博弈论课件 1

合集下载

博弈论PPT课件

博弈论PPT课件
有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

精品课程《博弈论》PPT课件(全)

精品课程《博弈论》PPT课件(全)
人博弈 两人博弈有多种可能性,博弈方的利益方向可
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16

博弈论最全完整ppt-讲解

博弈论最全完整ppt-讲解
模型
导论
二、博弈论与诺贝尔经济学奖获得者
1994年诺贝尔经济学奖获得者
美国人约翰-海萨尼(John C. Harsanyi) 和美国人 约翰-纳什(John F. Nash Jr.)以及德国人莱因 哈德-泽尔腾(Reinhard Selten)
获奖理由:在非合作博弈的均衡分析理论方面做 出了开创性的贡献,对博弈论和经济学产生了重 大影响 。
如果一个博弈在所有各种对局下全体参与人之得 益总和总是保持为一个常数,这个博弈就叫常和 博弈;
相反,如果一个博弈在所有各种对局下全体参与 人之得益总和不总是保持为一个常数,这个博弈 就叫非常和博弈。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
导论
四、主要参考文献
课程主要内容
第一章 完全信息静态博弈 第二章 完全信息动态博弈 第三章 不完全信息静态博弈 第四章 不完全信息动态博弈 第五章 委托-代理理论 第六章 逆向选择与信号传递
第一章 完全信息静态博弈
博弈论的基本概念及战略式表述 纳什均衡
纳什均衡应用举例 混合战略纳什均衡 纳什均衡的存在性与多重性
第一节 博弈论的基本概念
与战略式表述
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行为发生直 接相互作用时候的决策以及这种决策的均衡问题。
博弈的战略式表述:G={N,(Si)iN,(Ui)iN} 有三个基本要素: (1)参与人(players)iN={1,2,…,n} ; (2)战略(strategies),siSi(战略空间); (3)支付(payoffs),ui=ui(s-i,si)。
Because We Had a Flat Tire”

第四篇博弈论PPT课件

第四篇博弈论PPT课件
• 此情况下由于博弈没有可预测的明确的博弈结果,所以就不能 确定博弈方的策略。但是是否在这样的博弈中,各博弈方选择 任何策略都是一样的,因此可以随意选择吗?
• 按博弈中的得益
• 零和博弈 (Zero-sum Games) (严格竞争博 弈)
(麻将、赌博、猜硬币)
• 常和博弈 (Constant-sum Games)
博弈)
(固定数量利润、财产分配的讨价还价
• 变和博弈 (Variable-sum Games) (囚徒 困境博弈、古诺模型)
• 按博弈过程的次序
囚犯困境博弈
• 个人理性选择的结果: -5)
(坦白,坦白)——(-5,
• 集体理性决策的结果: -1)
(抵赖,抵赖)——(-1,
• 个人理性不一定导致集体理性
• 现实中的囚徒困境模型:价格战、恶性广告竞争、军备竞赛等。
第12页/共83页
2、猜硬币博弈

硬 正面 币 反面 方
猜硬币方
正面
反面
-1,1
• 博弈论是系统研究各种博弈问题,寻求博弈方合理的策略选择 和合理选择策略时的博弈结果,并分析结果的经济、效率意义 的理论与方法。
第3页/共83页
二、博弈论发展的里程碑
• 古诺模型(Cournot) (1838)(两寡头通过 产量决策进行竞争的模型;
• 伯特兰德模型(Bertrand) (1883)(价格竞争) • 《博弈论与经济行为》(1944)
六、博弈的表示方法
• 标准型 (normal form ) 收益矩阵
对简单的博弈适用(二人有限博弈)
• 扩展型 (extensive form )
博弈树
适用于动态博弈
• 特征式

博弈论课件

博弈论课件

脚的看牌人、看棋人,企业的顾问等。
对参与人的决策来说,最重要的是
必须有可供选择的行动集(策略集)和
一个很好定义 的支付函数。
自然被当作虚拟参与人。
清华诚志
10
(2)策略(strategies ):博弈中有两种策略
概念,一种为纯策略(pure strategy ), 简称策略, 指参与人在博弈中可以选择采用的行动(actions or moves)方案,是参与人在给定信息结构的情况 下的行动规则,它规定参与人在什么时候的什么情
囚徒困境反映了个人理性和集体理性的矛盾。如果 A和B都选择抵赖,各判刑1年,显然比都选择坦 白各判刑8年好得多。当然,A和B可以在被警察 抓到之前订立一个"攻守同盟",但是这可能不会有 用,因为它不构成纳什均衡,没有人有积极性遵守 这个协定,显然最好的策略是双方都抵赖.
清华诚志
5
囚徒困境的意义
“囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。他们两人都是 在坦白与抵赖策略上首先想到自己,这样他 们必然要服长的刑期。只有当他们都首先替 对方着想时,或者相互合谋(串供)时,才可 以得到最短时间的监禁的结果。
清华诚志
26
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的思想, 每个个体都是理性的,所以必须了解竞争对手的思 想。商业关系被认为是一种相互作用。但博弈论并 不是疗法,并不是处方,它并不告诉你该付多少钱 买东西,这是计算机或者字典的任务。博弈论只是 提供一些关系的例证,一些有用的解决问题的方法。 这种思维方法也许是企业家应该学习的。对于经济 学家,也许需要学习它的理论模型,它的实验方式 。

博弈论课件

博弈论课件

扩展一:不完全信息博弈
不完全信息博弈的定义
01
在博弈中,参与人对于其他参与人的类型、偏好、战略空间等
信息不完全了解。
不完全信息博弈的分类
02
根据信息不完全的程度,可以分为完全信息不完全博弈和完全
非完美信息博弈。
不完全信息博弈的求解方法
03
包括贝叶斯纳什均衡、精炼贝叶斯纳什均衡、完美贝叶斯纳什
均衡等。
选举策略
博弈论可以用来分析选举中的投票行为和策略,研究候选人如何 制定竞选策略以最大化胜选机会。
政策制定
博弈论可以用来研究政策制定过程中的利益冲突和协调,分析政策 制定者如何平衡不同利益群体的需求。
国际关系
博弈论可以用来研究国际关系中的冲突和合作,分析国家如何通过 外交政策和军事手段来维护自身利益。
纯策略纳什均衡和混合策略纳什均衡 。
特点
纳什均衡是一种稳定的状态,任何参 与者单方面改变自己的策略都不会获 得更好的收益。
优势策略与劣势策略
优势策略
无论其他参与者如何选择策略, 该策略都能为参与者带来更高的
收益。
劣势策略
无论其他参与者如何选择策略,该 策略都能为参与者带来更低的收益 。
特点
在优势策略下,参与者没有理由改 变自己的策略;在劣势策略下,参 与者应该尽快改变自己的策略。
价格战的负面影响
价格战不仅会导致企业利润下降,还可能引发市场恶性竞争,破坏市场秩序。此外,价格战还可能导致产品质量 下降,损害消费者利益。
案例二:国际政治中的博弈策略
国际政治中的博弈策略
在国际政治中,各国之间往往存在着复杂的博弈关系。为了维护自身利益,各 国会采取不同的博弈策略,如通过外交手段、经济制裁、军事威胁等方式来达 到自己的目的。

博弈论全套课件

博弈论全套课件

三. 经典的博弈模型
1、“囚徒的困境”
关于博弈论,流传最广的是一个叫做“囚 徒 困 境 ” 的 故 事 。 这 个 博 弈 是 1950 年 图 克 (Tucker)提出的,这个博弈模型提出后曾引 发了大量的相关研究,也有许多关于“囚徒困 境”的版本。“囚徒困境”对博弈论的发展起 到了巨大的推动作用。可以说凡是讲博弈论, 都会说到这个经典的博弈模型。
在过去二三十年中,博弈论已成为社会科 学研究的一个重要方法。有人说,如果未来社 会科学还有纯理论的话,那就是博弈论。无论 是合作博弈还是非合作博弈都给我们提供了一 种系统的分析方法,使人们在其命运取决于他 人的行为时制定出相应的战略。特别是当许多 相互依赖的因素共存,没有任何决策能独立于 其它许多决策之外时,博弈论更是价值巨大。
最近十几年来,博弈论在经济学尤其是微 观经济学中得到了广泛的运用, 博弈论在许多 方面改写了微观经济学的基础,经济学家们已经 把研究策略相互作用的博弈论当作最合适的分 析工具来分析各类经济问题,诸如公共经济、 国际贸易、自然资源、企业管理等。在现代经 济学里,博弈论已经成为十分标准的分析工具。 除经济学以外, 博弈论目前在生物学、管理学 、国际关系、计算机科学、政治学、军事战略 和其他很多学科都有广泛的应用。现在已经有 愈来愈多的人开始关注、了解并学习博弈理论 。
博弈论(Game Theory)是一种关于游戏的 理论, 又叫做对策论, 是一门以数学为基础的、 研究对抗冲突中最优解问题的学科。事实上, 博弈论也正是衍生于古老的游戏,如象棋、围 棋、扑克等。
博弈论作为一门学科,是在20世纪50~60 年代发展起来的,当非零和博弈理论、特别是 不完全信息博弈理论获得充分发展时,才成为 现实。到20世纪70年代,博弈论正式成为主流 经济学研究的主要方法之一。1994年诺贝尔经 济学奖同时授予了纳什、泽尔腾、海萨尼三位 博弈论专家。2005年诺贝尔经济学奖又授予了 美国经济学家托马斯.谢林(Thomas Schelling)和以色列经济学家罗伯特.奥曼 (Robert Aumann),以表彰他们在合作博弈 方面的巨大贡献。

《博弈论入门》课件

《博弈论入门》课件

博弈论的研究方法与工具
了解博弈论的研究方法和工具对于深入理解和应用博弈论至关重要。
博弈论中的常见概念与术语
学习博弈论需要了解一些常见的概念和术语,例如博弈矩阵、纳什均衡、最 优策略等。
博弈论的经典案例分析
通过分析博弈论的经典案例,我们可以更好地理解和应用博弈论的原理。
博弈论在实际决策中的应用
实际决策中经常涉及到多个参与者的利益博弈,博弈论可以帮助我们找到最优决策策略。
总结与展望
通用于实 际生活和决策中。
《博弈论入门》PPT课件
博弈论是一门研究决策和策略的学科,适用于各种领域,从经济学到政治学, 从生物学到计算机科学。
博弈论基础知识介绍
在这一部分中,我们将探讨博弈论的基本概念和原理,包括博弈模型、策略 和解的概念。
博弈论的应用领域
博弈论在现实生活中有许多应用,包括经济学、政治学、社会学、生物学、 医学等领域。

《博弈论教程》课件

《博弈论教程》课件

博弈论的应用领域
经济学
博弈论在经济学中广泛应用于 市场行为、产业组织、贸易政
策等领域。
政治学
博弈论在政治学中用于研究国 际关系、政治制度、选举行为 等领域。
社会学
博弈论在社会学中用于研究社 会结构、社会互动、社会行为 等领域。
计算机科学
博弈论在计算机科学中用于人 工智能、机器学习、网络安全
等领域。
应用场景
保险市场、拍卖、投资决策等。
04
纳什均衡
纳什均衡的定义
纳什均衡是指在博弈中,所有参与者 的最优策略组合,即在这种策略组合 下,每个参与者都认为没有更好的选 择。
纳什均衡是一种非合作博弈的解概念 ,适用于各种博弈类型,如囚徒困境 、智猪博弈等。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的最优策略,逐步逼近纳什均衡。
03
博弈论应用
04
市场进入博弈中,企业通常会选 择不同的策略,如快速进入、缓 慢进入或等待观察等。这些策略 的选择会影响到企业的收益和市 场格局。
结论
市场进入博弈可以帮助企业制定 出最优的市场进入策略,以最大 化自身的收益。
价格战博弈
总结词
价格战博弈是博弈论中研究企业之间价格竞争的 模型。
博弈论应用
03
市场竞争、个人决策、政治选举等。
完全信息博弈
定义
参与者拥有完全的信息,即每个 参与者都了解其他参与者的策略 和收益。
特点
信息对称、策略空间明确。
应用场景
金融市场、体育比赛等。
不完全信息博弈
定义
参与者之间存在信息不对称,即某个参与者 对其他参与者的策略和收益不完全了解。
特点
不确定性、信息不完全、策略空间的模糊性。

《博弈论入门》PPT课件

《博弈论入门》PPT课件
即规定每个博弈方在进行决策时,可以选择的方案, 做法或经济活动的水平,量值等。
在不同博弈中可供博弈方选择的策略或行为的数量 很不相同,在同一个博弈中,不同博弈方的可选策 略或行为的内容或数量也常不同,有时只有有限的 几种,甚至只有一种,而有时又可能有许多种,甚 至无限多种可选策略或行为。
精选PPT
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
某个综艺节目现场,女主持人气势咄咄的问一个男嘉宾,你 为什么那么在乎钱,男嘉宾说:“钱能买到一切!” 现场的观 众哗然了。
男嘉宾微笑的说:“我们做个测试吧。”
一个很简单的主题,你的一个仇人爱上了你的女友,现在
局中人所选择的策略构成的组合(招,招)被称为 博弈均衡。
精选PPT
21
参与人(Players)
即在所定义的博弈中究竟有哪几个独立决策、独立 承担结果的个人或组织。
对我们来说,只要在一个博弈中统一决策,统一行 动、统一承担结果,不管一个组织有多大,哪怕是 一个国家,甚至是由许多国有组成的联合国,都可 以作为博弈中的一个参加方。并且,在博弈的规则 确定之后,各参加方都是平等的,大家都必须严格 按照规则办事。
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有点
呆住了,一个女孩子站起来说:“如果一个男人肯出
五百万,我想我没有理由拒绝他。”沉默..................
精选PPT
26
男人选择了金钱,500万可以买一套房子,一部车子,全家 过上好曰子,甚至可以开始自己的事业。一个男人说:“他是 我的仇人,我有了这个500万,我可以含辛茹苦,我可以报仇 ,我可以计划我所有的未来,当个真正主宰自己的男人。”一 些女人看着身边的男人,若有所思。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1Lecture 1Introduction to Game Theory,Extensive &Normal Form,Mixed Strategies and Beliefs 22Readings•Watson: Strategy_ An introduction to game theory–Ch 1‐5:1rd ed p.1-40; 3rd ed p.1‐46.•Introduction;The Extensive Form;Strategies &the Normal Form;Beliefs,Mixed Strategies and Expecte d Payoffs;General Assumptions and Methodology.•Appendix A:Review of Mathematics p.409‐420.32Outline•Introduction.•Extensive form representation.•Strategies.•Examples.•Normal form representation.•Mixed strategies.•Beliefs.•Expected payoffs.•General assumptions.42Game Theory•Mathematical models of strategic situations :–Each agent’s behavior affects the well-being of other agents.•Perfect competition and monopoly are not strategic situations.–In perfect competition no agent considers the specific action of any other individual agent.–In monopoly the monopolist doesn’t worry about specific consumer’s actions.(Chooses price/quantity based on overall demand.)•Duopoly (2firms producing)is strategic.–Each firm considers the other’s action when deciding on its own.5Ch2:The Extensive Form162Example 1•A family is on vacation is San Diego.Their young children decide whether to behave or misbehave duri ng breakfast.•After breakfast the parents decide whether the family goes to Legoland(乐高) or sits quietly in their hotel room for the rest of the day.•This is a strategic situation.–Each party considers what the other is likely to do (or has already done)when making their own decision.72Formal Definition of a Game •A game is (formally):–A list of players ;–Specification of all possible actions each player can take and when;–The players’knowledge •(what each player knows when he acts);–How actions lead to outcomes ;–A specification of preferences over outcomes.•A game can be non-cooperative or cooperative .–Non-cooperative:All decisions are made individually82Example 1•Players:–The children and their parents.•Actions:–Children –{Behave,Misbehave}–Parents –{Legoland after the kids behave, Hotel after the kids behave, Legoland after the kids misbehave, Hotel after the kids misbehave}•Knowledge:–We typically assume the players know the game and that each player is rational.–Children –Don’t know anything else.–Parents –Knows whether the children have behaved or misbehaved.•Outcomes &Preferences:–We still need to specify these.We’ll do so later.92Extensive Form Representation •One way to represent games is with the extensive form.–Nodes:Where players choose actions (or the game ends).–Branches:Specific actions.–Labels: •Player making a decision (for decision nodes);•or actions (for branches).–Payoffs:Represent preferences over outcomes.–Information sets:Reveal what a player knows when he or she makes a decision.10Example1:Extensive Form2,,112Information Sets•An information set of player i is a collection of player i ’s nodes among which i cannot distinguish.–Perfect information : all information sets in the tree have just one node.–Imperfect information : not perfect information.122Example 1:Information Sets •The children have one information set.–The initial node.•Their parents have two information sets.–When the parents make their decision they knows if the children behaved or misbehaved.•This is why their actions are labeled differently.•For this example each information set is a single node.•Each decision is associated with a single information set.132Example 1(b)•The children decide to behave or misbehave.•Their parents decide whether to take the family to Legoland or sit quietly in their hotel room.–But they don’t observe whether the children behaved or misbehaved.•This time the parents only have one information set.–Their decision cannot be contingent on anything.14Example1(b):Extensive Form2152Example 1(b):Information Sets •The children have one information set.–The initial node.•The parents also have one information set.–When the parents make their decision they don’t know if the children behaved or misbehaved.•They don’t know which node they’re at when they makes their decision.•This is why their actions are labeled the same at both nodes.•Each decision is still associated with a single information set.162Strategies•Strategy:A complete contingent plan for a player in a game.–Prescribes an action for each of this player’ information sets.•Example 1–strategy example:–Children:Behave.–Parents:Sit quietly in the hotel room if the children behave,and go to Legoland if the children misbehave.•Example 1(b)–strategy example:–Children: Behave–Parents: ?17Notation2182Example 1•S Children ={Behave,Misbehave},or for short {B ,M }•S Parents ={Legoland if behave and Legoland if misbehave,Legoland if behave and Hotel if misbehave,Hotel if behave and Legoland if misbehave,Hotel if behave and Hotel if misbeha ve}–We can simplify this notation to {LL ’, LH’, HL ’, HH ’}•One specific s is (B , LL ’)192Example 1(b)•S Children ={Behave,Misbehave}•S Parents ={Legoland,Hotel}•One specific s is (Behave,Legoland)202Example 2•A pedestrian and a car are approaching a crosswalk.–First the pedestrian decides to cross or wait.–The driver observes the decision and then decides to proceed through the crosswalk or delay.•Warning :This is a simplified example.When we eventually solve this problem do not use the results to determine how to proceed through crosswalks.21Example2:Extensive FormPedestrianDriverCrossWaitProceedProceed’DelayDelay’‐100, ‐7510, 55, 100, 0222Example 2:Strategy Sets •S Ped ={C ,W }•S Driver ={PP ’,PD ’,DP ’,DD ’}–Each specific strategy for the driver tells either to proceed or delay if the pedestrian crosses and either to proceed’ or delay’ if the pedestrian waits.232•It’s possible people can make a decision from a continuous action space.–Ie.,S1=[0,100]2's strategy needs to cover every contingency.ie., Yes for a ≥ 72.3 and no for a <72.30,012a Yes100–a,aNo242•We also can have information sets and incomplete information.–Ie.,S1=[0,100]0,012a Yes100–a,aNo2's strategy can be a single action.ie.,Yes.25The ultimatum game (最后通谍博弈)•Players:the two players;•Timing:player 1 proposes a division (x1,x2) of a pie, where x1+x2=1. If 2 accepts this division, she receives x2and player 1 receives x1; if she rejects it, neither player receives any pie.•Preferences:Each person’s preferences are represented by payoffs equal to the division of pie she receives.26Figure: The ultimatum game x 12,x x 120,0Y N 272Example 3•Centipede game:–Order of events is as follows:•Player 1can continue or quit.–If she quits she gets $1and player 2gets $0.•If she continues player 2can stay or go.–If he goes player 1gets $0and he gets $2.•If he stays player 1can agree or disagree –If she disagrees she gets $2and player 2gets $1.–If she agrees she gets $1and player 2gets $3–Graph this game in extensive form;describe each player’s information set and strategy set282Centipede Game Player 1has two information sets:The initial node,The node contingent on C ,S .Player 2has one information set:The node contingent on C .Strategies:S 1={CA ,CD ,QA ,QD }S 2={S ,G }112CQ G S D A 1, 00, 22,11, 329Ch3:Strategies and the Normal Form2302Normal Form Representation •Note that any specific strategy profile will result in a unique outcome.ie.,(CA,G)•(Sometimes)we can use this idea to express much of the essential information for the game in a more compact, matrix form called the normal form.312NormalForm32Back to Example2•A pedestrian and a car are approaching a crosswalk.–First the pedestrian decides to cross or wait.–The driver observes the decision and then decides toproceed through the crosswalk or delay.233Example2:Extensive Form234Example2:Normal Form2352Normal Form•For games with two players and a finite number of strategies,the normal form can be written as a table with appropriate labels.–Given any strategy profile the normal form tells us what the outcome is.u i :S –But we can’t determine the order of the decisions.–It’s possible to have games with different extensive forms that have identical normal forms.36237382Normal Form•There is some debate about whether the normal form contains all the relevant information about the game.•The normal form always contains all the relevant information when the players move simultaneously and independently.–Neither observes any actions chosen by the other player before making own decision.–There are several classic normal form games that fit this description.39Classic Normal Form Games240Classic Normal Form Games241Ch4:Beliefs,Mixed Strategies and Expected Payoffs2422•In strategic situations beliefs are important.•When one player chooses a strategy she will consider what strategies the other player is likely to choose.•Mathematically, a belief of player i is aprobability distribution over the strategies of the other players.432•Formally ΔS i is the set of probability distributions over S i .•In a two-player game, the belief of player i about the behavior of player j is a function θj ϵΔS j such that, for each strategy s j ϵS j of player j , θj (s j ) is interpreted as the probability that player i thinks player j will play s j .•θj has the property that θj (s j ) ≥ 0 for each s j ϵS j , and ()1j jj j s S s θ∈=∑442A specific belief of player 1 about player 2 is denoted by θ2ϵΔS2. ie.,θ2= (2/5, 3/5) over (St2, R2).452Players may choose their strategies by randomizing.ie., Player 1 may play St 1with probability ⅓ and R 1with ⅔.Formally ΔS i is the set of probability distributions over S i .A specific mixed strategy for player i is denoted by σi ϵΔS i .ie., ΔS 1= (p , 1-p ) where 0≤p ≤1, σ1= (⅓, ⅔).462•The strategies we looked at earlier are called pure strategies .–A player chooses one specific strategy with certainty.•A mixed strategy assigns probabilities on a player’s pu re strategies.–Technically a pure strategy is a mixed strategy with a probability of 1 on that pure strategy and a probability of 0 on all other pure strategies.•Beliefs look a lot like mixed strategies (for the other player)because both of them are chosen from the set of probability distributions over that player’s strategies.47Expected Payoffs•If a player uses a mixed strategy and/ or assigns positive probability to multiple strategies of the other player, the this player cannot expect to get a particular payoff for sure.2•We can extend the definition of a payoff function to mixed strategies and beliefs by using the concept of expected value.482When i uses mixed strategy, σi and the others play (pure) s -i When i uses pure strategy,s i and has a belief θ-i about the strategies of the others,When i uses mixed strategy, σi , and has a belief θ-i about the strategies of the others,()()(),,i ii i i i i i i i s S u s s u s s σσ--∈=∑()()(),,i i i i i i i i i is S u s s u s s θθ-----∈=∑()()()(),,,i i i i i i i i i i i i i i s S s S u s s u s s σθσθ-----∈∈=∑49250。

相关文档
最新文档