴a·b =|a||b |·cos 60°=4×3×12=6. 10.解 (2a -b )·(a +b )=2a 2+2a ·b -a ·b -b 2=2a 2+a ·b -b 2=2×12+1×1×cos 120°-12=12. |a +b |=(a +b )2=a 2+2a ·b +b 2=1+2×1×1×cos120°+1=1.∴|2a -b |cos 〈2a -b ,a +b 〉 =|2a -b |·(2a -b )·(a +b )|2a -b |·|a +b |=(2a -b )·(a +b )|a +b |=12. ∴向量2a -b 在向量a +b 方向上的投影为12.。

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4
所以a·b=(-3i+4j)·(5i-12j)=-3×5+4×(-12)=-63.
答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.

高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4

高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4
解析(jiě xī): A中若a⊥b,则有a·b=0,不一定有a=0或b=0. C中当|a|=|b|时,a2=b2,此时不一定有a=b或a=-b. D中当a=0时,a·b=a·c,不一定有b=c. 答案: B
第十页,共35页。
3.已知向量a,b满足(mǎnzú)|a|=1,|b|=4,且a·b=2,则a与b的夹角为 ________.
第十六页,共35页。
解析: (1)a·b=|a||b|cos 120°=3×4×-12=-6. (2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|·cos 120°-3|b|2=2×32+
5×3×4×-12-3×42=-60.
第三十一页,共35页。
[拓展练]☆ 3.(1)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则 a 与 b 的夹角为________; (2)已知非零向量 a,b 满足 a+3b 与 7a-5b 互相垂直,a-4b 与 7a-2b 互 相垂直,求 a 与 b 的夹角.
第六页,共35页。
2.数量积的几何意义及数量积的符号
(1)按照投影的定义,非零向量 b 在 a 方向上的投影为|b|cos θ,其具体情况,
我们也可以借助下面图形分析:
θ 的范围
θ=0° 0°<θ<90° θ=90° 90°<θ<180° θ=180°
图形
b 在 a 上的 投影的正负
正数
正数
0
第七页,共35页。
|2a+b|2=(2a+b)(2a+b)=4|a|2+|b|2+4a·b=4|a|2+|b|2+4|a||b|cos 60°=175. ∴|2a+b|=5 7.

2.4.1平面向量数量积 (1)

2.4.1平面向量数量积 (1)
2.4 .1 平面向量的数量积
三穗县民族高级中学 杨培菊
复习:向量的数乘---向量与数量的积
b a
(1)| b | | | | a |
是一个向量
(2)当 0时 a , b 同向; 当 0时 a , b反向.
复习:向量的夹角
a
O
2 2 a a b cos 2 b 6cos 14
a+2b a-b ( ) ( )=-11
6cos 14 11,
1 cos 2
0 180 ,
60

变式2.已知 | a | 6,| b | 4, a与b的夹角为60,求 2 (a b) , | a b | 2 2 2 解: (a b) a 2a b b 2 2 | a | 2 | a || b | cos 60 | b |
(数乘结合律)
(1)a b b a
(交换律)
(分配律)
常用公式
2 2 2 (1)( a b ) a 2a b b
2 2 (2)( a b ) (a b ) a b
2 2 2 (1)(a b ) a 2a b b
1 2 =6 -6 4 -6 4 2
2
72
变式1.已知 | a | 2,| b | 3, a+2b)(a -b)=-11, ( 求a与b的夹角。
2 2 解: a +2b) a-b) a a b 2b ( (
BC CA | BC | | CA | cos120 1 8 7 ( ) 28 2

高中数学 第二章 平面向量 2.4.1 平面向量数量积的物理背景及其含义课后习题 新人教A版必修4

高中数学 第二章 平面向量 2.4.1 平面向量数量积的物理背景及其含义课后习题 新人教A版必修4

2.4.1 平面向量数量积的物理背景及其含义一、A组1.已知向量a,b满足|a|=2,|b|=,a与b的夹角为30°,则a·(a-2b)=()A.2-2B.4-2C.-4D.-2解析:a·(a-2b)=a2-2a·b=|a|2-2|a||b|cos 30°=4-2×2×=4-6=-2.答案:D2.已知|a|=2,|b|=1,|a+2b|=2,则a与b的夹角为()A.B.C.D.解析:∵|a+2b|=2,∴(a+2b)2=a2+4a·b+4b2=12.∵|a|=2,|b|=1,∴a·b=1.设a与b的夹角为θ,则|a||b|cos θ=2cos θ=1,∴cos θ=.又0≤θ≤π,∴θ=.答案:B3.(2016·新疆阿克苏高一期末)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是()A.-4B.4C.-2D.2解析:根据投影的定义,可得向量a在向量b方向上的投影为|a|cos α==-4,其中α为a与b的夹角.故选A.答案:A4.若向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为()A.2B.4C.6D.12解析:∵(a+2b)·(a-3b)=a2-a·b-6b2=|a|2-|a|·4cos 60°-6×16=|a|2-2|a|-96=-72,即|a|2-2|a|-24=0,∴|a|=6或|a|=-4(舍去),故选C.答案:C5.已知平面上三点A,B,C满足||=3,||=4,||=5,则的值等于()A.-25B.-20C.-15D.-10解析:由已知可得△ABC为直角三角形,则的夹角为,=0,∴·()==-||2=-25.答案:A6.已知向量a,b,且|a|=|b|=1,|a-b|=1,则|a+b|=.解析:∵|a-b|=1,∴a2-2a·b+b2=1.又|a|=|b|=1,∴a·b=.∴|a+b|2=(a+b)2=a2+2a·b+b2=1+2×+1=3,∴|a+b|=.答案:7.已知e1,e2是夹角为的两个单位向量,a=e1-2e2,b=k e1+e2,若a·b=0,则k的值为.解析:∵a·b=(e1-2e2)·(k e1+e2)=k-2k e1·e2+e1·e2-2=k-2k·-2=2k-=0.∴k=.答案:8ABC中,AB=2,AC=3,D是边BC的中点,则=. 解析:∵D是边BC的中点,∴).又,∴)·()=)=×(32-22)=.答案:9.已知向量a,b的长度|a|=4,|b|=2.(1)若a,b的夹角为120°,求|3a-4b|;(2)若|a+b|=2,求a与b的夹角θ.解:(1)∵a·b=|a||b|cos 120°=4×2×=-4.又|3a-4b|2=(3a-4b)2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=304,∴|3a-4b|=4.(2)∵|a+b|2=(a+b)2=a2+2a·b+b2=42+2a·b+22=(2)2,∴a·b=-4,∴cos θ==-.又θ∈[0,π],∴θ=.10.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).证明:∵|2a+b|=|a+2b|,∴(2a+b)2=(a+2b)2.∴4a2+4a·b+b2=a2+4a·b+4b2,∴a2=b2.∴(a+b)·(a-b)=a2-b2=0.又a与b不共线,a+b≠0,a-b≠0,∴(a+b)⊥(a-b).二、B组1.(2016·山东淄川一中阶段性检测)若向量a,b满足|a|=|b|=1,a⊥b,且(2a+3b)⊥(k a-4b),则实数k的值为()A.-6B.6C.3D.-3解析:由题知,(2a+3b)·(k a-4b)=0,即2k a2+(3k-8)a·b-12b2=0,即2k-12=0,k=6.故选B.答案:B2.(2016·江西赣州期末考试)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为()A.2B.1C. D.解析:在平行四边形ABCD中,,∴=()·=1,∴1-×1×||×cos 60°=1,解得||=.答案:D3.在△ABC中,AB⊥AC,AC=1,点D满足条件,则等于()A. B.1C. D.解析:∵AB⊥AC,∴=0.∴·()==0+=·()=)=×(1-0)=.答案:A4.(2016·新疆阿克苏高一期末)已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()A.2B.C.4D.解析:因为向量a和b的夹角为120°,|a|=1,|b|=3,所以a·b=-.所以|a-b|2=a2-2a·b+b2=13.所以|a-b|=.答案:D5.已知a,b为共线的两个向量,且|a|=1,|b|=2,则|2a-b|=.解析:|2a-b|=.∵a,b为共线的两个向量,设a,b的夹角为θ,则θ=0°或180°,当θ=0°时,a·b=2;当θ=180°时,a·b=-2.∴|2a-b|=0或4.答案:0或46.已知|a|=|b|=2,a,b的夹角为60°,则使向量a+λb与λa+b的夹角为锐角的λ的取值范围是.解析:由a+λb与λa+b的夹角为锐角,得(a+λb)·(λa+b)>0,即λa2+(λ2+1)a·b+λb2>0,从而λ2+4λ+1>0,解得λ<-2-或λ>-2+.当λ=1时,a+λb与λa+b共线同向,故λ的取值范围是(-∞,-2-)∪(-2+,1)∪(1,+∞).答案:(-∞,-2-)∪(-2+,1)∪(1,+∞)7.已知|a|=3,|b|=2,a与b的夹角为60°,c=3a+5b,d=m a-3b.(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?解:(1)由向量c与d垂直,得c·d=0,而c·d=(3a+5b)·(m a-3b)=3m a2+(5m-9)a·b-15b2=27m+3(5m-9)-60=42m-87=0,∴m=,即m=时,c与d垂直.(2)由c与d共线,得存在实数λ,使得c=λd,∴3a+5b=λ(m a-3b),即3a+5b=λm a-3λb.又∵a与b不共线,∴解得即当m=-时,c与d共线.8)如图,在平面内将两块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=a,=b.(1)试用a,b表示向量;(2)若|b|=1,求.解:(1)=a-b,由题意可知,AC∥BD,BD=BC=AC.∴b,则=a+b,=a+(-1)b.(2)∵|b|=1,∴|a|=,a·b=cos 45°=1,则=a·[a+(-1)b]=a2+(-1)a·b=2+-1=+1.。

人教A版高中数学 必修四 第二章 §2.4平面向量的数量积 教材课时同步培优练习

人教A版高中数学 必修四 第二章 §2.4平面向量的数量积 教材课时同步培优练习

人教A 版高中数学 必修四 第二章 §2.4平面向量的数量积 教材课时同步培优练习一、本节主要知识点回顾1、两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向; (2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3、“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒C时投影为 |b |;当θ = 180︒时投影为 -|b |.4、向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5、两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |6、平面向量数量积的运算律(1)交换律:a ⋅ b = b ⋅ a(2)数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )(3)分配律:(a + b )⋅c = a ⋅c + b ⋅c7、 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=8、平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、典型例题精选例1、 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a -3b).例2、 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直.例3 、判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.例4、 已知a 、b 都是非零向量,且a + 3b 与7a - 5b 垂直,a - 4b 与7a - 2b 垂直,求a 与b 的夹角.例5、求证:平行四边形两条对角线平方和等于四条边的平方和.证明:如图:平行四边形ABCD 中,DC AB =,BC AD =,AC =+∴||2=AD AB AD AB AD AB ⋅++=+2||222 而=- ,∴||2=⋅-+=-2||222 ∴|AC |2 + |BD |2 = 2222AD AB += 2222||||||||+++例6、 四边形ABCD 中,=a,=b,=с,=d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量.解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2①同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等.∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.例7、已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?例8、如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则= (x , y ),AB = (x -5, y -2) ∵⊥ ∴x (x -5) + y (y -2) = 0即:x 2 + y 2-5x - 2y = 0 又∵|| = || ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧==-==⇒⎩⎨⎧=+=--+2723232729410025221122y x y x y x y x y x 或 ∴B 点坐标)23,27(-或)27,23(;=)27,23(--或)23,27(-例9、对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+|b |证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且|a |-|b |<|a ±b |<||+||(2)两个非零向量与共线时,①与同向,则+的方向与.相同且|+|=||+||.②与异向时,则+的方向与模较大的向量方向相同,设||>||,则|+|=||-||.同理可证另一种情况也成立。

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦5.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(0,21⎤-⎦B .(0,21⎤+⎦C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣ 6.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .437.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( )A .14B .12C .2D .48.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AMMB =__________.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.18.在ABC ∆中,1AC BC ==,3AB =,且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小;(2)若3c =2a b +的取值范围.23.已知向量()1,2a =,(),1b x =.(1)若|2|||a b a b -=+,求实数x 的值;(2)若2x =,求2a b -与a b +的夹角.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求c 的坐标;(2)若5||b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值; (2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.A解析:A【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.C解析:C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示: 由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.B解析:B【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】 由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=, 又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B.【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.5.C解析:C【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+.故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy a c x y x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.B解析:B【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM .【详解】如图,平行四边形ABCD 中,3DE CE =,ABM EDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.7.C解析:C【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos 62b a b t a a π⋅=-=-时,()g t 取得最小值1,变形可得22sin 16b π=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<, 所以()g t 恒大于零, 所以当232cos 622b b a b t a a a π⋅=-=-=-时,()g t 取得最小值1, 所以2223332122b b b g a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =, 所以2b =,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin(3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()bc a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 为圆心,2为半径的圆M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径22, ∴d 最大值为222+. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 17.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=,所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.18.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=,∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点,∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c = ∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题. 23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算. 【详解】(1)因为()1,2a =,(),1b x =, 所以()22,3a b x -=-,()1,3a b x +=+. 因为|2|||a b a b -=+,=解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=, 所以()()203339a b a b -⋅+=⨯+⨯=,23a b -=,32a b +=.设2a b -与a b +的夹角为θ.则(2)()cos |2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π. 【点睛】 本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点,∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB ,又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.(1)(2,4)或(2,4)--;(2)π.【分析】(1)根据共线向量的坐标关系运算即可求解;(2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a , 222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, (2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a b a b θ⋅∴==-, 又[0,π]θ∈,πθ∴=.【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题. 26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。

2.4.1平面向量的数量积》(第一课时)

2.4.1平面向量的数量积》(第一课时)
平面向量的数量积的物理背景 及其含义
问题提出
1.向量的模和夹角分别是什么概念? 1.向量的模和夹角分别是什么概念? 向量的模和夹角分别是什么概念
, 注意: 两向量的夹角定义两向量必须 是同起点的范围是 ≤θ ≤ π. , 0
向量的夹角 两个非零向量a 两个非零向量 和b ,作OA = a ,OB = b ,则 ∠AOB = θ
数量积a·b等于 的模与 数量积 等于a的模与 在a方向上的 等于 的模与b在 方向上的 投影︱ ︱ θ的乘积,或等于b的模与 投影︱b︱cosθ的乘积,或等于 的模与 a在b方向上的投影︱a︱cosθ的乘积. 方向上的投影︱ ︱ θ的乘积. 在 方向上的投影
平面向量的数量积的运算性质 问题5 都是非零向量, 等于多少? 问题5:设a与b都是非零向量,若a⊥b,则a·b等于多少? 与 都是非零向量 ⊥ , 等于多少 反之成立吗? 反之成立吗?
数量积的运算律: 数量积的运算律: 交换律: 交换律: r r r r r r r 分配律: 分配律:(a + b) ⋅ c = a ⋅ c + b ⋅ c
r r r r a ⋅b = b ⋅ a
数乘结合律: 数乘结合律:
(λa)·b=λ(a·b)=a·(λb) = 关于向量的数量积运算: 关于向量的数量积运算: 数量积运算不满足结合律。 数量积运算不满足结合律。 思考4:对于实数λ,(λa)·b表示什么意义?它可以转化为哪
Байду номын сангаас
F
S
W=︱F︱︱s︱cosθ =
问题2:你能用文字语言来表述功的计算公式吗 如果 问题 :你能用文字语言来表述功的计算公式吗?如果 我们将公式中的力与位移推广到一般向量,其结果又该 我们将公式中的力与位移推广到一般向量, 如何表述? 如何表述? 功是力与位移的大小及其夹角余弦的乘积; 功是力与位移的大小及其夹角余弦的乘积; 两个向量的大小及其夹角余弦的乘积。 两个向量的大小及其夹角余弦的乘积。

人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)

人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)

高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。

人教版高二必修四数学第二章平面向量试题

人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。

【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。

5、已知点M是 ABC的重⼼,若,求的值。

6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。

2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。

2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。

【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。

高中数学必修四第二章平面向量课后习题Word版(2021年整理)

高中数学必修四第二章平面向量课后习题Word版(2021年整理)

(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。

【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。

2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。

人教版高中数学必修课后习题答案详解

人教版高中数学必修课后习题答案详解

第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r6、(1)×; (2)√; (3)√; (4)×.习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对 2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r.练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC uuu r 与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r; (3)2ya r . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r . 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r,34DB a =u u u r r ,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题 B组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.(第11题)(第12题)EHGFC AB乙(第1题)(第4题(2))BCD(第4题(3))DCB证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线.7、2(2,4)OA OA '==u u u r u u u r,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r ,35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题 A 组(P108)1、a b ⋅=-r r222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r 2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r ()cos a b a b λλθ⋅=r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r, ∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩,或55x y ⎧=-⎪⎪⎨⎪=-⎪⎩.于是a =r或(a =r . 11、解:设与a r 垂直的单位向量(,)e x y =r,则221420x y x y ⎧+=⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=-⎪⎩或55x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是e =r或(e =r . 习题 B 组(P108) 1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r.先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--r r,所以()0a b c ⋅-=r r r再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+u u u r u u u r u u u r u u u r .3、证明:构造向量(,)u a b =r ,(,)v c d =r.cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r4、AB AC ⋅u u u r u u u r的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r,而AM BAC AC∠=u u u u r u u u r所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥ 证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r,所以AC BD ⊥(第4题)(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.(2)因为1()2AE a b =+u u u r r r所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-r u u r u u r;(2)v r 在A v u u r方向上的投影为135A Av v v ⋅=r u u ru u r .4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F uu r 的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r的夹角为150°.习题 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r.ODFEABC(第2题)(第4题)设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r为重力加速度 所以,最大高度为220sin 2v gθu u r ,最大投掷距离为20sin 2v gθu u r .2、解:设1v u r与2v u u r 的夹角为θ,合速度为v r,2v u u r与v r的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u rrr ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r.将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r1133EF a b =--u u u r r r,1233FA DC a b ==-u u u r u u u r r r1233CD a b =-+u u u r r r ,2133AB a b =-u u ur r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r.6、AB u u u r 与CD u u ur 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u ur 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r.222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r rr r r r .再证a b a b a b +=-⇒⊥r r r r r r.由于222a b a a b b +=+⋅+r rr r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥r r r u r(第6题)又a b =r r,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r.由c d ⊥r u r 得0c d ⋅=r u r,即22()()0a b a b a b +⋅-=-=r r r r r r所以a b =r r【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r而34EF a =u u u r r,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r,所以3OP OD =-u u u r u u u r ,1OD =u u u r所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r 同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;P 2(第5题)(4)d =第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()444252510πππααα-=+=-+=.3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以81158cos()cos cos sin sin 33317217234πππθθθ-+-=+=-⨯+⨯=.4、解:由23sin ,(,)32πααπ=-∈,得cos α===又由33cos ,(,2)42πββπ=∈,得sin β===.所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=.练习(P131)1、(1 (2 (3 (4)2-2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ===;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ=-;所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=.4、解:tan tan314tan()241311tan tan 4παπαπα+++===--⨯-⋅. 5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=12(cos )2(sin cos cos sin )2sin()22666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()()()()444525210πππβββ+=+=--+--=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α==-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α===,所以sintan (2)cos ααα==-=. 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 8842πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos452︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=+⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α==又由33cos ,(,)42πββπ=-∈,得sin β==,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+==所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++ 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+===-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒ 6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α==又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角 ∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ===-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯.31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒ 13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+; (47sin()12x π-;(5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α=∴sin22sin cos 20.80.60.96ααα==⨯⨯= 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ==∴sin 22sin cos 2((3ϕϕϕ==⨯⨯=16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=(第12题)17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin α==∴1sin 22sin cos 2(3ααα==⨯⨯=∴78cos(2)cos2cos sin 2sin (444929218πππααα-+=-=---⨯=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12; (2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143)1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒= 3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+=又tantan 22αβ=tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ=+,其中cos ϕϕ==所以,y ;(第4题)第三章 复习参考题A 组(P146)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2 (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin10sin 40(sin 40cos10cos10︒︒︒︒=︒⋅︒︒=2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒=sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-;(4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++=++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为2210、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 444πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=.又由1sin cos 5αα-=,得sin()410πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->. 所以(0,)44ππα-∈,即(,)42ππα∈ 所以2(,)2παπ∈,7cos225α=-.sin(2)450πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++=可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-=4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x+++==---由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=, 所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--,5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=. 变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数. 考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +=,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。

高中数学人教A版必修4习题:第二章平面向量2.4.1含解析

高中数学人教A版必修4习题:第二章平面向量2.4.1含解析

2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义课时过关·能力提升基础巩固1在△ABC 中,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ <0,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.等边三角形解析:∵AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |cos A<0, ∴cos A<0.∴A 是钝角.∴△ABC 是钝角三角形. 答案:C2已知非零向量a ,b ,若a +2b 与a -2b 互相垂直,则|a ||b |等于( ) A .14B.4C.12D.2解析:因为a +2b 与a -2b 垂直,所以(a +2b )·(a -2b )=0,所以|a |2-4|b |2=0,即|a |2=4|b |2,所以|a |=2|b |. 答案:D3已知两个不共线的单位向量e 1,e 2的夹角为θ,则下列结论不一定正确的是( ) A .e 1在e 2方向上的投影为cos θ B .e 1·e 2=1C .e 12=e 22D .(e 1+e 2)⊥(e 1-e 2) 答案:B4若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小为( ) A .30°B .45°C .90°D .120°解析:由|a +b |=|a -b |,得(a +b )2=(a -b )2,即a ·b =0,∴a ⊥b . 答案:C5已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2√3,则a 与b 的夹角为( )A .π6B.π4C .π3D.π2解析:设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=2√31×4=√32.又0≤θ≤π,∴θ=π6. 答案:A6在△ABC 中,M 是BC 的中点,AM=3,点P 在AM 上,且满足AP ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )的值为( ) A.-4 B.-2C.2D.4解析:如图.∵AP⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PM ⃗⃗⃗⃗⃗⃗ |. 又AM=3,∴|AP⃗⃗⃗⃗⃗ |=2,|PM ⃗⃗⃗⃗⃗⃗ |=1. 又PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ , ∴PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ ·(2PM ⃗⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =−|AP ⃗⃗⃗⃗⃗ |2=−4. 答案:A7已知向量a ,b 的夹角为60°,|a |=2,|b |=3,则|2a -b |= . 解析:a ·b =|a ||b |cos60°=3,则|2a -b |2=4a 2-4a ·b +b 2=13,所以|2a -b |=√13. 答案:√138已知|b |=5,a ·b =12,则向量a 在b 方向上的投影为 .解析:向量a 在b 方向上的投影为|a |·a ·b |a ||b |=a ·b |b |=125. 答案:1259已知|a |=10,|b |=12,a 与b 的夹角为120°,求: (1)a ·b ; (2)(3a )·(15b); (3)(3b -2a )·(4a +b ). 解(1)a ·b =|a ||b |cos θ=10×12×cos120°=-60.(2)(3a )·(15b)=35(a ·b )=35×(−60)=−36. (3)(3b -2a )·(4a +b ) =12b ·a +3b 2-8a 2-2a ·b =10a ·b +3|b |2-8|a |2=10×(-60)+3×122-8×102=-968.10已知|a |=5,|b |=4,a 与b 的夹角为60°,试问:当k 为何值时,向量k a -b 与a +2b 垂直? 分析可利用两个非零向量垂直的等价条件即数量积为零进行求解. 解∵(k a -b )⊥(a +2b ),∴(k a -b )·(a +2b )=0, 即k a 2+(2k-1)a ·b -2b 2=0,即k ×52+(2k-1)×5×4×cos60°-2×42=0,∴k =1415. ∴当k =1415时,向量k a -b 与a +2b 垂直.能力提升1设a ,b ,c 是三个向量,有下列命题: ①若a ·b=a ·c ,且a ≠0,则b=c ; ②若a ·b=0,则a=0或b=0; ③a ·0=0;④(3a+2b )·(3a-2b )=9|a|2-4|b|2. 其中正确的有( ) A.1个B.2个C.3个D.4个解析:①中,a ·b -a ·c =a ·(b -c )=0,又a ≠0,则b =c 或a ⊥(b -c ),即①不正确;②中,a ·b=0⇔a ⊥b 或a=0或b=0,即②不正确;③中,a ·0=0,即③不正确;④中,左边=9a 2-6a ·b +6b ·a -4b 2=9|a |2-4|b |2=右边,即④正确. 答案:A2定义:|a ×b |=|a ||b |sin θ,其中θ为向量a 与b 的夹角,若|a |=2,|b |=5,a ·b =-6,则|a ×b |等于( ) A .8 B .-8C .8或-8D .6解析:cos θ=a ·b |a ||b |=-62×5=−35. ∵θ∈[0,π],∴sin θ=45. ∴|a ×b |=2×5×45=8. 答案:A3如图,过点M (1,0)的直线与函数y=sin πx (0≤x ≤2)的图象交于A ,B 两点,则OM ⃗⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )等于( ) A .1B .2C .3D .4解析:∵OM ⃗⃗⃗⃗⃗⃗ =(1,0),OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =2OM ⃗⃗⃗⃗⃗⃗ ,∴OM ⃗⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )=2. 答案:B4已知非零向量a ,b 满足a ⊥b ,则函数f (x )=(x a +b )2(x ∈R )( ) A.既是奇函数又是偶函数 B.是非奇非偶函数C.是奇函数D.是偶函数解析:∵a ⊥b ,∴a ·b =0,∴f (x )=x 2|a |2+2x a ·b +|b |2=|a |2x 2+|b |2,定义域是R ,f (-x )=|a |2(-x )2+|b |2=|a |2x 2+|b |2=f (x ),∴f (x )是偶函数. 答案:D5已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为 . 解析:a ·b =1×2×cos π3=1.平行四边形的两条对角线的长分别是|a +b |和|a -b |,|a +b |=√(a +b )2=√a 2+2a ·b +b 2=√7,|a -b |=√(a -b )2=√a 2-2a ·b +b 2=√3,则此平行四边形的两条对角线中较短的一条的长度为√3. 答案:√3 ★6如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,且AP=3,则AP ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ = .解析:设AC 与BD 交于点O ,则AC⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ . 则AP ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ·2AO ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ ·(AP ⃗⃗⃗⃗⃗ +PO ⃗⃗⃗⃗⃗ )=2(AP ⃗⃗⃗⃗⃗ 2−AP ⃗⃗⃗⃗⃗ ·PO ⃗⃗⃗⃗⃗ ).∵AP ⊥BD ,∴AP ⊥PO ,AP ⃗⃗⃗⃗⃗ ·PO ⃗⃗⃗⃗⃗ =0, 又AP=3,∴|AP⃗⃗⃗⃗⃗ |=3, ∴AP⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ 2=2×32=18. 答案:187如图,已知两个长度为1的平面向量OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ ,它们的夹角为2π3,点C 是以O 为圆心的劣弧AB 的中点.求:(1)|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |的值; (2)AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ 的值. 解(1)因为OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ 的长度为1,夹角为2π3,所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =|OA ⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗ |cos 2π3=−12, 所以|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |=√(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=√OA ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 2=1.(2)因为点C 是以O 为圆心的劣弧AB 的中点, 所以∠AOC=∠BOC =π3, 所以OA⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =12, 所以AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ =12−(-12)−12+1=32.★8设平面内两向量a 与b 互相垂直,且|a |=2,|b |=1,又k 与t 是两个不同时为零的实数.(1)若x =a +(t-3)b 与y =-k a +t b 垂直,求k 关于t 的函数关系式k=f (t ); (2)求函数k=f (t )的最小值.分析由x ⊥y ,得x ·y =0,即得到函数关系式k=f (t ),从而利用函数的性质求最小值. 解(1)因为a ⊥b ,所以a ·b =0. 又x ⊥y , 所以x ·y =0,即[a +(t-3)b ]·(-k a +t b )=0,-k a 2-k (t-3)a ·b +t a ·b +t (t-3)b 2=0. 因为|a |=2,|b |=1, 所以-4k+t 2-3t=0, 即k =14(t2−3t).(2)由(1)知,k =14(t2−3t)=14(t -32)2−916, 即函数k=f (t )的最小值为−916.。

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(1)字母表示下的运算. 利用|a|2=a2,将向量的模的运算转化为向量与 向量的数量积的问题.
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.

cos
θ
= |aa|·|bb|

-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.

高中数学:第二章 平行向量242 Word版含答案

高中数学:第二章 平行向量242 Word版含答案

2.4.2平面向量数量积的坐标表示、模、夹角学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设i,j是两个互相垂直且分别与x轴、y轴的正半轴同向的单位向量.思考1i·i,j·j,i·j分别是多少?★答案★i·i=1×1×cos 0=1,j·j=1×1×cos 0=1,i·j=0.思考2取i,j为坐标平面内的一组基底,设a=(x1,y1),b=(x2,y2),试将a,b用i,j表示,并计算a·b.★答案★∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+(x1y2+x2y1)i·j+y1y2j2=x1x2+y1y2.思考3若a⊥b,则a,b坐标间有何关系?★答案★a⊥b⇔a·b=0⇔x1x2+y1y2=0.梳理设向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0知识点二平面向量模的坐标形式及两点间的距离公式思考1若a=(x,y),试将向量的模|a|用坐标表示.★答案★∵a=x i+y j,x,y∈R,∴a2=(x i+y j)2=(x i)2+2xy i·j+(y j)2=x2i2+2xy i·j+y2j2.又∵i2=1,j2=1,i·j=0,∴a2=x2+y2,∴|a|2=x2+y2,∴|a|=x2+y2.思考2 若A (x 1,y 1),B (x 2,y 2),如何计算向量AB →的模?★答案★ ∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1) =(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2. 梳理向量 模长 a =(x ,y )|a |=x 2+y 2以A (x 1,y 1),B (x 2,y 2)为端点的向量AB →|AB →|=(x 2-x 1)2+(y 2-y 1)2知识点三 平面向量夹角的坐标表示思考 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?★答案★ cos θ=a·b|a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.1.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.( × ) 2.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1y 2-x 2y 1=0.( × )3.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.( × ) 提示 当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.类型一 数量积的坐标运算例1 (1)已知a =(2,-1),b =(1,-1),则(a +2b )·(a -3b )等于( ) A .10 B .-10 C .3D .-3考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算 ★答案★ B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,且DF →=2FC →,则AE →·BF →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 ★答案★ 43解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 为BC 的中点,∴E (2,1), ∵点F 在边CD 上,且DF →=2FC →, ∴F ⎝⎛⎭⎫223,2.∴AE →=(2,1),BF →=⎝⎛⎭⎫-23,2, ∴AE →·BF →=-23+2=43.反思与感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a ;②(a +b )·(a -b )=|a |2-|b |2; ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,一般先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1向量a=(1,-1),b=(-1,2),则(2a+b)·a等于()A.-1 B.0 C.1 D.2考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算★答案★C解析因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),则(2a+b)·a =(1,0)·(1,-1)=1,故选C.类型二平面向量的模例2已知平面向量a=(3,5),b=(-2,1).(1)求a-2b及其模的大小;(2)若c=a-(a·b)b,求|c|.考点平面向量模与夹角的坐标表示的应用题点利用坐标求向量的模解(1)∵a=(3,5),b=(-2,1),∴a-2b=(3,5)-2(-2,1)=(3+4,5-2)=(7,3),∴|a-2b|=72+32=58.(2)∵a·b=-6+5=-1,∴c=a+b=(1,6),∴|c|=12+62=37.反思与感悟求向量a=(x,y)的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a2=|a|2=x2+y2,求模时,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2=x2+y2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2已知向量a=(2,1),a·b=10,|a+b|=52,则|b|等于()A. 5B.10 C.5 D.25考点平面向量模与夹角的坐标表示的应用题点利用坐标求向量的模★答案★C解析∵a=(2,1),∴a2=5,又|a+b|=52,∴(a+b)2=50,即a2+2a·b+b2=50,∴5+2×10+b2=50,∴b2=25,∴|b|=5.例3 (2017·山东枣庄八中月考)已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思与感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1. 又∵a ,b 的夹角α为钝角,∴⎩⎨⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思与感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 ★答案★ B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ A解析 |a |=32+42=5,|b |=52+122=13. a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用 题点 已知数量积求参数 ★答案★ A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A .-4 B .-3 C .-2 D .-1 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 ★答案★ B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3. 4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( ) A .(-3,6) B .(3,-6) C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用 题点 已知数量积求向量的坐标 ★答案★ A解析 由题意设b =λa =(λ,-2λ)(λ<0), 则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6). 5.已知a =(4,3),b =(-1,2). (1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 考点 向量平行与垂直的坐标表示的应用 题点 已知向量垂直求参数 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), (a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 ★答案★ B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( ) A .|a |=|b | B .a·b =0 C .a ∥bD .(a -b )⊥b考点 向量平行与垂直的坐标表示的应用 题点 向量垂直的坐标表示的综合应用 ★答案★ D解析 a -b =(1,-1),所以(a -b )·b =1-1=0, 所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A. 3 B .3 C .- 3 D .-3 考点 平面向量投影的坐标表示与应用 题点 利用坐标求向量的投影 ★答案★ D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D.4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示的应用 题点 利用坐标求向量的模 ★答案★ C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为( ) A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313 D .以上都不对考点 向量平行与垂直的坐标表示的应用 题点 向量垂直的坐标表示的综合应用 ★答案★ C解析 设与a 垂直单位向量的坐标为(x ,y ), ∵(x ,y )是单位向量的坐标形式, ∴x 2+y 2=1,即x 2+y 2=1,① 又∵(x ,y )表示的向量垂直于a , ∴2x -3y =0,② 由①②得⎩⎨⎧x =31313,y =21313或⎩⎨⎧x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( ) A .-1+ 3 B .-2 C .-1± 3D .1考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 ★答案★ C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2, 又k a -b 与a +b 的夹角为120°, ∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |,即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1± 3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( ) A .(2,6) B .(-2,-6) C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用★答案★ D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 二、填空题8.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模与夹角的坐标表示的应用题点 利用坐标求向量的模★答案★ 82解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算★答案★ 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标★答案★ (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1).11.(2017·广东揭阳惠来一中、揭东一中联考)已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________. 考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算★答案★ -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题12.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2).(1)若|c |=25,且c 与a 方向相反,求c 的坐标;(2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用解 (1)设c =(x ,y ),由c ∥a 及|c |=25,可得⎩⎪⎨⎪⎧ 1·y -2·x =0,x 2+y 2=20,所以⎩⎪⎨⎪⎧ x =2,y =4或⎩⎪⎨⎪⎧x =-2,y =-4, 因为c 与a 方向相反,所以c =(-2,-4).(2)因为(a +2b )⊥(2a -b ),所以(a +2b )·(2a -b )=0,即2a 2+3a ·b -2b 2=0,所以2|a |2+3a ·b -2|b |2=0,所以2×5+3a ·b -2×54=0, 所以a ·b =-52.所以cos θ=a ·b |a ||b |=-1. 又因为θ∈[0,π],所以θ=π.13.平面内有向量OA →=(1,7),OB →=(5,1),OP →=(2,1),点Q 为直线OP 上的一个动点.(1)当QA →·QB →取最小值时,求OQ →的坐标;(2)当点Q 满足(1)的条件和结论时,求cos ∠AQB 的值. 考点 向量平行与垂直的坐标表示的应用题点 向量平行与垂直的坐标表示的综合应用解 (1)设OQ →=(x ,y ),∵Q 在直线OP 上,∴向量OQ →与OP →共线.又OP →=(2,1),∴x -2y =0,∴x =2y ,∴OQ →=(2y ,y ).又QA →=OA →-OQ →=(1-2y,7-y ),QB →=OB →-OQ →=(5-2y,1-y ),∴QA →·QB →=(1-2y )(5-2y )+(7-y )(1-y )=5y 2-20y +12=5(y -2)2-8.故当y =2时,QA →·QB →有最小值-8,此时OQ →=(4,2).(2)由(1)知QA →=(-3,5),QB →=(1,-1),QA →·QB →=-8,|QA →|=34,|QB →|=2,∴cos ∠AQB =QA →·QB →|QA →|·|QB →|=-834×2=-41717. 四、探究与拓展14.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3) 考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数★答案★ C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 15.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量模与夹角的坐标表示的应用 题点 平面向量模的坐标表示的应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。

高中数学第二章平面向量同步练习02新人教A版必修4

高中数学第二章平面向量同步练习02新人教A版必修4

高中数学第二章平面向量同步练习02新人教A版必修4平面向量同步练习§2.2. 1 向量加减运算及几何意义班级___________姓名____________学号____________得分____________一、选择题1.化简PM PN MN所得的结果是()MPA.B.NP C.0 D.MN2.设OA a,OB b且|a|=| b|=6,∠AOB=120 ,则|a-b|等于()0013.飞机从甲地按南偏东10方向飞行2022年km到达乙地,再从乙地按北偏西70方向飞行2022年km到达丙A.36 B.12 C.6 D.63.a,b为非零向量,且|a+ b|=| a|+| b|,则()A.a与b方向相同B.a = b C.a =-4.在平行四边形ABCD中,若| BC BA | | BC ABb D.a与b方向相反|,则必有()A.ABCD为菱形B.ABCD为矩形C .ABCD 为正方形D.以上皆错5.已知正方形ABCD边长为1,AB=a,BC=b,AC=c,则|a+b+c|等于()A.0 B.3 C.22*6.设( AB CD ) ( BC DA D.2) a,而b是一非零向量,则下列个结论:(1) a与b共线;(2)a + b = a;(3) a + b = b;(4)| a + b||a |+|b|中正确的是()A.(1) (2) B.(3) (4) C.(2) (4) D.(1) (3) 二、填空题7.在平行四边形ABCD中,AB a,AD b,则CA __________,BD_______.8.在a =“向北走20km”,b =“向西走20km”,则a +b9.若| AB | 8,| AC | 5,则| BC表示______________.|的取值范围为_____________.*10.一艘船从A点出发以23km/h的速度向垂直于河岸的方向行驶,而船实际行驶速度的大小为4km/h,则河水的流速的大小为___________.三、解答题11.如图,O是平行四边形ABCD外一点,用OA 、OB 、OC 表示OD.12.如图,在任意四边形ABCD中,E、F分别为AD、BC的中点,求证:AB DC EF EF .地,那么丙地在甲地的什么方向?丙地距离甲地多远?*14.点D、E、F分别是△ABC求证:(1)AB 三边AB、BC、CA上的中点,BE AC CE;(2)EA FBDC 0.§2. 2. 2 向量数乘运算及其几何意义班级___________姓名____________学号____________得分____________一、选择题1.已知向量a= e1-2 e2,b=2 e1+e2, 其中e1、e2不共线,则a+b 与c=6 e1-2 e2的关系为(A.不共线B.共线C.相等D.无法确定2.已知向量e1、e2不共线,实数(3x-4y)e1+(2x-3y)e2 =6e1+3e2 ,则x-y的值等于()A.3 B.-3 C.0 D.2)平面向量同步练习3.若AB=3a, CD =-5a ,且| AD | | BC |,则四边形ABCD是()A.平行四边形B.菱形C.等腰梯形D.不等腰梯形4.AD、BE分别为△ABC的边BC、AC上的中线,且AD =a , BE =b ,那么BC 为()A.__-__3a+3b B.3a-3b C.3a-3b D.-3a+3b5.已知向量a ,b是两非零向量,在下列四个条件中,能使a ,b共线的条件是()①2a -3b=4e且a+2b= -3e②存在相异实数λ ,μ,使λa -μb=0 ③xa+yb=0 (其中实数x, y满足x+y=0) ④已知梯形ABCD,其中AB=a ,CD=bA.①② B.①③ C.② D.③④*6.已知△ABC三个顶点A、B、C及平面内一点P,若PA PB PC AB ,则()A.P在△ABC 内部B.P在△ABC 外部C.P在AB边所在直线上D.P在线段BC上二、填空题7.若|a|=3,b与a方向相反,且|b|=5,则a= b8.已知向量e1 ,e2不共线,若λe1-e2与e1-λe2共线,则实数λ= 9.a,b是两个不共线的向量,且AB=2a+kb , CB =a+3b , CD =2a-b ,若A、B、D三点共线,则实数k的值可为*10.已知四边形ABCD中,AB =a-2c, CD =5a+6b-8c对角线AC、BD的中点为E、F,则向量EF三、解答题11.计算:⑴(-7)×6a=⑵4(a+b)-3(a-b)-8a= ⑶(5a-4b+c)-2(3a-2b+c)=12.如图,设AM是△ABC的中线,AB=a , AC=b ,求AM13.设两个非零向量a与b不共线,⑴若AB =a+b ,BC =2a+8b ,CD=3(a-b) ,求证:A、B、D三点共线; ⑵试确定实数k,使ka+b和a +kb共线.*14.设OA ,OB 不共线,P点在AB上,求证:OP =λOA +μOB且λ+μ=1(λ, μ∈R).§2. 3. 1平面向量基本定理及坐标表示(1)班级___________姓名____________学号____________得分____________一、选择题1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是()A.e1=(0,0), e2 =(1,-2) ; B.e1=(-1,2),e2 =(5,7); C.e1=(3,5),e2 =(6,10); D.e1=(2,-3) ,e2 =(1, 324)2.已知向量a、b,且AB=a+2b , BC = -5a+6b , CD =7a-2b,则一定共线的三点是()A.A、B、D B.A、B、C C.B、C 、D D.A、C、D3.如果e1、e2是平面α内两个不共线的向量,那么在下列各说法中错误的有()①λe1+μe2(λ, μ∈R)可以表示平面α内的所有向量;②对于平面α中的任一向量a,使a=λe1+μe2的λ, μ有无数多对;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数k,使λ2e1+μ2e2=k(λ1e1+μ1e2);④若实数λ, μ使λe1+μe2=0,则λ=μ=0.平面向量同步练习A.①② B.②③ C.③④ D.仅②4.过△ABC的重心任作一直线分别交AB、AC于点D、E,若AD =x AB , AE =y AC ,xy≠0,则11x y的值为()A.4 B.3 C.2 D.15.若向量a=(1,1),b=(1,-1) ,c=(-2,4) ,则c= ( ) A.-a+3b B.3a-b C.a-3b D.-3a+b*6.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C(x, y)满足OC=αOA +βOB ,其中α,β∈R且α+β=1,则x, y所满足的关系式为()A.3x+2y-11=0 B.(x-1)2+(y-2)2=5 C.2x-y=0 D.x+2y-5=0二、填空题7.作用于原点的两力F1 =(1,1) ,F2 =(2,3) ,为使得它们平衡,需加力F3= ;8.若A(2,3),B(x, 4),C(3,y),且AB=2 AC ,则x= ,y= ;9.已知A(2,3),B(1,4)且1 2AB =(sinα,cosβ), α,β∈(- 2,2),则α+β=*10.已知a=(1,2) ,b=(-3,2),若ka+b与a-3b平行,则实数k的值为三、解答题11.已知向量b与向量a=(5,-12)的方向相反,且|b|=26,求b12.如果向量AB=i-2j , BC =i+mj ,其中i、j分别是x轴、y轴正方向上的单位向量,试确定实数m的值使A、B、C三点共线。

高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4

高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4

向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4.1平面向量数量积的物理背景及其含义
课后篇巩固探究
1.若p与q是相反向量,且|p|=3,则p·q等于()
A.9
B.0
C.-3
D.-9
解析由已知得p·q=3×3×cos 180°=-9.
答案D
2.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,则|a+b|=()
A. B. C.13 D.21
解析由(2a-3b)·(2a+b)=61,
得4|a|2-4a·b-3|b|2=61.
将|a|=4,|b|=3代入上式,求得a·b=-6.
|a+b|2=(a+b)2=|a|2+2a·b+|b|2=13,
所以|a+b|=.
答案A
3.已知|a|=2,|b|=1,|a+2b|=2,则a与b的夹角为()
A.B.C.D.
解析∵|a+2b|=2,
∴(a+2b)2=a2+4a·b+4b2=12.
∵|a|=2,|b|=1,∴a·b=1.
设a与b的夹角为θ,
则|a||b|cos θ=2cos θ=1,∴cos θ=.
又0≤θ≤π,∴θ=.
答案B
4.已知向量a,b满足|a|=3,|b|=2,且a⊥(a+b),则b在a方向上的投影为()
A.3
B.-3
C.-
D.
解析由a⊥(a+b),得a·(a+b)=0,即|a|2+a·b=0,于是a·b=-9,因此b在a方向上的投影为
=-3.
答案B
5.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为()
A. B.1 C. D.2
解析设AB的长为a,因为,
所以·()=||2+=1+1··cos 120°=,解得a=2.
答案D
6.若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与a的夹角为()
A. B. C. D.
解析设a+b与a的夹角为θ.
由|a+b|=|a-b|可得a·b=0,
由|a+b|=2|a|可得|b|=|a|,
于是cosθ=,故所求夹角为.
答案B
7.已知a,b,c是三个非零向量,则下列命题中真命题的个数为()
①|a·b|=|a|·|b|⇔a∥b;②a,b反向⇔a·b=-|a|·|b|;③a⊥b⇔|a+b|=|a-b|;④
|a|=|b|⇔|a·c|=|b·c|.
A.1
B.2
C.3
D.4
解析需对以上四个命题逐一判断,依据有两条:一是向量数量积的定义;二是向量加法与减法的平行四边形法则.
①∵a·b=|a||b|cos θ(θ为a与b的夹角),
∴由|a·b|=|a|·|b|及a,b为非零向量可得|cos θ|=1,∴θ=0或π,∴a∥b且以上各步均可逆.故命题①是真命题.
②若a,b反向,则a,b的夹角为π,∴a·b=|a|·|b|cos π=-|a|·|b|且以上各步均可逆.故命题②是真命题.
③当a⊥b时,将向量a,b的起点移至同一点,则以向量a,b为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|a+b|=|a-b|.反过来,若|a+b|=|a-b|,则以a,b为邻边的四边形为矩形,所以有a⊥b.故命题③是真命题.
④当|a|=|b|但a与c的夹角和b与c的夹角不等时,就有|a·c|≠|b·c|,反过来由
|a·c|=|b·c|也推不出|a|=|b|.故命题④是假命题.
答案C
8.已知a,b为共线的两个向量,且|a|=1,|b|=2,则|2a-b|=.
解析|2a-b|=.
∵a,b为共线的两个向量,设a,b的夹角为θ,
则θ=0°或180°,当θ=0°时,a·b=2;
当θ=180°时,a·b=-2.
∴|2a-b|=0或4.
答案0或4
9.正三角形ABC边长为2,设=2=3,则=.
解析)·()
=)·
=
=×2-×4+×4-2=-.
答案-
10.已知|a|=2,向量a在向量b上的投影为,则a与b的夹角为.
解析记向量a与向量b的夹角为θ,则a在b上的投影为|a|cos θ=2cos θ.因为a在b上的投影
为,所以cos θ=.因为θ∈[0,π],所以θ=.
答案
11.如图所示,在Rt△ABC中,∠A=90°,AB=1,则的值是.
解析(方法一)=||·||·cos(180°-∠B)=-||·||·cos∠B=-
||·||·=-||2=-1.
(方法二)||=1,即为单位向量,=-=-
||||cos∠ABC,而||·cos∠ABC=||,所以=-||2=-1.
答案-1
12.已知|a|=|b|=2,a,b的夹角为60°,则使向量a+λb与λa+b的夹角为锐角的λ的取值范围是.
解析由a+λb与λa+b的夹角为锐角,
得(a+λb)·(λa+b)>0,
即λa2+(λ2+1)a·b+λb2>0,
从而λ2+4λ+1>0,解得λ<-2-或λ>-2+.
当λ=1时,a+λb与λa+b共线同向,故λ的取值范围是(-∞,-2-)∪(-2+,1)∪(1,+∞).
答案(-∞,-2-)∪(-2+,1)∪(1,+∞)
13.导学号68254084已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角均为120°.求证:(a-b)⊥c.
证明(a-b)·c=a·c-b·c
=|a||c|cos 120°-|b||c|cos 120°
=1×1×-1×1×=0,
故(a-b)⊥c.
14.如图,在四边形ABCD中,=a,=b,=c,=d,且a·b=b·c=c·d=d·a,且a·c=b·d,则四边形ABCD是什么形状?
解∵a+b+c+d=0,
∴a+b=-(c+d),∴(a+b)2=(c+d)2,
即a2+2a·b+b2=c2+2c·d+d2.
又a·b=c·d,∴a2+b2=c2+d2,
即|a|2+|b|2=|c|2+|d|2.①
同理可得|a|2+|d|2=|b|2+|c|2.②
①-②,得|b|2=|d|2,
①变形为|a|2-|d|2=|c|2-|b|2,再加②式得|a|2=|c|2,即|b|=|d|,|a|=|c|.
同理可得|a|=|b|,|c|=|d|,故四边形ABCD是菱形.
∵,∴a=-c.
又∵a·b=b·c,∴b·(a-c)=0,
即b·(2a)=0.∴a·b=0,
∴.故四边形ABCD为正方形.
15.导学号68254085如图,在平面内将两块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=a,=b.
(1)试用a,b表示向量;
(2)若|b|=1,求.
解(1)=a-b,
由题意可知,AC∥BD,BD=BC=AC.
∴b,则=a+b,
=a+(-1)b.
(2)∵|b|=1,∴|a|=,a·b=cos 45°=1, 则=a·[a+(-1)b]
=a2+(-1)a·b=2+-1=+1.。

相关文档
最新文档