浙教版八年级数学上册10月月考数学试卷附答案
2023-2024学年江苏省南京市秦淮区重点中学八年级(上)10月月考数学试卷(含解析)
2023-2024学年江苏省南京市秦淮区重点中学八年级(上)10月月考数学试卷一、选择题(本大题共6小题,共18.0分。
在每小题列出的选项中,选出符合题目的一项)1.下面四个图形分别是不可回收垃圾、可回收垃圾、有害垃圾、其它垃圾的标志,这四个标志中是轴对称图形的是( )A. B. C. D.2.如图,▵ABC≌▵ADE,若∠AED=100∘,∠B=25∘,则∠A的度数为( )A. 25∘B. 45∘C. 50∘D. 55∘3.以下列长度的线段为边,能构成直角三角形的是( )A. 2,3,4B. 3,4,5C. 4,5,6D. 5,6,74.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是( )A. SSSB. SASC. ASAD. AAS5.如图,AC、DF相交于点G,且AC=DF.D、C是BE上两点,∠B=∠E=∠1.若BE=l,AB=m,EF=n,则CD的长为( )A. l−mB. l−nC. m+n−lD. m−n+l6.如图,O为▵ABC内的一点,D为AB边上的一点,OD=OB,OA=OC,∠AOC=∠BOD=90∘,连接CD.下列结论:①AB=CD;②AB⊥CD;③∠AOD+∠OCD=45∘;④S▵B O C=S▵A O D.其中所有正确结论的序号是( )A. ①②B. ①③C. ①②③D. ①②③④二、填空题(本大题共10小题,共30.0分)7.比较大小:39________2.8.下列五个数4,2π,22,38,3.1415926中,是无理数的有_________个.79.等边三角形是一个轴对称图形,它有___________条对称轴.10.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为________.11.如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件________,就可以根据“H L”得到Rt△ABC≌Rt△DEF.12.如图,在Rt▵ABC中,∠ACB=90∘.以AB、AC为边的正方形的面积分别为S1、S2,若S1=20,S2=11,则BC的长为______.13.如图,△ABC≌△ADE,若∠B=45°,∠C=30°,则∠DAE的度数为_____°.14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_____°.15.如图,▵DEF的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,若在图中再画1个格点▵ABC(不包括▵DEF)),使▵ABC和▵DEF全等,这样的格点三角形能画______个.16.如图,ΔABC中,AB=12,AC=16,BC=20.将ΔABC沿射线BM折叠,使点A与BC边上的点D重合,E 为射线BM上一个动点,当ΔCDE周长最小时,CE的长为__.三、解答题(本大题共10小题,共80.0分。
重庆市育才中学校2023-2024学年八年级上学期10月月考数学试卷
重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,44.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.106.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<199.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的.12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=.15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为.16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE =.17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵,∴AB∥DE,∴.在△ABC和△CDE中,∵,①∴△ABC≌△CDE(SAS).∴.又∵CF是∠ACE的角平分线,∴CF⊥AE().21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为,周长为.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是人;被调查学生中,选择C主题的人数是人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.【答案】D2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.【答案】C3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,4【答案】D4.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定【答案】B5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.10【答案】B6.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°【答案】D7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形【答案】D8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【答案】D9.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α【答案】D10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个【答案】A二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的稳定性.【答案】见试题解答内容12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.【答案】130.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为610°.【答案】610°.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=40°.【答案】见试题解答内容15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为3cm2.【答案】见试题解答内容16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=4.【答案】见试题解答内容17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是11≤a<13.【答案】11≤a<13.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=23;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为45.【答案】23,45.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.【答案】证明△ABC≌△DEF20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵∠BAE=∠DEA,∴AB∥DE,∴∠B=∠D.在△ABC和△CDE中,∵,①BC=DE∴△ABC≌△CDE(SAS).∴CE=CA.又∵CF是∠ACE的角平分线,∴CF⊥AE(等腰三角形的三线合一).【答案】∠BAE=∠DEA,∠B=∠D,BC=DE,CE=CA,等腰三角形的三线合一.21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为(0,),周长为+.【答案】(0,),+.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是60人;被调查学生中,选择C主题的人数是18人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为54度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.【答案】(1)60,18;(2)54;(3)750人.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.【答案】其它两边的长为11cm,11cm或8cm,14cm;八边形24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?【答案】(1)每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)有两种方案:①购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆;②购买甲种型号的新能源汽车6辆,则购买乙种型号的新能源汽车2辆;从公司节约的角度考虑,选择购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆费用较少.25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;(3)如图3,若CD=CB,AC=8,点M是直线BC上一动点,连接MD,将线段MD绕点D顺时针旋转90°得到线段M′D,点P是线段BC的中点,点Q是线段BD上一个动点,连接PQ,M′Q,当PQ+M′Q最小时,请直接写△PBQ的面积.【答案】(1)4;(3)2.26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.【答案】(2)8。
江苏省苏州市高新区第一初级中学2024-2025学年八年级上学期10月月考数学试卷
江苏省苏州市高新区第一初级中学2024-2025学年八年级上学期10月月考数学试卷一、单选题1.下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A .B .C .D .2.下列条件中,不能判断ABC V 为直角三角形的是( ) A .123A B C ∠∠∠=:::: B . 123a b c =:::: C .A B C ∠-∠=∠D . 222b c a -=3.到ABC V 的三条边距离相等的点是ABC V 的( ) A .三条中线交点 B .三条角平分线交点 C .三条高的交点D .三条边的垂直平分线交点4.一张正方形纸片按图1、图2剪头方向依次对折后,再沿图3虚线裁剪得到图4,把图4展开铺平的图案应是( )A .B .C .D .5.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13 海里B .16 海里C .20 海里D .26 海里6.如图,在等腰ABC V 中,AC BC =,点D 是线段AC 上一点,过点D 作DE AB ∥交BC 于点E ,且BE DE =,2A C ?,则BDC ∠=( )A .120︒B .100︒C .108︒D .110︒7.如图,9068ACB AC BC ∠=︒==,,,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则线段B F '的长为( )A .65B .85C .43D 8.如图,等腰ABC V ,120AB AC BAC AD BC =∠=︒⊥,,于点D .点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =,下面的结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③OPC V 是等边三角形;④AB AO AP =+;其中正确的是( )A .①②B .①③C .①③④D .①②③④二、填空题9.已知等腰三角形的底角是80︒,则该等腰三角形的顶角的度数是.10.如图,在Rt ABC △中,CD 是斜边AB 上的中线,若6cm 8cm AC BC ==,,则CD 的长为 cm .11.如图,AD 是ABC V 中BAC ∠的角平分线,DE AB ⊥于点E ,且4DE =,则D 到AC 的距离为.12.如图,ABC V 为等边三角形.若以BC 为直角边向外作等腰Rt BCD △,90BCD ∠=︒,则BAD ∠=︒.13.如图ABC V 和CDE V的顶点都是网格线交点,那么BAC CDE ∠+∠=.14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,小正方形的面积为5,则大正方形的面积为.15.如图,在ABC V 中,32A ∠=︒,大于12AC 长为半径画弧,直线MN 与AC 相交于点E ,过点C 作CD AB ⊥,CD 与BE 相交于点F ,若BD CE =,则BFC ∠的度数是.16.如图,长方形ABCD 中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E 为射线DC 上的一个动点,△ADE 与△AD′E 关于直线AE 对称,当△AD′B 为直角三角形时,DE 的长为.三、解答题17.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点ABC V (顶点均在格点上)关于直线DE 对称的111A B C △; (2)在DE 上画出点P ,使PBC △的周长最小. (3)ABC V 的面积是.18.已知:如图,AB =AC ,∠ABD =∠ACD . 求证:BD =CD .19.已知:如图,长方形ABCD 中,68AB AD ==,,沿直线AE 把ADE V 折叠,点O 恰好落在AC 上一点F 处.(1)求AC 的长度. (2)求DE 的长度.20.如图为一个广告牌支架的示意图,其中13m 12m 5m 15m AB AD BD AC ====,,,,求图中ABC V 的周长和面积.21.如图,在△ABC 中,AB=AC ,AB 的垂直平分线DE 交AC 于点E ,CE 的垂直平分线正好经过点B ,与AC 相交于点F ,连接BE ,求∠A 的度数.22.如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB OC =.(1)求证:AB AC =;(2)求证:点O 在BAC ∠的平分线上.23.如图,Rt ABC △中,90BCA ∠=︒,在BC 的延长线上取一点D ,使得12CD AB =,点E 是AB 的中点,连接DE ,M 为DE 的中点,连接CM 、AD .(1)试判断CM 与DE 的位置关系,并说明理由; (2)若105AED ∠=︒,请求出BAC ∠的度数.24.如图,在ABC V 中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥交AB 于点F ,EG AC ⊥交AC 的延长线于点G .(1)BF 与CG 的大小关系如何?证明你的结论; (2)若106AB AC ==,,求AF 的长.25.如图1,△ABC 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点A 在△ECD 的斜边DE 上,连接BD .(1)求证:△AEC ≌△BDC ;(2)求证:AE 2+AD 2=2AC 2;(3)如图2,过点C 作CO 垂直AB 于O 点并延长交DE 于点F ,请直接..写出线段AE 、AF 、DF 间的数量关系(不用证明).26.已知:把Rt △ABC 和Rt △DEF 按如图1摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上,∠ACB =∠EDF =90°,∠DEF =45°,AC =8cm ,BC =6cm ,EF =9cm ,如图2,△DEF 从图1的位置出发,以1cm /s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2cm /s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题: (1)用含t 的代数式表示线段AP = ; (2)当t 为何值时,点E 在∠A 的平分线上? (3)当t 为何值时,点A 在线段PQ 的垂直平分线上?(4)连接PE,当t=1(s)时,求四边形APEC的面积.。
浙教版八年级数学上册第一次月考数学试卷含答案
浙教版八年级数学上册第一次月考数学试卷含答案
一.选择题(共10小题;共30分)
1. 下列各组长度的线段能构成三角形的是
,
2. 下列各图中,正确画出边上的高的是
A. B.
C. D.
3. 给定下列条件,不能判定三角形是直角三角形的是
A. B.
C. D.
4. 如图,工人师傅砌门时,常用木条固定长方形门框,使其不变形,这
样做的根据是
A. 两点之间的线段最短
B. 三角形具有稳定性
C. 长方形是轴对称图形
D. 长方形的四个角都是直角
5. 下列语句是命题的是
A. 作直线的垂线
B. 在线段上取点
C. 同旁内角互补
D. 垂线段最短吗?
6. 下列说法中:
①三边对应相等的两个三角形全等;
②三角对应相等的两个三角形全等;
③两边和它们的夹角对应相等的两个三角形全等;
④两角及其中一角的对边对应相等的两个三角形全等;
⑤两边及其中一边的对角对应相等的两个三角形全等;
其中不正确的是
A. ①②
B. ②④
C. ④⑤
D. ②⑤
7. 如图,直线,,表示三条互相交叉的公路,现要建一个货物中转站,要求它到
三条公路的距离相等,则可供选择的地址有
A. 处
B. 处
C. 处
D. 处
8. 工人师傅常用角尺平分一个任意角.作法如下:如图所示,是一个任意角,
在边,上分别取,移动角尺,使角尺两边相同的刻度分别与,重合,过角尺顶点的射线即是的平分线.这种作法的道理是
A. B. C. D.
9. 如图所示,在中,已知点,,分别为边,,的中点,
且,则等于。
八年级(上)月考数学试卷(10月份)附答案
八年级(上)月考数学试卷(10月份)一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个二、填空题(每小题2分,共20分)8.角的对称轴是.9.若等腰三角形的顶角为50°,则它的底角为.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= °11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= °.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= .15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠(角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD .参考答案与试题解析一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个考点:轴对称图形.分析:根据轴对称图形的概念对各图形分析判断即可得解.解答:解:第1个图形是轴对称图形,第2个图形不是轴对称图形,第3个图形是轴对称图形,第4个图形是轴对称图形,综上所述,轴对称图形有3个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS考点:全等三角形的判定.分析:求出∠PDA=∠PEA=90°,∠DAP=∠EAP,根据AAS推出两三角形全等即可.解答:解:∵PD⊥AB,PE⊥AF,∴∠PDA=∠PEA=90°,∵AP平分∠BAF,∴∠DAP=∠EAP,在△APD和△APE中∴△APD≌△APE(AAS),故选D.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④考点:全等三角形的应用.分析:假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)考点:全等三角形的判定与性质;作图—基本作图.分析:利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.解答:解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.点评:考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm考点:等腰三角形的性质;三角形三边关系.分析:分5cm是腰长和底边两种情况讨论求解即可.解答:解:5cm是腰长时,三角形的三边分别为5cm、5cm、10cm,∵5+5=10,∴不能组成三角形,10cm是腰长时,三角形的三边分别为5cm、10cm、10cm,能组成三角形,周长=5+10+10=25cm,综上所述,此三角形的周长是25cm.故选C.点评:本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件AC=AD,利用线段的垂直平分线的性质的逆用可得点A在CD的垂直平分线上,同理,点B也在CD的垂直平分线上,于是A是符合题意的,是正确的,答案可得.解答:解:∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.点评:本题考查的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;两点确定一条直线.分别应用垂直平分线性质定理的逆定理是解答本题的关键.7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个考点:等腰三角形的判定.分析:根据等腰三角形的判定,运用直角三角形的两个锐角互余和角平分线的性质,证得∠CAD=∠BAD=30°,CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形.解答:解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选C.点评:本题考查了等腰三角形的判定;要综合运用直角三角形的两个锐角互余和角平分线的性质,找到相等的线段,来判定等腰三角形.二、填空题(每小题2分,共20分)8.角的对称轴是角平分线所在的直线.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.点评:注意:对称轴必须说成直线.9.若等腰三角形的顶角为50°,则它的底角为65°.考点:等腰三角形的性质.分析:等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和直接求出底角,答案可得.解答:解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65.故填65.点评:本题主要考查了等腰三角形,的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= 70 °.考点:全等三角形的性质.分析:根据三角形的内角和定理求出∠A,再根据全等三角形对应角相等可得∠D=∠A.解答:解:在△ABC中,∠A=180°﹣∠B﹣∠C=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴∠D=∠A=70°.故答案为:70.点评:本题考查了全等三角形的性质,根据对应边确定出∠A和∠D是对应角是解题的关键.11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是∠B=∠C(答案不唯一).考点:全等三角形的判定.专题:开放型.分析:添加的条件:∠B=∠C,根据等式的性质可得∠BAD=∠EAC,DB=CE,可根据AAS判定△ABD≌△AEC.解答:解:添加的条件:∠B=∠C,∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠EAC,∵CB=DE,∴CB+CD=DE+CD,即DB=CE,在△ABD和△AEC中,∴△ABD≌△AEC(AAS),故答案为:∠B=∠C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用三角形的稳定性.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:这是利用三角形的稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= 22.5 °.考点:等腰三角形的性质;三角形的外角性质.专题:计算题.分析:由已知可得到∠B=∠ACB=45°,∠CAD=∠CDA,再根据三角形外角的性质可得到∠ACB 与∠ADB之间的关系,从而不难求解.解答:解:∵AB=AC=CD,AB⊥AC,∴∠B=∠ACB=45°,∠CAD=∠CDA∵∠ACB=∠CAD+∠CDA=2∠ADB=45°∴∠ADB=22.5°.故答案为:22.5°.点评:此题主要考查等腰三角形的性质及三角形的外角的性质的综合运用.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= 5 .考点:等腰三角形的判定与性质;平行线的性质.分析:由BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,易得△BOD与△COE是等腰三角形,又由△ADE的周长为9,可得AB+AC=9,又由△ABC的周长是14,即可求得答案.解答:解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为29,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∴BC=5.故答案为:5.点评:此题考查了等腰三角形的性质与判定.此题难度适中,注意掌握数形结合思想的应用.15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.考点:利用轴对称设计图案.分析:利用轴对称图形的性质分别得出符合要求的答案即可.解答:解:如图所示:与△ABC成轴对称的有△ACG、△AFE、△BFD、△CHD、△CGB一共有5个.故答案为:5.点评:此题主要考查了利用轴对称设计图案,根据已知得出所有符合要求的答案注意不要漏解.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8 根.考点:等腰三角形的性质.专题:应用题;压轴题.分析:根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.解答:解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.点评:此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.解答:解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.点评:本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°考点:等腰三角形的性质.分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解答:解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.点评:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.考点:全等三角形的判定.专题:证明题.分析:首先根据AC∥DE,利用平行线的性质可得:∠ACB=∠E,∠ACD=∠D,再根据∠ACD=∠B证出∠D=∠B,再由∠ACB=∠E,AC=CE可根据三角形全等的判定定理AAS证出△ABC≌△CDE.解答:证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS,选用哪一种方法,取决于题目中的已知条件,22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:根据ASA证△ABD≌△ACD,推出AB=AC,根据等腰三角形的性质得出即可.解答:解:AD⊥BC,AD平分BC,理由是:∵在△ABD和△ACD中∴△ABD≌△ACD(ASA)∴AB=AC,∵∠1=∠2,∴AD⊥BC,AD平分BC(等腰三角形三线合一性质).点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,注意:等腰三角形顶角的平分线,底边上的高,底边上的中线互相重合.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.考点:等边三角形的性质.分析:根据△ABC为等边三角形,D为AC边上的中点得到AC=BA,∠BAC=∠BCA=60°,BD ⊥AC,求出∠BDA=90°,由CE∥AB得∠ACE=∠BAD,利用90°﹣∠ACE=90°﹣∠BAD得出∠CAE=∠ABD.解答:解:∠CAE=∠ABD,理由如下:∵△ABC为等边三角形,D为AC边上的中点,∴AC=BA,∠BAC=∠BCA=60°,BD⊥AC,∴∠BDA=90°,∵AE⊥CE,∴∠AEC=∠BDA=90°,又∵CE∥AB,∴∠ACE=∠BAD,∴90°﹣∠ACE=90°﹣∠BAD,即∠CAE=∠ABD.点评:本题主要考查等边三角形的性质的知识点,解答本题的关键是熟练掌握等边三角形边角之间的关系,此题难度不大.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.考点:全等三角形的判定与性质.专题:证明题.分析:利用等角对等边以及全等三角形的判定与性质得出即可.解答:证明:∵AO=BO,∴∠OAB=∠OBA,在△ABC和△BAD中,∴△ABC≌△BAD(AAS).∴AD=BC.点评:此题主要考查了全等三角形的判定与性质等知识,根据已知得出△ABC≌△BAD是解题关键.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.考点:等腰三角形的判定与性质.专题:证明题.分析:连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.解答:证明:连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,即∠CBD=∠CDB,∴CD=CB.点评:此题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)由在△ABC中,AB=AC,∠BAC=120°,可求得∠B与∠C的度数,又由AB的垂直平分线交AB于E,交BC于M;可得AM=BM,继而求得∠MAB的度数,则可求得∠AMN的度数,继而求得答案;(2)易得△AMN为等边三角形,则可得AM=AN=MN,又由BM=AM,CN=AN,即可证得结论.解答:(1)解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵直线ME垂直平分AB,∴BM=AM,∴∠B=∠MAB=30°,∴∠AMN=∠B+∠MAB=60°,同理可得:∠ANM=60°.∴∠MAN=180°﹣60°﹣60°=60°;(2)证明:∵在△AMN中,∠AMN=∠ANM=∠MAN=60°,∴△AMN为等边三角形.即 AM=AN=MN,又∵BM=AM,CN=AN,∴BM=CN.点评:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握转化思想与数形结合思想的应用.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).考点:旋转的性质;全等三角形的判定与性质.专题:探究型.分析:(1)DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:由∠ACB=90°,BE⊥CE,AD⊥CE,则∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,得到∠CAD=∠BCE,可证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.证明的方法与(1)一样.解答:解:(1)不成立.DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:如图2,∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,∵AC=CB,∠CAD=∠BCE,∠ADC=∠CEB=90°∴∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心连线段的夹角等于旋转角.也考查了三角形全等的判定与性质.28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠CAD (角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD SAS .考点:全等三角形的判定.专题:证明题.分析:首先根据角平分线定义可得到∠BAD=∠CAD,再利用SAS定理可证明△ABD≌△ACD.解答:证明:∵AD平分∠BAC(已知).∴∠BAD=∠CAD(角平分线定义),在△ABD和△ACD中,,∴△ABD≌△ACD (SAS).故答案为CAD,SAS.点评:本题主要考查了全等三角形的判定,判定两个一般三角形全等的方法有四种:AAS,SAS,SSS,ASA.。
初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题
2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是.三、解答题(共46分)19.(5分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.20.(6分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED 的度数.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】三角形内角和定理.【专题】压轴题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,再判断三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,5k°.根据三角形内角和定理可知2k°+3k°+5k°=180°,得k°=18°,所以2k°=36°,3k°=54°,5k°=90°.即这个三角形是直角三角形.故选:A.【点评】此类题利用三角形内角和定理列方程求解可简化计算.有一个角是90°的三角形是直角三角形.3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【专题】几何图形问题.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形的性质进行判断即可.【解答】解:①全等三角形的面积相等,说法正确;②全等三角形的周长相等,说法错误;③全等三角形的对应角相等,说法正确;④全等三角形的对应边相等,说法正确;正确的有4个,故选D.【点评】本题考查了对全等三角形的定义和性质的应用,主要考查学生的理解能力和辨析能力,注意:全等三角形的对应边相等,对应角相等.5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.【考点】全等三角形的判定.【分析】三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等,据此判断即可.【解答】解:A、∵a,c边夹角为50°,∴根据SAS可判定两三角形全等,故A正确;B、∵a,c边夹角不一定为50°,∴不能判定两三角形全等,故B错误;C、∵72°角所对的边不相等,∴不能判定两三角形全等,故C错误;D、∵50°和58°的角的夹边不相等,∴不能判定两三角形全等,故D错误;故选:A.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的判定方法.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm【考点】三角形的角平分线、中线和高.【分析】利用中线的定义可知AD=CD,可知△ABD和△BCD的周长之差即为AB和BC的差,可求得答案.【解答】解:∵BD是△ABC的中线,∴AD=CD,∵△ABD周长=AB+AD+BD,△BCD周长=BC+CD+BD,∴△ABD周长﹣△BCD周长=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC=5﹣3=2(cm),即△ABD和△BCD的周长之差是2cm,故选B.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S+S△ACD列出方程求解即可.△ABD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•A D,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值X围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值X围,从而确定绝对值内的代数式的符号,难度不大.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=﹣1,b=3 .【考点】命题与定理.【分析】根据有理数的加法和绝对值的性质,只要a、b异号即可.【解答】解:a=﹣1,b=3时|a+b|=|a|+|b|”是假命题.(答案不唯一,只要a、b是异号两数即可).故答案为:a=﹣1,b=3.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了有理数的加法和绝对值的性质.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是 3 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可知:DE=CD.【解答】解:过点D作DE⊥AB于点E,∵BD平分∠ABC,∠C=∠BED=90°∴DE=CD=3,∴点D到AB的距离为3,故答案为:3【点评】本题考查角平分线的性质,属于基础题型.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为 4 .【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到EA=8,做差后得到BE的长度.【解答】解:∵△ABC中,AB=AC=12,EF为AC的中垂线∴EC=EA=8,BE=12﹣8=4.BE的长为4.故填4.【点评】此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本题的关键.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是19 .【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值X围,再根据第三边是奇数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4而小10.又∵第三根木棒的长是奇数,则应为5,7,9.这样的三角形的周长最大值是3+7+9=19,故答案为19【点评】此题考查了三角形的三边关系,关键是根据第三边大于两边之差而小于两边之和解答.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.【考点】三角形内角和定理.【分析】先根据垂直的定义得出∠BEH=∠HDC=90°,由三角形外角的性质得出∠EBH与∠DCH的度数,再根据三角形内角和定理求出∠HBC+∠HCB的度数,进而可得出∠ABC+∠ACB的度数,由此可得出结论.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEH=∠HDC=90°.∵∠BHC=110°,∴∠EBH=∠DCH=110°﹣90°=20°,∠HBC+∠HCB=180°﹣110°=70°,∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,∴∠A=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是∠1+∠2=2∠A .【考点】三角形内角和定理.【分析】设∠AED的度数为x,∠ADE的度数为y,根据全等三角形的对应角相等,以及平角的定义表示出∠1和∠2,求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:设∠AED的度数为x,∠ADE的度数为y,则∠1=180°﹣2x,∠2=180°﹣2y,∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A,∴关系为:∠1+∠2=2∠A.故答案为:∠1+∠2=2∠A.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.本题解法多样,也可以运用三角形外角性质进行求解.三、解答题(共46分)19.已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.【考点】作图—复杂作图.【分析】先作∠MBN=∠α,再在∠MBN的两边上分别截取AB=a,BC=b,最后连接AC即可.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查了尺规作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,进而得到∠EAD=∠CAB,结合∠CAD=35°,即可求出∠EAD和∠CAB的度数,再结合外角的性质即可求出所求角的度数.【解答】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,又∵且∠CAD=35°,∠EAB=105°,∴∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°,∴∠DFB=∠DAC+∠B=70°+20°=90°,∠BED=∠BFD﹣∠D=90°﹣20°=70°.【点评】本题主要考查了全等三角形的性质,解题的关键是掌握三角形外角的性质,此题难度不大.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,∠C=∠D ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.【考点】全等三角形的判定.【分析】直接利用全等三角形的判定方法,添加:∠C=∠D,进而得出答案.【解答】解:添加条件是∠C=∠D.理由如下:在△ABC与△BAD中,∵∴△ABC≌△BAD(AAS),故答案为∠C=∠D.【点评】本题考查了三角形全等的判定方法,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】设∠ABC=x°,再根据三角形外角的性质得出∠BAD=∠B+∠C=90°+x°,根据AF平分外角∠BAD可知∠DAF=∠BAD=(90°+x°),根据对顶角的性质得出∠EAG=∠DAF=(90°+x°),根据BE平分∠ABC可知∠CBE=∠ABC=x°,故可得出∠AGE的度数,由三角形内角和定理即可得出结论.【解答】解:设∠ABC=x°,∵∠BAD是△ABC的外角,∠C=90°,∴∠BAD=∠ABC+∠C=90°+x°,∵AF平分外角∠BAD,∴∠DAF=∠BAD=(90°+x°),∴∠EAG=∠DAF=(90°+x°).∵BE平分∠ABC,∴∠CBE=∠ABC=x°,∴∠AGE=∠BGC=90°﹣∠CBE=90°﹣x°,∵∠E+∠EAG+∠AGE=180°,即∠E+(90°+x°)+90°﹣x°=180°,解得∠E=45°.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.【考点】角平分线的性质.【分析】(1)分析题意易证得△ADE≌△ADC,则有CD=DE,而BC=BD+DC可求BC的长;(2)根据题意画出图形,利用三角形的面积公式即可得出结论.【解答】解:(1)∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵,∴△ADE≌△ADC(SAS)∴DE=DC,∴BC=BD+DC=BD+DE=2+3=5(cm);(2)如图,∵∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,∴S△ABC=S△AOC+S△AOF+S△BCF=×6a+×9a+×5a=3a+a+a=10a(cm)2.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.【解答】证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.【点评】此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC和CE=CF.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)先根据三角形内角和定理,求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,最后由三角形内角和定理,即可求出∠BPC的度数;(2)先连接AP并延长至D,根据∠ABC与∠ACB的角平分线相交于P,求得∠1=ABC,∠3=∠ACB,最后根据三角形的外角性质,求得∠BPC的度数.【解答】解:(1)∵△ABC中,∠A=112°,∴∠ABC+∠AC B=180°﹣∠A=180°﹣112°=68°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×68°=34°,∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°.(2)如图,连接AP并延长至D,∵∠ABC与∠ACB的角平分线相交于P,∴∠1=ABC,∠3=∠ACB,∵∠BPD是△ABD的外角,∴∠BPD=∠1+∠BAP,同理可得∠CPD=∠3+∠CAP,∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP=ABC+∠ACB+∠BAC=(∠ABC+∠ACB)+α=(180°﹣α)+α=90°+α.【点评】本题考查的是三角形内角和定理,三角形外角性质及角平分线的定义的综合应用,本题解法多样,熟知三角形的内角和定理是解答此题的关键.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。
2021年八年级上学期数学10月月考试卷
2021年八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·咸宁模拟) 下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个2. (2分)点A(-3,10)关于y轴对称的点B的坐标为().A . (6,4)B . (-3,5)C . (-3,-4)D . (3,10)3. (2分)若2m2n2•B=14m4n3﹣8m3n3 ,那么B=()A . 7mn2﹣4mnB . 28m2n﹣16nC . 7m2n﹣4mnD . 7m2﹣4n4. (2分)(2019·芜湖模拟) 如图是某商品标牌的示意图,⊙O与等边△ABC的边BC相切于点C,且⊙O的直径与△ABC的高相等,已知等边△ABC边长为4,设⊙O与AC相交于点E,则AE的长为()A .B . 1C . ﹣1D .5. (2分) (2017八上·湖州期中) 下列命题为假命题的是()A . 等腰三角形一边上的中线、高线和所对角的角平分线互相重合B . 角平分线上的点到角两边距离相等C . 到线段两端点距离相等的点在这条线段的垂直平分线上D . 全等三角形对应边相等,对应角相等6. (2分) (2016八上·正定开学考) 如图所示的长方形和正方形硬纸片,如果要用这些纸片若干个拼一个长为(3a+2b)宽为(a+b)的长方形,Ⅰ型、Ⅱ型、Ⅲ型纸片所需块数分别为()A . 3,5,2B . 3,2,2C . 2,3,5D . 1,2,57. (2分)如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形,则图中阴影部分的面积为()A .B .C .D .8. (2分)下列运算正确的是()A . x·x2 = x2B . (xy)2 = xy2C . (x2)3 = x6D . x2 +x2 = x49. (2分)如图,∠2+∠3=180°,∠4=80°,则∠1=()A . 70°B . 110°C . 100°D . 以上都不对10. (2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是()A . 40°B . 45°C . 50°D . 60°二、填空题 (共10题;共10分)11. (1分) (2019八上·黄陂期末) 计算:2x2 3xy=________.12. (1分) (2017八上·双台子期末) 如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.13. (1分) = ________.14. (1分) (2018八上·番禺月考) 如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形________ 对15. (1分) (2016八下·周口期中) 如图,在△ABC中,AB=AC=4,BD是△ABC的中线,∠ADB=120°,点E 在中线BD的延长线上,则△ACE是直角三角形时,DE的长为________.16. (1分) (2019七上·潮安期末) 如果代数式的值为1,那么代数式的值等于________.17. (1分) (2016七上·仙游期末) 如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD= ;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是________.(填序号)18. (1分) (2017七下·博兴期末) 如图,DA是∠BDF的平分线,∠3=∠4,若∠1=40°,∠2=140°,则∠CBD的度数为________.19. (1分) (2016八上·滨州期中) 如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=________度.20. (1分)如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE=________.三、解答题 (共7题;共61分)21. (10分)先化简再求值:5a3b•(﹣3b)2+(﹣6ab)2•(﹣ab)﹣ab3•(﹣4a)2 ,其中a=2,b= .22. (5分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.23. (10分)如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M,•使△PQM的周长最小。
浙教版八年级数学上册期中测试卷(附答案)
浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。
2023-2024学年江苏省南通市南通重点中学八年级(上)10月月考数学试卷(含解析)
2023-2024学年江苏省南通市南通重点中学八年级(上)10月月考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个图形中,是轴对称图形的是( )A. B. C. D.2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD3.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为( )A. 0.5cmB. 1cmC. 1.5cmD. 2cm4.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧5.已知等腰三角形一个内角等于50∘,则它的顶角度数为( )A. 50∘B. 80∘C. 50∘或80∘D. 100∘6.如图,AD是▵ABC的边BC上的中线,AB=7,AC=5,则AD的值可以是( )A. 5B. 6C. 7D. 87.如图,▵ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE//BC,BD=8cm,CE=5cm,则DE等于( )A. 2cmB. 3cmC. 4cmD. 5cm8.如图,已知▵ABC的面积为12,BP平分∠ABC,AP⊥BP于点P,则▵BCP的面积( )A. 10B. 8C. 6D. 49.如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B′恰好落在CD 上,若∠BAD =α,则∠ACB 的度数为( )A. 45∘B. α−45∘C. 12αD. 90∘−12α10.如图,已知▵ABC 中,AB =AC =8,∠BAC =90∘,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交A B 、AC 于点E 、F ,当∠EPF 在▵ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),给出以下四个结论:①AE =CF ;②▵EPF 是等腰直角三角形;③S 四边形A E P F =12S ▵A B C ;④BE +CF =EF ;⑤▵BEP 与▵PFC 的面积和无法确定.上述结论中始终正确的有( )A. ①②③B. ①②⑤C. ①③⑤D. ②③④二、填空题(本大题共7小题,共21.0分)11.正方形是轴对称图形,它共有_______条对称轴.12.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,则(m +n )2023的值为_______.13.如图,已知△ABC 是等边三角形,BC =BD ,∠CBD =90°,则∠1的度数是_______.14.如图,已知▵ABC的周长是13,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于D,且△ABC的面积为13,则OD长为___________.15.如图,▵ABC的顶点均在格点上,A(3,4)、B(1,0)、C(7,0),利用网格线在图中找一点P,使得PA=PB= PC,则点P的坐标为______.16.如图所示,在▵ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F,若∠BFC=110∘,则∠EAN的度数为_______.17.如图,在四边形ABCD中,AB=AD,AC=7,∠DAB=∠DCB=90∘,则四边形ABCD的面积为______.三、解答题(本大题共9小题,共72.0分。
八年级数学上册月考试卷(含答案和解释)
八年级数学上册月考试卷(含答案和解释)掌握一定的数学基础知识和基本技能,是每一个人应当具备的文化素养之一。
查字典数学网小编为大家准备了这篇八年级数学上册月考试卷。
八年级数学上册月考试卷(含答案和解释)一、选择题:每小题2分,共12分。
1.计算(a2)6的结果正确的是()A.a7B.a8C.a10D.a122.下列图形中,是轴对称图形的是()A. B. C. D.3.计算(﹣2a2)2÷2a的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a34.下列计算中正确的是()A.3a+2a=5a2B.2a2?a3=2a6C.(2a+b)(2a﹣b)=2a2﹣b2D.(2ab)2=4a2b25.如图,在△ABC中,AB=AC,∠BAC=50°,点D在AC上,作直线BD,过C作CE∥BD,若∠BCE=40°,则∠ABD的度数是()A.10°B.15°C.25°D.65°6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2﹣4b2B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)二、填空题:每小题3分,共24分。
7.五边形的内角和为.8.计算:(x+2)( x﹣3)=.9.计算:(2a+b)2=.10.若点P(a,﹣3)与点P′(2,b)关于x轴对称,则a2+b2=.11.因式分解:2a2﹣2=.12.若2×4m=211,则m的值是.13.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.14.如图,在△ABC中,AB=AC,∠BAC=48°,点D在AC上,将△ABC沿BD折叠,若点C恰好落在AB边上的C′处,则∠AC′D的度数是.三、解答题:每小题5分,共20分。
浙教版2022-2023学年八年级数学上册第三次月考测试题(附答案)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题:共30分.1.如果电影院里的5排7座用(5,7)表示,那么7排8座可表示为()A.(5,7)B.(7,8)C.(8,7)D.(7,5)2.某辆速度为v(km/h)的车从甲地开往相距s(km)的乙地,全程所用的时间为t(h),在这个变化过程中,()A.s是变量B.t是常量C.v是常量D.s是常量3.如果一个三角形的两边长都是6,则第三边的长不能是()A.3B.6C.9D.134.平面直角坐标系中,点A(﹣1,3)到y轴的距离是()A.1B.2C.3D.45.已知﹣2x>4,则下列不等式一定成立的是()A.x<﹣2B.x<2C.x>﹣2D.x>26.某中学要在校园内划出一块面积是100m2的矩形土地做花面,设这个矩形相邻两边长分别为xm和ym,那么y关于x的函数表达式为()A.y=100x B.y=100﹣x C.y=50﹣x D.y=7.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为()A.16B.15C.14D.138.如图,△ABC中,∠BAC=130°,AB,AC的垂直平分线分别交BC于点E,F,与AB,AC分别交于点D,G,则∠EAF的度数为()A.65°B.60°C.70°D.80°9.如图是某蓄水池的横断面的示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水(注满水后停止注水),那么下列图中能大致表示水的深度h与注水时间t之间关系的图象的是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,BE平分∠ABC,CD⊥AB于D,BE与CD相交于F,则CF的长是()A.1B.C.D.2二、填空题:共24分。
11.“内错角相等,两直线平行”的逆命题是.12.到△ABC三个顶点的距离相等的点是△ABC的交点.13.在平面直角坐标系中,若点P(m+3,3﹣m)在y轴上,则m的值是.14.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为.15.一次知识竞赛一共有26道题,答对一题得4分、不答得0分,答错一题扣2分,小明有1道题没答,竞赛成绩不少于88分,则小明至少答对题.16.如图,在等腰△ABC中,AB=AC,∠BAC=α.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是(用含α的代数式表示).三、解答题。
武汉市武昌区十月份八年级(上)月考数学试卷及答案解析
八年级(上)月考数学试卷(10月份)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形具有稳定性的是()A. 三角形B. 四边形C. 五边形D. 六边形2.下列长度的三条线段能组成三角形的是()A. 1,2,3B. 4,5,10C. 8,15,20D. 5,8,153.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A. 100∘B. 120∘C. 135∘D. 150∘4.已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A. 21B. 16C. 27D. 21或275.下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等6.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A. 第1块B. 第2块C. 第3块D. 第4块7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C. D.8.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A. 2B. 4C. 5D. 无数9.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在射线DB、DC、BC上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=()A. 30∘B. 35∘C. 15∘D. 25∘10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若AC=9,AB=15,且S△ABC=54,则△ABD的面积是()A. 1053B. 1354C. 45D. 35二、填空题(本大题共5小题,共15.0分)11.一个n边形的内角和是其外角和的2倍,则n=______.12.已知AD是△ABC的一条中线,AB=9,AC=7,则AD的取值范围是______.13.如图:作∠AOB的角平分线OP的依据是______.(填全等三角形的一种判定方法)14.如图,AD是△ABC的高,∠BAD=40°,∠CAD=65°.若AB=5,BD=3,则BC的长为______.15.如图,已知点A(-4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是______三、解答题(本大题共8小题,共72.0分)16.一个正多边形每个内角比外角多90°,求这个正多边形所有对角线的条数.17.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.18.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.19.如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.求证:AE=CF.20.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:AM平分∠EMF.22.C点的坐标为(4,4),A为y轴负半轴上一动点,连CA,CB⊥CA交x轴于B.(1)求OB-OA的值;(2)E在x轴正半轴上,D在y轴负半轴上,∠DCE=45°,转动∠DCE,求线段BE、DE和AD之间的数量关系.23.在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2-4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数______答案和解析1.【答案】A【解析】解:具有稳定性的图形是三角形.故选:A.根据三角形具有稳定性解答.本题考查了三角形具有稳定性,是基础题,需熟记.2.【答案】C【解析】解:由1、2、3,可得1+2=3,故不能组成三角形;由4、5、10,可得4+5<10,故不能组成三角形;由8、15、20,可得8+15<20,故能组成三角形;由5、8、13,可得5+8=13,故不能组成三角形;故选:C.三角形两边之和大于第三边,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形三边关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】C【解析】解:∠ADE=45°+90°=135°,故选:C.根据三角形的外角的性质和三角形是内角和即可得到结论.本题考查了三角形的外角的性质,三角形的内角和,熟练掌握三角形的外角的性质是解题的关键.4.【答案】C【解析】解:当等腰三角形的腰为5时,三边为5,5,11,5+5=10<11,三边关系不成立,当等腰三角形的腰为11时,三边为5,11,11,三边关系成立,周长为5+11+11=27.故选:C.根据腰为5或11,分类求解,注意根据三角形的三边关系进行判断.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.5.【答案】C【解析】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.此题主要考查了全等图形,关键是掌握全等形的概念.6.【答案】B【解析】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.7.【答案】B【解析】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.【答案】C【解析】解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180-75°-75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故选:C.因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ 的度数(必须≤90°),就可得出钢管的根数.根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.9.【答案】C【解析】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,两式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=∠E.本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.10.【答案】B【解析】解:在Rt△ACB中,BC===12,作DH⊥AB于H,如图,设DH=x,则BD=9-x,由作法得AD为∠BAC的平分线,∴CD=DH=x,在Rt△ADC与Rt△ADH 中,,∴△ADC≌△ADH,(HL),∴AH=AC=9,∴BH=15-9=6,在Rt△BDH中,62+x2=(12-x)2,解得x=,∴△ABD的面积=AB•DH=×15=.故选:B.先利用勾股定理计算出BC=12,作DH⊥AB于H,如图,设DH=x,则BD=12-x,利用作法得AD为∠BAC 的平分线,则根据角平分线的性质得CD=DH=x,接着证明△ADC≌△ADH得到AH=AC=9,所以BH=6,然后在Rt△BDH中利用勾股定理得到62+x2=(12-x)2,最后解方程求出x,然后根据三角形的面积公式即可得到结论.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理.11.【答案】6【解析】解:由题意得:180(n-2)=360×2,解得:n=6,故答案为:6;根据多边形内角和公式:(n-2)•180 (n≥3且n为整数)结合题意可列出方程180(n-2)=360×2,再解即可.此题主要考查了多边形内角和和外角和,关键是掌握多边形内角和公式:(n-2)•180 (n≥3且n为整数),多边形的外角和等于360度.12.【答案】1<AD<8【解析】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,(SAS),∴CE=AB.在△ACE中,CE-AC<AE<CE+AC,即2<2AD<16,∴1<AD<8.故答案为:1<AD<8.根据题意画出图形,延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.本题考查的是全等三角形的判定和性质,三角形的三边关系,根据题意画出图形,利用数形结合求解是解答此题的关键.13.【答案】SSS【解析】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【答案】11【解析】解:在DC上截取DE=BD=3,连接AE,∴AE=AB=5,∴∠EAD=∠BAD=40°,∵∠CAD=65°,∴∠CAE=25°,∵AD⊥BC,∴∠ADC=90°,∴∠C=25°,∴∠CAE=∠C,∴CE=AE=5,∴BC=BD+DE+CE=5+6=11,故答案为:11.在DC上截取DE=BD=3,连接AE,得到AE=AB=5,求得CE=AE=5,于是得到结论.本题考查等腰三角形的判定和性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】(8,0)或(4,0)【解析】解:①如图所示:当∠AFE=90°,∴∠AFD+∠OFE=90°,∵∠OEF+∠OFE=90°,∴∠AFD=∠OEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF,∴AF=EF,在△ADF和△FOE中,,∴△ADF≌△FOE(AAS),∴FO=AD=4,OE=DF=OD+FO=8,∴E(8,0)②当∠AEF=90°时,同①的方法得,OF=8,OE=4,∴E(4,0),综上所述,满足条件的点E坐标为(8,0)或(4,0)当∠AFE=90°,可证明△ADF≌△FOE,则FO=AD=4,OE=DF=OD+FC=8,从而可求得点E坐标,同理当∠AEF=90°时,也可求得点E坐标.本题主要考查的是正方形的性质、全等三角形的性质和判定,熟练掌握全等三角形的判定定理是解题的关键.16.【答案】解:设此正多边形为正n边形.n=8,∴此正多边形所有的对角线条数为:n(n−3)2=8×(8−3)2=20.答:这个正多边形的所有对角线有20条.【解析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可得一个正多边形的一个外角和一个内角的度数,列方程求出正多边形的边数.然后根据n 边形共有条对角线,得出此正多边形的所有对角线的条数.本题考查正多边形的内角和与外角和及多边形的对角线公式.关键是记住内角和与外角和的公式.17.【答案】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,AB=DEAC=DFBC=EF,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【解析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.18.【答案】证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中∠B=∠C∠BED=∠CFDDB=DC,∴△DBE≌DCF(AAS),∴DE=DF.【解析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定和性质得出DE=DF即可;此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出∠B=∠C.19.【答案】证明:∵AB∥CD,∴∠B=∠D(两直线平行,内错角相等);∴在△ABE和△CDF中,∠A=∠C(已知)AB=CD(已知)∠B=∠D,∴△ABE≌△CDF(ASA),∴AE=CF(全等三角形的对应边相等).【解析】通过全等三角形的判定定理ASA判定△ABE≌△CDF,然后由全等三角形的对应边相等推知AE=CF.本题考查了全等三角形的判定与性质.SSS、SAS、ASA、AAS、HL均为判定三角形全等的定理.20.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,BD=DFDC=DE,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,CD=DEAD=AD,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【解析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.21.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,∵AE=AB∠EAC=∠BAFAF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.(3)作AP⊥CE于P,AQ⊥BF于Q.由△EAC≌△BAF,推出AP=AQ(全等三角形对应边上的高相等).由AP⊥CE于P,AQ⊥BF于Q,可得AM平分∠EMF;本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF是证明的关键,也是解答本题的难点.22.【答案】解:(1)如图1,过C作CQ⊥y轴于Q,过C作CP⊥OB于P,∵C(4,4),∴CQ=CP=OQ=OP=4,∵AC⊥BC,∴∠ACB=∠ACP+∠BCP=∠BCP+∠PBC=90°,∴∠ACP=∠PBC,∵OA∥PC,∴∠CAQ=∠ACP=∠PBC,∵∠CPB=∠CQA=90°,∴△CQA≌△CPB(AAS),∴PB=AQ,∴OB-OA=OP+PB-OA=OP+AQ-OA=OP+OQ=8;(2)DE=AD+BE,理由是:如图2,过C作CM⊥CD,交x轴于M,∵AC⊥BC,∴∠ACD=∠BCM,由(1)知:△CQA≌△CPB,∴AC=BC,∠CAQ=∠PBC,∴∠DAC=∠MBC,∴△CAD≌△CBM(ASA),∴BM=AD,CD=CM,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°=∠BCM+∠BCE=∠ECM,∵CE=CE,∴△DCE≌△MCE(SAS),∴DE=EM,即DE=AD+BE.【解析】(1)如图1,作辅助线,证明△CQA≌△CPB(AAS),可得PB=AQ,根据线段的和与差可得结论;(2)如图2,作辅助线,证明△CAD≌△CBM(ASA)和△DCE≌△MCE(SAS),得DE=EM,AD=BM,相加可得结论.本题是几何变换的综合题,涉及到三角形全等、线段的和与差等知识,关键是通过正确画图,恰当地作辅助线,构建全等的三角形,确定线段间的关系.23.【答案】30°或60°或150°.【解析】解:(1)∵a2+b2-4a+4b+8=0,∴(a-2)2+(b+2)2=0,∵(a-2)2≥0,(b+2)2≥0,∴a-2=0,b+2=0,∴a=2,b=-2,∴A(0,2),B(-2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45-α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45-α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90-α,∠FKD=90-α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO=∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD3=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.(2)结论:AH+FD=AD;在AD上取K使AH=AK.只要证明△AHF≌△AKF,FD=DK即可解决问题;(3)分四种情形讨论即可解决问题;本题考查三角形综合题、等腰直角三角形的性质、平行线的性质、角平分线的定义、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
八年级(上)月考数学试卷(2022年10月)
2022-2023学年度月考试卷(10月)八年级(上)数学时间:90分钟满分120分一.选择题(10题共30分)1.两根长度分别为5cm,9cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cm B.4cm C.9cm D.14cm2.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1440°B.1080°C.900°D.720°5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°3题5题6题7题6.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是()A.∠1+∠2=2∠A B.∠1+∠2=∠A C.∠A=2(∠1+∠2)D.∠1+∠2=∠A9.适合条件∠A =∠B =∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF 的共有()A.1组B.2组C.3组D.4组题号12345678910选项二.填空题(共3小题24分)11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.8题10题11题12.到线段AB两个端点距离相等的点的轨迹是13题14题15题13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)14.如图所示的方格中,∠1+∠2+∠3=度.15.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.16.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.16题17题18题17.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.18.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是(填序号)三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为.20.(10分)已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?21.(8分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.(8分)如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.23.(9分)生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,求∠AFD的度数.24、(9分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?25、(12分)如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC于E,BF⊥AC于F.(1)若AB=CD,求证:GE=GF.(2)将△DEC的边EC沿AC方向移动到如图②,(1)中其余条件不变,上述结论是否成立?请说明理由.参考答案及评分标准一.选择题(10题共30分)二.填空题(共3小题24分)11、120°12、线段AB的垂直平分线13、AD=AC或∠D=∠C或∠ABD=∠ABC 14、13515、2167816、10817、76°18、①②③④三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出△ABC 中边BC 上的高AD ;.....2分(2)画出△ABC 中边AC 上的中线BE ;.....4分(3)直接写出△ABE 的面积为4.........6分20、(10分)已知△ABC 的周长为33cm ,AD 是BC 边上的中线,.(1)如图,当AC =10cm 时,求BD 的长.(2)若AC =12cm ,能否求出DC 的长?为什么?解:(1)∵AC=10∴AB=1023⨯=15∴BC=33-10-15=8cm 又∵AD 是BC 边上的中线∴4BC 21BD ==cm .....5分(2)∵AC=12∴AB=1223⨯=18∴BC=33-12-18=3cm ∵3+12<18此时三条线段不能构成三角形故不能求出DC 的长。
浙江省杭州市2019-2020学年八年级上(10月)月考数学试题(含答案)
浙江省杭州市2019-2020学年八年级上月考试题数学一、选择题:本题有10 小题,每小题3分,共30 分.在每小题给出的四个选项中,只有一项是符合要求的.1. 下列语句是命题的是(▲)A.作直线A B 的垂线B.在线段A B 上取点CC.同旁内角互补D.垂线段最短吗?2. 如图四个图形中,线段B E 是△ABC 的高线的是(▲)B C A B A EA.B.C.D.3. 具备下列条件的两个三角形中,一定全等的是(▲) A.有两边一角对应相等B.有两角一边分别相等C.三条边对应相等D.三个角对应相等4. 已知等腰三角形的两条边长分别是7和3,则第三条边长是(▲)A.8 B.7 C.4 D.35. 如图,等腰△ABC 的周长为21,底边B C=5,AB 的垂直平分线D E 交A B 于点D,交A C于点E,则△BEC 的周长为(▲)A.13 B.14 C.15 D.166. 一艘轮船由海平面上A地出发向南偏西40°的方向行驶40 海里到达B地,再由B地向北偏西20°的方向行驶40 海里到达C地,则A、C 两地相距(▲)A.30 海里B.40 海里C.50 海里D.60 海里第5题图第6题图第7题图第8题图第 10 题图7. 如图,N ,C ,A 三点在同一直线上,在△ ABC 中,∠A :∠ABC :∠ACB =3:5:10,又 △ MNC ≌△ABC ,则∠BCM :∠BCN 等于(▲)A .1:2B .1:3C .2:3D .1:4 8. 如图,AB ∥CD ,AC ∥DB ,AD 与 B C 交于点 O ,AE ⊥BC 于点 E ,DF ⊥BC 于点 F ,那么 图中全等的三角形有(▲)对 A .5 B .6 C .7 D .8 9. 一个等腰三角形的底边长为 5,一腰上中线把其周长分成的两部分的差为 3,则这个等腰 三角形的腰长为(▲) A .2 B .8 C .2 或 8 D .10 10. 如图,在△ABC 中,AB =20cm ,AC =12cm ,点 P 从点 B 出发以每秒 3cm 的速度向点 A 运动,点 Q 从点 A 同时 出发以每秒 2cm 的速度向点 C 运动,其中一个动点到达 端点时,另一个动点也随之停止运动,当△APQ 是以 PQ 为底的等腰三角形时,运动的时间是(▲) A .2.5 秒 B .3 秒 C .3.5 秒 D .4 秒二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11. 写出一个原命题是真命题,逆命题是假命题的命题: ▲ . 12. 在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则 ∠1= ▲ °. 13. 如图,CE 平分∠ACB ,且 C E ⊥DB ,∠DAB =∠DBA ,又知 A C =18,△CDB 的周长为 28, 则 B D 的长为 ▲ . 14. 如图,在△ABC 中,AB =AC ,∠BAD =28°,AD =AE ,则∠EDC = ▲ . 15. 已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形, 这样的三角形一共能作出 ▲ 个. 16. 如图,C 为线段 A E 上一动点(不与 A 、E 重合),在 A E 同侧分别作等边△ABC 和等边△ CDE ,AD 与 B E 交于点 O ,AD 与 B C 交于点 P ,BE 与 C D 交于点 Q ,连接 P Q ,以下五 个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°,其中正确的结论 是 ▲ (把你认为正确的结论的序号都填上).第 12 题图 第 13 题图 第 14 题图 第 16 题图三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤. 17.(本题满分 6 分) 指出下列命题的条件和结论,并改写成“如果……,那么……”的形式. (1)两直线平行,内错角相等;(2)三角形内角和等于 180°.18.(本题满分 8 分)一个零件的形状如图,按规定∠A = 90°,∠B 、∠C 分别是 32°和 21°.某检验工人量得∠BDC = 148°,就断定这个零件不合格,试用三角形的有关知识说明零件不合格的理由.19.(本题满分 8 分)第 18 题图如图,点 C ,F ,E ,B 在一条直线上, CFDBEA , C E BF ,DFAE .(1)求证:DF ∥AE ; (2)写出 C D 与 A B 之间的关系,并证明你的结论.第 19 题图20.(本题满分 10 分)如图,CD ∥AB ,∠ABC ,∠BCD 的角平分线交 A D 于 E 点,且 E 在 A D 上,CE 交 B A 的 延长线于 F 点. (1)试问 B E 与 C F 互相垂直吗?若垂直,请说明理由; (2)若 C D =3,AB =4,求 B C 的长.第 20 题图21.(本题满分10 分)已知命题:“P 是等边△ABC 内的一点,若P到三边的距离相等,则P A=PB=PC.” (1)写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.(2)进一步证明:点P 到等边△ABC 各边的距离之和为定值.22.(本题满分12 分)如图,在R t△ABC 中,∠C90 ,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,试画出所有不同的等腰三角形并说明画图方法.AC B第22 题图23.(本题满分12 分)如图(1),等边△ABC 中,D 是A B 边上的动点,以C D 为一边,向上作等边△EDC,连接AE.(1)△DBC 和△EAC 会全等吗?请说说你的理由;(2)试说明A E∥BC 的理由;(3)如图(2),将(1)动点D 运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.第23 题图参考答案及评分建议一、选择题:本题有 10 小题,每小题 3 分,共 30 分.二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11.不唯一,略 12.120° 13.8 14.14° 15.7 16.①②③⑤三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤.17.(1)如果两条直线平行,那么内错角相等(2)如果三个角是一个三角形的内角,那么这三个内角和等于 180°18.连接 A D 并延长至 E若是合格零件,则∠BDC=∠CDE+∠BDE =∠C+∠CAD+∠BAD+∠B=∠C+∠CAB+∠D =21°+90°+32°=143°而检验工人现测得∠BDC=148°,故两件不合格A 第 18 题图19. (1)证明: ∵CFD BEA ,点 C 、F 、E 、B 在一直线上∴∠DFE =∠AEF ∴DF ∥AE (2)CD 与 A B 之间的关系是:CD=AB ,且 C D ∥AB 证明:∵CE=BF ,∴CF=BE第 19 题图题号 1 2 3 4 5 6 7 8 9 10 答案CDCBABDCBD⎨ ⎩ ⎨ ⎩在 ΔCDF 和 ΔBAE 中CF BECFDBEADFAE∴ΔCDF≌ΔBAE ∴CD=BA ,∠C=∠B ∴CD ∥BA20.(1)垂直. 理由:∵CD ∥AB ,∴∠ABC+∠BCD=180°,∵∠ABC ,∠BCD 的角平分线交于 E 点, ∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠EBC+∠ECB= 1 ∠ABC+ 1 ∠BCD= 1(∠ABC+∠BCD )=90°,2 2 2∴∠CEB =90°,∴BE 与 C F 互相垂直.(2)∵∠CEB=90°, ∴∠FEB=90°, 在△FBE 和△CBE 中,∠CBE= ∠FBE ∵ BE BE,∠BEC = ∠BEF第 20 题图∴△FBE ≌△CBE (ASA ),∴BF=BC ,EF=EC , ∵CD ∥AB ,∴∠DCE=∠AFE , ∵∠FEA=∠CED ,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB∴BF=BC=7.21.(1)逆命题:P 是等边三角形A BC 内的一点,若P A=PB=PC,则P到三边的距离相等.该逆命题成立.证明:∵PA=PB,∴P 在A B 的垂直平分线上,∵AC=BC,∴C 在A B 的垂直平分线上,∴CP 是A B 的垂直平分线,∴CP 平分∠ACB,同理,BP 平分∠ABC,AP 平分∠BAC,∴P 是△ABC 三个角的角平分线的交点,∴PD=PE=PF.(2)第21 题图∵AB=BC=AC 且S△ABC=S△ABP +S△PBC +S△APC,∴由面积法可得P点到各边的距离之和=任意边上的高线长,即为定值.22.图示及画法如下:①以B为圆心,BC 长为半径画弧,交A B 于点I,△BCD 就是等腰三角形;②以C为圆心,BC 长为半径画弧,交A B 于点D,△BCD 就是等腰三角形;③以A为圆心,AC 长为半径画弧,交A B 于点E,△ACE 就是等腰三角形;④以C为圆心,BC 长为半径画弧,交A C 于点F,△BCF 就是等腰三角形;⑤作A C 的垂直平分线交A B 于点H,△ACH 就是等腰三角形;⑥作A B 的垂直平分线交A C 于G,则△AGB 是等腰三角形;⎨ ⎩ ⑦作 B C 的垂直平分线交 A B 于 I ,则△BCI 是等腰三角形.图 1图 2 图 3 图 4 图 5 图 6 图 723.(1)△DBC 和△EAC 会全等证明:∵∠ACB=60°,∠DCE=60°,∴∠BCD=60°﹣∠ACD ,∠ACE=60°﹣∠ACD ∴∠BCD=∠ACE在△DBC 和△EAC 中,BC AC∵ ∠BCD=∠ACE ECDC∴△DBC ≌△EAC (SAS ), (2)∵△DBC ≌△EAC , ∴∠EAC=∠B=60° 又∠ACB=60°, ∴∠EAC=∠ACB ,∴AE ∥BC(3)结论:AE ∥BC 理由:∵△ABC 、△EDC 为等边三角形∴BC=AC ,DC=CE ,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE 在△DBC 和△EAC 中,⎨ ⎩B CA C∵∠BCD ∠ACEC D E C∴△DBC ≌△EAC (SAS ),∴∠EAC=∠B=60° 又∵∠ACB=60° ∴∠EAC=∠ACB ∴AE ∥BC . 第 23 题图。
黑龙江省哈尔滨市工业大学附属中学2024-2025学年八年级上学期10月月考数学试卷
黑龙江省哈尔滨市工业大学附属中学2024-2025学年八年级上学期10月月考数学试卷一、单选题1.点(2,3)A -关于y 轴对称点B 的坐标是( )A .(2,3)--B .(2,3)-C .(2,3)-D .(2,3)2.下列图形中是轴对称图形的是( )A .B .C .D . 3.等腰三角形的两边长是6cm 和3cm ,那么它的周长是A .9cmB .12 cmC .12 cm 或15 cmD .15 cm 4.等腰三角形的一个外角是80︒,则其底角是( )A .40︒B .100︒C .80︒D .100?︒或40︒ 5.在ABC V 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,给出以下条件,不能判定其是等腰三角形的是( )A .::1:1:3ABC ∠∠∠=B .::2:2:1=a b cC .50B ∠=︒,80C ∠=︒D .2A B C ∠=∠+∠6.如图,在Rt △ABC 中,∠C =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm 7.如图,在ABC V 中,AB AC =,BD 是角平分线,若84BDC ∠=︒,则A ∠等于( )A .64︒B .52︒C .48︒D .42︒8.如图,D 为ABC V 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠,1BD =,3BC =,则AC 的长为( )A .4B .4.5C .5D .5.59.到三角形的三个顶点距离相等的点是( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三条边的垂直平分线的交点10.下列说法中,正确的有( )个.①两个全等的三角形一定关于某直线对称;②关于某条直线对称的两个图形,对称点所连线段被对称轴垂直平分;③等腰三角形的高、中线、角平分线互相重合;④等腰三角形一腰上的高与底边的夹角等于顶角的一半.A .1B .2C .3D .4二、填空题11.如果(2,4)A -,(,4)B a -关于x 轴对称,则a =.12.小强从穿衣镜中看到挂在墙上电子表的读数是,则电子表的实际读数是.13.如图,ABC V 中,40B ∠=︒,AC 的垂直平分线交AC 于D ,交BC 于E ,且:4:1CAB CAE ∠∠=,则C ∠=︒.14.如图,长方形ABCD ,沿对角线BD 折叠,使点C 落在点F 处,BF 交AD 于点E ,若长方形ABCD 的周长为16,则ABE V 的周长为.15.ABC V 中,AB AC =,AB 的垂直平分线交直线AC 于点D ,若64BDA ∠=︒,则A C B ∠是度.16.如图,锐角ABC V 的高AD ,BE 相交于F ,若BF AC =,7BC =,2CD =,则AF 的长为.17.如图,点P 关于OA 、OB 的对称点是H 、G ,直线HG 交OA 、OB 于点C 、D ,若80HOG ∠=︒,则CPD ∠=︒.18.如图,ABC V 是等边三角形,点D 、E 分别在CB 、AC 的延长线上,BD CE =,BE 交AD 于点F ,AG EF ⊥于点G ,若4BE =,1DF =,求FG 的长为.三、解答题19.(1)解方程组:()8521x y x x y +=⎧⎨-+=-⎩; (2)解不等式组:32523211x x x x --⎧≤⎪⎨⎪-<+⎩. 20.如图,在正方形网格中,直线l 与网格线重合,点A C A B '',,,均在网格点上.(1)已知ABC V 和A B C '''V 关于直线l 对称,请在图上把ABC V 和A B C '''V 补充完整:(2)在以直线l 为y 轴的坐标系中,若点A 的坐标为(,)a b ,则点A '的坐标为________;(3)在直线l 上画出点P ,使得PA PC +最短.21.若关于,x y 二元一次方程组2325x y a x y a +=⎧⎨-=--⎩的解,x y 的值大于0. (1)求a 的取值范围;(2)若,x y 的值恰好是一个等腰三角形的腰和底边的长,且这个等腰三角形的周长为15,求a 的值.22.已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =.(1)【特殊情况,探索结论】如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE ______DB (填“>”“<”或“=”).(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论,AE ______DB (填“>”“<”或“=”). 理由如下,过点E 作EF BC ∥,交AC 于点F (请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC 中,点E 在直线AB 上,点D 在CB 的延长线上,且ED EC =,若ABC V 的边长为1,2AE =,求CD 的长(请你画出相应图形,并直接写出结果).23.北京时间2024年5月3月17时27分,嫦蛾六号探测器由长征五号遥八运载火箭在中国文昌航天发射场发射,之后准确进入地月转移轨道,发射任务取得圆满成功.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种型号运载火箭模型进行销售,据了解,2件A 种型号运载火箭模型和4件B 种型号运载飞船模型的进价共计140元;3件A 种型号运载火箭模型和2件B 种型号运载火箭模型的进价共计130元.(1)求A 、B 两种型号运载火箭模型每件的进价分别为多少元?(2)若该超市计划用不超过800元的资金购进这两种型号运载火箭模型共30件,求A 种型号运载火箭模型最多能购买多少件?24.如图1,平面直角坐标系中,O 为坐标原点,()0,6A ,()6,0B -,C 为x 轴正半轴上一点,ABC V 的面积为36.(1)求点C 的坐标:(2)如图2,P 为线段OC 上一点,P 不与O 、C 重合,过点P 作PD x ⊥轴交AC 于点D ,设PC m =,请用含m 的式子表示ABD △的面积;(不要求写出m 的取值范围)(3)如图3,在(2)的条件下,当ABD △面积为18时,过点A 作AE BD ⊥并延长交x 轴于点F ,连接DF ,请判断ADB ∠与CDF ∠的数量关系并说明理由.25.已知,在ABC V 中,30B ∠=︒,点D 在AC 的延长线上,点E 在BC 边上,连接DE ,120A D ∠+∠=︒.(1)如图1,求CED ∠的度数:(2)如图2,当AC CD =时,求证:DE AB =;(3)如图3,在(2)的条件下,连接AE ,2AE CE =,取BE 的中点F ,连接AF ,点G 在AE 上,连接FG ,若2∠=∠AFG D ,2FG CE -=,求AG 的长.。
上海市第四中学2021-2022学年八年级上学期10月月考数学试卷(解析版)
【答案】 且
【分析】由题意可知,此方程为一元二次方程且有两个实数根,则 且 求解即可.
【详解】解:由题意可知,此方程为一元二次方程且有两个实数根,
则 且 ,即
化简得 ,解得
所以 且
故答案为 且
【点睛】本题考查了根的判别式、一元二次方程的定义,根据题意列出不等式是解题的关键.
【详解】解:∵BQ平分∠ABC,BQ⊥AE,
在△BQA和△BQE中,
,
∴△BQA≌△BQE,
∴BA=BE,
同理可证△CAP≌△CDP,得到AC=CD,
∵BE+CD=AB+AC=26-BC=26-10=16,
∴DE=BE+CD-BC=6,
故答案为:6
【点睛】本题主要考察全等三角形的判定和性质,熟练掌握全等三角的判定和性质是解题的关键.
【详解】∵实数x、y满足y= + +9,
∴1-2x≥0且2x-1≥0,
解得x= ,
∴y=9,
∴ = =3,
故答案为:3.
【点睛】本题考查了二次根式的非负性,分数指数幂,熟练掌握二次根式的性质,灵活运用分数指数幂的运算法则是解题的关键.
10.不等式 x﹣ > x的解集是__.
【答案】 ##
【分析】移项,合并同类项,系数化成1,再分母有理化即可.
【详解】解:移项得 ,
合并同类项,得 ,
系数化成1,得 ,
故答案为: .
【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.注意分母有理化.
11.方程x2+4x+4=0的根是_____.
2020-2021学年浙江省湖州市长兴县八年级(上)月考数学试卷(一)(附答案详解)
2020-2021学年浙江省湖州市长兴县八年级(上)月考数学试卷(一)一、选择题(本大题共10小题,共30.0分)1.一个三角形的两条边长分别是7,9,则它的第三边长不可能是()A. 2B. 7C. 9D. 152.下列说法中属于命题的是()A. 请把你的作业交给老师B. 苍蝇是一只另类的鸟C. 画一个等于60°的角D. 三边对应相等的两个三角形全等吗?3.下列图形中,是轴对称图形的是()A. B. C. D.4.已知△ABC≌△DEF,且△ABC的周长为6,则△DEF的周长为()A. 12B. 10C. 8D. 65.如图,已知∠ACB=∠DBC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A. SASB. AASC. SSSD. ASA6.下列命题是真命题的是()A. 内错角相等B. 过一点有且只有一条直线与已知直线垂直C. 同位角相等,两直线平行D. 一个角的补角必大于这个角7.下列选项中,可以用来证明命题“若a2>4,则a>2”是假命题的反例是()A. a=2.3B. a=−2C. a=2D. a=−2.28.如图,以△ABD的顶点B为圆心,以BD为半径作弧交边AD于点E,分别以点D、点E为圆心,BD长为半径作弧,两弧相交于不同于点B的另一点F,再过点B和点F作直线BF.则作出的直线是()A. 线段AD的垂线但不一定平分线段ADB. 线段AD的垂直平分线C. ∠ABD的平分线D. △ABD的中线9.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则下列结论不一定成立的是()A. CD=BDB. ∠ACO=∠ABOC. OF=BFD. OC+OD=AD10.点D是AB上一点,AD=3BD,DF交AC于点E,DE=EF,FC//AB,S△ABC=16,则△CEF的面积是()A. 5B. 6C. 8D. 12二、填空题(本大题共6小题,共24.0分)11.如图,建造电力铁塔时常用三角形结构,是应用了三角形______性.12.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=______ °.13.一个三角形的两个内角的度数分别是35°和65°,则这个三角形是______三角形.(填“锐角”、“直角”或“钝角”)14.如图,OC平分∠AOB,E是射线OC上一点,过E作ED⊥OB于D,ED=3.则点E到OA的距离为______.15.现有3cm、4cm、7cm、9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是______.16.在△ABC中,∠ABC=28°,∠ACB=122°,AD和AE分别是△ABC的角平分线和高线,则∠DAE=______°.三、解答题(本大题共8小题,共66.0分)17.现有三条线段,它们的长分别是9cm,18cm,26cm.这三条线段能构成三角形的三边吗?为什么?18.结合图形,根据题中所给的条件,填写下列内容:如图,AB//CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.证明:DF______AE.理由如下:∵AB//CD(______),∴∠C=∠B(______).∵CE=BF,∴CE−FE=BF−FE,即CF=BE.在△ABE与△DCF中,{AB=CD(ㅤㅤ)∠B=∠C(已证) BE=CF(已证),∴△ABE≌△DCF(______).∴DF______AE(______).19.已知:如图,直线AD与BC交于点O,OA=OD,OB=OC.求证:AB//CD.20.如图,点E,C在线段BF上,AB=DE,BE=CF.(1)若要使△ABC≌△DEF,可以添加的条件是:______.(2)请根据你所给的条件进行证明.21.(1)请在图1中画出一个与△ABC全等但不重合的三角形;(2)请在图2中的直线l上找一点P,使得PA+PB最小;(3)请在图3中的直线m上找一点Q,使得QC+QD最小.22.如图,在△ABC中,BE平分∠ABC,CE平分∠ACD.(1)如果∠ABC=45°,∠ACD=95°,分别求出∠A和∠E的度数;(2)如果∠A=52°,求∠E的度数.23.如图,已知:AB//CD.PB和PC分别平分∠ABC和∠DCB,AD过点P且AD⊥AB.(1)求证:PA=PD;(2)如果AB=1,CD=3,求BC的长.24.在∠MAN内有一点D.过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若DE//AN,DF//AM.∠A=40°.则∠FDC=______°;(2)如图2,若∠BED=∠CFD,DE=7,求DF的长;(3)如图3,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF三条线段间具有的数量关系,并说明你的结论成立的理由.答案和解析1.【答案】A【解析】解:∵一个三角形的两条边长分别是7,9,∴9−7<第三边<9+7,即:2<第三边<16,只有2不符合,故选:A.根据三角形的三边关系求得第三边的取值范围,再看哪个选项内的数不在这个范围内即可.考查了三角形的三边关系,解题的关键是利用三边关系确定第三边的取值范围,难度不大.2.【答案】B【解析】解:A、请把你的作业交给老师,没有对事情作出判断,不是命题,不符合题意;B、苍蝇是一只另类的鸟,是命题,符合题意;C、画一个等于60°的角,没有对事情作出判断,不是命题,不符合题意;D、三边对应相等的两个三角形全等吗?没有对事情作出判断,不是命题,不符合题意;故选:B.根据命题的概念判断即可.本题考查的是命题的概念,掌握判断一件事情的语句,叫做命题是解题的关键.3.【答案】D【解析】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,正确掌握轴对称图形的定义是解题关键.4.【答案】D【解析】解:∵△ABC≌△DEF,且△ABC的周长为6,∴△DEF的周长为6,故选:D.根据全等三角形的周长相等,判断即可.本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.5.【答案】D【解析】解:∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,∴△ABC≌△DCB(ASA),故选:D.根据全等三角形的判定方法即可解决问题.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】C【解析】解:A、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;B、过平面内一点有且只有一条直线与已知直线垂直,故原命题错误,不符合题意;C、同位角相等,两直线平行,正确,是真命题,符合题意;D、钝角的补角小于这个角,故原命题错误,是假命题,不符合题意,故选:C.利用平行线的性质与判定、补角的定义等知识分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解平行线的性质与判定、补角的定义等知识,难度不大.7.【答案】D【解析】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=−3,∵(−2.2)2>4,但是a=−2.2<2,∴D正确.故选:D.根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题.此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.8.【答案】A【解析】解:由题意可知,BF是线段ED的垂直平分线,垂直AD但不一定平分AD,故选:A.根据线段垂直平分线的作法解答即可.此题考查线段垂直平分线,关键是根据线段垂直平分线的作法解答.9.【答案】C【解析】解:∵AB=AC,AD是∠BAC的角平分线,∴CD=BD,故A不合题意,∵EF是AC的垂直平分线,∴AO=CO,∴AD=AO+OD=CO+OD,故D不合题意,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD,又∵AB=AC,AO=AO,∴△AOC≌△AOB(SAS),∴∠ACO=∠ABO,故B不合题意;∵∠FOB不一定等于∠OBF,∴OF不一定等于BF,故C符合题意,故选:C.由等腰三角形的性质可得AD⊥BC,由线段垂直平分线的性质可得AO=CO,可证AD= AO+OD=CO+OD,由“SAS”可证△AOC≌△AOB,但得不出OF=BF,即可求解.本题考查了全等三角形的判定和性质,线段垂直平分线的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.10.【答案】B【解析】解:连接BE.∵FC//AB,∴∠ADF=∠F.∵∠AED=∠CEF,DE=EF,∴△ADE≌△CEF(ASA).∴AE=CE.即E是AC的中点.∵S△ABC=16,∴S△ABE=8,∵AD=3BD,∴S△ADE=3×8=6,4∴S△EFC=S△ADE=6,故选:B.连接BE.首先证明△ADE≌△CEF.只要求出△ADE的面积即可.本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】稳定【解析】解:建造电力铁塔时常用三角形结构,是应用了三角形稳定性;故答案为:稳定.根据三角形的稳定性可得答案.此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.【答案】25【解析】解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∴∠CAB−∠EAB=∠EAD−∠EAB,即:∠BAD=∠EAC=25°,故答案为25.根据全等三角形对应角相等可以得到∠CAB=∠EAD,然后两个相等的角减去同一个∠EAB即可得到∠CAE=∠BAD,从而得到结论.本题考查了全等三角形的性质,属于基础题,相对比较简单,解题的关键是发现∠BAD和∠EAC之间的关系.13.【答案】锐角【解析】解:∵一个三角形的两个内角的度数分别是35°和65°,∴另一个内角的度数为180°−35°−65°=80°.又∵35°<65°<80°<90°,∴该三角形的三个内角均为锐角,∴这个三角形是锐角三角形.故答案为:锐角.由三角形的两个内角度数,利用三角形内角和定理可求出另一个内角的度数,由三个内角均为锐角,即可得出该三角形为内角三角形.本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.14.【答案】3【解析】解:过E作EH⊥OA于H,∵OC平分∠AOB,ED⊥OB,∴EH=ED,∵ED=3,∴EH=ED=3,即点E到OA的距离为3.故答案为:3.过E作EH⊥OA于H,根据角平分线的性质即可得到结论.本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边距离相等是解题的关键.15.【答案】2【解析】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故答案为:2.从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.16.【答案】47【解析】解:如图,∵∠ABC=28°,∠ACB=122°,∴∠CAB=180°−28°−122°=30°,∵AD是△ABC的角平分线,∴∠BAD=1∠CAB=15°,2∵AE是△ABC的高线,∴∠E=90°,∴∠BAE=180°−90°−28°=62°,∴∠DAE =∠BAE −∠BAD =62°−15°=47°,故答案为:47.根据题意画出图形,根据三角形的内角和得出∠CAB =30°,根据三角形角平分线的定义求出∠BAD =15°,再根据三角形内角和及三角形高线的定义求出∠BAE =62°,最后根据角的和差求解即可.此题考查了三角形的内角和定理,熟记三角形的内角和是180°是解题的关键.17.【答案】解:能构成三角形,∵现有三条线段,它们的长分别是9cm ,18cm ,26cm ,∴18−9<26<9+18,∴能构成三角形.【解析】利用三角形的三边关系进行判断即可.考查了三角形的三边关系,解题的关键是了解三角形是第三边小于两边之和而大于两边之差,难度不大.18.【答案】= 已知 两直线平行,内错角相等 SAS = 全等三角形的对应边相等【解析】证明:DF =AE.理由如下:∵AB//CD (已知),∴∠C =∠B (两直线平行,内错角相等).∵CE =BF ,∴CE −FE =BF −FE ,即CF =BE .在△ABE 与△DCF 中,{AB =CD(已知)∠B =∠C(已证)BE =CF(已证),∴△ABE≌△DCF(SAS).∴DF =AE (全等三角形的对应边相等).故答案为:=,已知,两直线平行,内错角相等,已知,SAS ,=,全等三角形的对应边相等.由“SAS ”可证△ABE≌△DCF ,可得DF =AE .本题考查了全等三角形的判定和性质,证明三角形全等三角形是解题的关键.19.【答案】证明:在△AOB和△DOC中,∵OA=OD,OB=OC,又∠AOB=∠DOC,∴△AOB≌△DOC,∴∠A=∠D,∴AB//CD.【解析】欲证AB//CD,需证∠A=∠D,因此证明△OAB≌△ODC即可.根据SAS易证.此题难度中等,考查全等三角形的判定性质.20.【答案】∠B=∠DEF或AC=DF【解析】解:(1)∵BE=CF,∴BE+EC=CF+EC,即BC=EF,添加∠B=∠DEF,利用SAS判定△ABC≌△DEF;添加AC=DF,利用SSS判定△ABC≌△DEF;故答案为:∠B=∠DEF或AC=DF;(2)添加∠B=∠DEF,在△ABC与△DEF中,{AB=DE∠B=∠DEF BC=EF,∴△ABC≌△DEF(SAS).(1)根据全等三角形的判定解答即可;(2)根据全等三角形的判定方法解答即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.【答案】解:(1)如图1,△ABC≌△EBD.(2)如图2,连接AB交直线l于点P,则点P使得PA+PB最小.(3)如图3,作出点D关于直线m的对称点F,连接CF交直线m于点Q,则QC+QD最小.【解析】(1)根据全等三角形的判定可画出图形;(2)由“两点之间,线段最短“可画出图形;(3)依据轴对称的性质,作出点D关于直线m的对称点F,连接CF,则可得出点Q.本题考查了线段的性质,全等三角形的判定,轴对称的性质,掌握线段的性质及轴对称的性质是解题的关键.22.【答案】解:(1)∵∠ABC=45°,∠ACD=95°,∴∠A=∠ACD−∠ABC=95°−45°=50°;∵BE平分∠ABC,CE平分∠ACD.∴∠CBE=12∠ABC=12×45°=22.5°,∠DCE=12∠ACD=12×95°=47.5°,∴∠E=∠DCE−∠CBE=47.5°−22.5°=25°;所以∠A和∠E的度数分别为:50°,25°;(2)∵∠ACD=∠A+∠ABC,∴∠ECD=12(∠A+∠ABC).∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=12(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=12∠ABC,∴12∠ABC+∠E=12(∠A+∠ABC),∴∠E=12∠A=12×52°=26°.所以∠E的度数为26°.【解析】(1)根据三角形的外角等于和它不相邻的两个内角和可得∠A=∠ACD−∠ABC=50°,然后根据BE平分∠ABC,CE平分∠ACD,进而可得结果;(2)由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质,得∠ECD=12(∠A+∠ABC),∠EBC=12∠ABC,利用等量代换,即可求得∠A与∠E的关系,进而可得结果.本题考查的是三角形内角和定理,外角的性质,角平分线定义,熟知三角形一个外角等于与它不相邻的两个内角的和是解答此题的关键.23.【答案】证明:(1)过点P作PE⊥BC于E,如图1,∵AB//CD,AD⊥AB,∴∠CDA=∠BAP=90°,∴PD⊥CD,PA⊥BA,PE⊥BC,又∵PB平分∠ABC,PC平分∠DCB,∴PA=PE,PE=PD,∴PD=PA.(2)解:在BC上取点F,使得BF=BA,连接PF,如图2,∵BP、CP分别是∠ABC和∠BCD的平分线,∴∠ABP=∠FBP,∠DCP=∠FCP.在△ABP和△FBP中,{AB=FB∠ABP=∠FBP BP=BP,∴△ABP≌△FBP(SAS),∴∠A=∠BFP.∵AB//CD,∴∠A+∠D=180°,∴∠BFP+∠D=180.∵∠BFP+∠CFP=180°,∴∠CFP=∠D.在△CDE和△CFE中,{∠CFP=∠D∠FCP=∠DCP CP=CP,∴△CDP≌△CFP(AAS),∴CF=CD.∵BC=BF+CF,∴BC=AB+CD.∴BC=CF+FB=CD+AB=1+3=4.【解析】(1)过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,从而得证.(2)在BC上取点F,使BF=BA,连接PF,由角平分线的性质可以得出∠ABP=∠FBP,从而可以得出△ABP≌△FBP,可以得出∠A=∠BFP,进而可以得出△CDP≌△CFP,就可以得出CD=CF,即可得出结论.本题考查了全等三角形的判定和性质以及角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.24.【答案】50【解析】解:(1)∵DE//AN,DF//AM,∴四边形AFDE是平行四边形,∴∠A=∠EDF=40°,∵DE//AN,DC⊥AN,∴∠EDC=90°,∴∠FDC=∠EDC−∠EDF=90°−40°=50°,故答案为:50.(2)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,{∠BED=∠CFD ∠DBE=∠DCF BD=CD,∴△BDE≌△CDF(AAS).∴DE=DF=7;(3)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,{∠EBD=∠GCD BD=CD∠BDE=∠CDG,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,{DE=DG∠EDF=∠GDF DF=DF,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.(1)根据平行四边形的判定和性质解答即可;(2)根据题目中的条件和∠BED=∠CFD,可以证明△BDE≌△CDF,从而可以得到DE= DF;(3)作辅助线,过点D作∠CDG=∠BDE,交AN于点G,从而可以得到△BDE≌△CDG,然后即可得到DE=DG,BE=CG,再根据题目中的条件可以得到△EDF≌△GDF,即可得到EF=GF,然后即可得到EF,BE,CF具有的数量关系.本题考查全等三角形的判定、解答本题的关键是明确题意,利用数形结合的思想解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级数学上册10月月考数学试卷附答案
一、选择题(共10小题;共30分)
1. 为了了解大江东产业聚集区年数学学业考试各分数段成绩分布情况,从中抽
取名考生的学业考试数学成绩进行统计分析.在这个问题中,样本容量是指
A.
B. 被抽取的名考生的学业考试数学成绩
C. 被抽取的名考生
D. 大江东产业聚集区年学业考试数学成绩
2. 一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有
发生变化,若,则的大小是
A. B. C. D.
3. 下列各组长度的线段能构成三角形的是
,
4. 工人师傅常用角尺平分一个任意角.作法如下:如图所示,是一个任意角,
在边,上分别取,移动角尺,使角尺两边相同的刻度分别与,重合,过角尺顶点的射线即是的平分线.这种作法的道理是
A. B. C. D.
5. 对于命题“如果,那么”,能说明它是假命题的反例是
A. ,
B. ,
C. D. ,
6. 具备下列各组条件的和,不能判定它们相似的是
A. ,
B. ,
C. ,
D. ,
7. 如图,已知直线交直线,于,两点,且,是上的点,是
上的点,满足,,则的度数是
A. B. C. D. 无法确定
8. 如图,是中的平分线,于点,,
,,则长是
A. B. C. D.
9. 已知等腰三角形一腰上的中线将它的周长分成和两部分,则等腰三
角形的底边长为
B. 或或
10. 如图,等边的边长为,,分别是,上的点,将
沿直线折叠,点落在处,且在外部,则阴影部
分图形的周长为.。