镇江市扬中市10月八年级上月考数学试卷含答案解析
八年级数学上学期10月月考试卷(含解析) 新人教版
2016-2017学年江苏省镇江市丹阳三中八年级(上)月考数学试卷(10月份)一、填空:(每空2分,共24分)1.如图,∠1=∠2,要利用“SAS”说明△ABD≌△ACD,需添加的条件是.2.小明家有一块三角形的玻璃不小心打破了如图所示,现在要带其中一块碎片去玻璃店配一块和原来形状、大小一样的玻璃,应该带.(填序号①、②、③)3.如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为.4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为cm.5.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE= .6.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=36°,则∠BAC的度数为,∠C的度数为.7.等腰三角形的一边长为10,另一边长为6,则它的周长是.8.等腰三角形一腰上的高与底边的夹角为38°,则该等腰三角形的底角的度数为°.9.如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3= °.10.如图,点P为等边三角形ABC的边BC上一点,且∠APD=80°,AD=AP,则∠DPC= .11.如图所示,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是AE=1,CF=2,则EF长为.12.在△ABC中,∠A=40°,当∠B= 时,△ABC是等腰三角形.二、选择:(每题3分,共30分)13.下列标志中,可以看作是轴对称图形的是()A.B. C.D.14.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等15.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D16.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:0217.如图,若AB与CD互相平分于O,则下列结论中错误的是()A.∠C=∠D B.AD=BC C.AD∥BC D.AB=CD18.已知下列条件,不能作出唯一三角形的是()A.两边及其夹角 B.两角及其夹边C.三边 D.两边及除夹角外的另一个角19.已知△ABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为()A.60° B.45° C.75° D.70°20.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种21.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.522.如图,直线m,n交于点B,m、n的夹角为50°,点A是直线m上的点,在直线n上寻找一点C,使△ABC是等腰三角形,这样的C点有多少个?()A.1个B.2个C.3个D.4个三、解答:(共46分)23.若等腰三角形一边长为12cm,且腰长是底边长的,求这个三角形的周长.24.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.25.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.26.如图,已知∠AOB和C,D两点,求作一点P,使PC=PD,并且使P点到∠AOB两边的距离相等.27.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.28.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)求证:△ACD≌△BCO;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)当△AOD是等腰三角形时,求α的度数.2016-2017学年江苏省镇江市丹阳三中八年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空:(每空2分,共24分)1.如图,∠1=∠2,要利用“SAS”说明△ABD≌△ACD,需添加的条件是CD=BD .【考点】全等三角形的判定.【分析】由∠1=∠2可得∠CDA=∠BDA,然后添加CD=BD可利用“SAS”说明△ABD≌△ACD.【解答】解:添加CD=BD,∵∠1=∠2,∴∠CDA=∠BDA,在△ADC和△ADB中,∴△ABD≌△ACD(SAS),故答案为:CD=BD.2.小明家有一块三角形的玻璃不小心打破了如图所示,现在要带其中一块碎片去玻璃店配一块和原来形状、大小一样的玻璃,应该带③.(填序号①、②、③)【考点】全等三角形的应用.【分析】可以采用排除法进行分析从而确定最后的答案.【解答】解:第①块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第②块,仅保留了原三角形的一部分边,所以该块不行;第③块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.3.如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为50°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠DCE,再求出∠BCE=∠ACD.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠DCE+∠BCD=∠ACB+∠BCD,即∠BCE=∠ACD,∵∠ACD=50°,∴∠BCE=50°.故答案为:50°.4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为 3 cm.【考点】全等三角形的性质.【分析】根据全等三角形性质求出EF=BC=5cm,求出CF,即可求出答案.【解答】解:∵△ABC≌△DEF,BC=5cm,∴EF=BC=5cm∵BC=5cm,BF=7cm,∴CF=BF﹣BC=2cm,∴CE=EF﹣CF=BC﹣EF=5cm﹣2cm=3cm,故答案为:3.5.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE= 90°.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.【解答】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.6.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=36°,则∠BAC的度数为72°,∠C的度数为54°.【考点】等腰三角形的性质.【分析】由在△ABC中,AB=AC,D为BC中点,根据等腰三角形的三线合一的性质,即可求得∠BAC的度数,继而求得∠C的度数.【解答】解:∵在△ABC中,AB=AC,D为BC中点,∴∠BAC=2∠BAD=2×36°=72°,∴∠B=∠C==54°.故答案为:72°,54°.7.等腰三角形的一边长为10,另一边长为6,则它的周长是26或22 .【考点】等腰三角形的性质.【分析】因为等腰三角形的底边和腰不确定,6可以为底边也可以为腰长,故分两种情况考虑:当6为腰时,根据等腰三角形的性质得另一腰也为6,底边为10,求出此时的周长;当6为底边时,10为腰长,根据等腰三角形的性质得另一腰也为10,求出此时的周长.【解答】解:若6为等腰三角形的腰长,则10为底边的长,此时等腰三角形的周长=6+6+10=22;若10cm为等腰三角形的腰长,则6cm为底边的长,此时等腰三角形的周长=10+6+10=26;则等腰三角形的周长为26或22.故答案为:26或22.8.等腰三角形一腰上的高与底边的夹角为38°,则该等腰三角形的底角的度数为52 °.【考点】等腰三角形的性质.【分析】此题要分两种情况推论:当等腰三角形的顶角是钝角时,腰上的高在三角形的外部,根据三角形的一个外角等于和它不相邻的两个内角和;当等腰三角形的顶角是锐角时,根据直角三角形的两个锐角互余,求得底角.【解答】解:如图,(1)∵顶角是钝角时,∠B=90°﹣38°=52°,∴顶角=180°﹣2×52°=76°,不是钝角,不符合;(2)顶角是锐角时,∠B=90°﹣38°=52°,∠A=180°﹣2×52°=76°,是锐角,符合,故答案为52°9.如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3= 50 °.【考点】全等三角形的判定与性质.【分析】先证明△ABD≌△ACE(SAS);再利用全等三角形的性质:对应角相等,求得∠2=∠ABE;最后根据三角形内角与外角的性质即可求出答案.【解答】解:在△ABD与△ACE中,∵∠1+∠CAD=∠CAE+∠CAD,∴∠1=∠CAE;∴,∴△ABD≌△ACE(SAS);∴∠2=∠ABE(对应角相等);∵∠3=∠1+∠2,∠1=22°,∠2=28°,∴∠3=50°.故答案为:50.10.如图,点P为等边三角形ABC的边BC上一点,且∠APD=80°,AD=AP,则∠DPC= 20°.【考点】等边三角形的性质;等腰三角形的性质.【分析】在△APD中,求得∠PAD的度数,进而求得∠APC的度数,进而即可求解.【解答】解:在△APD中,AP=AD∴∠APD=∠ADP=80°∴∠PAD=180°﹣80°﹣80°=20°∴∠BAP=60°﹣20°=40°∴∠APC=∠B+∠BAP=60°+40°=100°∴∠DPC=∠APC﹣∠APD=100°﹣80°=20°,故答案为:20°.11.如图所示,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是AE=1,CF=2,则EF长为 3 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形的性质得AB=BC,∠ABC=90°,再根据等角的余角相等得到∠EAB=∠FBC,则可根据“ASA”判断△ABE≌△BCF,所以BE=CF=2,进而求出EF的长.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∵AE⊥BE,CF⊥BF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF=2,AE=BF=1,∴EF=BE+BF=3.故答案为3.12.在△ABC中,∠A=40°,当∠B= 40°、70°或100°时,△ABC是等腰三角形.【考点】等腰三角形的判定.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【解答】解:(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°﹣∠A﹣∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C==70°.故答案为:40°或70°或100°.二、选择:(每题3分,共30分)13.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.14.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.15.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DEF,有AC=DF,BC=EF,可以加∠ACB=∠F,就可以用SAS判定△ABC≌△DEF.【解答】解:A,添加∠A=∠D,满足SSA,不能判定△ABC≌△DEF;B,添加∠ACB=∠F,满足SAS,能判定△ABC≌△DEF;C,添加∠B=∠DEF,满足SSA,不能判定△ABC≌△DEF;D,添加∠ACB=∠D,两角不是对应角,不能判定△ABC≌△DEF;故选B.16.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:02【考点】镜面对称.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.17.如图,若AB与CD互相平分于O,则下列结论中错误的是()A.∠C=∠D B.AD=BC C.AD∥BC D.AB=CD【考点】全等三角形的判定与性质.【分析】根据题目的已知条件,观察图形,找出全等三角形的对应角、对应边即可解题.【解答】解:∵AB与CD互相平分,∴OA=OB,OD=OC又∵∠AOD=∠COB(对顶角相等),∴△AOD≌△BOC(SAS),∴∠C=∠D、AD=BC,∴AD∥BC(内错角相等,两直线平行),即A、B、C是正确的,只有D是错误的.故选D.18.已知下列条件,不能作出唯一三角形的是()A.两边及其夹角 B.两角及其夹边C.三边 D.两边及除夹角外的另一个角【考点】作图—复杂作图.【分析】看是否符合所学的全等的公理或定理即可.【解答】解:A、B、C分别符合全等三角形的判定SAS、ASA、SSS,故能作出唯一三角形;D、已知两边及除夹角外的另一个角,不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形,错误;故选D.19.已知△ABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为()A.60° B.45° C.75° D.70°【考点】全等三角形的判定与性质;等边三角形的性质.【分析】易证△ABD≌△ACE,可得∠DAF=∠ABF,根据外角等于不相邻两个内角的和即可解题.【解答】解:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS)∴∠DAF=∠ABD,∴∠AFD=∠ABD+∠BAF=∠DAF+∠BAF=∠BAD=60°,故选:A.20.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【解答】解:如图所示:,共5种,故选:C.21.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.5【考点】角平分线的性质;三角形的面积.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.22.如图,直线m,n交于点B,m、n的夹角为50°,点A是直线m上的点,在直线n上寻找一点C,使△ABC是等腰三角形,这样的C点有多少个?()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定.【分析】分别以∠A、∠B、∠C为顶角进行讨论即可求得答案.【解答】解:∵△ABC为等腰三角形,∴分三种情况:①当以∠C为顶角时,则有BC=AC,即点C在线段AB的垂直平分线上,可知满足条件;②当以∠A为顶角时,则有AC=AB,由两直线夹角为50°,可知此时点C只能在直线m的上方,有一个点;③当以∠B为顶角时,则有AB=CB,此时点C可以在直线m的上方,也可以在直线n的上方,有两个点,综上可知满足条件的C点有4个,故选D.三、解答:(共46分)23.若等腰三角形一边长为12cm,且腰长是底边长的,求这个三角形的周长.【考点】等腰三角形的性质;三角形三边关系.【分析】因为等腰三角形的一边长为12,但没有明确是底边还是腰,所以有两种情况,需要分类讨论,还要利用三边关系验证能否组成三角形.【解答】解:∵等腰三角形一边长为12cm,且腰长是底边长的,①如果腰长为12cm,则底边为16cm,等腰三角形的三边为12、12、16,能构成三角形,∴C△=12+12+16=40cm;②如果底长为12cm,则腰长为9cm,等腰三角形的三边为12、9、9,能构成三角形,∴C△=9+9+12=30cm.24.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.【考点】三角形的外角性质;三角形内角和定理.【分析】(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.25.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.26.如图,已知∠AOB和C,D两点,求作一点P,使PC=PD,并且使P点到∠AOB两边的距离相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】由条件可知点P在线段CD的垂直平分线和∠AOB的平分线上,可作出图形.【解答】解:∵PC=PD,∴点P在线段CD的垂直平分线上,∵P点到∠AOB两边的距离相等,∴点P在∠AOB的平分线上,如图,先作线段CD的垂直平分线,再作∠AOB的平分线,则交点即为所求的点P.27.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.【考点】全等三角形的判定与性质.【分析】(1)利用“角角边”证明△ABE和△DCE全等即可;(2)根据全等三角形对应边相等可得BE=CE,再根据邻补角的定义求出∠BEC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=CE,又∵∠AEB=70°,∴∠BEC=180°﹣∠AEB=180°﹣70°=110°,∴∠EBC===35°.28.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)求证:△ACD≌△BCO;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)当△AOD是等腰三角形时,求α的度数.【考点】三角形综合题.【分析】(1)根据等边三角形性质得出∠ABC=∠CAB=∠ODC=∠DOC=60°,BC=AC,CO=CD,∠ACB=∠DCO=60°,求出∠ACD=∠BCO,根据SAS证出粮三角形全等即可;(2)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO 的度数,由此即可判定△AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.【解答】解:(1)∵△ABC和△ODC是等边三角形,∴∠ABC=∠CAB=∠ODC=∠DOC=60°,BC=AC,CO=CD,∠ACB=∠DCO=60°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,∴∠ACD=∠BCO,在△BOC和△ADC中,∴△BOC≌△ADC(SAS);(2)△ADO是直角三角形.∵△OCD是等边三角形,∴OC=CD,∵△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,∴△BOC≌△ADC,∴∠BOC=∠ADC,∵∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(3)∵∠COB=∠CAD=α,∠AOD=200°﹣α,∠ADO=α﹣60°,∠OAD=40°,①要使AO=AD,需∠AOD=∠ADO,∴200°﹣α=α﹣60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO,∴α﹣60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD,∴200°﹣α=40°,∴α=160°.所以,当α为130°、100°、160°时,△AOD是等腰三角形.。
江苏省八年级上学期数学10月月考试卷
江苏省八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020九上·金昌期中) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分) (2017八上·江夏期中) 如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A . 40°B . 35°C . 30°D . 25°3. (2分)如图,△ABC中,AB=AC,∠BAD=25°,且AD=AE,则∠EDC=()A . 25°B . 10°C . 5°D . 12.5°4. (2分)如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A . 2种B . 3种C . 4种D . 5种5. (2分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2A E;其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019八上·和平期中) 如图,在△ 和△ 中,90°,.有以下结论:① ;② 平分;③ 平分.其中,正确结论的个数是()A . 0B . 1C . 2D . 37. (2分)如图,四边形ABCD是矩形,AB:AD = 4:3,把矩形沿直线AC折叠,点B落在点E处,连接DE,则DE:AC =()A . 1:3B . 3:8C . 8:27D . 7:258. (2分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A . 50°B . 60°C . 70°D . 80°二、填空题 (共8题;共8分)9. (1分) (2017七下·东营期末) 在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有个10. (1分) (2015八下·深圳期中) 如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).11. (1分) (2017八下·扬州期中) 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是.12. (1分) (2017七下·天水期末) 如图所示,点A、B在直线l的同侧,AB=4cm,点C是点B关于直线l 的对称点,AC交直线l于点D,AC=5cm,则△ABD的周长为cm.13. (1分) (2020八上·温州期末) 如图,在△ABC中,∠ACB的平分线交AB于点D,DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为。
【苏科版】八年级上月考数学试卷(10月(含解析)
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!2015-2016学年江苏省无锡市格致中学八年级(上)月考数学试卷(10月份)一、选择题(3×10=30)1.下列交通标识中, 是轴对称图形的是()A.B.C.D.2.等腰三角形的一边等于5, 一边等于12, 则它的周长是()A.22 B.29 C.22或29 D.173.如图, 给出下列四组条件:①AB=DE, BC=EF, AC=DF;②AB=DE, ∠B=∠E.BC=EF;③∠B=∠E, BC=EF, ∠C=∠F;④AB=DE, AC=DF, ∠B=∠E.其中, 能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组4.如图, DE是△ABC中边AC的垂直平分线, 若BC=18cm, AB=10cm, 则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm5.如图, OP平分∠AOB, PA⊥OA, PB⊥OB, 垂足分别为A, B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP6.请仔细观察用直尺和圆规作一个角等于已知角的示意图, 请你根据所学的三角形全等有关的知识, 说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块), 你认为将其中的哪一块带去玻璃店, 就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块8.已知∠AOB=30°, 点P在∠AOB内部, 点P1与点P关于OA对称, 点P2与点P关于OB 对称, 则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形9.如图所示的正方形网格中, 网格线的交点称为格点.已知A、B是两格点, 如果C也是图中的格点, 且使得△ABC为等腰三角形, 则点C的个数是()A.6 B.7 C.8 D.910.如图, AD是△ABC的角平分线, DF⊥AB, 垂足为F, DE=DG, △ADG和△AED的面积分别为50和38, 则△EDF的面积为()A.8 B.12 C.4 D.6二、填空题11.如图, 是从镜中看到的一串数字, 这串数字应为.12.一个三角形的三边为2、5、x, 另一个三角形的三边为y、2、6, 若这两个三角形全等, 则x+y=.13.如图, 若∠1=∠2, 加上一个条件, 则有△AOC≌△BOC.14.如图, 在△ABC中, AB=AD=DC, ∠BAD=32°, 则∠BAC=°.15.如图, △ABC中, ∠C=90°, AC=BC=a, AB=b, AD平分∠CAB交BC于D, DE⊥AB, 垂足为E, 则△DEB的周长为.(用a、b代数式表示)16.已知等腰三角形一腰上的高与另一腰的夹角为30°, 则这个等腰三角形顶角为°.17.如图, 一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔, 如果一个球按图中所示的方向被击出(球可以经过多次反射), 那么该球最后将落入号球袋.18.在4×4的方格中有五个同样大小的正方形如图摆放, 请你添加一个正方形到空白方格中, 使它与其余五个正方形组成的新图形是一个轴对称图形, 这样的添法共有种.三、解答题19.尺规作图:某学校正在进行校园环境的改造工程设计, 准备在校内一块四边形花坛内栽上一棵桂花树.如图, 要求桂花树的位置(视为点P), 到花坛的两边AB、BC的距离相等, 并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法, 保留作图痕迹).20.要在公路MN上修一个车站P, 使得P与A, B两个地方的距离和最小, 请在图中画出P 的位置.21.如图所示, 在△AFD和△BEC中, 点A、E、F、C在同一条直线上, 有下面四个论断:(1)AD=CB, (2)AE=CF, (3)∠B=∠D, (4)AD∥BC,请你从这四个条件中选出三个作为已知条件(3个条件都用上), 另一个作为结论, 组成一个真命题, 并给予证明.题设:;结论:.(均填写序号)证明:22.如图, 已知:△ABC中, AB=AC, BD和CE分别是∠ABC和∠ACB的角平分线, 且相交于O点.①试说明△OBC是等腰三角形;②连接OA, 试判断直线OA与线段BC的关系, 并说明理由.23.如图, 在△ABC中, BC=8cm, BP、CP分别是∠ABC和∠ACB的平分线, 且PD∥AB, PE ∥AC.(1)求△PDE的周长;(2)若∠A=50°, 求∠BPC的度数.24.如图, 直线m经过正三角形ABC的顶点A, 在直线m上取两点D, E, 使得使∠ADB=∠AEC=120°.通过观察或测量, 猜想线段BD, CE与DE之间满足的数量关系, 并予以证明.25.如图, 已知△ABC中, AB=AC=6cm, BC=4cm, 点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动, 同时, 点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等, 经过1秒后, △BPD与△CPQ是否全等, 请说明理由.②若点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为cm/s时, 在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发, 点P以原来的运动速度从点B同时出发, 都逆时针沿△ABC的三边运动.求经过多少秒后, 点P与点Q第一次相遇, 并写出第一次相遇点在△ABC的哪条边上?26.如图甲, 在△ABC中, ∠ACB为锐角, 点D为射线BC上一动点, 连接AD, 以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC, ∠BAC=90°,①当点D在线段BC上时(与点B不重合), 如图乙, 线段CF、BD之间的位置关系为, 数量关系为.②当点D在线段BC的延长线上时, 如图丙, ①中的结论是否仍然成立, 为什么?(2)如果AB≠AC, ∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时, CF⊥BC(点C、F重合除外)?并说明理由.2015-2016学年江苏省无锡市格致中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(3×10=30)1.下列交通标识中, 是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念判断各项即可.【解答】解:由轴对称的概念可得, 只有B选项符合轴对称的定义.故选B.2.等腰三角形的一边等于5, 一边等于12, 则它的周长是()A.22 B.29 C.22或29 D.17【考点】等腰三角形的性质;三角形三边关系.【分析】分别从若5为底边长, 12为腰长与若12为底边长, 5为腰长去分析求解即可求得答案.【解答】解:若5为底边长, 12为腰长,∵12+5>12,∴能组成三角形,∴此时它的周长是:12+12+5=29;若12为底边长, 5为腰长,∵5+5<12,∴不能组成三角形, 故舍去.∴它的周长是29.故选B.3.如图, 给出下列四组条件:①AB=DE, BC=EF, AC=DF;②AB=DE, ∠B=∠E.BC=EF;③∠B=∠E, BC=EF, ∠C=∠F;④AB=DE, AC=DF, ∠B=∠E.其中, 能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS, 可据此进行判断.【解答】解:第①组满足SSS, 能证明△ABC≌△DEF.第②组满足SAS, 能证明△ABC≌△DEF.第③组满足ASA, 能证明△ABC≌△DEF.第④组只是SSA, 不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.4.如图, DE是△ABC中边AC的垂直平分线, 若BC=18cm, AB=10cm, 则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD, 然后求出△ABD的周长=AB+BC, 代入数据进行计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm, AB=10cm,∴△ABD的周长=18+10=28cm.故选B.5.如图, OP平分∠AOB, PA⊥OA, PB⊥OB, 垂足分别为A, B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手, 利用角平分线的性质, 对各选项逐个验证, 选项D是错误的, 虽然垂直, 但不一定平分OP.【解答】解:∵OP平分∠AOB, PA⊥OA, PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO, OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB, ∠AOP=∠BOP, OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.6.请仔细观察用直尺和圆规作一个角等于已知角的示意图, 请你根据所学的三角形全等有关的知识, 说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′, OC=O′C′, CD=C′D′, 得到三角形全等, 由全等得到角相等, 是用的全等的性质, 全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′, OC=O′C′, CD=C′D′, 依据SSS可判定△COD≌△C'O'D'(SSS), 则△COD≌△C'O'D', 即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.7.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块), 你认为将其中的哪一块带去玻璃店, 就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块, 再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素, 所以不能带它们去,只有第2块有完整的两角及夹边, 符合ASA, 满足题目要求的条件, 是符合题意的.故选:B.8.已知∠AOB=30°, 点P在∠AOB内部, 点P1与点P关于OA对称, 点P2与点P关于OB 对称, 则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【考点】轴对称的性质.【分析】根据轴对称的性质, 结合等边三角形的判定求解.【解答】解:∵P为∠AOB内部一点, 点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.9.如图所示的正方形网格中, 网格线的交点称为格点.已知A、B是两格点, 如果C也是图中的格点, 且使得△ABC为等腰三角形, 则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【分析】根据题意, 结合图形, 分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时, 符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时, 符合条件的C点有4个.故选:C.10.如图, AD是△ABC的角平分线, DF⊥AB, 垂足为F, DE=DG, △ADG和△AED的面积分别为50和38, 则△EDF的面积为()A .8B .12C .4D .6【考点】角平分线的性质. 【分析】过点D 作DH ⊥AC 于H, 根据角平分线上的点到角的两边距离相等可得DF=DH, 然后利用“HL ”证明Rt △DEF 和Rt △DGH 全等, 根据全等三角形的面积相等可得S △EDF =S △GDH , 设面积为S, 然后根据S △ADF =S △ADH 列出方程求解即可. 【解答】解:如图, 过点D 作DH ⊥AC 于H, ∵AD 是△ABC 的角平分线, DF ⊥AB, ∴DF=DH,在Rt △DEF 和Rt △DGH 中, ,∴Rt △DEF ≌Rt △DGH (HL ), ∴S △EDF =S △GDH , 设面积为S, 同理Rt △ADF ≌Rt △ADH, ∴S △ADF =S △ADH , 即38+S=50﹣S, 解得S=6. 故选D .二、填空题11.如图, 是从镜中看到的一串数字, 这串数字应为 810076 .【考点】镜面对称.【分析】关于镜子的像, 实际数字与原来的数字关于竖直的线对称, 根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看, ∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反, ∴这串数字应为 810076, 故答案为:810076.12.一个三角形的三边为2、5、x, 另一个三角形的三边为y、2、6, 若这两个三角形全等, 则x+y=11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边, 结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等, 两个三角形中都有2∴长度为2的是对应边, x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.13.如图, 若∠1=∠2, 加上一个条件∠A=∠B, 则有△AOC≌△BOC.【考点】全等三角形的判定.【分析】此题是一道开放型的题目, 答案不唯一, 如∠A=∠B, 或者OA=OB等.【解答】解:∠A=∠B,理由是:在△AOC和△BOC中,,∴△AOC≌△BOC(AAS).故答案为:∠A=∠B.14.如图, 在△ABC中, AB=AD=DC, ∠BAD=32°, 则∠BAC=69°.【考点】等腰三角形的性质.【分析】由题意, 在△ABC中, AB=AD=DC, ∠BAD=32°, 根据等腰三角形的性质可以求出底角, 再根据三角形内角与外角的关系即可求出内角∠CAD, 再相加即可求出∠BAC的度数.【解答】解:在△ABC中, AB=AD=DC,在三角形ABD中, ∵AB=AD,∴∠B=∠ADB=×=74°,在三角形ADC中, 又∵AD=DC,∴∠CAD=∠ADB=74°×=37°.∴∠BAC=32°+37°=69°.故答案为:69.15.如图, △ABC中, ∠C=90°, AC=BC=a, AB=b, AD平分∠CAB交BC于D, DE⊥AB, 垂足为E, 则△DEB的周长为b.(用a、b代数式表示)【考点】角平分线的性质;等腰直角三角形.【分析】由题目的已知条件应用AAS易证△CAD≌△EAD.得到DE=CD, 于是BD+DE=BC=AC=AE, 则周长可利用对应边相等代换求解.【解答】解:∵AD平分∠CAB, ∠C=90°, DE⊥AB,∴∠CAD=∠BAD, ∠C=∠AED.在△CAD和△EAD中,,∴△CAD≌△EAD(AAS),∴AC=AE, CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长为DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=AB=b.故答案为:b.16.已知等腰三角形一腰上的高与另一腰的夹角为30°, 则这个等腰三角形顶角为60或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系, 三角形内部, 三角形的外部, 三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了, 因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1), 顶角是60°;当高在三角形外部时(如图2), 顶角是120°.故答案为:60或120.17.如图, 一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔, 如果一个球按图中所示的方向被击出(球可以经过多次反射), 那么该球最后将落入1号球袋.【考点】生活中的轴对称现象.【分析】由已知条件, 按照反射的原理画图即可得出结论.【解答】解:如图, 该球最后将落入1号球袋.18.在4×4的方格中有五个同样大小的正方形如图摆放, 请你添加一个正方形到空白方格中, 使它与其余五个正方形组成的新图形是一个轴对称图形, 这样的添法共有4种.【考点】利用轴对称设计图案.【分析】因为中间4个小正方形组成一个大的正方形, 正方形有四条对称轴, 试着利用这四条对称轴添加图形得出答案即可.【解答】解:如图所示.这样的添法共有4种.故答案为:4.三、解答题19.尺规作图:某学校正在进行校园环境的改造工程设计, 准备在校内一块四边形花坛内栽上一棵桂花树.如图, 要求桂花树的位置(视为点P), 到花坛的两边AB、BC的距离相等, 并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法, 保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上, 到点A、D的距离相等的点在线段AD的垂直平分线上, AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.20.要在公路MN上修一个车站P, 使得P与A, B两个地方的距离和最小, 请在图中画出P 的位置.【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】作出A点关于MN的对称点A′, 再连接A′B, 与MN交于一点, 就是P点所在位置.【解答】解:如图所示:,点P即为所求.21.如图所示, 在△AFD和△BEC中, 点A、E、F、C在同一条直线上, 有下面四个论断:(1)AD=CB, (2)AE=CF, (3)∠B=∠D, (4)AD∥BC,请你从这四个条件中选出三个作为已知条件(3个条件都用上), 另一个作为结论, 组成一个真命题, 并给予证明.题设:(1)(2)(4);结论:(3).(均填写序号)证明:【考点】命题与定理.【分析】选择①②④得到③, 组成命题为如果AD=CB, AE=CF, AD∥BC, 那么∠D=∠B;利用“SAS”证明△ADF≌△CBE, 然后根据相似的性质得到∠D=∠B.【解答】解:题设:(1)(2)(4);结论:(3).证明如下:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=EF+CF,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B.故答案为:(1)(2)(4);(3).22.如图, 已知:△ABC中, AB=AC, BD和CE分别是∠ABC和∠ACB的角平分线, 且相交于O点.①试说明△OBC是等腰三角形;②连接OA, 试判断直线OA与线段BC的关系, 并说明理由.【考点】等腰三角形的判定与性质.【分析】①根据对边对等角得到∠ABC=∠ACB, 再结合角平分线的定义得到∠OBC=∠OCB, 从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC, 再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【解答】解:①∵在△ABC中, AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)23.如图, 在△ABC中, BC=8cm, BP、CP分别是∠ABC和∠ACB的平分线, 且PD∥AB, PE ∥AC.(1)求△PDE的周长;(2)若∠A=50°, 求∠BPC的度数.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)分别利用角平分线的性质和平行线的判定, 求得△DBP和△ECP为等腰三角形, 由等腰三角形的性质得BD=PD, CE=PE, 那么△PDE的周长就转化为BC边的长, 即为8cm.(2)根据三角形内角和定理和角平分线的性质即可求得.【解答】解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD, ∠ACP=∠PCE,∵PD∥AB, PE∥AC,∴∠ABP=∠BPD, ∠ACP=∠CPE,∴∠PBD=∠BPD, ∠PCE=∠CPE,∴BD=PD, CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.(2)∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠ABC+∠ACB=65°,∵∠PBC=∠ABC, ∠PCB=∠ACB,∴∠PBC+∠PCB=65°,∴∠BPC=180°﹣65°=115°.24.如图, 直线m经过正三角形ABC的顶点A, 在直线m上取两点D, E, 使得使∠ADB=∠AEC=120°.通过观察或测量, 猜想线段BD, CE与DE之间满足的数量关系, 并予以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质得出∠BAC=60°, AB=AC, 求出∠BAD=∠ACE, 根据AAS 推出△ABD≌△CAE, 根据全等三角形的性质得出CE=AD, AE=BD, 即可得出答案.【解答】DE=CE﹣BD,证明:∵△ABC是等边三角形,∴∠BAC=60°, AB=AC,∴∠BAD+∠CAE=60°,∵∠AEC=120°,∴∠ACE+∠CAE=60°,∴∠BAD=∠ACE,在△ABD和△CAE中∴△ABD≌△CAE(AAS),∴CE=AD, AE=BD,∵DE=AD﹣AE,∴DE=CE﹣BD.25.如图, 已知△ABC中, AB=AC=6cm, BC=4cm, 点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动, 同时, 点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等, 经过1秒后, △BPD与△CPQ是否全等, 请说明理由.②若点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为 1.5cm/s时, 在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发, 点P以原来的运动速度从点B同时出发, 都逆时针沿△ABC的三边运动.求经过多少秒后, 点P与点Q第一次相遇, 并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长, 根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系, 再根据路程=速度×时间公式, 先求得点P运动的时间, 再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快, 且在点P的前边, 所以要想第一次相遇, 则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm, 点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP, BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q, ∴BP≠CQ,又∵△BPD≌△CPQ, ∠B=∠C, 则BP=CP=2, BD=CQ=3,∴点P, 点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意, 得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.26.如图甲, 在△ABC中, ∠ACB为锐角, 点D为射线BC上一动点, 连接AD, 以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC, ∠BAC=90°,①当点D在线段BC上时(与点B不重合), 如图乙, 线段CF、BD之间的位置关系为垂直, 数量关系为相等.②当点D在线段BC的延长线上时, 如图丙, ①中的结论是否仍然成立, 为什么?(2)如果AB≠AC, ∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时, CF⊥BC(点C、F重合除外)?并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC, 所以CF=BD, ∠ACF=∠ABD.结合∠BAC=90°, AB=AC, 得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时, 过点A作AG⊥AC交CB或CB的延长线于点G, 则∠GAC=90°, 可推出∠ACB=∠AGC, 所以AC=AG, 由(1)①可知CF⊥BD.【解答】解:(1)①CF⊥BD, CF=BD …故答案为:垂直、相等.②成立, 理由如下:…∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)∴CF=BD, ∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD …(2)当∠ACB=45°时可得CF⊥BC, 理由如下:…过点A作AC的垂线与CB所在直线交于G …则∵∠ACB=45°∴AG=AC, ∠AGC=∠ACG=45°∵AG=AC, AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC, ∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS)…∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC …2016年11月1日。
2023-2024学年江苏省镇江市八年级上学期10月月考数学试题
2023-2024学年江苏省镇江市八年级上学期10月月考数学试题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,,点与与分别是对应顶点,且测得,则长为()A.B.C.D.3.如图,已知,,增加下列条件:①;②;③;④.其中能使的条件有()A.4个B.3个C.2个D.1个4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.的三条中线的交点B.三条角平分线的交点C.三条高所在直线的交点D.三边的中垂线的交点5.如图:是中边的垂直平分线,若厘米,厘米,则的周长为()厘米.A.16B.18C.26D.286.如图,是中的平分线,,交于点E,,交于点F,若,则的面积是()A.4B.6C.8D.107.公元前6世纪,古希腊哲学家泰勒斯这样测得轮船到海岸的距离:如图所示,在海边灯塔上进行测量,直立一根可以原地转动的竖竿(垂直于地面),在其上一点A处连接一个可以绕A转动并固定在任意位置上的横杆,先转动横杆使其转向船的位置B,再转动竖竿,使横杆对准岸上的一点C,然后测量D,C的距离,即得D,B的距离,哲学家得到的依据是()A.B.C.D.8.如图,在中,,平分交于点平分交于点交于点.则下列说法正确的个数为()①;②,③若,则;④;⑤.A.2个B.3个C.4个D.5个9.如图,与关于直线l对称,则∠B的度数为___.10.小明从镜子中看到对面电子钟如图所示,这时的时刻应是_____.11.已知图中的两个三角形全等,则______°.12.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件_______________.13.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=_____cm.14.如图,在中,的平分线交于点.若,则的面积是___________.15.如图,在中,的垂直平分线分别交于点的垂直平分线分别交于点,则的周长为_____.16.如图,小敏做了一个角平分仪ABCD,其中,,将仪器上的点A与的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是的平分线此角平分仪的画图原理是:根据仪器结构,可得≌,这样就有则说明这两个三角形全等的依据是______17.如图,四边形中,,,对角线,若,则的面积为_____________.18.如图,在中,,,,点在直线上.点从点出发,在三角形边上沿的路径向终点运动;点从点出发,在三角形边上沿的路径向终点运动.点和分别以单位秒和单位秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点要继续运动,直到两点都到达相应的终点时整个运动才能停止.在某时刻,分别过和作于点,于点,则点的运动时间等于_____秒时,与全等.19.如图,,,.(1)求证:;(2)若,AE平分,求的度数.20.在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使涂黑部分图形是一个轴对称图形(最少三种不同方法).21.如图:已知和两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即,且P到两条公路的距离相等.22.如图,是的平分线.垂直平分于点P,于点F,于点E.(1)求证:;(2)若,则.23.小明在做数学作业时,遇到这样一个问题:如图,,,请说明的道理.小明动手测量一下,发现确实相等,但不能说明道理,请你帮助说明其中的理由.24.(1)如图①,,射线在这个角的内部,点、在的边、上,且于点于点,证明:;(2)迁移应用:如图②,点在的边、上,点在内部的射线上,分别是的外角,已知,猜想与的关系,并说明理由.25.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接AD,AE,△ADE的周长为12cm.(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为26cm,求OA的长.26.如图,已知中,厘米,厘米,点D为的中点.如果点P在线段上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(2)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动.设运动的时间为t秒;直接写出秒时点P与点Q第一次相遇.27.(1)如图1,在四边形中,分别是边、上的点,且.求证:;(2)如图2,在四边形中,分别是边上的点,且,(1)中的结论是否仍然成立?(3)如图3,在四边形中,分别是边延长线上的点,且(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.。
初中数学10月镇江市扬中市八年级上月考数学考试卷含答案
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC= ;如图2,∠BOC= ;如图3,∠BOC= ;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC= .(用含n的式子表示)评卷人得分试题2:已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.试题3:如图所示,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.试说明:AD垂直平分EF.试题4:已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.试题5:已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.试题6:尺规作图.如图,已知∠AOB与点M、N.求作:一点P,使得点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)试题7:如图是由三个小正方形组成的图形,请你在图中补画一个同样大小的小正方形,使补画后的图形成为一个轴对称图形(请用四种不同的方法).试题8:.如图,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,请在图中再画一个格点三角形DEF,使得△DEF≌△ABC,图中最多能画个格点三角形与△ABC全等(不含△ABC).试题9:利用刻度尺和三角板作图:如图,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD 关于直线m成轴对称.试题10:在△ABC中,AB=AC,OB=OC,且点A到BC的距离为8,点O到BC的距离为4,则AO的长为.试题11:如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于.试题12:如图,OA平分∠BAC,∠AOD=∠AOE,则图中的全等三角形共有对.如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添根木条.试题14:如图,已知点P是∠AOB内一点,点P关于直线OA的对称点是点E,点P关于直线OB的对称点是点F,连接线段EF分别交OA、OB于点C、D,连接线段PC、PD.如果△PCD的周长是10cm,那么线段EF的长度是cm.试题15:如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.试题16:如图,已知BD=CE,∠B=∠C,若AB=8,AD=3,则DC= .如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.(1)若以“SAS”为依据,需添加条件;(2)若以“HL”为依据,需添加条件.试题18:已知△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x﹣5,若两个三角形全等,则x= .试题19:已知△ABC与△A′B′C′关于直线L对称,且∠A=50度,∠B′=70°,那么∠C′= 度.试题20:由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).试题21:在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有()个.(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.2个 B.3个 C.4个 D.5个试题22:附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF试题23:如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11试题24:如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm试题25:用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB 的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.HL D.ASA试题26:如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF的是()A.AC∥DF B.∠A=∠D C.AC=DF D.BE=CF试题27:已知图中的两个三角形全等,则∠1等于()A.50° B.58° C.60° D.72°试题28:下列图形中,不是轴对称图形的是()A. B. C. D.试题1答案:【解答】①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.试题2答案:【解答】证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE;(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF.试题3答案:【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,又DE=DF,∴AD垂直平分EF(到线段两端点的距离相等的点一定在线段的垂直平分线上).试题4答案:【解答】证明:∵CB⊥AD,∴∠ABC=∠CBD=90°,∴∠C+∠D=90°,∵AE⊥DC,∴∠A+∠D=90°,∴∠A=∠C,在△ABF和△CBD中∴△ABF≌△CBD.试题5答案:【解答】证明:∵AF=DE,∴AE=DF,∵AB∥DC,∴∠A=∠D,在△ABE和△DCF中∴△ABE≌△DCF(AAS),∴AB=DC.试题6答案:【解答】解:如图所示:.试题7答案:【解答】解:如图:试题8答案:3【解答】解:不妨设小正方形的边长为1,由勾股定理可求得AB=,BC=3,AC=2,当BC和EF重合时,则点D在点A右侧一个单位,满足条件,当BC和EF平行时,则EF在线段BC上方两个单位,此时D点在线段BC中间的两个格点上,共有两个,综上可知最多可画3个格点三角形,可画出其中的第一种情况如图所示,故答案为:.试题9答案:【解答】解:如图,四边形A1B1C1D1即为所求.试题10答案:4或12【解答】解:∵OB=OC,∴点O在BC的垂直平分线上,而AB=AC,∴点A在BC的垂直平分线上,当点O在△ABC的内部时,AO=8﹣4=4;当点O在△ABC的外部时,AO=8+4=12.故答案为:.试题11答案:5【解答】解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,∴S△BCE=BC•EF=×5×1=5,故答案为:.试题12答案:3【解答】解:∵OA平分∠BAC,∴∠DAO=∠EAO.在△DAO和△EAO中,,∴△DAO≌△EAO(ASA).∴OD=OE,∠ADO=∠AEO,∴∠BDO=∠CEO.在△BDO和△CEO中,,∴△BDO≌△CEO(ASA),∴OB=OC.∵∠AOD=∠AOE,∠BOD=∠COE,∴∠AOB=∠AOC.在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).试题13答案:【解答】解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根木条.试题14答案:10.【解答】解:∵P点关于OA、OB的对称点分别为E、F,∴PC=EC,PD=FD,∴△PCD的周长=PC+CD+FD=CE+CD+FD=EF,∵△PCD的周长是10cm,∴EF=10cm.试题15答案:135.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.试题16答案:5.【解答】解:在△ABD和△ACE中,∴△ABD≌△ACE,∴AB=AC=8,∴CD=AC﹣AD=8﹣3=5.试题17答案:【解答】解:(1)若以“SAS”为依据,需添加条件:AB=CD;∵AC⊥AB,AC⊥CD,∴∠BAC=90°,∠DCA=90°,∴∠BAC=∠DCA,在△ABC和△CDA中,∵,∴△ABC≌△CDA(SAS);(2)若以“HL”为依据,需添加条件:AD=BC;在Rt△ABC和Rt△CDA中,∴Rt△ABC≌Rt△CDA(HL).试题18答案:4【解答】解:∵两个三角形全等,∴或,解得:无解或x=4.试题19答案:60.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=70°,∵∠A=50°,∴∠C′=∠C=180°﹣∠B﹣∠A=180°﹣70°﹣50°=60°.试题20答案:不是【解答】解:由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.试题21答案:C.【解答】解:如图:取AD的中点F,连接EF.∵∠B=∠C=90°,∴AB∥CD;[结论(5)]∵E是BC的中点,F是AD的中点,∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;∴∠CDE=∠DEF(两直线平等,内错角相等),∵DE平分∠ADC,∴∠CDE=∠FDE=∠DEF,∴DF=EF;∵F是AD的中点,∴DF=AF,∴AF=DF=EF②,由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由②得∠FAE=∠FEA,由AB∥EF可得∠EAB=∠FEA,∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.正确的结论有4个.试题22答案:B.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,试题23答案:C【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.试题24答案:B【解答】解:∵AD⊥CE,∴∠E=∠ADC=90°,即∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,又∵AC=BC,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD,∵AD=2.5cm,DE=1.7cm,∴BE=CD=CE﹣DE=2.5﹣1.7=0.8cm.试题25答案:C【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.试题26答案:C【解答】解:∵AB∥DE,∴∠B=∠DEC,∵AB=DE,∴当AC∥DF时,可知∠ACB=∠F,可用AAS证明;当∠A=∠D时,可用ASA证明;当AC=DF时,此时满足的条件是SSA,故不能证明;当BE=CF时,可得BC=EF,可用ASA来证明;试题27答案:B【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,试题28答案:C【解答】解:A、该图形是轴对称图形,不符合题意,B、该图形是轴对称图形,不符合题意;C、该图形不是轴对称图形,符合题意;D、该图形是轴对称图形,符合题意;。
江苏省扬州市 八年级(上)月考数学试卷(10月份)
八年级(上)月考数学试卷(10月份)一、选择题(本大题共8小题,共24.0分)1.下列qq的“表情图”中,属于轴对称图形的是()A. B. C. D.2.下列说法中,正确的是()A. 两个全等三角形一定关于某直线对称B. 等边三角形的高、中线、角平分线都是它的对称轴C. 两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D. 关于某直线对称的两个图形是全等形3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A. 16B. 18C. 20D. 16或204.如图,△ABC≌△DEF,BE=4,则AD的长是()A. 5B. 4C. 3D. 25.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠EB. BC=EC,AC=DCC. AC=DC,∠B=∠ED. ∠B=∠E,∠BCE=∠ACD6.由下列条件不能判定△ABC为直角三角形的是()A. ∠C+∠B=∠AB. ∠A:∠B:∠C=1:3:2C. (b+c)(b−c)=a2D. a=13,b=14,c=157.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A. 60∘B. 70∘C. 80∘D. 90∘8.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是()A. 3.6B. 4C. 4.8D. PB的长度随B点的运动而变化二、填空题(本大题共10小题,共30.0分)9.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是______.10.等腰三角形的一个角为40°,则它的底角为______.11.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.12.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是______.13.直角三角形的两边长为3、4,则第三边的平方为______.14.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为______.15.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______.16.如图,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,该图中与△ABC全等的不同格点三角形共有______个(△ABC除外).17.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为______.三、计算题(本大题共1小题,共10.0分)19.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.四、解答题(本大题共9小题,共86.0分)20.作图题(保留作图痕迹)(1)如图1,利用网格线用三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;(2)图2是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.请在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上.21.已知:如图,P、Q是△ABC边BC上两点,且AB=AC,AP=AQ.求证:BP=CQ.22.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.23.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.24.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.25.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.26.在△ABC和△DEF中(1)如图①,AC=DF,BC=DE,∠F=∠A,△ABC和△DEF______;(填“全等”或“不全等”)用一句话概括你的结论:;(图①)(2)图①中,若AC=DF,BC=DE,∠C=30°,∠D=150°,△ABC和△DEF的面积分别记为S1与S2,比较S1与S2的大小为S1S2;(填“大于”“小于”或“等于”)并说明理由.(3)如图②,在△ABC与△DEF中,AC=DF,BC=DE,∠C=30°,点E在以D为圆心,DE长为半径的图示半圆上运动,∠EDF的度数为α,比较S1与S2的大小(直接写出结果,不用说明理由).27.已知:如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB边的垂直平分线相交于点D,DE⊥AC,DF⊥BC,垂足分别是E、F.(1)求证:AE=BF;(2)求AE的长;(3)求线段DG的长.28.如图,正方形ABCD(四边相等,四个角都是直角)的边长为4,点P从点A出发,以每秒1个单位长度的速度沿射线AD向点D运动;点Q从点D同时出发,以相同的速度沿射线AD方向向右运动,当点P到达点D时,点Q也停止运动,连接BP,过点P作BP的垂线交过点Q平行于CD的直线l于点E,BE于CD相交于点F,连接PF,设点P运动时间为t(s),(1)求∠PBE的度数;(2)当t为何值时,△PQF是以PF为腰的等腰三角形?(3)试探索在运动过程中△PDF的周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.根据轴对称的性质,等边三角形的轴对称性对各选项分析判断利用排除法求解.本题考查了轴对称的性质,成轴对称的两个图形既要考虑形状和大小,还要考虑位置.3.【答案】C【解析】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4.【答案】B【解析】解:∵△ABC≌△DEF,∴AB=DE,∴AB-AE=DE-AE,即AD=BE,∵BE=4,∴AD=4.故选:B.根据全等三角形对应边相等可得AB=DE,然后求出AD=BE.本题考查了全等三角形对应边相等的性质,熟记性质是解题的关键.5.【答案】C【解析】解:A、根据SAS能推出△ABC≌△DEC,正确,故本选项错误;B、根据SSS能推出△ABC≌△DEC,正确,故本选项错误;C、根据AC=DC,AB=DE和∠B=∠E不能推出△ABC≌△DEC,错误,故本选项正确;D、∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,即根据AAS能推出△ABC≌△DEC,正确,故本选项错误;故选:C.全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.【答案】D【解析】解:A、∵∠C+∠B=∠A,∴∠A=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=180°=90°,故是直角三角形,正确;C、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确;D、∵()2≠()2+()2,故不能判定是直角三角形.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.【答案】B【解析】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选:B.连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.8.【答案】B【解析】解:如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,∴AB=BE,BF=BO;在△ABO与△BEN中,∴△ABO≌△BEN(AAS),∴BO=NE,BN=AO;∵BO=BF,∴BF=NE,在△BPF与△NPE中,∴△BPF≌△NPE(AAS),∴BP=NP=BN;而BN=AO,∴BP=AO==4,故选:B.作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.9.【答案】20:51【解析】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.注意镜面对称的特点,并结合实际求解.解决此类问题要注意所学知识与实际情况的结合.10.【答案】40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.11.【答案】5【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.【答案】47【解析】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=32+52,y2=22+32,z2=x2+y2,即最大正方形的面积为z2.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.【答案】25或7【解析】解:①若4是直角边,则第三边x是斜边,由勾股定理,得42+32=x2,所以x2=25;②若4是斜边,则第三边x为直角边,由勾股定理,得x2=42-32,所以x2=7;故x2=25或7.故答案为:25或7.本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.14.【答案】1【解析】解:∵四个全等的直角三角形的直角边分别是5和4,∴阴影部分的正方形的边长为5-4=1,∴阴影部分面积为1×1=1.故答案为:1.求出阴影部分的正方形的边长,即可得到面积.本题考查了“赵爽弦图”,正方形的面积,熟悉“赵爽弦图”中小正方形的边长等于四个全等的直角三角形中两直角边的差是解题的关键.15.【答案】45°【解析】【分析】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.【解答】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.16.【答案】15【解析】解:∵如图,每两个相邻的小正方形组成的长方形里,都可以做4个与△ABC全等的格点三角形,∴图中共可以作出16个像△ABC这样的格点三角形,∴除去△ABC以外共有15个与△ABC全等的格点三角形,故答案为:15.本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.本题主要考查全等三角形的判定定理,关键在于认真阅读题目,理解题意,正确的画出图形进行分析.17.【答案】4【解析】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.18.【答案】30°【解析】解:由题意得:α=2β,α=100°,则β=50°,180°-100°-50°=30°,故答案为:30°.根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.19.【答案】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,EC=DC.∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA,∠ACB=∠ECD=90°,∴∠ACE=∠BCD.在△ACE和△BCD中AC=BC∠ACE=∠BCDEC=DC,∴△ACE≌△BCD(SAS).(2)解:又∠BAC=45°∴∠EAD=∠EAC+∠BAC=90°,即△EAD是直角三角形∴DE=AE2+AD2=122+52=13.【解析】(1)根据同角的余角相等得到∠ACE=∠BCD,又夹这个角的两边分别是两等腰直角三角形的腰,利用SAS即可证明;(2)根据全等三角形的对应边相等、对应角相等可以得到AE=BD,∠EAC=∠B=45°,所以△AED是直角三角形,利用勾股定理即可求出DE长度.本题第一问利用边角边定理证明三角形全等,第二问利用全等三角形对应边相等、对应角相等的性质.20.【答案】解:(1)如图1所示,点P即为所求;(2)如图2所示,正方形的面积即为10cm2.【解析】(1)利用网格线用三角尺画∠ABC的平分线,与AC的交点即为所求;(2)根据10cm2的正方形的边长为cm,即可得到所求的正方形.本题主要考查了应用与设计作图以及勾股定理的运用,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.【答案】证明:过点A作AO⊥BC于O.∵AB=AC,AO⊥BC∴BO=CO∵AP=AQ,AO⊥BC∴PO=QO∴BO-PO=CO-QO∴BP=CQ.【解析】根据线段垂直平分线的性质,可得BO=CO,PO=QO,根据等式的性质,可得答案.本题考查了等腰三角形的性质,利用线段垂直平分线的性质是解题关键.22.【答案】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,∠A=∠D∠ACB=∠FAB=DE,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC-CE=EF-CE,即BE=CF.【解析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.23.【答案】解:(1)AD平分∠BAC.理由:∵BC为斜边上的中线,∴BD=5.∵在△ABC中,AB=13,AD=12,BD=5,∴132=122+52,即AB2=AD2+BD2,∴∠ADB=90°,即AD⊥BC,∴AD垂直平分BC,∴AB=AC,∴AD平分∠BAC;(2)∵由(1)知,△ABC是等腰三角形,∴BC=2BD=5,∴S△ABC=12BC•AD=12×10×12=60.【解析】(1)先根据BC为斜边上的中线求出BD的长,再由勾股定理的逆定理判断出△ABD的形状,故可得出△ABC是等腰三角形,根据等腰三角形三线合一的性质即可得出结论;(2)由(1)可知△ABC是等腰三角形,再根据三角形的面积公式即可得出结论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.24.【答案】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,∠ADE=∠BFE∠AED=∠BEFAE=BE,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【解析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.【答案】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD=CE∠B=∠CBE=CF,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【解析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°-∠BED-∠FEC=180°-∠DEB-∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.26.【答案】不全等【解析】解:(1)△ABC和△DEF不全等.用一句话概括为:两边分别相等,且其中一边所对的角也对应相等的两三角形不一定全等;故答案为不全等;(2)S1=S2.理由如下:作BM⊥AC垂足为M,作EN⊥DF,垂足为N,如图1,在Rt△BCM中,∵∠C=30°,∴BM=BC,∴S1=AC•BM=AC•BC;∵∠EDF=150°,∴∠EDN=30°,∴EN=DE,∴S2=DF•DE=DF•DE,∵AC=DF,BC=DE,∴S1=S2;(3)当0°<α<30°或150°<α<180°时,S1>S2;当α=30°或α=150°时.S1=S2;当30°<α<150°时,S1<S2.(1)根据全等三角形的判定方法进行判断;(2)作BM⊥AC垂足为M,作EN⊥DF,垂足为N,如图1,利用三角函数的定义得到BM=BC,EN=DE,再根据三角形面积公式得到S1=AC•BC,S2= DF•DE,然后利用AC=DF,BC=DE可判定S1=S2;(3)根据(2)的结论得到当α=30°或α=150°时,S1=S2;然后利用DF上的高变化分0°<α<30°或150°<α<180°和30°<α<150°比较S1与S2的大小.本题考查了圆的综合题:熟练掌握全等三角形的判定、特殊角的三角形函数值和三角形面积公式.合理构建直角三角形是解决本题的关键.27.【答案】(1)证明:如图连接AD、BD.∵∠DCE=∠DCB,DE⊥CA,DF⊥CB,∴DE=DF,∠AED=∠DFB=90°,∵DG垂直平分AB,∴DA=DB,在Rt△DEA和Rt△DFB中,DE=DFDA=DB,∴△DEA≌△DFB,∴AE=BF.(2)设AE=BF=x,在Rt△CDE和Rt△CDF中,CD=CDDE=DF,∴△CDE≌△CDF,∴CE=CF,∴6+x=8-x,∴x=1,∴AE=1.(3)∵△DEA≌△DFB,∴∠ADE=∠BDF,∴∠EDF=∠ADB,∵AC2+BC2=AB2,∴∠ACB=90°,∵∠CED=∠CFD=∠ECF=90°,∴∠EDF=90°,∴∠ADB=90°,∵AG=GB,∴DG=12AB=5.【解析】(1)欲证明AE=BF只要证明△DEA≌△DFB即可.(2)根据CE=CF,设AE=BF=x,列出方程即可.(3)先证明∠EDF=90°,再证明∠ADB=∠EDF=90°,利用直角三角形斜边中线的性质即可解决.本题考查全等三角形的性质、角平分线的性质、垂直平分线的性质、勾股定理的逆定理等知识,解题的关键是添加辅助线构造全等三角形,学会用方程的思想思考问题,属于中考常考题型.28.【答案】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠A=90°,∵AP=DQ,∴AD=PQ=AB,∵PB⊥PE,∴∠BPE=90°,∴∠ABP+∠APB=90°,∠APB+∠EPQ=90°,∴∠ABP=∠EPQ,在△ABP和△QPE中,∠ABP=∠EPQ∠A=∠EQPAB=PQ,∴△ABP≌△QPE,∴PB=PE,∴∠PBE=∠PEB=45°.(2)如图2中,①当AP=PD时,∵AP=DQ,∴DP=DQ,∵FD⊥PQ,∴PF=FQ,∴△PFQ是等腰三角形,此时t=2.②当点P与点D重合时,PF=CD=AD=DQ,△PFQ是等腰三角形,此时t=4.综上所述,t=2s或4s时,△PFQ是以PF为腰的等腰三角形.(3)如图3中,△PDF的周长是定值.将△BCF绕点B顺时针旋转90°得到△BAG.∵∠PBE=45°,∠ABC=90°,∴∠ABP+∠CBF=∠ABP+∠ABG=45°,∴∠PBG=∠PBF,在△PBG和△PBF中,PB=PB∠PBG=∠PBFBG=BF,∴△PBG≌△PBF,∴PF=PG,∴PF=PA+AG=PA+CF,∴△PDF的周长=PF+DP+DF=(PA+DP)+(DF+CF)=AD+CD=8.∴△PDF的周长为定值.【解析】(1)如图1中,只要证明△ABP≌△QPE,推出PB=PE即可证明.(2)如图2中,分两种情形讨论①当AP=PD时,可以推出△PFQ是等腰三角形,此时t=2.②当点P与点D重合时,PF=CD=AD=DQ,△PFQ是等腰三角形,此时t=4.(3)如图3中,△PDF的周长是定值.将△BCF绕点B顺时针旋转90°得到△BAG,只要证明△PBG≌△PBF,推出PF=PG,推出PF=PA+AG=PA+CF,由此即可证明.本题考查四边形综合题、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
八年级上学期十月月考数学试卷(含答题卷及答案)
八年级上学期十月月考数学试卷(含答题卷及答案)八年级上学期十月月考数学试卷一、选择题(每题3分,共30分)1.在下列长度的四组线段中,能组成三角形的是()A.3,7,15 B.1,2,4 C.5,5,10 D.2,3,32.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()(第2题图)(第3题图)(第4题图)A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠23.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD4.如图△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD 等于()A.75°B.57°C.55°D.77°5.如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A.PD≥3B.PD=3 C.PD≤3 D.不能确定(第5题图)(第6题图)(第7题图)6.如图,四边形ABCD中,若去掉一个60°的角后得到一个五边形,则∠1+∠2等于()A.120°B.180°C.240°D.300°7.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC= ()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:58.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5 B.6 C.7 D.10(第8题图)(第9题图)(第10题图)9.如图∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(每小题3分,共18分)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是.12.在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,则S△ABE=.(第12题图)(第14题图) (第16题图)13.已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得.14.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.15.一个多边形的内角和等于外角和的3倍,那么这个多边形为边形.16.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A 点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=秒时,△PEC与△QFC全等.三、解答题17.已知,a、b、c为△ABC的三边长,b、c满足(b﹣2)2+|c﹣3|=0,且a为方程|a﹣4|=2的解,求△ABC的周长,并判断△ABC的形状.(8分)18.若一个正方形边长为48cm,且它的内角和为720°,求这个正方形的边长.(8分)19.一次数学课上,老师在黑板上画了如图图形,并写下了四个等式:①BD=CA,②AB=DC,③∠B=∠C,④∠BAE=∠CDE.要求同学从这四个等式中选出两个作为条件,推出AE=DE.请你试着完成老师提出的要求,并说明理由.(写出一种即可)(8分)已知:(请填写序号),求证:AE=DE.证明:20.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.(8分)21.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE 的度数.(8分)22. 如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,那么,CE=DF吗?(10分)23.(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.(10分)24.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.(12分)八年级上学期十月月考数学试卷一、选择题二、填空题11. 12. 13.14. 15. 16.三、解答题17.18.19.已知:(请填写序号),求证:AE=DE.证明:20.21.22.23.(1)(2)(3)24.(1)(2)上学期十月月考八年级数学参考答案一、选择题DDCDA CCCCA二、填空题11. 1<x<6 12. 1cm213. 3c+a﹣b14. 3 15 8 16. 1或或12三、解答题17. 解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|a﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意舍去,∴a=2,∴△ABC的周长为:2+2+3=7,∴△ABC是等腰三角形.18. 解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n﹣2)=720,解得:n=6,边长为48÷6=8(cm),即这个正多边形的边长为8cm.19. 解:已知:①BD=CA,②AB=DC,求证:AE=DE,证明:在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C,在△ABE和△DCE中,,∴△ABE≌△DCE(AAS),∴AE=DE.20. 解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,=28,AB=6,BC=8,∵S△ABC∴×6×DE+×8×DF=28,∴DE=DF=4.21. 解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE是BC边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.22. 解:CE=DF.理由:在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL),∴AC=BD,∠CAB=∠DBA.在△ACE和△BDF中,∴△ACE≌△BDF(AAS),∴CE=DF.23. 解:(1)如图①,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,,∴△ABD≌△CAF(AAS);(2)∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,,∴△ABE≌△CAF(ASA);(3)∵△ABC的面积为15,CD=2BD,∴△ABD的面积是:×15=5,由(2)中证出△ABE≌△CAF,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积,是5.24. 解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.第11页共11页。
10月八年级上月考数学试卷含答案解析
八年级(上)月考数学试卷(10月份)一、选择题1.下列表情中,是轴对称图形的是()A.B.C.D.2.2的算术平方根是()A.4 B.±4 C.D.3.在实数﹣、、、中,无理数的个数是()A.1 B.2 C.3 D.44.如图,AB、CD相交于点E.若△AEC≌△BED,则下列结论中不正确的是()A.AC=BD B.AC∥BD C.E为CD中点D.∠A=∠D5.下列各组数是勾股数的是()A.32,42,52B.1.5,2,2.5 C.6,8,10 D.,,6.到三角形三边的距离都相等的点是三角形的()A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点D.三条边的垂直平分线的交点7.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40 B.80 C.40或360 D.80或3608.如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是()A.90°B.120°C.135°D.150°二.填空题9.的平方根是,计算:=.10.已知等腰三角形的一个底角为70°,则它的顶角为度.11.已知三角形ABC中∠C=90°,AC=3,BC=4,则斜边AB上的高为.12.若的值在两个整数a与a+1之间,则a=.13.在镜子中看到时钟显示的时间是,实际时间是.14.已知|x﹣12|+|z﹣13|与y2﹣10y+25互为相反数,则以x、y、z为三边的三角形是三角形.15.如图,已知∠BAC=∠DAC,请添加一个条件:,使△ABC≌△ADC(写出一个即可).16.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为.17.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=9,AC=7,则△ADE的周长是.18.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为°.三.解答题(共66分)19.计算:﹣()2+﹣.20.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.如图,△ABC的顶点均在格点上,利用网格线在图中找一点O,使得OA=OB=OC.23.已知:如图,∠B=∠D,∠1=∠2,AB=AD.求证:AC=AE.24.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.25.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.26.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.27.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2016-2017学年江苏省盐城市景山中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题1.下列表情中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.2.2的算术平方根是()A.4 B.±4 C.D.【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:2的算术平方根为.故选C.【点评】本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).3.在实数﹣、、、中,无理数的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有,共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,AB、CD相交于点E.若△AEC≌△BED,则下列结论中不正确的是()A.AC=BD B.AC∥BD C.E为CD中点D.∠A=∠D【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等、对应角相等解答即可.【解答】解:∵△AEC≌△BED,∴AC=BD,A说法正确,不合题意;∠C=∠D,∴AC∥BD,B说法正确,不合题意;EC=ED,C说法正确,不合题意;∠C=∠D,D说法错误,符合题意,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.下列各组数是勾股数的是()A.32,42,52B.1.5,2,2.5 C.6,8,10 D.,,【考点】勾股数.【分析】根据勾股定理的逆定理进行解答即可.【解答】解:A、∵(32)2+(42)2=8+256=337≠(52)2,∴不是勾股数,故本选项错误;B、∵(1.5)2+22=2.25+4=6.25=2.52,但不是正整数,∴不是勾股数,故本选项错误;C、∵62+82=100=102,∴是勾股数,故本选项正确;D、∵()2+()2=7≠()2,∴不是勾股数,故本选项错误.故选C.【点评】本题考查的是勾股数,熟知满足a2+b2=c2的三个正整数,称为勾股数是解答此题的关键.6.到三角形三边的距离都相等的点是三角形的()A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】由到三角形三边的距离都相等的点是三角形的三条角平分线的交点;到三角形三个顶点的距离都相等的点是三角形的三条边的垂直平分线的交点.即可求得答案.【解答】解:到三角形三边的距离都相等的点是三角形的三条角平分线的交点.故选A.【点评】此题考查了线段垂直平分线的性质以及角平分线的性质.此题比较简单,注意熟记定理是解此题的关键.7.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40 B.80 C.40或360 D.80或360【考点】勾股定理;等腰三角形的性质.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图左图中AC=10,CD=6,CD⊥AB根据勾股定理可知AD=8∴BD=2∴BC2=22+62=40右图中AC=10,CD=6,CD⊥BD,根据勾股定理知AD=8∴BD=18∴BC2=182+62=360.故选C.【点评】本题考查了等腰三角形的性质,作出图形利用三角形知识求解即可.8.如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是()A.90°B.120°C.135°D.150°【考点】翻折变换(折叠问题).【分析】如图所示,延长CO到F,由翻折的性质可知:∠A′CF=,,∠CA′O=∠DA′O=∠A=45°,∠OB′C=∠CB′E=∠ECB=45°,最后利用三角形外角的性质可求得∠A′OB′的度数.【解答】解:如图所示:延长CO到F.∵AB=BC,∠ACB=90°,∴∠A=∠B=45°.由翻折的性质可知:∠A′CF=,,∠CA′O=∠DA′O=∠A=45°,∠OB′C=∠CB′E=∠ECB=45°.∴∠A′CB′=∠A′CF+∠B′CF==30°.∴∠A′OB′=∠A′CB′+∠CA′O+∠OB′C=30°+45°+45°=120°.故选:B.【点评】本题主要考查的是翻折的性质,利用翻折的性质求得∠A′CB′=30°,∠CA′O=45°,∠OB′C=45°是解题的关键.二.填空题9.的平方根是±,计算:=﹣2.【考点】立方根;平方根.【分析】利用算术平方根、平方根及立方根定义计算即可得到结果.【解答】解:∵=3,∴的平方根是±,=﹣2,故答案为:±,﹣2.【点评】此题考查了立方根,平方根以及算术平方根,熟练掌握各自的定义是解本题的关键.10.已知等腰三角形的一个底角为70°,则它的顶角为40度.【考点】等腰三角形的性质.【分析】根据三角形内角和是180°和等腰三角形两底角相等,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为70°∴顶角=180°﹣70°×2=40°.故答案为:40.【点评】考查等腰三角形的性质以及三角形的内角和定理的运用.11.已知三角形ABC中∠C=90°,AC=3,BC=4,则斜边AB上的高为.【考点】勾股定理.【分析】先用勾股定理求出斜边AB的长度,再用面积就可以求出斜边上的高.【解答】解:在Rt△ABC中由勾股定理得:AB===5,=ACBC=ABCD由面积公式得:S△ABC∴CD===.故斜边AB上的高CD为.故答案为:.【点评】此题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.12.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.13.在镜子中看到时钟显示的时间是,实际时间是16:25:08.【考点】镜面对称.【分析】实际时间和镜子中的时间关于竖直的线对称,画出相关图形可得实际时间.【解答】解:∵实际时间和镜子中的时间关于竖直的线成轴对称,∴|16:25:08,故答案为:16:25:08.【点评】考查镜面对称的知识;得到相应的对称轴是解决本题的关键;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.14.已知|x﹣12|+|z﹣13|与y2﹣10y+25互为相反数,则以x、y、z为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;配方法的应用.【分析】由已知得|x﹣12|+|z﹣13|+y2﹣10y+25=0,则可求得x、y、z三边的长,再根据勾股定理的逆定理判定三角形形状.【解答】解:解:∵|x﹣12|+|z﹣13|+y2﹣10y+25=0,∴|x﹣12|+|z﹣13|+(y﹣5)2=0,∴x=12,y=5,z=13,∴52+122=132,∴以x,y,z为三边的三角形为直角三角形.故答案为直角.【点评】主要考查了勾股定理的逆定理运用.如果一个三角形的三条边满足两边的平方和等于第三边的平方,则这个三角形为直角三角形.15.如图,已知∠BAC=∠DAC,请添加一个条件:AB=AD,使△ABC≌△ADC(写出一个即可).【考点】全等三角形的判定.【分析】添加AB=AD,再加上条件∠BAC=∠DAC,公共边AC,可利用SAS定理判定△ABC≌△ADC.【解答】解:添加:AB=AD,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:AB=AD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.16.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为3cm.【考点】翻折变换(折叠问题).【分析】如图,根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10cm,EF=DE=λcm,EC=(8﹣λ)cm;由勾股定理得:BF2=102﹣82,∴BF=6cm,∴CF=10﹣6=4cm;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3cm.故答案为:3cm.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.17.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=9,AC=7,则△ADE的周长是16.【考点】等腰三角形的判定与性质;平行线的性质.【分析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,从而得出答案.【解答】解:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=9+7=16,故答案为16.【点评】本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.18.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为60°.【考点】轴对称-最短路线问题.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),根据三角形内角和即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,∴∠MAN=180°﹣(∠AMN+∠ANM)=60°.故答案为:60.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三.解答题(共66分)19.计算:﹣()2+﹣.【考点】实数的运算.【分析】先根据算术平方根、有理数的乘法法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣3+3﹣2=2.【点评】本题考查的是实数的运算,熟知算术平方根、有理数的乘法法则是解答此题的关键.20.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.【考点】立方根;平方根.【分析】①直接开平方法解方程即可;②先整理成x3=a的形式,再直接开立方解方程即可.【解答】解:①x﹣2=±5∴x﹣2=5或x﹣2=﹣5∴x1=7,x2=﹣3;②(1﹣x)3=﹣∴1﹣x=﹣∴x=.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【考点】立方根;平方根;算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.22.如图,△ABC的顶点均在格点上,利用网格线在图中找一点O,使得OA=OB=OC.【考点】作图—应用与设计作图;线段垂直平分线的性质.【分析】根据线段垂直平分线的性质可得点O在三角形各边的垂直平分线上,找到BC、AC 的垂直平分线即可.【解答】解:如图,直线MN是线段BC的垂直平分线,直线EF是线段AC的垂直平分线,直线MN与直线EF的交点为O,点O就是所求的点.【点评】本题考查线段垂直平分线的性质,三角形各边垂直平分线的交点到三个顶点距离相等,熟悉三角形中有关线段的性质是解题的关键.23.已知:如图,∠B=∠D,∠1=∠2,AB=AD.求证:AC=AE.【考点】全等三角形的判定与性质.【分析】根据已知条件得到∠EAD=∠BAC,根据全等三角形的判定定理证得△ADE≌△ACB(AAS),根据全等三角形的性质即可得到结论.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠EAD=∠BAC,在△ADE和△ACB中,,∴△ADE≌△ACB(AAS),∴AC=AE.【点评】本题考查了全等三角形的判定与性质,是基础题,熟记三角形全等的判定方法并求出∠EAD=∠BAC是解题的关键.24.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理求出AC的长,再根据勾股定理求出BC的长,求出△ABC的面积,再求出△ACD的面积,相减即可.【解答】解:在Rt△ACD中,AC==5;在Rt△ACD中,BC==12;=×5×12=30,∴S△ABCS=×4×3=6,△ACD∴阴影部分面积为30﹣6=24.【点评】本题考查了勾股定理、三角形的面积,要灵活转化图形进行解答.25.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.【考点】旋转的性质;等边三角形的判定与性质.【分析】(1)利用有一个角为60°的等腰三角形为等边三角形即可得证;(2)三角形AOD为直角三角形,理由为:由旋转得到两三角形全等,进而求出∠ADC=∠BOC=150°,再由三角形COD为等边三角形,进而确定出∠ADO为直角,即可得证.【解答】(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形.【点评】此题考查了旋转的性质,以及等边三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.26.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.【考点】全等三角形的判定与性质.【分析】分别利用SSS,SAS求证△ABC≌△ADC,△ABO≌△ADO,从而得出OB=OD,AC⊥BD,筝形的面积公式可用△ABC的面积与△ACD的面积和求得.【解答】(1)证明:①在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.②∵△ABC≌△ADC,∴∠BAO=∠DAO.∵AB=AD,OA=OA,∴△ABO≌△ADO.∴OB=OD,AC⊥BD.(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积=×AC×BO+×AC×DO,=×AC×(BO+DO),=×AC×BD,=×6×4,=12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.求出AC⊥BD是正确解决本题的关键.27.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【考点】等腰三角形的判定;一次函数综合题.【分析】(1)利用勾股定理AC=8cm和PB=2cm,所以求出了三角形的周长.(2)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.(3)利用分类讨论的思想和周长的定义求出了答案.【解答】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或10.8s 时△BCP为等腰三角形;(3)当P点在AC上,Q在AB上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.【点评】考查了等腰三角形的判定,利用了勾股定理求出三角形的一条直角边,还利用分类讨论的思想求出所要求的答案.;ZJX;zcx;dddccc;梁。
江苏省扬州市 八年级(上)月考数学试卷(10月份)
八年级(上)月考数学试卷(10月份)一、选择题(本大题共8小题,共24.0分)1.下列四个图案中,不是轴对称图案的是()A. B. C. D.2.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是()A. 21:05B. 21:15C. 20:15D. 20:123.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A. 16B. 25C. 144D. 1694.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A. 60∘B. 70∘C. 80∘D. 90∘5.如图所示,△ABC中,AC=5,AB=6,BC=9,AB的垂直平分线交BC于点D,则△ACD的周长是()A. 11B. 14C. 15D. 206.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A. 20 cmB. 50 cmC. 40 cmD. 45 cm7.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A. 13B. 19C. 25D. 1698.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘二、填空题(本大题共10小题,共30.0分)9.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.10.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为______.11.如果一个等腰三角形的一个角等于80°,则底角的度数是______.12.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为______.13.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC=18cm,则DE的长为______cm.14.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点M、P,AC的垂直平分线分别交AC、BC于点N、Q,∠BAC=110°,则∠PAQ=______°.15.在△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,则AD=______.16.边长为7,24,25的△ABC内有一点P到三边距离相等,则这个距离为______.17.如图,在矩形纸片ABCD中,AB=8,BC=6,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.18.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=______cm.三、计算题(本大题共1小题,共10.0分)19.有一根竹竿,不知道它有多长.把竹竿横放在一扇门前,竹竿长比门宽多4尺;把竹竿竖放在这扇门前,竹竿长比门的高度多2尺;把竹竿斜放,竹竿长正好和门的对角线等长.问竹竿长几尺?四、解答题(本大题共9小题,共86.0分)20.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.(3)在MN上找一点P,使PA+PC的值最小.21.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.22.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,(1)求∠B的度数;(2)求DE的长.23.已知:如图,AB=CD,线段AC的垂直平分线与线段BD的垂直平分线相交于点E.求证:∠ABE=∠CDE.24.如图,把长方形纸片ABCD折叠,使A、C重合,EF为折痕,若AB=9,BC=3,求BF的长度.25.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)若EF=3,BC=8,求△EFM的周长;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.26.提出问题:已知△ABC的三边长分别为记a,b,c,且a=n2-16,b=8n,c=n2+16(n>4),试判断△ABC的形状,并说明理由.解法展示:因为a2=(n2-16)2=n4-32n2+256,b2=(8n)2=______,c2=(n2+16)2=n4+32n2+256,所以a2+b2=n4-32n2+256+______=n4+32n2+256=c2.所以△ABC是______三角形.反思交流:(1)填空并回答上述解法用到了我们学过的哪些数学知识?写出四点;(2)若三角形的边长分别为2n2+2n,2n+1,2n2+2n+1(n>0),请问这个三角形是直角三角形吗?说明你的理由.27.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.28.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA 向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案和解析1.【答案】B【解析】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.根据轴对称的概念对各选项分析判断利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故选:A.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.3.【答案】B【解析】解:两个阴影正方形的面积和为132-122=25.故选:B.两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.考查了正方形的面积以及勾股定理的应用.推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.4.【答案】B【解析】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选:B.连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.5.【答案】B【解析】【分析】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵MN是AB的垂直平分线,∴DA=DB,∵BD+CD=BC,∴△ACD的周长=AD+CD+AC=BD+CD+AC=BC+AC=9+5=14,故选B.6.【答案】C【解析】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.7.【答案】C【解析】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13-1)=25.故选:C.根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.8.【答案】C【解析】【分析】本题主要考查了折叠问题,三角形内角和定理以及角平分线的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,依据∠ABC的角平分线与∠ACD的角平分线交于点M,即可得到∠M=∠DCM-∠DBM=24°,依据∠NBC的角平分线与∠NCB的角平分线交于点Q,即可得到∠BQC的度数.【解答】解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=∠ACD,∠DBM=∠ABC,∴∠M=∠DCM-∠DBM=(∠ACD-∠ABC)=∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=∠CBN,∠BCQ=∠BCN,∴△BCQ中,∠Q=180°-(∠CBQ+∠BCQ)=180°-(∠CBN+∠BCN)=180°-×(180°-∠N)=90°+∠N=102°,故选C.9.【答案】22【解析】解:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.10.【答案】7.2【解析】解:在Rt△ABC中,∵∠C=90°,AB=15,AC=12,∴BC==9,由面积公式得:S△ABC=AC•BC=AB•CD,∴CD===7.2.故斜边AB上的高CD的长为7.2.故答案为:7.2.先用勾股定理求出直角边BC的长度,再用面积就可以求出斜边上的高.本题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.11.【答案】50°或80°【解析】解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,设该等腰三角形的底角是x,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故答案为:50°或80°.根据题意,分已知角是底角与不是底角两种情况讨论,结合三角形内角和等于180°,分析可得答案.本题考查了等腰三角形的性质,及三角形内角和定理;通过三角形内角和,列出方程求解是正确解答本题的关键.12.【答案】70°或20°【解析】解:①如图一,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠A=90°-50°=40°,∴∠C=∠ABC==70°;②如图二,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠BAD=90°-50°=40°,又∵∠BAD=∠ABC+∠C,∠ABC=∠C,∴∠C=∠ABC===20°.故答案为:70°或20°.根据题意,等腰三角形一腰上的高与另一腰的夹角为50°,分两种情况讨论,①如图一,当一腰上的高在三角形内部时,即∠ABD=50°时,②如图二,当一腰上的高在三角形外部时,即∠ABD=50°时;根据等腰三角形的性质,解答出即可.本题主要考查了等腰三角形的性质,知道等腰三角形一腰上的高与另一腰的夹角为50°,有两种情况,一种是高在三角形内部,另一种是高在三角形外部,读懂题意,是解答本题的关键.13.【答案】2.4【解析】解:如图,过点D作DF⊥AB于F,∵BD是∠ABC的平分线,DE⊥BC,∴DE=DF,S△ABC=S△ABD+S△BCD,=AB•DF+BC•DE,=×12•DE+×18•DE,=15DE,∵△ABC=36cm2,∴15DE=36,解得DE=2.4cm.故答案为:2.4.过点D作DF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作辅助线是解题的关键.14.【答案】40【解析】解:∵在△ABC中,PM、QN分别是AB、AC的垂直平分线,∴PA=PB,AQ=CQ,∴∠PAB=∠B,∠CAQ=∠C,∵∠BAC=110°,∴∠B+∠C=180°-∠BAC=70°,∴∠PAB=∠CAQ=70°,∴∠PAQ=∠BAC-(∠PAB+∠CAQ)=110°-70°=40°.故答案为:40.由在△ABC中,PM、QN分别是AB、AC的垂直平分线,根据线段垂直平分线的性质,可求得∠PAB=∠B,∠CAQ=∠C,又由∠BAC=110°,易求得∠PAB+∠CAQ的度数,继而求得答案.此题考查了线段垂直平分线的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.15.【答案】15cm【解析】解:如图,∵△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,∴BD=BC=8cm,∴在直角△ABD中,由勾股定理,得AD===15(cm).故答案是:15cm.利用等腰三角形的性质求得BD=BC=8cm.然后在直角△ABD中,利用勾股定理来求AD的长度.此题主要考查了勾股定理,等腰三角形的性质的理解及运用.利用等腰三角形“三线合一”的性质求得AD的长度是解题的关键.16.【答案】3【解析】解:∵72+242=252,∴△ABC是直角三角形,根据题意画图,如图所示:连接AP,BP,CP.设PE=PF=PG=x,S△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则28x=84,x=3.故答案为:3.首先根据三边长确定三角形是直角三角形,再根据题意画出图形,连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.此题主要考查了勾股定理逆定理,以及三角形的面积.注意构造辅助线,则直角三角形的面积有两种表示方法:一是整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即(AB+AC+BC)x,然后即可计算x 的值.17.【答案】3【解析】解:∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠A=∠C=90°.∵AB=8,BC=6,∴AD=6,CD=8.在Rt△ABD中,由勾股定理,得BD=10.∵△ADE与△A′DE关于DE成轴对称,∴△ADE≌△A′DE,∴AD=A′D,AE=A′E,∠A=∠DA′E=90°,∴∠EA′B=90°,A′D=6,∴A′B=4.设AE=x,则BE=8-x,A′E=x,在Rt△A′EB中,由勾股定理,得x2+42=(8-x)2,解得:x=3.故答案为:3先由勾股定理可以求出DB的值,再根据轴对称可以得知A′D=AD,A′E=AE,在Rt△A′EB中由勾股定理建立方程求出其解即可.本题考查了矩形的性质的运用,勾股定理的运用,轴对称的性质的运用,一元一次方程的运用,解答时运用勾股定理建立方程是关键.18.【答案】8【解析】解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故答案为8.延长ED交BC于M,延长AD交BC于N,只要求出BN即可解决问题.本题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.19.【答案】解:设竹竿长为x尺,则门的宽为x-4,长为x-2.则:(x-4)2+(x-2)2=x2x1=10 x2=2(不合题意舍去)答:竹竿长为10尺.【解析】竹竿的长度为门的对角线长,根据:横放竹竿长比门宽多4尺;竖放竹竿长比门的高度多2尺,可将门的长和宽用竹竿的长度表示出来,利用勾股定理可将竹竿的长度求出.本题主要是将实际问题转化为数学模型,运用勾股定理解直角三角形.20.【答案】解:(1)分别作点A,B,C关于直线MN对称的点A′,B′,C′,连接A′B′,B′C′,A′C′,如图1所示.(2)S△ABC=12×3×2=3.(3)作点A关于直线MN对称的点A′,连接A′C交MN于点P,则PA+PC的值最小,如图2所示.【解析】(1)分别作点A,B,C关于直线MN对称的点A′,B′,C′,连接A′B′,B′C′,A′C′,即可画出△A′B′C′;(2)观察图形,找出△ABC的底和高,利用三角形的面积公式即可求出结论;(3)作点A关于直线MN对称的点A′,连接A′C交MN于点P,点P即可所求之点.本题考查了作图-轴对称变换、三角形的面积以及轴对称-最短路线问题,解题的关键是:(1)找出点A,B,C关于直线MN的对称点;(2)牢记三角形的面积公式;(3)利用两点之间线段最短,找出点P的位置.21.【答案】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,AB=BC∠ABD=∠CBDBD=BD,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【解析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.22.【答案】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=12BD,∵BC=3,∴CD=DE=1.【解析】(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.23.【答案】证明:连接AE、CE,∵AC、BD的垂直平分线相交于E,∴AE=CE,BE=DE,在△ABE和△CDE中,AB=CDAE=CEBE=DE,∴△ABE≌△CDE(SSS),∴∠ABE=∠CDE.【解析】连接AE、CE,根据垂直平分线的性质得出AE=CE,BE=DE,根据SSS推出△ABE≌△CDE即可.本题考查了垂直平分线的性质和全等三角形的性质和判定的应用,关键是推出△ABE≌△CDE.24.【答案】解:∵折叠后A、C重合,EF为折痕,∴AF=CF,设BF=x,则CF=9-x,在Rt△BCF中,BF2+BC2=CF2,即x2+32=(9-x)2,解得x=4.故BF的长为4.【解析】根据翻折的性质可得AF=CF,设BF=x,表示出CF=9-x,然后在Rt△BCF中利用勾股定理列出方程求解即可.本题考查了翻折变换的性质,熟记性质并利用勾股定理列出方程是解题的关键.25.【答案】解:(1)∵CF⊥AB于F,BE⊥AC于E,M为BC的中点,∴EM=FM=12BC=12×8=4,∴△EFM的周长=4+4+3=11;(2)∵CF⊥AB于F,BE⊥AC于E,M为BC的中点,∴BM=MF=MC,∵∠ABC=50°,∠ACB=60°,∴∠BMF=180°-2×50°=80°,∴∠CME=180°-2×60°=60°,∴∠EMF=180°-80°-60°=40°.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据三角形的周长公式列式计算即可得解;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,再根据平角等于180°列式计算即可得解.本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.26.【答案】64n264n2直角【解析】解:(1)因为a2=(n2-16)2=n4-32n2+256,b2=(8n)2=64n2,c2=(n2+16)2=n4+32n2+256,所以a2+b2=n4-32n2+256+64n2=n4+32n2+256=c2.所以△ABC 是直角三角形.解法中用到的数学知识有:积的乘方法则,等量代换,合并同类项的法则,勾股定理的逆定理;(2)这个三角形是直角三角形.理由如下:∵三边长为2n2+2n,2n+1,2n2+2n+1(n>0),∴(2n2+2n)2=4n4+8n3+4n2,(2n+1)2=4n2+4n+1,(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2,故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.故答案为64n2,64n2,直角.(1)根据积的乘方法则得出(8n)2=64n2,代入利用勾股定理的逆定理得出△ABC是直角三角形;解法中用到的数学知识有:积的乘方法则,等量代换,合并同类项的法则,勾股定理的逆定理;(2)欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.27.【答案】解:(1)连接CD并延长,交OA延长线于点F.在△BCD与△AFD中,∠BDC=∠ADFBD=AD∠CBD=∠FAD,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD=12CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ=12∠COD=30°;(2)∵点E四边形OABC的边AB上,∴AB⊥直线l由折叠可知,OD=OC=3,DE=BC=2.∵θ=45°,AB⊥直线l,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由图可知,当0<a<5时,点E落在四边形0ABC的外部.【解析】(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点D为Rt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.本题考查的是几何变换综合题,熟知全等三角形的判定与性质、等腰直角三角形的性质、等边三角形的性质等知识是解答此题的关键.28.【答案】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=AD2+CD2=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10-t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t-4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t-4,过点E做EF垂直AB于F,因为ED=EA,所以DF=AF=12AD=3,在Rt△AEF中,EF=4;因为BM=t,BF=7,所以FM=t-7则在Rt△EFM中,(t-4)2-(t-7)2=42,∴t=496.综上所述,符合要求的t值为9或10或496.【解析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=t-4;分别得出方程,解方程即可.本题考查了勾股定理、等腰三角形的判定与性质、平行线的性质、解方程等知识;本题有一定难度,需要进行分类讨论才能得出结果.第21页,共21页。
【苏科版】 八年级上月考数学试卷(10月份(含答案)
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!2016-2017学年江苏省无锡市前洲中学八年级(上)月考数学试卷(10月份)一.选择题(共8小题, 每小题3分, 共24分)1.如图, 已知△ABC≌△CDE, 其中AB=CD, 那么下列结论中, 不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D2.如果△ABC≌△DEF, △DEF的周长为13, DE=3, EF=4, 则AC的长为()A.13 B.3 C.4 D.63.下列图形中, 是轴对称图形的是()A.B. C.D.4.下列图形中对称轴最多的是()A.圆B.正方形C.角D.线段5.若等腰三角形的一个角为70°, 则顶角为()A.70°B.40°C.40°或70°D.80°6.如图, △ABC与△DEF关于直线MN轴对称, 则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分7.如图, 在Rt△ABC中, ∠C=90°, 以顶点A为圆心, 适当长为半径画弧, 分别交AC, AB 于点M, N, 再分别以点M, N为圆心, 大于MN的长为半径画弧, 两弧交于点P, 作射线AP 交边BC于点D, 若CD=4, AB=15, 则△ABD的面积是()A.15 B.30 C.45 D.608.已知:如图, 在长方形ABCD中, AB=4, AD=6.延长BC到点E, 使CE=2, 连接DE, 动点P从点B出发, 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动, 设点P的运动时间为t秒, 当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题(共10小题, 每小题3分, 满分30分)9.如图, △ABC≌△ADE, ∠B=25°, 则∠D=°.10.若点P在线段AB的垂直平分线上, PA=5, 则PB=.11.如图, 已知AB⊥CD, 垂足为B, BC=BE, 若直接应用“HL”判定△ABC≌△DBE, 则需要添加的一个条件是.12.如图, 点P为∠AOB内一点, 分别作出点P关于OA、OB的对称点P1、P2, 连接P1P2交OA于M, 交OB于N, 若P1P2=6, 则△PMN的周长为.13.将一张正方形纸片如图所示折叠两次, 并在上面剪下一个菱形小洞, 纸片展开后是(填序号).14.如图, 在3×3的正方形网格中, 已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个, 使整个图案构成一个轴对称图形的方法有种.15.等腰三角形的两边长分别为2cm和5cm, 则它的周长是.16.如图, 把矩形ABCD沿EF对折后两部分重合, 若∠1=50°, 则∠AEF=.17.如图, Rt△ABC中, ∠C=90°.E为AB中点, D为AC上一点, BF∥AC交DE的延长线于点F.AC=6, BC=5.则四边形FBCD周长的最小值是.18.如图, ∠BOC=9°, 点A在OB上, 且OA=1, 按下列要求画图:以A为圆心, 1为半径向右画弧交OC于点A1, 得第1条线段AA1;再以A1为圆心, 1为半径向右画弧交OB于点A2, 得第2条线段A1A2;再以A2为圆心, 1为半径向右画弧交OC于点A3, 得第3条线段A2A3;…这样画下去, 直到得第n条线段, 之后就不能再画出符合要求的线段了, 则n=.三、解答题(共2小题, 满分10分)19.某学校正在进行校园环境的改造工程设计, 准备在校内一块四边形花坛内栽上一棵黄桷树.如图, 要求黄桷树的位置点P到边AB、BC的距离相等, 并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法, 保留作图痕迹).20.如图, 在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上.请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P, 使PB1+PC最小;(3)在DE上画出点Q, 使QA+QC最小.四、解答题(共6小题, 满分46分)21.如图, AB=CB, BE=BF, ∠1=∠2, 证明:△ABE≌△CBF.22.已知:如图, AD为∠BAC的平分线, 且DF⊥AC于F, ∠B=90°, DE=DC.试问BE与CF的关系, 并加以说明.23.如图, △ABD≌△EBC, AB=3cm, BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上, 则DB与AC垂直吗?为什么?24.如图, 在△ABC中, AB=AC, AD是△ABC的中线, E是AC的中点, 连接DE, DF⊥AB 于F.求证:(1)∠B=∠EDC;(2)∠BDF=∠ADE.25.如图, 在△ABC中, AB=AC, AB的垂直平分线交AB于M, 交AC于N.(1)若∠ABC=70°, 则∠MNA的度数是.(2)连接NB, 若AB=8cm, △NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P, 使由P、B、C构成的△PBC的周长值最小?若存在, 标出点P 的位置并求△PBC的周长最小值;若不存在, 说明理由.26.如图1, 在△ABC中, ∠ACB为锐角, 点D为射线BC上一点, 连接AD, 以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC, ∠BAC=90°,①当点D在线段BC上时(与点B不重合), 如图2, 线段CF、BD所在直线的位置关系为, 线段CF、BD的数量关系为;②当点D在线段BC的延长线上时, 如图3, ①中的结论是否仍然成立, 并说明理由;(2)如果AB≠AC, ∠BAC是锐角, 点D在线段BC上, 当∠ACB满足什么条件时, CF⊥BC(点C、F不重合), 并说明理由.2016-2017学年江苏省无锡市前洲中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(共8小题, 每小题3分, 共24分)1.如图, 已知△ABC≌△CDE, 其中AB=CD, 那么下列结论中, 不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D【考点】全等图形.【分析】两三角形全等, 根据全等三角形的性质判断.【解答】解:∵△ABC≌△CDE, AB=CD∴∠ACB=∠CED, AC=CE, ∠BAC=∠ECD, ∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选C.2.如果△ABC≌△DEF, △DEF的周长为13, DE=3, EF=4, 则AC的长为()A.13 B.3 C.4 D.6【考点】全等图形.【分析】可以利用已知条件先求出DF的长度, 再根据三角形全等的意义得到AC=DF, 从而得出AC的长度.【解答】解:∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3, EF=4,∴DF=6, 即AC=6,故选D.3.下列图形中, 是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A不是轴对称图形, 故错误;B不是轴对称图形, 故错误;C是轴对称图形, 故正确;D不是轴对称图形, 故错误;故选:C.4.下列图形中对称轴最多的是()A.圆B.正方形C.角D.线段【考点】轴对称的性质.【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后, 直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形.这条直线就是它的对称轴.【解答】解:A、圆的对称轴有无数条, 它的每一条直径所在的直线都是它的对称轴;B、正方形的对称轴有4条;C、角的对称轴有1条;D、线段的对称轴有2条.故图形中对称轴最多的是圆.故选A.5.若等腰三角形的一个角为70°, 则顶角为()A.70°B.40°C.40°或70°D.80°【考点】等腰三角形的性质.【分析】题中没有指明该角是顶角还是底角, 故应该分两种情况进行分析.【解答】解:(1)当70°角为顶角, 顶角度数即为70°;(2)当70°为底角时, 顶角=180°﹣2×70°=40°.故选C.6.如图, △ABC与△DEF关于直线MN轴对称, 则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【考点】轴对称的性质.【分析】根据轴对称的性质作答.【解答】解:A、AB与DF不是对应线段, 不一定平行, 故错误;B、△ABC与△DEF关于直线MN轴对称, 则△ABC≌△DEF, ∠B=∠E, 正确;C、△ABC与△DEF关于直线MN轴对称, 则△ABC≌△DEF, AB=DE, 正确;D、△ABC与△DEF关于直线MN轴对称, A与D的对应点, AD的连线被MN垂直平分, 正确.故选:A.7.如图, 在Rt△ABC中, ∠C=90°, 以顶点A为圆心, 适当长为半径画弧, 分别交AC, AB 于点M, N, 再分别以点M, N为圆心, 大于MN的长为半径画弧, 两弧交于点P, 作射线AP 交边BC于点D, 若CD=4, AB=15, 则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线, 过点D作DE⊥AB于E, 根据角平分线上的点到角的两边距离相等可得DE=CD, 然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线, 过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.8.已知:如图, 在长方形ABCD中, AB=4, AD=6.延长BC到点E, 使CE=2, 连接DE, 动点P从点B出发, 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动, 设点P的运动时间为t秒, 当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】全等三角形的判定.【分析】分两种情况进行讨论, 根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD, 若∠ABP=∠DCE=90°, BP=CE=2, 根据SAS证得△ABP≌△DCE, 由题意得:BP=2t=2,所以t=1,因为AB=CD, 若∠BAP=∠DCE=90°, AP=CE=2, 根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以, 当t的值为1或7秒时.△ABP和△DCE全等.故选C.二、填空题(共10小题, 每小题3分, 满分30分)9.如图, △ABC≌△ADE, ∠B=25°, 则∠D=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠B=∠D, 即可得出答案.【解答】解:∵△ABC≌△ADE, ∠B=25°,∴∠D=∠B=25°,故答案为:25.10.若点P在线段AB的垂直平分线上, PA=5, 则PB=5.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得PB=PA.【解答】解:∵点P在线段AB的垂直平分线上,∴PB=PA=5.故答案为:5.11.如图, 已知AB⊥CD, 垂足为B, BC=BE, 若直接应用“HL”判定△ABC≌△DBE, 则需要添加的一个条件是AC=DE.【考点】直角三角形全等的判定.【分析】先求出∠ABC=∠DBE=90°, 再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.12.如图, 点P为∠AOB内一点, 分别作出点P关于OA、OB的对称点P1、P2, 连接P1P2交OA于M, 交OB于N, 若P1P2=6, 则△PMN的周长为6.【考点】轴对称的性质.【分析】根据轴对称的性质可得PM=P1M, PN=P2N, 然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M, PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=6,∴△PMN的周长=6.故答案为:6.13.将一张正方形纸片如图所示折叠两次, 并在上面剪下一个菱形小洞, 纸片展开后是③(填序号).【考点】剪纸问题.【分析】结合空间思维, 分析折叠的过程及剪菱形的位置, 注意图形的对称性, 易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时, 在垂直于斜边的位置上剪菱形,则直角顶点处完好, 即原正方形中间无损, 且菱形关于对角线对称.故答案为:③.14.如图, 在3×3的正方形网格中, 已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个, 使整个图案构成一个轴对称图形的方法有5种.【考点】利用轴对称设计图案.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折, 直线两旁的部分能互相重合, 那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑, 使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处, 3处, 7处, 6处, 5处, 选择的位置共有5处.故答案为:5.15.等腰三角形的两边长分别为2cm和5cm, 则它的周长是12cm.【考点】等腰三角形的性质;三角形三边关系.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为2cm, 只能为5cm, 然后即可求得等腰三角形的周长【解答】解:∵等腰三角形的两条边长分别为2cm, 5cm,∴由三角形三边关系可知;等腰三角形的腰长不可能为2, 只能为5,∴等腰三角形的周长=5+5+2=12cm.故答案为:12cm.16.如图, 把矩形ABCD沿EF对折后两部分重合, 若∠1=50°, 则∠AEF=115°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据翻折的性质可得∠2=∠1, 再求出∠3, 然后根据两直线平行, 同旁内角互补列式计算即可得解.【解答】解:∵矩形ABCD沿EF对折后两部分重合, ∠1=50°,∴∠3=∠2==65°,∵矩形对边AD∥BC,∴∠AEF=180°﹣∠3=180°﹣65°=115°.故答案为:115°.17.如图, Rt△ABC中, ∠C=90°.E为AB中点, D为AC上一点, BF∥AC交DE的延长线于点F.AC=6, BC=5.则四边形FBCD周长的最小值是16.【考点】全等三角形的判定与性质;垂线段最短.【分析】由条件易知△BFE与△ADE全等, 从而BF=AD, 则BF+CD=AD+CD=AC=6, 所以只需FD最小即可, 由垂线段最短原理可知, 当FD垂直AC时最短.【解答】解:∵BF∥AC,∴∠EBF=∠EAD,在△BFE和△ADE中,,∴△BFE≌△ADE(ASA),∴BF=AD,∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD,∴当FD⊥AC时, FD最短, 此时FD=BC=5,∴四边形FBCD周长的最小值为5+11=16,故答案为16.18.如图, ∠BOC=9°, 点A在OB上, 且OA=1, 按下列要求画图:以A为圆心, 1为半径向右画弧交OC于点A1, 得第1条线段AA1;再以A1为圆心, 1为半径向右画弧交OB于点A2, 得第2条线段A1A2;再以A2为圆心, 1为半径向右画弧交OC于点A3, 得第3条线段A2A3;…这样画下去, 直到得第n条线段, 之后就不能再画出符合要求的线段了, 则n=9.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数, ∠A2A1C的度数, ∠A3A2B的度数, ∠A4A3C的度数, …, 依此得到规律, 再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A, A1A=A2A1, …,则∠AOA1=∠OA1A, ∠A1AA2=∠A1A2A, …,∵∠BOC=9°,∴∠A1AB=18°, ∠A2A1C=27°, ∠A3A2B=36°的度数, ∠A4A3C=45°, …,∴9°n<90°,解得n<10.由于n为整数, 故n=9.故答案为:9.三、解答题(共2小题, 满分10分)19.某学校正在进行校园环境的改造工程设计, 准备在校内一块四边形花坛内栽上一棵黄桷树.如图, 要求黄桷树的位置点P到边AB、BC的距离相等, 并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法, 保留作图痕迹).【考点】角平分线的性质;线段垂直平分线的性质.【分析】分别作出AD的垂直平分线及∠ABC的平分线, 两条直线的交点即为P点的位置.【解答】解:(1)①分别以A、D为圆心, 以大于AD为半径画圆, 两圆相交于E、F两点;②连接EF, 则EF即为线段AD的垂直平分线.(2)①以B为圆心, 以大于AB长为半径画圆, 分别交AB、BC为G、H;②分别以G、H为圆心, 以大于GH为半径画圆, 两圆相交于点I, 连接BI, 则BI即为∠ABC的平分线.③BI与EF相交于点P,则点P即为所求点.20.如图, 在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上.请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P, 使PB1+PC最小;(3)在DE上画出点Q, 使QA+QC最小.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)连接B1C与DE交于点P, 则点P即为所求点;(3)连接A1C与DE交于点Q, 则点Q即为所求点.【解答】解:(1)如图所示, △A1B1C1就是△ABC关于直线DE对称的三角形;(2)如图所示, 点P就是所求作的点;(3)如图所示, 点Q就是所求作的点.四、解答题(共6小题, 满分46分)21.如图, AB=CB, BE=BF, ∠1=∠2, 证明:△ABE≌△CBF.【考点】全等三角形的判定.【分析】利用∠1=∠2, 即可得出∠ABE=∠CBF, 再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE, 即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).22.已知:如图, AD为∠BAC的平分线, 且DF⊥AC于F, ∠B=90°, DE=DC.试问BE与CF的关系, 并加以说明.【考点】全等三角形的判定与性质;角平分线的性质.【分析】先由角平分线的性质就可以得出DB=DF, 再证明△BDE≌△FDC就可以求出结论.【解答】解:BE=CF.理由:∵∠B=90°,∴BD⊥AB.∵AD为∠BAC的平分线, 且DF⊥AC,∴DB=DF.在Rt△BDE和Rt△FDC中,,∴Rt△BDE≌Rt△FDC(HL),∴BE=CF.23.如图, △ABD≌△EBC, AB=3cm, BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上, 则DB与AC垂直吗?为什么?【考点】全等三角形的性质.【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm, BE=AB=3cm, 然后根据DE=BD ﹣BE代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC, 又A、B、C在一条直线上, 根据平角的定义得出∠ABD+∠EBC=180°, 所以∠ABD=∠EBC=90°, 由垂直的定义即可得到DB⊥AC.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm, BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.24.如图, 在△ABC中, AB=AC, AD是△ABC的中线, E是AC的中点, 连接DE, DF⊥AB 于F.求证:(1)∠B=∠EDC;(2)∠BDF=∠ADE.【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD, ∠ADB=∠ADC=90°, 即可得到结论;(2)根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF, 等量代换即可得到结论.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵AD是△ABC点的中线,∴∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠C=∠EDC,∴∠B=∠EDC;(2)∵AE=DE,∴∠CAD=∠ADE.在Rt△ABD中, ∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE.25.如图, 在△ABC中, AB=AC, AB的垂直平分线交AB于M, 交AC于N.(1)若∠ABC=70°, 则∠MNA的度数是50°.(2)连接NB, 若AB=8cm, △NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P, 使由P、B、C构成的△PBC的周长值最小?若存在, 标出点P 的位置并求△PBC的周长最小值;若不存在, 说明理由.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB=70°, 求得∠A=40°, 根据线段的垂直平分线的性质得出AN=BN, 进而得出∠ABN=∠A=40°, 根据三角形内角和定理就可得出∠ANB=100°, 根据等腰三角形三线合一就可求得∠MNA=50°;(2)①根据△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②根据轴对称的性质, 即可判定P就是N点, 所以△PBC的周长最小值就是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点, 此时P和N重合,即△BNC的周长就是△PBC的周长最小值,∴△PBC的周长最小值为14cm.26.如图1, 在△ABC中, ∠ACB为锐角, 点D为射线BC上一点, 连接AD, 以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC, ∠BAC=90°,①当点D在线段BC上时(与点B不重合), 如图2, 线段CF、BD所在直线的位置关系为垂直, 线段CF、BD的数量关系为相等;②当点D在线段BC的延长线上时, 如图3, ①中的结论是否仍然成立, 并说明理由;(2)如果AB≠AC, ∠BAC是锐角, 点D在线段BC上, 当∠ACB满足什么条件时, CF⊥BC(点C、F不重合), 并说明理由.【考点】全等三角形的判定与性质.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC, 所以CF=BD, ∠ACF=∠ABD.结合∠BAC=90°, AB=AC, 得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时, 过点A作AG⊥AC交CB的延长线于点G, 则∠GAC=90°, 可推出∠ACB=∠AGC, 所以AC=AG, 由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中, AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD, ∠B=∠ACF,∴∠ACB+∠ACF=90°, 即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF, ∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD, ∠ACF=∠ABD.∵∠BAC=90°, AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时, CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°, ∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等), AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°, 即CF⊥BC.百度文库,是您的资料好助手,助您一臂之力!2016年12月8日如果您觉得有用,请收藏我,因为再次见到我的机会不多哦!。
江苏省镇江市 八年级(上)月考数学试卷(10月份)
八年级(上)月考数学试卷(10月份)一、选择题(本大题共6小题,共18.0分)1.风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A. B.C. D.2.已知图中的两个三角形全等,则∠1等于()A. 50∘B. 58∘C. 60∘D. 72∘3.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF的是()A. AC//DFB. ∠A=∠DC. AC=DFD. BE=CF4.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. HLD. ASA5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A. PA=PBB. PO平分∠APBC. OA=OBD. AB垂直平分OP6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A. 8B. 9C. 10D. 11二、填空题(本大题共12小题,共24.0分)7.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件______,可以判断△ABF≌△DCE.8.如图,沿直线AD折叠,△ACD与△ABD重合,若∠B=58°,则∠CAD=______度.9.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是______.10.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件______.11.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′= _________.12.如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是______;(填序号)13.如图,已知点P是∠AOB内一点,点P关于直线OA的对称点是点E,点P关于直线OB的对称点是点F,连接线段EF分别交OA、OB于点C、D,连接线段PC、PD.如果△PCD的周长是10cm,那么线段EF的长度是______cm.14.如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添______根木条.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=______°.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=______.17.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于______.18.在△ABC中,AB=AC,OB=OC,且点A到BC的距离为8,点O到BC的距离为4,则AO的长为______.三、解答题(本大题共9小题,共58.0分)19.如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(______)即:______∵AB∥CD∴∠B=∠C(______)在△ABF和△DCE中,∠A=∠D,∠B=∠C,BF=CE∴△ABF≌△DCE(______)∴∠AFB=∠DEC(______)∴AF∥ED(______)20.如图是由三个小正方形组成的图形,请你在图中补画一个同样大小的小正方形,使补画后的图形成为一个轴对称图形(请用四种不同的方法).21.尺规作图.如图,已知∠AOB与点M、N.求作:一点P,使得点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为______;(3)以AC为边作与△ABC全等的三角形,则可作出______个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.23.如图,点B、F、C、E存同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)若∠A=65°,求∠AGF的度数.24.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于F.(1)求证:△ABD≌△ACE.(2)求证:AF平分∠BAC.25.如图,在四边形ABCD中,AD∥BC,把四边形对折,使点A、C重合,折痕EF分别交AD于点E,交BC于点F.(1)求证:△AOE≌△COF.(2)说明:点E与F关于直线AC对称.26.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.27.已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.答案和解析1.【答案】B【解析】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°-∠D-∠F=58°,故选:B.根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠A=∠D=50°,∠F=∠C=72°是解此题的关键,注意:全等三角形的对应边相等,对应角相等.3.【答案】C【解析】解:∵AB∥DE,∴∠B=∠DEC,∵AB=DE,∴当AC∥DF时,可知∠ACB=∠F,可用AAS证明;当∠A=∠D时,可用ASA证明;当AC=DF时,此时满足的条件是SSA,故不能证明;当BE=CF时,可得BC=EF,可用ASA来证明;故选:C.由平行可得到∠B=∠DEC,又AB=DE,结合全等三角形的判定方法可得出答案.本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.4.【答案】C【解析】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:C.利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.5.【答案】D【解析】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选:D.本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.6.【答案】C【解析】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选:C.由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.7.【答案】∠AFB=∠DEC或AB=DC【解析】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.先求出BF=CE,然后根据全等三角形的判定方法确定添加的条件即可.本题考查了全等三角形的判定,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去添加什么条件.8.【答案】32【解析】解:由题意得:∠B=∠C,∠ADB=∠ADC=90°,∴∠CAD=90°-∠C=32°.故答案为:32.根据折叠的性质可知,∠B=∠C,∠ADB=∠ADC=90°,继而即可求出∠CAD的度数.本题考查翻折变换的知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.【答案】9087【解析】解:由图分析可得题中所给的“”与“9087”成轴对称.故答案为:9087.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查了镜面对称的性质;解决本题的关键是得到对称轴,进而得到相应数字.也可以简单的写在纸上,然后从纸的后面看.10.【答案】AB=AC【解析】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.11.【答案】50°【解析】【分析】本题考查了平行线的性质,翻折变换的性质,熟记性质是解题的关键.根据两直线平行,内错角相等可得∠DEF=∠EFB,再根据翻折变换的性质可得∠D′EF=∠DEF,然后根据平角等于180°列式计算即可得解.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠EFB=65°,根据折叠的性质,∠D′EF=∠DEF=65°,∴∠AED′=180°-(∠D′EF+∠DEF)=180°-(65°+65°)=180°-130°=50°.故答案为50°.12.【答案】①②③【解析】解:∵OA=OB,OC=OD,∠O为公共角,∴△AOD≌△BOC,∴∠A=∠B,又∠APC=∠BPD,∴∠ACP=∠BDP,OA-OC=OB-OD,即AC=BD,∴△APC≌△BPD,∴AP=BP,连接OP,即可得△AOP≌△BOP,得出∠AOP=∠BOP,∴点P在∠AOB的平分线上.故题中结论都正确.故答案为:①②③.根据题中条件,由两边夹一角可得△AOD≌△BOC,得出对应角相等,又由已知得出AC=BD,可得△APC≌△BPD,同理连接OP,可证△AOP≌△BOP,进而可得出结论.本题主要考查了全等三角形的判定及性质问题,能够熟练掌握.13.【答案】10【解析】解:∵P点关于OA、OB的对称点分别为E、F,∴PC=EC,PD=FD,∴△PCD的周长=PC+CD+FD=CE+CD+FD=EF,∵△PCD的周长是10cm,∴EF=10cm.故答案为:10.据轴对称的性质可得PC=EC,PD=FD,然后求出△PCD的周长=EF即可.本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14.【答案】3【解析】解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根木条.根据三角形的稳定性,只要使六边形框架ABCDEF变成三角形的组合体即可.本题主要考查的是三角形的稳定性.15.【答案】135【解析】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.【答案】55°【解析】【分析】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为55°.17.【答案】5【解析】解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,∴S△BCE=BC•EF=×5×1=5,故答案为:5.过E作EF⊥BC于点F,由角平分线的性质可求得EF=DE,则可求得△BCE的面积.本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.18.【答案】4或12【解析】解:∵OB=OC,∴点O在BC的垂直平分线上,而AB=AC,∴点A在BC的垂直平分线上,当点O在△ABC的内部时,AO=8-4=4;当点O在△ABC的外部时,AO=8+4=12.故答案为:4或12.先利用AB=AC,OB=OC可判断点A、O都在BC的垂直平分线上,然后分类讨论:当点O在△ABC的内部时,易得AO=4;当点O在△ABC的外部时,易得AO=12.本题考查了等腰三角形的性质:等腰三角形的两腰相等,等腰三角形的两个底角相等,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.19.【答案】等式的性质BE=CF两直线平行内错角相等AAS全等三角形的对应角相等内错角相等两直线平行【解析】如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(等式的性质)即:BE=CF,∵AB∥CD∴∠B=∠C(两直线平行内错角相等)∠A=∠D∠B=∠C在△ABF和△DCE中,有BF=CE∴△ABF≌△DCE(AAS)∴∠AFB=∠DEC(全等三角形的对应角相等)∴AF∥ED(内错角相等两直线平行)故答案为:等式的性质,BE=CF,两直线平行内错角相等,AAS,全等三角形的对应角相等,内错角相等两直线平行.由BE=CF,利用等式的性质得到BF=CE,再由AB与DC平行,得到两对内错角相等,利用AAS得到三角形ABF与三角形DCE全等,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证.此题考查了全等三角形的判定与性质,以及平行线的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:如图:【解析】根据轴对称与对称轴的定义,即可求得答案,注意此题答案不唯一.此题考查了利用轴对称设计图案,此题难度适中,注意如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.21.【答案】解:如图所示:.【解析】首先作出∠AOB的角平分线,再作出MN的垂直平分线,两线的交点就是P 点.此题主要考查了角平分线的作法以及线段垂直平分线的作法,熟练地应用角平分线的性质以及垂直平分线的性质是解决问题的关键.22.【答案】3 3【解析】解:(1)如图,△AB′C′即为所求;(2)S△ABC=2×4-×2×1-×1×4-×2×2=8-1-2-2=3.故答案为:3;(3)如图,△AB1C,△AB2C,△AB3C即为所求.故答案为:3;(4)如图,P点即为所求.(1)分别作各点关于直线l的对称点,再顺次连接即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据勾股定理找出图形即可;(4)连接B′C交直线l于点P,则P点即为所求.本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.23.【答案】(1)证明:∵BF=CE,∴BF+CF=CE+CF,即BC=EF.∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在△ABC和△DEF中AB=DE∠B=∠EBC=EF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠ACB=∠DFE.∵∠A=65°,∴∠ACB=25°,∴∠DFE=25°.∵∠AGF=∠ACB=∠DFE,∴∠AGF=50.【解析】(1)由条件先得出BC=EF和∠B=∠E,再根据边角边就可以判断△ABC≌△DEF;(2)由全等的性质就可以得出∠ACB=∠DFE,再利用外交与内角的关系就可以得出结论.本题考查了全等三角形的判定及性质的运用,三角形的外交与内角的关系的运用,解答本题时证明三角形全等是解答本题的关键.24.【答案】证明:(1)∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,∠ADB=∠AEC∠BAD=∠CAEAB=AC,∴△ABD≌△ACE(AAS).(2)∵△ABD≌△ACE,∴AE=AD,在Rt△AEF和Rt△ADF中,AF=AFAE=AD,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.【解析】(1)求出∠AEC=∠ADB=90°,根据AAS推出即可.(2)根据全等求出AE=AD,根据HL证出Rt△AEF≌Rt△ADF,推出∠EAF=∠DAF即可.本题考查了全等三角形的性质和判定和平行线的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有定理HL,全等三角形的性质是:全等三角形的对应边相等,对应角相等.25.【答案】(1)证明:∵AD∥BC,∴∠DAC=∠BCA,∵把四边形沿EF对折,点A、C重合,∴OA=OC,AC⊥EF,在△AOE和△COF中,∠EAO=∠FCOOA=OC∠AOE=∠COF∴△AOE≌△COF;(2)证明:∵△AOE≌△COF,∴OE=OF,又AC⊥EF,∴点E与F关于直线AC对称.【解析】(1)根据平行线的性质得到∠DAC=∠BCA,根据翻转变换的性质得到OA=OC,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质得到OE=OF,根据轴对称的性质证明.本题考查的是翻转变换的性质、全等三角形的判定和性质、轴对称的性质,掌握翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.【答案】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16-6=10,∴OC=5,∴OA=OC=OB=5.【解析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.27.【答案】证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE;(2)如图②,(1)中的结论不成立,有DE=BF-EF,理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴DE=BC=BF-FC=BF-EF,即DE=BF-EF.【解析】(1)由Rt△ABC≌Rt△ADE得AC=AE,根据HL可证得Rt△ACF≌Rt△AEF,由BC=BF+CF代入可得结论;(2)如图②,(1)中的结论不成立,有DE=BF-EF,同(1):证明Rt△ACF≌Rt△AEF,再由BC=BF-FC得出结论.本题考查了直角三角形全等的性质和判定,除了一般三角形全等的判定方法外,还要掌握直角三角形特殊的全等判定:HL,根据三角形全等将结果中的三条线段转化到一条直线中,得出结论.。
江苏省扬中市_八年级数学上学期第一次月考试题
江苏省扬中市 八年级数学上学期第一次月考试题一、填空: (每题2分,共20分) 1右图是从镜中看到的一串数字,这串数字应为2. 一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y3.如图,△ ABC^A DEF △ DEF 周长是 32cm, DE=9cm EF=13cm / E=/ B,贝U AC= cm题) 5. 如图,△ ABC 中,AB=AC DE 是AB 的垂直平分线,△ BCE 的周长为14 , BC=6贝U AB 长6. 已知,如图,AD= AC, BD= BC, O 为AB 上一点,那么,图中共有 ______________ 对全 等三角形.7. 如图,FD!AO 于D, FE ± BO 于E ,下列条件:①OF 是/ AOB 的平分线;②DF=EF ③DO=EO④/OFD / OFE 其中能够证明△ DOF^A EOF 的条件的个数有 ___________ 个.&如图,已知△ ABC 为等腰直角三角形,D 为斜边AB 上任意一点,(不与点A 、B 重合),连(第 3 题) (第 4题) ( 第5题)4.如图,AB=AC AD=AE / BAC 玄 DAE /o9仁 25°,/ 2=30 °,则/ 3=接CD,作ECL DC且EC=DC连接AE,则/ EAC为____________ 度.9.如图,已知点P 为/ AOB 勺角平分线上的一点,点D 在边0A 上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边0B 上取一点E ,使得PE=PD 这时他发现/ OEP 与/ ODP 之间有一定的数量关系,请你写出/ OEP 与/ ODP 所有可能的数量关系10.长为20,宽为a 的长方形形纸片(10 v a v 20),如图那样折I一下,剪下一个边长等于长方形的宽度的正方形(成为第一次 L __________操作);再把剩下的长方形如图那样折一下,剪下一个边长等 于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去。
江苏省镇江市第十中学2024--2025学年上学期八年级数学10月月考数学试卷
江苏省镇江市第十中学2024--2025学年上学期八年级数学10月月考数学试卷一、单选题1.已知等腰三角形的周长为16,且一边长为3,则腰长为()A .3B .10C .6.5D .3或6.52.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上面的小直角三角形将留下的纸片展开,得到的图形是()A .B .C .D .3.如图,已知MB ND =,MBA NDC ∠=∠,下列条件中不能判定ABM CDN ≌的是()A .M N ∠=∠B .AM CN ∥C .AB CD =D .AM CD =4.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2,则PQ 的最小值为()A .1B .2C .3D .45.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE,若∠B =80°,∠BAE =26°,则∠EAD 的度数为()A .36°B .37°C .38°D .45°6.用直尺和圆规作一个角的平分线如图所示,说明∠AOC =∠BOC 的依据是()A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等7.如图,BAC ∠的平分线与BC 的垂直平分线相交于点D ,ED AB ⊥,DF AC ⊥,垂足分别为点E ,F ,11AB =,5AC =,则BE 的长为()A .3B .4C .5D .68.如图,ABC V 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为()A .1B .2C .3D .3.5二、填空题9.如图,ABC V 与A B C ''' 关于直线l 对称,则B ∠的度数为度.10.如图,在ABC V 中,将B ∠和C ∠按如图所示方式折叠,点B ,C 均落于边BC 上一点G 处,线段MN ,EF 为折痕.若94A ∠=︒,则MGE ∠=.11.如图,100BAC ∠=︒,MN 、EF 分别垂直平分AB 、AC ,则MAE ∠的大小为.12.如图,在ABC V 中,以点A 为圆心,AC 的长为半径作圆弧交BC 于点D ,再分别以点B 和点D 为圆心,大于12BD 的长为半径作圆弧,两弧分别交于点M 和点N ,连接MN 交AB 于点E .若97AB AC =,=,则ADE V 的周长为.13.如图,AOB ∠内有一点P ,35AOB ∠=︒,点M 、N 分别是射线OB OA 、上的动点.当PMN 的周长最小时,MPN ∠的度数是.14.如图,在ABC V 中,ABC ∠与ACB ∠的平分线交于点E ,过点E 作MN BC ∥交AB 于点M ,交AC 于点N ,若9BM CN +=,则MN =.15.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是.16.如图,已知在ABC V 中,90C ∠=︒,30A ∠=︒,在直线AC 上找点P ,使ABP 是等腰三角形,则APB ∠的度数为.三、解答题17.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC V 关于直线l 成轴对称的A B C ''' ;(2)ABC V 的面积是________.(3)在直线l 上找一点P ,使PB PC +的长最短.18.如图,某市政府计划修建一处公共服务设施,使它到两公路OM 和ON 距离相等,且到两村A ,B 的距离相等.请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法).19.如图,已知,90=∠=∠=︒AC BD C D ,求证:Rt Rt ABC BAD △≌△.20.已知:BE CF =,AC DF =,AC DF ∥,求证:(1)ABC DEF ≌△△;(2)AB DE ∥.21.如图,在ABC V 中,AB AC =,36A ∠=︒,AC 的垂直平分线DE 分别交AB AC ,于点D ,E .(1)求证:BCD △是等腰三角形;(2)若BCD △的周长是13,5BC =,求AC 的长.22.小西在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O 处用一根细绳悬挂一个小球A ,小球A 可以自由摆动,如图,OA 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA 摆到OB 位置,此时过点B 作BD OA ⊥于点D ,当小球摆到OC 位置时,OB 与OC 恰好垂直(图中的A 、B 、O 、C 在同一平面上),过点C 作CE OA ⊥于点E ,测得8cm BD =,17cm OA =.求AE 的长.23.如图所示,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BF =CE ,求证:AD 平分∠BAC .24.如图,BN ,CM 分别是△ABC 的两条高,点D ,E 分别是BC ,MN 的中点.求证:DE ⊥MN .25.如图,ABC V 是边长为6cm 的等边三角形,动点PQ 同时从A 、B 两点出发,分别在AB BC 、边上匀速移动,它们的速度分别为点P 每秒2cm ,点Q 每秒1cm ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为t 秒.(1)当t 为何值时,PBQ 为等边三角形;(2)当t 为何值时,PBQ 为直角三角形.26.【基础巩固】在ABC V 中,90ACB ∠=︒,AC BC =,点D 是平面内一点,连接CD ,将线段CD 绕点C 顺时针旋转90︒得到线段CE ,连接DE ,BE ;(1)如图1,求证:≌ACD BCE V V ;【尝试应用】(2)如图2,当A 、D 、E 三点在同一条直线上时,求BEA ∠的大小;【拓展提高】(3)如图3,DE 与AB 交于点G ,点G 为DE 的中点,AE 交BC 于点H ,连接GH ,若GH AB ⊥,且ABH S 为18,求CH 的长.。
江苏省镇江市八年级上学期数学10月月考试卷
江苏省镇江市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·乳山期末) 如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A . (3,﹣2)B . (2,﹣3)C . (﹣2,3)D . (﹣3,2)2. (2分) (2017七下·莒县期末) 在直角坐标系内,将点P(1,﹣2)向左平移2个单位长度,再向上平移3个单位长度,可以得到对应点P1的坐标为()A . (﹣1,1)B . (﹣1,﹣5)C . (3,1)D . (3,﹣5)3. (2分) (2017七下·三台期中) 已知点P在第三象限,到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A . (3,5)B . (﹣5,3)C . (3,﹣5)D . (﹣5,﹣3)4. (2分)下列函数中自变量取值范围选取错误的是()A . 中x取全体实数B . 中x0C . 中x—1D . 中x≥15. (2分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)正比例函数y=﹣x的图象与x轴正半轴所成的锐角度数是()A . 30°B . 45°C . 60°D . 80°7. (2分) (2019九上·上街期末) 已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .8. (2分)一次函数,当时,,那么不等式的解集为()A .B .C .D .9. (2分) (2019八上·利辛月考) 已知(-2,y1),(0,y2)在一次函数y= a(x+1)(a<0)的图象上,则y1 ,y2 , 0的大小关系是()A . y1>0>y2B . y2>0>y1C . y1>y2>0D . y2>y1>010. (2分)(2018·成都模拟) 如图,在平面直角坐标系中,□ABCO的顶点A在轴上,顶点B的坐标为(4,6).若直线将□ABCO分割成面积相等的两部分,则k的值是()A .B .C . -D . -二、填空题 (共5题;共9分)11. (1分)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点________ 上.12. (5分) (2018八上·建湖月考) 已知点M(3a,1-a),将M点向右平移3个单位后落在y轴上,a=________.13. (1分) (2018八上·广东期中) 直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.14. (1分) (2018八下·江门月考) 一旅游团来到某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数 x的函数关系式。
2021-2022学年江苏省镇江市市区部分学校八年级(上)月考数学试卷(10月份)(附答案详解)
2021-2022学年江苏省镇江市市区部分学校八年级(上)月考数学试卷(10月份)一、选择题(本大题共8小题,共24.0分)1.下面有4个标志图案,其中不是轴对称图形的是()A. B. C. D.2.下列图形对称轴最多的是()A. 正方形B. 等边三角形C. 等腰三角形D. 线段3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A. 两点之间,线段最短B. 直角三角形的两个锐角互余C. 三角形三个内角和等于180°D. 三角形具有稳定性4.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A. 50°B. 55°C. 65°D. 75°5.如图,AC,BD相交于点O,OB=OD.要使△AOB≌△COD,则下列添加的条件中错误的是()A. ∠A=∠CB. ∠B=∠DC. OA=OCD. AB=CD6.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A. SASB. ASAC. AASD. SSS7.在平面内,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A. 三条角平分线的交点B. 三条高线的交点C. 三条中线的交点D. 三条边垂直平分线的交点8.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的度数为()A. 36°B. 54°C. 60°D. 72°二、填空题(本大题共10小题,共30.0分)9.如果△ABC≌△DEF,BC=6,那么EF=______.10.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.11.如图,△ABC≌△DEC,B、C、D在同一直线上,且CE=3cm,CD=6cm,则BD的长为______.12.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是______.13.如图,△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,连接AE.若BC=7,AC=4,则△ACE的周长为______.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,若AB=6,CD=2,则△ABD的面积是______ .15.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有______种.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于______ .17.如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB边上存在点P,使PC+PD的值最小,此时∠BCP的度数是______.18.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是______.三、解答题(本大题共6小题,共68.0分)19.(1)如图1,在边长为1个单位长度的小正方形网格中,请画出△ABC关于直线l对称的△A1B1C1并求△A1B1C1的面积;(2)如图2,两个城镇A、B与一条公路CD,一条河流CE的位置如图所示,某公司要修建一处避暑山庄,要求该山庄到A、B的距离相等,到CD和CE的距离也相等,且在∠DCE的内部,请用尺规作出该山庄的位置P(保留作图痕迹,不写作法).20.如图,已在AB=AC,AD=AE,∠1=∠2,求证:∠B=∠C.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.22.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直过C点的直线于E,直线CE交BA的延长线于F.求证:(1)Rt△BEF≌Rt△BEC;(2)BD=2CE.23.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.24.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动的时间为t秒,①BP=______厘米,CP=______厘米.(用含t的代数式表示)②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由;若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?答案和解析1.【答案】B【解析】解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意.故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形,解决本题的关键是掌握轴对称图形的概念.2.【答案】A【解析】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做轴对称图形的对称轴.此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线是它的对称轴.3.【答案】D【解析】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.根据三角形具有稳定性解答.本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.【答案】B【解析】解:∵∠A=50°,∠B=75°,又∵∠A+∠B+∠C=180°,∴∠C=55°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=55°.故选:B.由∠A=50°,∠B=75°,根据三角形的内角和定理求出∠C的度数,根据已知△ABC≌△DEF,利用全等三角形的性质得到∠F=∠C,即可得到答案.本题主要考查了全等三角形的性质,三角形的内角和定理等知识点,解此题的关键是能求出∠C的度数.题型较好,难度适中.5.【答案】D【解析】解:∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OA=OC时,可根据“SAS”判断△AOB≌△COD.故选:D.根据全等三角形的判定方法对各选项进行判断.本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.【答案】D【解析】解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选:D.根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.7.【答案】D【解析】解:∵点到三角形三个顶点的距离相等,∴这个点一定是三角形三条边的垂直平分线的交点,故选:D.据线段的垂直平分线的性质解答.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.【答案】D【解析】解:∵直线l1//l2,∴∠1+∠ACB+∠ABC=180°,∵∠ABC=54°,AC=AB,∴∠ABC=∠ACB=54°,∴∠1=72°,故选:D.根据题意和平行线的性质,可以得到∠1+∠ACB+∠ABC=180°,再根据AC=BC,∠ABC=54°,即可求得∠1的度数.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答.9.【答案】6【解析】解:∵△ABC≌△DEF,∴EF=BC,∵BC=6,∴EF=6,故答案为:6.根据全等三角形的性质得出EF=BC,再求出答案即可.本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.10.【答案】3【解析】解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.【答案】9cm【解析】解:∵△ABC≌△DEC,CE=3cm,∴BC=CE=3cm,∵CD=6cm,∴BD=BC+CD=3+6=9(cm),故答案为:9cm.根据全等三角形的性质得出BC=CE,再代入BD=BC+CD求出即可.本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.12.【答案】10:21【解析】解:电子表的实际时刻是10:21.故答案为:10:21.镜子中看到的数字与实际数字是关于镜面成垂直的线对称.注意镜子的2实际应为5.此题主要考查了镜面对称,可以把数据抄下来,反过来看看,这样最直观.13.【答案】11【解析】解:∵DE是AB的垂直平分线,∴EB=EA,∴△ACE的周长=AE+EC+AC=BE+EC+AC=BC+AC=11,故答案为:11.根据线段垂直平分线的性质得到EB=EA,根据三角形的周长公式计算即可.本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】6【解析】解:过点D作DE⊥AB,∵AD平分∠BAC,∠C=90°,AB=6,CD=2,∴DE=CD=2,∴S△ABD=12AB⋅DE=12×6×2=6.故答案为:6.AB⋅DE即过点D作DE⊥AB,由角平分线的性质可知DE=CD=2,再根据S△ABD=12可得出结论.本题考查的是角平分线的性质及三角形的面积公式,根据题意作出辅助线是解答此题的关键.15.【答案】5【解析】解:如图所示:所标数字之处都可以构成轴对称图形.故答案为:5.直接利用轴对称图形的性质分析得出答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.16.【答案】115°【解析】【分析】(180°−∠1),此题考查了折叠的性质和平行线的性质.根据折叠的性质,得∠BFE=12再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,∠1=50°,得(180°−∠1)=65°.∠BFE=12∵AD//BC,∴∠AEF=180°−∠BFE=115°.故答案为115°.17.【答案】30°【解析】解:作C点关于AB的对称点C′,连接C′D交AB于点P,连接CP,过点D作DM⊥BC 交于点M,∴CP=C′P,∴CP+PD=C′P+PD=C′D,此时PD+PC的值最小,∵∠C=60°,CD,∴CM=12∵CD=2AD,∴CM=AD=BM,∴BC=CD,设AD=x,则BC=2x,CM=x,在Rt△CDM中,DM=√3x,在Rt△C′MD中,C′M=3x,DM=√3x,∴C′D=2√3x,∴∠DC′M=30°,∵∠PCB=∠C′,∴∠PCB=30°,故答案为:30°.另解:作D点关于AB的对称点D′,连接CD′交AB于点P,连接DP,∴DA=AD′∴DD′=2AD,∵CD=2AD,∴DD′=CD,∴△CDD′是等腰三角形,∵∠A=∠B=90°,∴AD//BC,∵∠C=60°,∴∠ADC=120°,∴∠DD′C=∠DCP=30°,∴∠PCB=30°,故答案为:30°.作C点关于AB的对称点C′,连接C′D交AB于点P,连接CP,过点D作DM⊥BC交于点M,当C′、P、D三点共线时,PD+PC的值最小,由题意可知设AD=x,则BC=2x,CM=x,在Rt△C′MD中,C′M=3x,DM=√3x,C′D=2√3x,则有∠DC′M=30°,又由∠PCB=∠C′,即可求解.本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,直角三角形的性质是解题的关键.18.【答案】245【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10,∵S△ABC=12AB⋅CM=12AC⋅BC,∴CM=AC⋅BCAB =6×810=245.故答案为:245.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.19.【答案】解:(1)如图所示,△A1B1C1即为所求,S△A1B1C1=2×3−12×1×2−12×1×3−12×1×2=52;(2)如图,作∠DCE的平分线和线段AB的垂直平分线,交点为P,点P即为所求.【解析】(1)根据轴对称的性质画出△A1B1C1即可,用割补法求△A1B1C1的面积;(2)作∠DCE的平分线和线段AB的垂直平分线,交点即为P.本题主要考查了作图−轴对称变换,割补法求三角形的面积,尺规作图等知识,熟练掌握基本作图是解题的关键.20.【答案】证明:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠DAB=∠CAE,在△DAB和△EAC中{DA=EA∠DAB=∠EAC AB=AC∴△DAB≌△EAC,∴∠B=∠C.【解析】求出∠DAB=∠CAE,根据SAS推出△DAB≌△EAC,根据全等三角形的性质得出即可.本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.21.【答案】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=12∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°−25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【解析】(1)在Rt△ADE中,求出∠EAD即可解决问题;(2)只要证明AE=AC,利用等腰三角形的性质即可证明;本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.22.【答案】证明:(1)∵BD是∠ABC的平分线,∴∠FBE=∠CBE,∵BE⊥CF,∴∠BEF=∠BEC=90°,在Rt△BEF和Rt△BEC中,{∠FBE=∠CBE BE=BE∠BEF=∠BEC,∴Rt△BEF≌Rt△BEC(ASA).(2)∵Rt△BEF≌Rt△BEC,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,{∠F=∠ADB∠FAC=∠BAD AB=AC,∴△ABD≌△ACF(AAS),∴BD=CF,∵CF=2CE,∴BD=2CE.【解析】(1)求出∠FBE=∠CBE,∠BEF=∠BEC=90°,根据ASA推出两三角形全等即可.(2)根据全等三角形性质求出CF=2CE,证△ABD≌△ACF,推出BD=CF即可.本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.23.【答案】(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在△CDF与△EDB中,∵{DF=DBDC=DE,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12−x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在△ACD与△AED中,∵{AD=ADCD=DE,∴△ACD≌△AED(HL),∴AC=AE,即8+x=12−x,解得x=2,即CF=2.【解析】(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB;(2)设CF=x,则AE=12−x,再根据题意得出△ACD≌△AED,进而可得出结论.本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.24.【答案】4t(10−4t)【解析】解:(1)①BP=4t cm,CP=(10−4t)cm;故答案为:4t,(10−4t);②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10−4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10−4t=6,解得a=4.综上所述,满足条件的a的值为4.8或4;(2)①当a=4.8时,由题意得,4.8t−4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇.②当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.(不符,舍去)答:经过37.5秒点P与点Q第一次在点A相遇.(1)①根据路程与速度的关系求解即可;②分两种情形,利用全等三角形的性质构建方程求解即可;(2)分两种情形:构建方程求解即可.本题考查全等三角形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
江苏省八年级上学期数学10月月考试卷I卷
江苏省八年级上学期数学10月月考试卷I卷一、单选题 (共10题;共20分)1. (2分)下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)下列是利用了三角形的稳定性的有()个①自行车的三角形车架;②长方形门框的斜拉条;③照相机的三脚架;④塔吊上部的三角形结构.A . 1B . 2C . 3D . 43. (2分)一个等腰三角形的两边长分别为2,3,则这个三角形的周长为()A . 3+4B . 6+2C . 6+4D . 3+4或6+24. (2分)如图,△ABC≌△ADE,点E在BC边上,∠CAE=20°,则∠AED的度数为()A . 60°B . 90°C . 80°D . 20°5. (2分)平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为()A . (-2,-3)B . (2,-3)C . (-3,2)D . (3,-2)6. (2分)如图,在长方形纸片ABCD中,AB=2,BC=1,点E、F分别在AB,CD上,将纸片沿EF折叠,使点A,D分别落在点A1、D1处,则阴影部分图形的周长为()B . 4C . 5D . 67. (2分)如图,在中,平分交于点,过点作交于点,且平分,若,则的长为()A .B .C .D .8. (2分)如图,AB是⊙O的直径,弦CD⊥AB ,∠CDB=30°,CD=6,阴影部分图形的面积为()A . 4πB . 3πD . π9. (2分)下列命题:(1)两直线平行,内错角相等;(2)如果m是无理数,那么m 是无限小数;(3)64的立方根是8;(4)同旁内角相等,两直线平行;(5)如果a是实数,那么是无理数.(6)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(7)直线外一点到这条直线的垂线段,叫做该点到直线的距离;(8)过一点作已知直线的平行线,有且只有一条.其中是真命题的有()A . 0 个B . 1 个C . 2 个D . 3 个10. (2分)如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,要使△ABC≌△DEF,应添加的一个条件是________.(不添加任何字母)12. (1分)正六边形的内角和为________度.13. (1分)如图,在△ABC中,AC=3,中线AD=5,则边AB的取值范围是________.14. (1分)若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为________.15. (1分)如图,AD是△ABC的中线,且∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在点C'的位置上.则B C'=________.16. (1分)如图, 于 , 于 ,若,则下列结论:① ;② 平分;③ ;④中正确的是________.17. (1分)如图,有一块三角板AB0,∠B=30°,直角顶点D与量角器的中心重合,AB与量角器交于点A,C.若量角器的半径为5cm,则线段BC的长为________.18. (1分)如图,把∠AOB沿着直线MN平移一定的距离,得到∠CPD,若∠AOM=40°,∠DPN=40°,则∠AOB=________.三、解答题 (共8题;共71分)19. (10分)如图,在4×5的网格中,最小正方形的边长为1,A,B,C,D均为格点(最小正方形的顶点).(1)如图1,画出所有以AB为一边且与△ABC全等的格点三角形.(2)如图2,在线段AB上画出一点P,使CP+PD最小,其最小值为________.20. (10分)△DCE和△ABC是一大一小两块等腰三角尺,∠DCE=∠ACB=90°,AC=BC,EC=DC.(1)如图1所示,若∠DBE=28°,试求∠AEB的大小;(2)若将△DCE绕C点顺时针旋转到图2所示,∠DBE=n°,试求∠AEB的大小.(用含n的式子表示)21. (5分)如图,△ABC中,∠A=68°,∠ABC=43°, BD⊥AC,求∠DBC的度数.22. (5分)如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.23. (10分)如图,AB∥CD ,以点A为圆心,小于AC长为半径作圆弧,分别交AB ,AC于E , F两点,再分别以E , F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD于点M ,(1)由题意可知,射线AP是________;(2)若∠CMA=33°,求∠CAB的度数;(3)若CN⊥AM ,垂直为N ,试说明:AN=MN .24. (10分)如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B 两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则:(1)BP ________cm,BQ ________cm.(用含t的代数式表示)(2)当t为何值时,△PBQ是直角三角形?25. (10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:△AFD≌△BFE;(2)求证:四边形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.26. (11分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD:(2)如果AB2=AO·AD,求证:四边形ABDC是菱形.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
江苏省镇江市新区2024—2025学年八年级上学期十月月考数学试卷[含答案]
2024-2025第一学期八年级第一次练习数学试卷本试卷共5页,共24题;全卷满分120分,考试时间100分钟.注意事项:1.答卷前,考生务必用0.5毫米黑色水笔将自己的姓名、考试号填写在试题答题卷上相应位置.2.考生必须在试题答题卷上各题指定区域内作答,在本试卷上和其他位置作答一律无效.3.如用铅笔作图,必须用黑色水笔把线条描清楚.一、选择题(每小题3分,共30分,每小题只有一个选项符合题意)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A .B .C .D .2.如图,在四边形ABCD 中,AD AB =,90B D Ð=Ð=°,35ACB Ð=°,则DAB Ð=( )°.A .70°B .90°C .110°D .130°3.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个4.如图,工人师傅做了一个长方形窗框ABCD ,E 、F 、G 、H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A .G 、H 两点之间B .B 、F 两点之间C .E 、G 两点之间D .A 、C 两点之间5.如图,ABC DEF ≌△△,点A 与,D B 与E 分别是对应顶点,且测得5cm,7cm BC BF ==,则EC 长为( )A .1cmB .2cmC .3cmD .4cm6.工人师傅常用角尺平分一个任意角,做法是:如图在AOB Ð的边OA OB ,上分别取OM ON =,移动角尺,得到AOB Ð的平分线OP ,做法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF V 的位置,10,4AB DO ==,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .428.如图的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有( )A .2个B .3个C .4个D .5个9.如图,AOB ADC △≌△(O Ð和D Ð是对应角),90O Ð=o ,若OAD a Ð=,ABO b Ð=.当BC OA ∥时,a 与b 之间的数量关系为( )A .a b =B .2a b =C .90a b +=oD .2180a b +=o 10.一块三角形玻璃被小红碰碎成四块,如图,小红打算只带其中的两块去玻璃店并买回一块和以前一样的玻璃,她需要( )A .带其中的任意两块B .带1,4或3,4就可以了C .带1,4或2,4就可以了D .带1,4或2,4或3,4均可二、填空题(本大题共有6小题,每小题3分,共计18分.)11.小明从镜子里看到对面电子钟的像如图所示,则实际时间是 .12.如图,OAC OBD ≌△△.若12OC =,7OB =,则AD = .13.如图,CD =CB ,那么添加条件 能根据SAS 判定△ABC ≌△ADC .14.如图,若△ABC ≌△DEF ,AF =2,FD =8,则FC 的长度是 .15.如图是由边长相等的小正方形组成的网格,则123Ð+Ð+Ð的大小为 (度).16.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.三、解答题(本大题共有8小题,共计72分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.如图,已知△ABC≌△DEF,且ÐA=75°,ÐB=35°,ED=10cm,求ÐF的度数与AB的长.18.如图,已知点A、E、F、C在同一直线上,∠A=∠C,AE=CF,AD=CB,求证:BE//DF19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.(1)已知:如图1,,,OA OB OC OD AD ==和BC 相交于点P .证明:PA PB =.(2)由第(1)题,你能想到不同于图2中用直尺和圆规作角平分线的方法吗?试在图3中,用直尺和圆规作出MON Ð的平分线.(不写作法,保留作图痕迹)21.如图(1),方格图中每个小正方形的边长为1.点A 、B 、C 都是格点(1)在图(1)中画出ABC V 关于直线MN 对称的111A B C △;(2)求ABC V 的面积;(3)如图(2),A 、C 是直线MN 同侧固定的点,B 是直线MN 上的一个动点,在直线MN 上画出点B ,使AB BC +的值最小.22.认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1:______;特征2:______.(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)23.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U ”字形框架PABQ ,其中40cm AB =,AP ,BQ 足够长,PA AB ^于点A ,QB AB ^于点B ,点M 从B 出发向A 运动,点N 从B 出发向Q 运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP 上取点C ,使ACM △与BMN V 全等.求AC 的长度.24.(1)如图1,在四边形ABCD 中,90AB AD B D E F =Ð=Ð=°,,、分别是边BC 、CD 上的点,且12EAF BAD Ð=Ð.求证:EF BE FD =+;(2)如图2,在四边形ABCD 中,180AB AD B D E F =Ð+Ð=°,,、分别是边BC CD 、上的点,且12EAF BAD Ð=Ð,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD 中,180AB AD B D E F =Ð+Ð=°,,、分别是边BC CD 、延长线上的点,且12EAF BADÐ=Ð(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.1.D【分析】本题考查了轴对称图形的概念,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A ,B ,C 选项中的图案都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D 选项中的图案能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D .2.C【分析】本题主要考查了全等三角形的判定与性质、直角三角形的性质等知识点,证得()Rt Rt HL ABC ACD V V ≌是解本题的关键.先根据直角三角形两锐角互余可得55CAB Ð=°;再证明()Rt Rt HL ABC ACD V V ≌可得55CAD CAB Ð=Ð=°,然后根据角的和差即可解答.【详解】解:∵90B Ð=°,35ACB Ð=°,∴9055CAB ACB а=°-Ð=,∵AD AB =,AC AC =,90B D Ð=Ð=°,∴()Rt Rt HL ABC ACD V V ≌,∴55CAD CAB Ð=Ð=°,∴110DAB CAD CAB а=Ð+Ð=.故答案为:C .3.C【分析】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法.先根据EAC BAD Ð=Ð得到BAC EAD Ð=Ð,根据“SAS ”对①进行判断;根据“ASA ”对③进行判断;根据“AAS ”对④进行判断;根据全等三角形的判定方法对②进行判断.【详解】解:∵EAC BAD Ð=Ð,∴EAC BAE BAD BAE Ð+Ð=Ð+Ð,即BAC EAD Ð=Ð,当AB AE =时,在ABC V 和AED △中,AC AD BAC EAD AB AE =ìïÐ=Ðíï=î,∴()SAS ABC AED ≌△△;当BC ED =时,不能判断A ABC ED ≌△△.当C D Ð=Ð时,在ABC V 和AED △中,BAC EAD AC AD C D Ð=Ðìï=íïÐ=Ðî,∴()ASA ABC AED V V ≌;当B E Ð=Ð时,在ABC V 和AED △中,BAC EAD B EAC AD Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC AED ≌V V ;综上分析可知,能使ABC AED ≌△△的条件有3个.故选:C .4.C【分析】根据三角形的稳定性进行判断.【详解】解:A .若钉在G ,H 两点之间构成了三角形,能固定窗框,故不符合题意;B .若钉在B ,F 两点之间能构成三角形,能固定窗框,故不符合题意;C .若钉在G ,E 两点之间不能能构成三角形,不能固定窗框,故符合题意;D .若钉在A ,C 两点之间能构成三角形,能固定窗框,故符合题意;故选:C .【点睛】本题主要考查三角形稳定性的实际应用.解题的关键是利用了三角形的稳定性,判断是否稳定则看能否构成三角形.5.C【分析】全等三角形的对应边相等,据此求解.【详解】解:Q ABC DEF ≌△△,点A 与,D B 与E 分别是对应顶点,5cm =BC ,\5cm EF BC ==,Q 7cm BF =,\()752cm BE BF EF =-=-=,\()523cm EC BC BE =-=-=,故选C .【点睛】本题主要考查全等三角形的性质,解题的关键是掌握全等三角形的对应边相等.6.A【分析】本题考查全等三角形在实际生活中的应用.结合题目已知的条件判断即可.【详解】做法中用到的三角形全等的判定方法是SSS证明如下:由题意得,PN PM =,在ONP △和OMP V 中,ON OM OP OP PN PM =ìï=íï=î,∴()SSS ONP OMP V V ≌,所以NOP MOP Ð=Ð,故AOB Ð的平分线OP .故选:A .7.A【分析】由题意可得ABC DEF S S =V V ,故阴影部分的面积ABC OEC ABEO S S S =-=△△梯形 ,再根据平移的性质得到6BE =,6OE DE OD AB OD =-=-=,根据梯形的面积公式即可解答.【详解】解:由题意可得ABC DEF S S =V V ,10DE AB ==,∴阴影部分的面积ABC OEC ABEO S S S =-=△△梯形 ,Q 平移距离为6,6BE \=,6OE DE DO AB DO =-=-=,\阴影部分的面积()6106482ABEO S +´===梯形,故选:A .【点睛】本题考查了平移的性质,梯形的面积公式,得到阴影部分和梯形ABEO 的面积相等时解题的关键.8.B【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【详解】如图:共3个,故选B .【点睛】本题考查了轴对称图形,根据题意作出图形是解答本题的关键.9.B【分析】本题考查了全等三角形的性质,等边对等角,平行线的性质,熟练掌握相关性质并准确识图理清图中各角度之间的关系是解题的关键.根据AOB ADC △≌△,90O Ð=o ,ABO b Ð=,可知AB AC =,90CAD OAB b Ð=Ð=°-,结合BC OA ∥和等腰三角形性质可得90CAD OAB ABC ACB b Ð=Ð=Ð=Ð=°-,180OAC ACB Ð+Ð=°,将OAC ACB Ð+Ð展开为OAD ACB CAD Ð+Ð+求解,即可解题.【详解】解:AOB ADC Q △≌△(O Ð和D Ð是对应角),90O Ð=o ,AB AC \=,90CAD OAB b Ð=Ð=°-,ABC ACB \Ð=Ð,BC OA Q ∥,90CAD OAB ABC ACB b \Ð=Ð=Ð=Ð=°-,180OAC ACB Ð+Ð=°,()290180OAC ACB OAD ACB CAD a b \Ð+Ð=Ð+Ð+Ð=+°-=°,2a b \=,故选:B .10.D【分析】想要买一块和以前一样的玻璃,只要确定一个角及两条边或两个角及一条边即【详解】解:由图可知,带上1和4相当于有两个角和一条边,所以可得两块三角形玻璃全等;同理,带上3和4也相当于有两角夹一边,同样也可以得三角形全等;2和4中,4确定了上边的角的大小及两边的方向,2又确定了底边的方向,继而可得全等;故选:D【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定方法,联系实际,灵活运用所学知识是解题的关键.11.15:01【分析】根据轴对称的性质——镜面对称解答即可.【详解】解:根据平面镜成像原理及轴对称图形的性质可知实际时间为15:01;故答案为:15:01【点睛】本题实际上考查轴对称图形的性质,解题的关键是理解镜面对称是指在平面镜中的像与现实中的事物刚好顺序相反;且关于镜面对称解答这类关于数字在镜中成像问题的一般方法是画出平面镜中的图像的对称图形,再读出对称图形的时间,所得即是所求.12.5【分析】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.先根据题意得到5BC =,再根据全等三角形的性质得到AD OD OA OC OB =-=-,则可得到答案.【详解】解:∵127OC OB ==,,∴1275BC OC OB =-=-=;∵OAC OBD ≌△△,根据全等三角形的性质可知AD OD OA OC OB =-=-,则5AD BC ==,故答案为:5.13.∠DCA =∠BCA【详解】解:∵已经知道CD=CB ,AC=AC (公共边),∴要根据“SAS”判定△ABC ≌△ADC ,需添加的条件是:∠DCA=∠BCA .故答案为:∠DCA =∠BCA .14.6【分析】利用三角形全等的性质得8AC FD ==,再通过FC AC AF FD AF =-=-计算可【详解】解:由题意△ABC ≌△DEF ;8AC FD \==,FC AC AF FD AF =-=-Q ,826FC \=-=,故答案是:6.【点睛】本题考查了三角形全等的性质,解题的关键是掌握三角形全等的性质,利用等量代换的思想进行求解.15.135【分析】利用正方形的边角关系可以得到全等三角形,利用全等的性质将相等的角进行转化即可求得结果.【详解】解:如图所示:∵在ABC V 和BDE V 中∴AB BD BDE BACAC DE =ìïÐ=Ðíï=î∴()SAS ABC BDE V V ≌∴BED ACBÐ=Ð∴1390Ð+Ð=°∴123135Ð+Ð+Ð=°故答案为:135.【点睛】本题考查的是全等三角形的判定和性质等相关知识点,能够运用全等三角形的性质将两个相等的角进行转化是解题的关键.16.9【分析】根据已知条件证得△ABP≌△DBP,根据全等三角形的性质得到AP=PD,得出S△ABP=S△DBP,S△ACP=S△DCP,推出S△PBC=12S△ABC,代入求出即可.【详解】解:如图,延长AP交BC于点D,∵BP平分∠ABC∴∠ABP=∠DBP,且BP=BP,∠APB=∠DPB ∴△ABP≌△DBP(ASA)∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=12S△ABC=9,故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.17.∠F=70°,AB= 10cm【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出DE= AB,∠F=∠ACB,即可得出答案.【详解】解:∵∠A=75°,∠B=35°,∴∠ACB=180°-∠A-∠B=70°,∵△ABC≌△DEF,DE=10cm,∴∠F=∠ACB=70°,AB=DE=10cm,【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解此题的关键是掌握:全等三角形的对应边相等,对应角相等.18.见解析【分析】根据AE=CF,求出AF=CE,根据SAS证V AFD≌V CEB,推出BE=DF.根据V AFD≌V CEB,得出∠AFD=∠CEB,根据平行线的判定推出BE∥DF.【详解】证明:∵AE=CF.∴AE+EF=CF+EF.即AF=CE .在V ADF 和V CBE 中.AD CB A C AF CE =ìïÐ=Ðíï=î∴V ADF ≌V CBE .∴∠AFD=∠BEC .∴BE ∥DF .【点睛】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.证明见解析.【分析】由∠1=∠2可得∠CAB =∠DAE ,再根据ASA 证明△ABC ≌△AED ,即可得出答案.【详解】∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD ,∴∠CAB =∠DAE ,在△ABC 与△AED 中,∠B =∠E ,AB =AE ,∠CAB =∠DAE ,∴△ABC ≌△AED ,∴BC =ED .20.(1)详见解析;(2)详见解析【分析】本题主要考查了三角形全等的判定和性质,尺规作角平分线,解题的关键是熟练掌握三角形全等的判定方法,ASA ,ASA ,SSS ,SAS ,HL .(1)证明OAD OBC △≌△,得出OAD OBC Ð=Ð,证明APC BPD △≌△,得出PA PB =;(2)以点O 为圆心,任意长为半径画弧,交OM 、ON 于点A 、B ,再以不同于OA 的长为半径画弧,交OM 、ON 于点C 、D ,连接AD 、BC ,交于点P ,连接OP 即可.【详解】(1)证明:在OAD △和OBC △中,OA OB AOD BOC OD OC =ìïÐ=Ðíï=î,OAD OBC \≌△△,OAD OBC \Ð=Ð,,OA OB OC OD ==Q ,OA OC OB OD \-=-即AC BD =,在APC △和BPD △中OAD OBC APC BPD AC BD Ð=ìïÐ=Ðíï=î,APC BPD \≌△△,PA PB \=;(2)解:如图所示,OP 即为所求.根据解析(1)可知,APC BPD △≌△,∴AP BP =,在AOP V 和BOP △中OA OB OP OP AP BP =ìï=íï=î,∴AOP BOP ≌△△,∴AOP BOP Ð=Ð,∴OP 平分MON Ð.21.(1)见解析(2)6(3)见解析【分析】(1)直接利用轴对称的性质分别得出对应点位置,进而得出答案;(2)根据网格特点,利用割补法求三角形面积;(3)利用轴对称求最短路线的方法得出点B的位置.【详解】(1)解:如图(1)所示:111A B C △即为所求;(2)111353322156222ABC S =´-´´-´´-´´=△;(3)如图(2)所示,AC ¢与MN 的交点B 即为所求;证明:作点C 关于直线MN 的对称点C ¢,连接AC ¢与MN 交于点B ,由轴对称的性质可得BC BC ¢=,∴AB BC AB BC ¢+=+,∵AB BC AC ¢¢+³,∴当点A 、B 、C ¢在一条直线上时,AB BC +的值最小,∴AC ¢与MN 的交点B 即为所求.【点睛】此题主要考查了轴对称变换,割补法求面积以及利用轴对称求最短路线,正确得出对应点位置是解题关键.22.(1)都是轴对称图形,阴影部分面积都为4(2)见解析【分析】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)根据两个特征解决问题即可.【详解】(1)解:这四个图案都具有的两个共同特征是:都是轴对称图形,阴影部分面积都为4.故答案为:都是轴对称图形,阴影部分面积都为4.(2)解:如图所示:【点睛】本题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.23.16或30【分析】本题主要考查了全等三角形的判定,设2cm BM t =,则3cm BN t =,使ACM △与BMN V 全等,由90A B Ð=Ð=°可知,分两种情况:情况一,当BM AC =,BN AM =时,列方程解得t ,可得AC ;情况二,当BM AM =,BN AC =时,列方程解得t ,可得AC ,熟练掌握全等三角形的判定与性质并利用分类讨论思想是解答此题的关键.【详解】解:设2cm BM t =,则3cm BN t =,∵90A B Ð=Ð=°,使ACM △与BMN V 全等,可分两种情况:情况一:当BM AC =,BN AM =时,∵BN AM =,40cm AB =,∴3402t t =-,解得:8t =,∴cm 22816AC BM t ===´=,情况二:当BM AM =,BN AC =时,∵BM AM =,40cm AB =,∴2402t t =-,解得:10t =,∴m 331c 030AC BN t ===´=,综上所述,16cm AC =或30cm AC =,故答案为:16或30.24.(1)见解析;(2)成立;(3)不成立,应当是EF BE FD =-,见解析【分析】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.(1)延长EB 到G ,使BG DF =,连接AG .利用全等三角形的性质解决问题即可;(2)先证明(SAS)△≌△ABM ADF ,由全等三角形的性质得出23AF AM =Ð=Ð,.()SAS AME AFE V V ≌,由全等三角形的性质得出EF ME =,即EF BE BM =+,则可得出结论;(3)在BE 上截取BG ,使BG DF =,连接AG .证明ABG ADF V V ≌.由全等三角形的性质得出BAG DAF AG AF Ð=Ð=,.证明AEG AEF V V ≌,由全等三角形的性质得出结论.【详解】证明:延长EB 到G ,使BG DF =,连接AG .∵90ABG ABC D AB AD Ð=Ð=Ð=°=,,∴ABG ADF V V ≌.∴12AG AF =Ð=Ð,.∴113232EAF BAD Ð+Ð=Ð+Ð=Ð=Ð.∴GAE EAF Ð=Ð.又∵AE AE =,∴AEG AEF V V ≌.∴EG EF =.∵EG =BE +BG .∴EF BE FD=+(2)(1)中的结论EF BE FD =+仍然成立.1801180ABC D ABC Ð+Ð=°Ð+Ð=°,Q ,1D \Ð=Ð,在ABM V 与ADF △中,1AB AD D BM DF =ìïÐ=Ðíï=î,(SAS)ABM ADF \≌V V,23AF AM \=Ð=Ð,,12EAF BAD EAF Ð=Ð=ÐQ ,34EAF \Ð+Ð=Ð即MAE EAFÐ=Ð在AME △与AFE △中AM AF MAE EAFAE AE =ìïÐ=Ðíï=î(SAS)AME AFE \≌V V ,EF ME \=,即EF BE BM =+,EF BE DF \=+;(3)结论EF BE FD =+不成立,应当是EF BE FD =-.证明:在BE 上截取BG ,使BG DF =,连接AG .∵180180B A DC ,AD F A D C Ð+Ð=°Ð+Ð=°,∴B ADF Ð=Ð.∵AB AD =,∴ABG ADF V V ≌.∴BAG DAF AG AF Ð=Ð=,.∴12BAG EAD DAF EAD EAF BAD Ð+Ð=Ð+Ð=Ð=Ð.∴GAE EAF Ð=Ð.∵AE AE =,∴AEG AEF V V ≌.=,∴EG EF∵EG BE BG=-,∴EF BE FD=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022-2023江苏省镇江市扬中市八年级(上)月考数学试卷(10月份)一、精心选一选,你一定行!(每题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF的是()A.AC∥DF B.∠A=∠D C.AC=DF D.BE=CF4.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.HL D.ASA5.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.117.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF8.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有()个.(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.2个 B.3个 C.4个 D.5个二、细心填一填,你一定行!(每空2分,共24分)9.由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).10.已知△ABC与△A′B′C′关于直线L对称,且∠A=50度,∠B′=70°,那么∠C′=度.11.已知△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x﹣5,若两个三角形全等,则x=.12.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.(1)若以“SAS”为依据,需添加条件;(2)若以“HL”为依据,需添加条件.13.如图,已知BD=CE,∠B=∠C,若AB=8,AD=3,则DC=.14.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.15.如图,已知点P是∠AOB内一点,点P关于直线OA的对称点是点E,点P 关于直线OB的对称点是点F,连接线段EF分别交OA、OB于点C、D,连接线段PC、PD.如果△PCD的周长是10cm,那么线段EF的长度是cm.16.如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添根木条.17.如图,OA平分∠BAC,∠AOD=∠AOE,则图中的全等三角形共有对.18.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于.19.在△ABC中,AB=AC,OB=OC,且点A到BC的距离为8,点O到BC的距离为4,则AO的长为.三、用心做一做,你一定行!(共52分)20.利用刻度尺和三角板作图:如图,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.21.如图,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,请在图中再画一个格点三角形DEF,使得△DEF≌△ABC,图中最多能画个格点三角形与△ABC全等(不含△ABC).22.如图是由三个小正方形组成的图形,请你在图中补画一个同样大小的小正方形,使补画后的图形成为一个轴对称图形(请用四种不同的方法).23.尺规作图.如图,已知∠AOB与点M、N.求作:一点P,使得点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)24.已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.25.已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.26.如图所示,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.试说明:AD垂直平分EF.27.已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC 于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.28.(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=;如图2,∠BOC=;如图3,∠BOC=;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)2022-2023江苏省镇江市扬中市八年级(上)月考数学试卷(10月份)参考答案与试题解析一、精心选一选,你一定行!(每题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形是轴对称图形,不符合题意,B、该图形是轴对称图形,不符合题意;C、该图形不是轴对称图形,符合题意;D、该图形是轴对称图形,符合题意;故选C2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.3.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF的是()A.AC∥DF B.∠A=∠D C.AC=DF D.BE=CF【考点】全等三角形的判定.【分析】由平行可得到∠B=∠DEC,又AB=DE,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEC,∵AB=DE,∴当AC∥DF时,可知∠ACB=∠F,可用AAS证明;当∠A=∠D时,可用ASA证明;当AC=DF时,此时满足的条件是SSA,故不能证明;当BE=CF时,可得BC=EF,可用ASA来证明;故选C.4.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.HL D.ASA【考点】作图—基本作图;直角三角形全等的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:C.5.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm【考点】全等三角形的判定与性质.【分析】根据BE⊥CE,AD⊥CE得∠E=∠ADC,则∠CAD+∠ACD=90°,再由∠ACB=90°,得∠BCE+∠ACD=90°,则∠BCE=∠CAD,从而证出△BCE≌△CAD,进而得出BE的长.【解答】解:∵AD⊥CE,∴∠E=∠ADC=90°,即∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,又∵AC=BC,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD,∵AD=2.5cm,DE=1.7cm,∴BE=CD=CE﹣DE=2.5﹣1.7=0.8cm.故选B.6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.7.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.8.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有()个.(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.2个 B.3个 C.4个 D.5个【考点】全等三角形的判定与性质.【分析】取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.【解答】解:如图:取AD的中点F,连接EF.∵∠B=∠C=90°,∴AB∥CD;[结论(5)]∵E是BC的中点,F是AD的中点,∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;∴∠CDE=∠DEF(两直线平等,内错角相等),∵DE平分∠ADC,∴∠CDE=∠FDE=∠DEF,∴DF=EF;∵F是AD的中点,∴DF=AF,∴AF=DF=EF②,由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由②得∠FAE=∠FEA,由AB∥EF可得∠EAB=∠FEA,∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.正确的结论有4个.故选C.二、细心填一填,你一定行!(每空2分,共24分)9.由同一张底片冲洗出来的五寸照片和七寸照片不是全等图形(填“是”或“不是”).【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,图形重合的是全等形,不重合的不是全等形.【解答】解:由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.故答案为:不是.10.已知△ABC与△A′B′C′关于直线L对称,且∠A=50度,∠B′=70°,那么∠C′= 60度.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=70°,∵∠A=50°,∴∠C′=∠C=180°﹣∠B﹣∠A=180°﹣70°﹣50°=60°.故答案为:60.11.已知△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x﹣5,若两个三角形全等,则x=4.【考点】全等三角形的性质.【分析】有两三角形全等可得出关于x的一元一次方程组,解方程即可得出结论.【解答】解:∵两个三角形全等,∴或,解得:无解或x=4.故答案为:4.12.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.(1)若以“SAS”为依据,需添加条件AB=DC;(2)若以“HL”为依据,需添加条件AD=BC.【考点】直角三角形全等的判定.【分析】(1)添加∠BAC的另一边AB与∠DCA的另一边CD相等即可;(2)直角边AC为公共边,只需添加斜边AD和BC即可.【解答】解:(1)若以“SAS”为依据,需添加条件:AB=CD;∵AC⊥AB,AC⊥CD,∴∠BAC=90°,∠DCA=90°,∴∠BAC=∠DCA,在△ABC和△CDA中,∵,∴△ABC≌△CDA(SAS);(2)若以“HL”为依据,需添加条件:AD=BC;在Rt△ABC和Rt△CDA中,∴Rt△ABC≌Rt△CDA(HL).13.如图,已知BD=CE,∠B=∠C,若AB=8,AD=3,则DC=5.【考点】全等三角形的判定与性质.【分析】先根据“AAS”证明△ABD≌△ACE,则AB=AC=8,然后计算AC﹣AD即可.【解答】解:在△ABD和△ACE中,∴△ABD≌△ACE,∴AB=AC=8,∴CD=AC﹣AD=8﹣3=5.故答案为5.14.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.15.如图,已知点P是∠AOB内一点,点P关于直线OA的对称点是点E,点P 关于直线OB的对称点是点F,连接线段EF分别交OA、OB于点C、D,连接线段PC、PD.如果△PCD的周长是10cm,那么线段EF的长度是10cm.【考点】轴对称的性质.【分析】据轴对称的性质可得PC=EC,PD=FD,然后求出△PCD的周长=EF即可.【解答】解:∵P点关于OA、OB的对称点分别为E、F,∴PC=EC,PD=FD,∴△PCD的周长=PC+CD+FD=CE+CD+FD=EF,∵△PCD的周长是10cm,∴EF=10cm.故答案为:10.16.如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添3根木条.【考点】三角形的稳定性.【分析】根据三角形的稳定性,只要使六边形框架ABCDEF变成三角形的组合体即可.【解答】解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根木条.17.如图,OA平分∠BAC,∠AOD=∠AOE,则图中的全等三角形共有3对.【考点】全等三角形的判定.【分析】根据给定的条件以及角平分线的定义,利用全等三角形的判定定理ASA 即可证出△DAO≌△EAO,再根据全等三角形的性质找出相等的边角关系,利用全等三角形的判定定理即可得出△BDO≌△CEO(ASA)和△AOB≌△AOC(SAS),此题的解.【解答】解:∵OA平分∠BAC,∴∠DAO=∠EAO.在△DAO和△EAO中,,∴△DAO≌△EAO(ASA).∴OD=OE,∠ADO=∠AEO,∴∠BDO=∠CEO.在△BDO和△CEO中,,∴△BDO≌△CEO(ASA),∴OB=OC.∵∠AOD=∠AOE,∠BOD=∠COE,∴∠AOB=∠AOC.在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).故答案为:3.18.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于5.【考点】角平分线的性质.【分析】过E作EF⊥BC于点F,由角平分线的性质可求得EF=DE,则可求得△BCE 的面积.【解答】解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,=BC•EF=×5×1=5,∴S△BCE故答案为:5.19.在△ABC中,AB=AC,OB=OC,且点A到BC的距离为8,点O到BC的距离为4,则AO的长为4或12.【考点】等腰三角形的性质;点到直线的距离.【分析】先利用AB=AC,OB=OC可判断点A、O都在BC的垂直平分线上,然后分类讨论:当点O在△ABC的内部时,易得AO=2cm;当点O在△ABC的外部时,易得AO=10cm.【解答】解:∵OB=OC,∴点O在BC的垂直平分线上,而AB=AC,∴点A在BC的垂直平分线上,当点O在△ABC的内部时,AO=8﹣4=4;当点O在△ABC的外部时,AO=8+4=12.故答案为:4或12.三、用心做一做,你一定行!(共52分)20.利用刻度尺和三角板作图:如图,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.【考点】作图-轴对称变换.【分析】分别作出各点关于直线m的对称点,再顺次连接各点即可.【解答】解:如图,四边形A1B1C1D1即为所求.21.如图,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,请在图中再画一个格点三角形DEF,使得△DEF≌△ABC,图中最多能画3个格点三角形与△ABC全等(不含△ABC).【考点】全等三角形的判定.【分析】不妨设小正方形的边长为1,由勾股定理可求得AB=,BC=3,AC=2,则由SSS再构造三角形即可.【解答】解:不妨设小正方形的边长为1,由勾股定理可求得AB=,BC=3,AC=2,当BC和EF重合时,则点D在点A右侧一个单位,满足条件,当BC和EF平行时,则EF在线段BC上方两个单位,此时D点在线段BC中间的两个格点上,共有两个,综上可知最多可画3个格点三角形,可画出其中的第一种情况如图所示,故答案为:3.22.如图是由三个小正方形组成的图形,请你在图中补画一个同样大小的小正方形,使补画后的图形成为一个轴对称图形(请用四种不同的方法).【考点】利用轴对称设计图案.【分析】根据轴对称与对称轴的定义,即可求得答案,注意此题答案不唯一.【解答】解:如图:23.尺规作图.如图,已知∠AOB与点M、N.求作:一点P,使得点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】首先作出∠AOB的角平分线,再作出MN的垂直平分线,两线的交点就是P点.【解答】解:如图所示:.24.已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.【考点】全等三角形的判定与性质.【分析】由条件可求得AF=DE,由平行可得∠A=∠D,利用AAS证明△ABE≌△DCF,利用全等三角形的性质可证明AB=DC.【解答】证明:∵AF=DE,∴AE=DF,∵AB∥DC,∴∠A=∠D,在△ABE和△DCF中∴△ABE≌△DCF(AAS),∴AB=DC.25.已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.【考点】全等三角形的判定.【分析】由条件可求得∠A=∠C,利用ASA可证明△ABF≌△CBD.【解答】证明:∵CB⊥AD,∴∠ABC=∠CBD=90°,∴∠C+∠D=90°,∵AE⊥DC,∴∠A+∠D=90°,∴∠A=∠C,在△ABF和△CBD中∴△ABF≌△CBD.26.如图所示,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.试说明:AD垂直平分EF.【考点】线段垂直平分线的性质.【分析】先利用角平分线性质得出DE=DF;再证△AED≌△AFD,易证AD垂直平分EF.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,又DE=DF,∴AD垂直平分EF(到线段两端点的距离相等的点一定在线段的垂直平分线上).27.已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC 于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由Rt△ABC≌Rt△ADE得AC=AE,根据HL可证得Rt△ACF≌Rt△AEF,由BC=BF+CF代入可得结论;(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,同(1):证明Rt△ACF≌Rt △AEF,再由BC=BF﹣FC得出结论.【解答】证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE;(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF.28.(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=120;如图2,∠BOC=90°;如图3,∠BOC=72°;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)【考点】全等三角形的判定与性质;等边三角形的性质;多边形内角与外角;正方形的性质.【分析】根据等边三角形的性质可以得出△DAC≌△BAE,再根据三角形的外角与内角的关系就可以求出∠BOC的值,在图2中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作n边形的时候就可以求出图4∠BOC的值.【解答】①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.2月15日。