运筹学实验讲解

合集下载

《运筹学》实验四__网络计划(学生版)

《运筹学》实验四__网络计划(学生版)

实验四网络计划
一、实验目的
掌握WinQSB软件绘制计划网络图,计算时间参数,求关键路线。

二、实验平台和环境
WindowsXP平台下,WinQSB V2.0版本已经安装在D:\WinQSB中。

三、实验内容和要求
用WinQSB软件求解网络计划问题。

输人数据(PERT/CPM),显示网络图,计算时间参数,显示结果和关键工序,计算赶工时间,显示甘特图。

四、实验操作步骤
启动程序。

点击开始→程序→WinQSB→PERT_CPM.(课堂演示)
五、分析讨论题
参考上述实验过程,编制下述项目的网络计划图,计算有关参数并指出关键工序。

1、某工程项目明细如表4-1所示。

2、某工程项目明细如表4-2所示。

表4-2
六、网络计划常用术语词汇及其含义。

运筹学实验报告讲诉

运筹学实验报告讲诉

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。

解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。

运筹学实验报告2讲解

运筹学实验报告2讲解

实验报告《运筹学》2015~2016学年第一学期实验目的:加强学生分析问题的能力,锻炼数学建模的能力。

掌握WinQSB/Matlab 软件中线性规划、灵敏度问题的求解和分析。

用 WORD 书写实验报告:包括详细规划模型、试验步骤和结果分析。

实验内容:题1:某厂的一个车间有1B ,2B 两个工段可以生产123,,A A A 三种产品,各工段开工一天生产三种产品的数量和成本,以及合同对三种产品的每周最低需求量由表1给出。

问每周各工段对该生产任务应开工几天,可使生产合同的要求得到满足,并使成本最低。

建立模型。

表1生产定额(吨/天)工段B生产合同每周最低需求量(吨)ib iA 产品1A 2A 3A 1B 2B 11311310002000599成本(元/天)建立模型:WinQSB录入模型界面:运行结果界面:结果分析:决策变量:X1,X2最优解:X1=3,X2=2;目标系数:C1=1000,C2=2000;最优值:7000;其中X1贡献3000,X2贡献4000;检验数,或称缩减成本:0,0。

即当非基变量增加一个单位时,目标值的变动量。

目标系数的允许减量和允许增量;目标系数在此范围变量时,最优基不变。

约束条件约束条件:C1,C2,C3左端:5,11,9右端:5,9,9松弛变量或剩余变量:该端等于约束左端与约束优端之差;为0表示资源达到限制值。

题2:明兴公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,这三种产品都要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。

有关情况见表2;公司中可利用的总工时为:铸造8000小时,机加工12000小时和装配10000小时。

建立模型:解;假设公司选择甲产品自产X1件,外包协作X2件,乙产品自产X3件,外包协作X4件,丙产品生产X5件,则有;maxZ=15X1+13X2+10X3+9X4+7X5s.t. 5X1+10X3+7X5<=80006X1+6X2+4X3+4X4+8X5<=12000 3X1+3X2+2X3+2X4+2X5<=10000 X1-5>=0WinQSB录入模型界面:运行结果界面:结果分析:(1)X*=(1600,0,0,600,0), Z*=29400元,即:公司为了获得最大利润29400元,甲、乙、丙三种产品各生产1600件、600件、0件。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实验讲解

运筹学实验讲解

Lingo软件实验报告一、实验内容:1)用lingo软件解决线性规划问题;2)熟悉lingo软件的相关操作。

3)对线性规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的非负约束,考虑到lingo软件能方便地输入数据,并且有内置建模语言,提供内部处理函数,能很方便地处理一系列约束条件解出目标函数的最值,所以采用lingo软件解决线性规划问题。

4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,利用lingo软件能能很方便地处理一系列约束条件解出目标函数的最值,采用lingo软件解决线性规划问题。

二、实验设备:计算机三、使用软件:lingo软件四、软件特点与优势:可以简单地表示模型,能方便地输入数据和选择输出。

五、举例计算:1,线性规划A: 营养套餐问题:根据生物营养学理论,要维持人体正常的生理健康需求,一个成年人每天需要从食物中获取3000cal热量,55g蛋白质和800mg钙。

假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分,以及市场价格见下表。

问如何选购才能满足营养的前提下,使购买食品的总费用最小?解:为了建立该问题的数学模型,假设xj(j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则目标函数为Minz=20x1+8x2+4x3+2x4表示在满足营养要求的系列约束条件下,确定各种食物的购买量,使每天购买食物的总费用最小。

其约束条件是热量需求:1000x1+800x2+900x3+200x4>=3000蛋白质需求:50x1+60x2+20x3+10x4>=55钙需求:400x1+200x2+300x3+500x4>=800决策变量的非负约束:xj>=0(j=1,2,3,4)因此,营养配餐问题的数学模型为Minz=20x1+8x2+4x3+2x41000x1+800x2+900x3+200x4>=300050x1+60x2+20x3+10x4>=55400x1+200x2+300x3+500x4>=800xj>=0(j=1,2,3,4)B: lingo代码:model:min=20*x1+8*x2+4*x3+2*x4;1000*x1+800*x2+900*x3+200*x4>=3000;50*x1+60*x2+20*x3+10*x4>=55;400*x1+200*x2+300*x3+500*x4>=800;ENDC: 结果截屏:D:运行结果分析:由运行结构可知:该线性规划的最值为13.33333,即在变量为非负的情况下,只买3.33kg的大米可以满足目标函数的要求。

管理运筹学运输问题实验报告

管理运筹学运输问题实验报告

管理运筹学运输问题实验报告一、实验目的通过研究和实践,掌握线性规划求解运输问题的基本模型和求解方法,了解运输问题在生产、物流和经济管理中的应用。

二、实验背景运输问题是管理运筹学中的一个重要问题,其主要目的是确定在不同生产或仓库的产量和销售点的需求之间如何进行运输,使得运输成本最小。

运输问题可以通过线性规划模型来解决。

三、实验内容1. 根据实验数据,建立运输问题的线性规划模型。

2. 使用Excel中的“规划求解器”功能求解模型。

3. 对不同情况进行敏感性分析。

四、实验原理运输问题是一种典型的线性规划问题,其目的是求解一组描述生产和需要之间的运输方案,使得总运输费用最小。

运输问题的一般模型如下:min ∑∑CijXijs.t. ∑Xij = ai i = 1,2,...,m∑Xij = bj j = 1,2,...,nXij ≥ 0其中,Cij表示从i生产地到j销售点的运输成本;ai和bj分别表示第i个生产地和第j个销售点的产量和需求量;Xij表示从第i个生产地向第j个销售点运输的物品数量。

五、实验步骤1. 根据实验数据,建立运输问题的线性规划模型。

根据题目所给数据,我们可以列出线性规划模型:min Z =200X11+300X12+450X13+350X21+325X22+475X23+225X31+275X32+400X 33s.t. X11+X12+X13 = 600X21+X22+X23 = 750X31+X32+X33 = 550X11+X21+X31 = 550X12+X22+X32 = 600X13+X23+X33 = 450Xij ≥ 02. 使用Excel中的“规划求解器”功能求解模型。

在Excel中,选择“数据”选项卡中的“规划求解器”,输入线性规划的目标函数和约束条件,并设置求解参数,包括求解方法、求解精度、最大迭代次数等。

3. 对不同情况进行敏感性分析。

敏感度分析是指在有些条件发生变化时,线性规划模型的最优解会如何变化。

运筹学实验报告

运筹学实验报告

运筹学实验报告导言运筹学是一门研究如何有效地进行决策、规划、控制和优化的学科。

它在不同领域中都有广泛应用,例如物流管理、生产调度、资源分配等。

本实验报告将介绍一个基于运筹学方法的实际案例,展示其在实践中的应用和效果。

问题描述我们选取了一个假设情景作为研究案例:一家电子公司正在考虑如何优化其供应链。

供应链的核心问题是如何在最小的时间和成本内将产品从制造商运送到最终客户手中。

该公司一直面临着供应链效率低下、库存过高等问题,因此需要进行优化。

方法选择为了解决供应链问题,我们选择了线性规划方法进行建模和求解。

线性规划是一种经典的运筹学方法,通过建立目标函数和约束条件来实现优化。

我们将考虑运输成本、库存成本和交货时间等因素,以最小化总成本为目标进行优化。

数据收集与分析首先,我们需要收集与供应链相关的数据,包括产品库存量、制造商的运输能力、客户的需求等信息。

通过对这些数据进行分析,我们可以获得对供应链瓶颈和优化潜力的洞察。

模型建立与求解根据数据分析的结果,我们可以建立数学模型来描述供应链的运作。

假设有n个制造商和m个客户,我们需要决策每个制造商向每个客户运送的产品数量。

我们定义决策变量x_ij表示制造商i 向客户j运送的产品数量。

通过设定合适的约束条件,如制造商的运输能力限制、客户的需求限制等,我们可以建立如下的线性规划模型:minimize ∑(c_ij * x_ij) for all i, jsubject to:∑(x_ij) <= supply_i for all i∑(x_ij) >= demand_j for all jx_ij >= 0 for all i, j其中c_ij表示从制造商i到客户j运输一个产品的成本,supply_i表示制造商i的运输能力,demand_j表示客户j的需求。

接下来,我们可以使用线性规划求解器对模型进行求解。

求解过程将得到最优的运输方案,包括每个制造商向每个客户运输的产品数量。

《运筹学》实验三__图与网络分析(学生版)

《运筹学》实验三__图与网络分析(学生版)

18
实验三 图与网络分析
一、实验目的
掌握不同问题的输入方法,求解网络模型,观察求解步骤,显示并读出结果。

二、实验平台和环境
WindowsXP 平台下,WinQSB V2.0版本已经安装在D:\WinQSB 中。

三、实验内容和要求
用WinQSB 软件求解最小支撑树,最短路及网络最大流等问题。

四、实验操作步骤
1、启动程序。

点击开始→程序→WinQSB →Network Modeling.
2、求最小支撑树:Minimal spanning tree ,输入节点数,沿编号从小到大顺次输入备树枝的长。

3、求最短路:Shortest path ,输入节点数,沿箭头方向输入各段弧上的数据。

4、求最大流:Maximal flow ,输入节点数,输入各段弧的容量。

五、分析讨论题
(一)应用求最小树子程序,求解下述问题的最小支撑树。

1、求以下问题的最小树
图3-39
2、求以下问题的最小树
图3-40
(二)应用求最短路子程序,求解下述问题从v 1到各点的最短路。

1、求v 1~v 7的最短路线及最短路长。

19
图3-41
2、求v 1~v 12的最短路线及最短路长。

图3-42
(三)应用求最大流的子程序,求解下述问题从v s 到v t 的网络最大流,图中弧旁数字为容量c ij 。

1、求以下网络的最大流
图3-43
2、求以下网络的最大流
图3-44
六、图论模型常用术语词汇及其含义
20。

《实用运筹学》上机实验指导1

《实用运筹学》上机实验指导1

《实用运筹学》上机实验指导课程名称:运筹学/Operations Research实验总学时数:60学时一、实验教学目的和要求本实验与运筹学理论教学同步进行。

目的:充分发挥Excel软件这一先进的计算机工具的强大功能,改变传统的教学手段和教学方法,将软件的应用引入到课堂教学,理论与应用相结合。

丰富教学内容,提高学习兴趣。

要求:能用Excel软件中的规划求解功能求解运筹学中常见的数学模型。

二、实验项目名称和学时分配三、单项实验的内容和要求实验一线性规划(-)实验目的:安装Excel软件“规划求解”加载宏,用Excel软件求解线性规划问题。

(二)内容和要求:安装并启动软件,建立新问题,输入模型,求解模型,结果的简单分析。

(三)实例操作:求解习题1.1。

(1)建立电子表格模型:输入数据、给单元格命名、输入公式等;(2)使用Excel软件中的规划求解功能求解模型;(3)结果分析:如五种家具各生产多少?总利润是多少?哪些工序的时间有剩余,并对结果提出你的看法;(4)在Excel或Word文档中写实验报告,包括线性规划模型、电子表格模型和结果分析等。

案例1 生产计划优化研究某柴油机厂年度产品生产计划的优化研究。

某柴油机厂是我国生产中小功率柴油机的重点骨干企业之一。

主要产品有2105柴油机、x2105柴油机、x4105柴油机、x4110柴油机、x6105柴油机、x6110柴油机,产品市场占有率大,覆盖面广。

柴油机生产过程主要分成三大类:热处理、机加工、总装。

与产品生产有关的主要因素有单位产品的产值、生产能力、原材料供应量与生产需求情况等。

每种产品的单位产值如错误!未找到引用源。

所示。

表 C-1 各种产品的单位产值为简化问题,根据一定时期的产量与所需工时,测算了每件产品所需的热处理、机加工、总装工时,如表 C-2所示。

表 C-2 单位产品所需工时同时,全厂所能提供的总工时如表 C-3所示。

表 C-3 各工序所能提供的总工时产品原材料主要是生铁、焦碳、废钢、钢材四大类资源。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。

它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。

本次实验旨在通过实际案例,探讨运筹学在实践中的应用。

二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。

假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。

每个客户的需求量和距离仓库的距离都不同。

我们的目标是找到一种最优的配送方案,以最小化总配送成本。

三、数学模型为了解决这个问题,我们采用了整数规划模型。

首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。

2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。

3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。

4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。

五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。

通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。

同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。

因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。

六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。

我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。

运筹学上机实验报告

运筹学上机实验报告

运筹学上机实验报告运筹学上机实验报告一、引言运筹学是一门研究如何在有限资源下做出最优决策的学科。

通过数学建模和优化算法,可以解决许多实际问题,如生产调度、物流配送、资源分配等。

本次实验旨在通过上机实践,加深对运筹学理论的理解,并掌握运筹学在实际问题中的应用。

二、实验目的本次实验的主要目的是通过运筹学软件的使用,解决一个实际问题。

具体目标包括:1. 掌握运筹学软件的基本操作方法;2. 学会进行数学建模,将实际问题转化为数学模型;3. 运用优化算法求解数学模型,得到最优解;4. 分析并评价所得解的合理性和可行性。

三、实验过程1. 问题描述本次实验的问题是一个生产调度问题。

某工厂有3台机器和6个任务需要完成,每个任务所需时间不同。

任务之间存在一定的先后顺序,即某些任务必须在其他任务完成后才能开始。

目标是找到一个最优的调度方案,使得所有任务完成所需的总时间最短。

2. 数学建模首先,将该问题转化为数学模型。

假设任务1到任务6的完成顺序为x1到x6,其中xi表示任务i在调度中的位置。

定义变量ti表示任务i的完成时间。

则该问题可以用如下的数学模型表示:目标函数:minimize t6约束条件:t1 = 0t2 ≥ t1 + x2t3 ≥ t2 + x3t4 ≥ t1 + x4t5 ≥ max(t2 + x5, t3 + x5)t6 ≥ max(t4 + x6, t5 + x6)3. 软件操作在运筹学软件中,根据上述数学模型进行建模。

首先,定义变量和约束条件,并设置目标函数为t6的最小化。

然后,使用优化算法求解该模型,得到最优解。

4. 结果分析根据软件求解结果,得到最优调度方案为x1=1, x2=2, x3=3, x4=4, x5=5, x6=6。

对应的任务完成时间为t1=0, t2=1, t3=3, t4=5, t5=7, t6=9。

因此,所有任务完成所需的总时间最短为9个单位时间。

五、实验总结本次实验通过运筹学软件的使用,解决了一个生产调度问题。

运筹学实验报告_7

运筹学实验报告_7

运筹学实验(注: 此代码还有一些未完善的地方, 仅供参考, 此实验报告纯属个人意见, 同样仅供参考。

话说一样的内容多了老师会发现的)一、实验目的通过实验熟悉单纯形法的原理, 掌握matlab循环语句的应用, 提高编程的能力和技巧, 体会matlab在进行数学求解方面的方便快捷。

二、实验环境Matlab2012b,计算机三、实验内容(包含参数取值情况)构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,nfunction[S,val]=danchun(A1,C,N)S为最优值;Val为最优解;A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注: 资源向量要大于零);A1=[A+b]C是目标函数的系数向量;C=cN为初始基的下标(注: 请按照顺序输入, 若没有初始基则定义N=[]):先输入A1,C,N三个必要参数,然后调用danchun(A,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1, 进入初始解问题的迭代求值,添加辅助问题, 构建单纯形表, 求g所对应的RHS值,若其>0,则返回该问题无解若其=0, 则返回A1,Z,N三个参数, 继续构造单纯形表求解A1为经过变换后的系数及资源向量Z为单纯形表的第一行N为经过辅助问题求解之后的基的下标否则,直接构建单纯形表, 对该问题进行求解, 此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时, 会显示“此问题无界”若找到最优解和最优值时, 会输出“val”和“S=”以及具体数值。

四、源程序function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵Z=gC;G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endendG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数, 将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4 s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4例2: 初始解问题Min z=5x1+21x3 s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1 xj>=0,j=1,…,5六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型, 并用你自己的单纯形算法程序进行计算, 最后给出计算结果。

《运筹学》实验报告解析

《运筹学》实验报告解析

实验一.简单线性规划模型的求解与Lingo软件的初步使用一. 实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。

二. 实验内容:1. 在Lingo中求解教材P55习题2.2(1)的线性规划数学模型;2. 用Lingo求解教材P52例12的数学模型。

3. 建立教材P57习题2.9的数学模型并用Lingo求解。

三. 实验要求:1. 给出所求解问题的数学模型;2. 给出Lingo中的输入并求解;3. 指出Solution Report中输出的三个主要部分的结果;4. 能给出最优解和最优值;5. 指出第3小题中哪些约束是取等式和哪些约束取不等式。

四. 写出实验报告:1.该问题的数学模型如下,min z=-3x1+4x2-2x3+5x4;4x1-x2+2x3-x4=-2;x1+x2+3x3-x4≤14;-2x1+3x2-x3+2x4≥2;x1,x2,x3≥0,x4无约束;Lingo中的代码如下,求解可得解报告,Solution Report中输出的三个主要部分的结果如下,Variable ValueX1 0.000000X2 8.000000X3 0.000000X4 -6.000000Row Slack or Surplus Dual Price1 2.000000 -1.0000002 0.000000 4.5000003 0.000000 0.50000004 10.00000 0.000000 故最优解为x1=0,x2=8,x3=0,x4=-6,最优值为2。

2.该问题Lingo中的代码如下,min =150*(x1+x2+x3)+80*(y1+y2+y3);500*x1<=5000;1000*x1+500*x2<=9000;1500*x1+1000*x2+500*x3<=12000;2000*x1+1500*x2+1000*x3+500*y1<=16000;2500*x1+2000*x2+1500*x3+1000*y1+500*y2<=18500;3000*x1+2500*x2+2000*x3+1500*y1+1000*y2+500*y3<=21500;3500*x1+3000*x2+2500*x3+2000*y1+1500*y2+1000*y3<=25500;4000*x1+3500*x2+3000*x3+2500*y1+2000*y2+1500*y3<=30000;4000*x1+4000*x2+3500*x3+2500*y1+2500*y2+2000*y3<=33500;4000*x1+4000*x2+4000*x3+2500*y1+2500*y2+2500*y3>=36000;2000*x1+1500*x2+1000*x3+500*y1>=12000;3500*x1+3000*x2+2500*x3+2000*y1+1500*y2+1000*y3>=21500;x1+x2+x3+y1+y2+y3<=11;求解可得解报告,Global optimal solution found.Objective value: 1350.000Infeasibilities: 0.000000Total solver iterations: 5Variable Value Reduced Cost X1 3.000000 0.000000 X2 0.000000 0.000000 X3 6.000000 0.000000 Y1 0.000000 27.50000 Y2 0.000000 27.50000 Y3 0.000000 0.000000Row Slack or Surplus Dual Price 1 1350.000 -1.0000002 3500.000 0.0000003 6000.000 0.0000004 4500.000 0.0000005 4000.000 0.0000006 2000.000 0.0000007 500.0000 0.0000008 0.000000 0.0000009 0.000000 0.5500000E-0110 500.0000 0.00000011 0.000000 -0.6500000E-0112 0.000000 -0.5500000E-0113 4000.000 0.00000014 2.000000 0.000000 Solution Report中输出的三个主要部分的结果如下,Variable ValueX1 3.000000X2 0.000000X3 6.000000Y1 0.000000Y2 0.000000Y3 0.000000Row Slack or Surplus Dual Price1 1350.000 -1.0000002 3500.000 0.0000003 6000.000 0.0000004 4500.000 0.0000005 4000.000 0.0000006 2000.000 0.0000007 500.0000 0.0000008 0.000000 0.0000009 0.000000 0.5500000E-0110 500.0000 0.00000011 0.000000 -0.6500000E-0112 0.000000 -0.5500000E-0113 4000.000 0.00000014 2.000000 0.000000故最优解为x1=3,x2=0,x3=6,y1=0,y2=0,y3=0,最优值为1350。

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。

实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。

实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。

公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。

公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。

2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。

实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。

实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。

实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。

运筹学实验报告1

运筹学实验报告1

运筹学实验报告1《运筹学》课程实验报告一学院:专业:班级:姓名:学号:指导老师:实验报告班级学号姓名课程名称运筹学开课实验室实验时间实验项目名称【实验项目一】线性规划综合性实验实验性质验证性()综合性(√)设计性()成绩指导老师签名实验条件:硬件:计算机,软件:lingo11实验目的及要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

实验内容:熟悉、了解LINGO系统菜单、工具按钮、建模窗口、求解器运行状态窗口以及结果报告窗口等的环境。

实验过程:1.选择合适的线性规划问题可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型应用运筹学软件Lingo对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析对求解结果进行简单的应用分析。

实验习题计算:使用lingo来求解下列例题1. MAXZ=2X1+2X2X1-X2≥-1-0.5X1+X2≤2X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的解为无界解,X=(2,3)是它的一个基可行解。

2. MINZ=1000X1+800X2X1≥10.8X1+X2≥1.6X1≤2X2≤1.4X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的最优解X=(1,0.8),目标值Z=1640实验总结:例题1可用图解法检验,从图中可以清楚的看出,该问题可行域无界,目标函数值可以增大到无穷大,该题解为无界解;但在其可行域中存在顶点X=(2,3),故X=(2,3)为该线性规划问题的基可行解。

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

南邮运筹学运输问题实验报告(一)

南邮运筹学运输问题实验报告(一)

南邮运筹学运输问题实验报告(一)南邮运筹学运输问题实验报告1. 背景运输问题是管理科学中常见的数学问题之一。

本实验旨在通过运用运筹学的方法对南邮快递公司的运输问题进行优化,使得运输成本最小化,配送效率最大化。

2. 实验方法本实验使用了线性规划方法对运输问题进行建模,运用了Excel或MATLAB等工具进行求解。

具体步骤如下:1.收集数据,包括快递运输的起点、终点和运输量等信息;2.建立运输问题的数学模型,即线性规划模型;3.编写程序并求解;4.分析结果,得出优化的方案。

3. 实验结果通过对南邮快递公司的运输问题进行分析和优化,得出了如下方案:1.尽量选择简单线路进行配送,减少运输中转,降低运输成本;2.优先派送运输量大、运输距离小的货物,减少路途中停留和等待时间,提高配送效率;3.设立中转站,适时调整运输路线,减少空运和空驶,提高车辆使用率;4.采用信息化管理手段,通过优化物流调度系统和智能配送系统,实现物流信息实时监控、自动化配送等目的。

4. 实验总结本实验主要运用了线性规划方法对南邮快递公司的运输问题进行了分析和优化,得出了一系列优化方案。

实验结果表明,运用运筹学的方法可以有效地降低快递公司的运输成本,提高配送效率,为企业节省了大量的时间和资源。

总之,运用运筹学的方法对现代物流业的发展有着重要的意义,为企业实现可持续发展提供了强有力的技术支撑。

5. 实验心得通过本次实验,我对运筹学的方法和思想有了更深入的理解。

在实践中,我们不仅要有熟练的数学建模和编程技巧,还要注重数据的收集和分析,才能得出准确、实用的结果。

此外,实验中还提到了信息化管理手段,这也是当今物流业的发展趋势之一。

通过智能化技术和数据分析,我们可以对物流系统进行全面的优化和升级,提高物流效率,降低成本,并为企业的可持续发展保驾护航。

6. 实验意义运筹学的方法已经广泛应用于企业的生产、销售等领域,可以降低成本、提高效率、优化资源和规划未来。

运筹学实验

运筹学实验

运筹学实验《运筹学实验》1——线性规划建模与求解(周二、三)一.实验目的及要求1. 掌握线性规划建模的方法与过程,体会线性规划建模的核心思想。

2. 掌握线性规划问题的求解方法。

3.掌握用Matlab或LINDO求解线性规划问题的基本方法和步骤,学会分析Matlab或LINDO的计算结果。

4.锻炼应用所学知识解决综合性问题的能力二.实验设备与器件1.安装win98系统以上的计算机2.malab6.0或LINDO6.01或更高版本的软件三.实验原理①线性规划常见可以解决资源分配问题,成本效益平衡问题。

在求解线性规划时,常用的方法有图解法和单纯形法。

单纯形法基本思路是:先找出一个基本可行解,判断其是否为最优解,如果不是最优解,则转换到相邻的基本可行解,并使目标函数值不断增大,直到找出最优解或判断有无界解、无解为止。

本实验是合理利用线材问题属于解决资源分配问题②使用LINDO 6.01进行操作:LINDO(Linear Interactive and Discrete Optimizer)是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题,因此在数学、科研和工业界得到广泛应用。

LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO 中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

四.实验内容实验准备:1 自学运筹学实验指导书第一、二两章,复习巩固Matlab基础知识;2 复习课本《运筹学基础及应用》第一章,熟悉线性规划模型建模的过程,模型标准化及模型求解的思路和过程,最优解判定的准则和方法。

实验内容:1 自学运筹学实验指导书第三章,掌握线性规划模型求解的软件技术;2 利用软件实现运筹学实验指导书第三章所有例题的求解计算;3 参照例题,总结提炼线性规划建模与求解过程的主要难点问题、模型求解的程序命令及其适用条件等,形成便于自己理解的规范的操作指南;4 利用前面总结的方法,完成如下习题的求解:● 1.7 化标准型并用程序命令求解● 1.12 建立模型,化标准型并用程序命令求解5 完成如下实际问题的建模与求解。

运筹学上机实验报告

运筹学上机实验报告

运筹学上机实验报告一、实验目的本次运筹学上机实验的目的是通过实践操作,加深对运筹学知识的理解和掌握,了解线性规划模型的建立和求解方法,并能够应用相关软件进行模型求解。

二、实验内容1. 线性规划模型建立在本次实验中,我们需要根据给定的问题情境,建立相应的线性规划模型。

具体来说,我们需要确定决策变量、约束条件和目标函数,并将其转化为标准形式。

2. 模型求解在建立好线性规划模型后,我们需要利用相关软件进行模型求解。

常用的求解方法包括单纯形法、对偶单纯形法等。

通过对不同方法的比较和分析,可以找到最优解并得出相应结论。

3. 结果分析与优化在得出最优解后,我们还需要对结果进行分析和优化。

可以通过灵敏度分析等方法来研究问题情境中各个因素对最终结果的影响程度,并提出相应改进意见。

三、实验过程1. 线性规划模型建立首先,我们需要确定决策变量。

例如,在一个生产计划问题中,决策变量可能是不同产品的生产数量。

然后,我们需要根据问题情境确定约束条件,例如生产线的产能限制、原材料的供应量等。

最后,我们需要确定目标函数,即需要最小化或最大化的目标。

2. 模型求解在建立好模型后,我们需要利用相关软件进行模型求解。

以MATLAB 为例,可以使用linprog函数进行线性规划求解。

具体步骤包括输入决策变量、约束条件和目标函数等参数,并调用linprog函数进行计算。

3. 结果分析与优化在得出最优解后,我们还需要对结果进行分析和优化。

例如,在灵敏度分析中,我们可以通过改变某些参数值来研究其对最终结果的影响程度。

如果发现某个因素对结果影响较大,则可以提出相应改进意见。

四、实验心得通过本次运筹学上机实验,我深刻认识到了线性规划模型在实际问题中的重要性,并学会了如何利用相关软件进行模型求解和结果分析。

同时,在实验过程中也遇到了一些困难和挑战,例如如何正确建立模型、如何选择合适的求解方法等。

但通过不断尝试和探索,我逐渐掌握了相关技能和方法,并取得了较好的实验成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lingo软件实验报告一、实验内容:1)用lingo软件解决线性规划问题;2)熟悉lingo软件的相关操作。

3)对线性规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的非负约束,考虑到lingo软件能方便地输入数据,并且有内置建模语言,提供内部处理函数,能很方便地处理一系列约束条件解出目标函数的最值,所以采用lingo软件解决线性规划问题。

4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,利用lingo软件能能很方便地处理一系列约束条件解出目标函数的最值,采用lingo软件解决线性规划问题。

二、实验设备:计算机三、使用软件:lingo软件四、软件特点与优势:可以简单地表示模型,能方便地输入数据和选择输出。

五、举例计算:1,线性规划A: 营养套餐问题:根据生物营养学理论,要维持人体正常的生理健康需求,一个成年人每天需要从食物中获取3000cal热量,55g蛋白质和800mg钙。

假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分,以及市场价格见下表。

问如何选购才能满足营养的前提下,使购买食品的总费用最小?解:为了建立该问题的数学模型,假设xj(j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则目标函数为Minz=20x1+8x2+4x3+2x4表示在满足营养要求的系列约束条件下,确定各种食物的购买量,使每天购买食物的总费用最小。

其约束条件是热量需求:1000x1+800x2+900x3+200x4>=3000蛋白质需求:50x1+60x2+20x3+10x4>=55钙需求:400x1+200x2+300x3+500x4>=800决策变量的非负约束:xj>=0(j=1,2,3,4)因此,营养配餐问题的数学模型为Minz=20x1+8x2+4x3+2x41000x1+800x2+900x3+200x4>=300050x1+60x2+20x3+10x4>=55400x1+200x2+300x3+500x4>=800xj>=0(j=1,2,3,4)B: lingo代码:model:min=20*x1+8*x2+4*x3+2*x4;1000*x1+800*x2+900*x3+200*x4>=3000;50*x1+60*x2+20*x3+10*x4>=55;400*x1+200*x2+300*x3+500*x4>=800;ENDC: 结果截屏:D:运行结果分析:由运行结构可知:该线性规划的最值为13.33333,即在变量为非负的情况下,只买3.33kg的大米可以满足目标函数的要求。

2,目标规划A: 设有一纺织厂可生产衣料和窗帘布共两种产品。

该厂两班生产,每周的生产时间为80h,无论生产那种产品,该厂每小时的产量都是1km。

根据市场预测,每周窗帘布的销售量为70km,而衣料的销售量为45km。

工厂有纺纱9000kg,生产1km窗帘布需要纺纱800kg,生产1km衣料需要纺纱500kg。

假定窗帘布和衣料的单位利润分别为2.5千元/km和1.5千元/km,上级主管部门对该厂提出了以下4个顺序目标:(1)尽可能避免开工不足;(2)尽可能限制每周加班时间不超过10h;(3)尽可能满足市场需求;(4)尽可能减少加班时间。

目标的惩罚因子各为:5、8、9、2.问该厂应如何安排生产才能使这些目标依序实现?解:建立该问题的数学模型,设该厂每周生产衣料和窗帘各为x1,x2km,即为决策变量。

此外,引进正负偏差变量d,d_.则:生产工时约束:x1+x2+d1_-d1=80加班时间约束:d1+d2_-d2=10窗帘布销售量约束:x1+d3_-d3=70衣料销售量约束:x2+d4_-d4=454个有序目标分别为:P1:minz1=d1_P2: minz2=d2P3: minz3=5d3_+3d4_P4: minz4=d1综上,该问题的目标规划模型为:minz=5d1_ +8d5+9(5d3_+3d4_)+2d1 500x1+800x2<=9000x1+x2+d1_-d1=80d1+d2_-d2=100x1+d3_-d3=70x2+d4_-d4=45xj>=0,di_,di>=0B: lingo编程:model:min=5*d1_+8*d2+45*d3_+27*d4_+2*d1;500*x1+800*x2<=9000;x1+x2+d1_-d1=80;d1+d2_-d2=100;x1+d3_-d3=70;x2+d4_-d4=45;EndC: 结果截图:D:运行结果分析:由运行结果可知:在惩罚因子如给出的条件下,目标函数的最值为3865.即只安排生产衣料18km,此时,开工少62h,比市场需求量少生产52km,减少加班时间45h。

六、实验总结:在使用lingo软件做实验的时候,我们小组选择了一道关于线性规划的营养套餐问题和一道关于目标规划的工业生产问题。

对于实际问题的要求,分别列出约束条件,此外对于目标规划问题列写有正负偏量的有权式,建立相应的数学模型,再根据lingo 软件的语言要求,编写lingo程序,上机运行,得到运行结果。

由小组明确分工合作,一步步得以实现。

之后再对运行结果进行实际的分析和讨论,检验结果的实际意义,从而了解lingo软件的方便性和局限性,以便对该软件有一定深入的理解,避免只依赖其运行结果而忽略掉其实际的可行度与否。

如上述线性规划选例,对所列模型,在满足目标函数的条件下,所得结果明显不符合实际情况,营养套餐应该实现食物的多样化再实现费用的最小化。

因此,再建立模型时,应全面考虑所有的约束条件范围,从而得到合理的最优解。

用lingo软件处理目标规划问题的时候,特别地,要处理多目标,即对于含有权系数的目标函数,则需要从高到低一步步求不同优先级的最值,先满足高一级的目标要求再考虑低一级的目标,使不同程度重要的目标一一得以实现,即利润大的先满足需求,从而得到最理想的最值。

在对选例的处理中,我们也遇到了一些操作问题,得到了一些实用的软件使用经验,例如:在对实例的约束条件进行处理的时候,应该注意对所设变量范围的实际约束;在对lingo编程的时候,应该注意输入的语法。

如乘号(*)不能省略;model后有“:”等等。

总之,lingo软件在求解数学规划问题方面速度很快、易于方便输入、求解和分析。

如果我们可以很熟悉地运用该软件,对于很多关于规划的问题便可以很方便的得以解决,联系实际因素,从而得到具有实际意义的结果。

MATLAB软件实验报告一、实验内容:1)用MATLAB软件解决线性规划问题;2)熟悉MATLAB软件的相关操作。

3)对线性规划、目标规划、整数规划,0-1规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的变量约束,考虑到MATLAB有超级强大的矩阵计算能力,能很方便地处理一系列约束条件解出目标函数的最值,所以采用MATLAB软件解决线性规划问题。

4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,列写对应约束条件的矩阵形式,利用MATLAB解决目标规划问题。

二、实验设备:计算机三、使用软件:MATLAB软件四、软件特点与优势:MATLAB以矩阵作为数据操作的基本单位,还提供了十分丰富的数值计算函数。

语言简洁紧凑,使用方便灵活,库函数及其丰富。

运算符丰富,语法限制不严格,程序设计自由度大,程序可移植性好。

可以简单地表示模型,能方便地输入数据和选择输出。

五、举例计算:3、线性规划A: 现在要做100套钢架,每套用长为2.9米,2.1米和1.5米的元钢各一根。

已知原材料长7.4米,问如何下材料使原材料最省。

解:最简单的做法是:在每一根原材料上截取2.9m,2.1m 和1.5m的元钢各一根组成一套,每根原材料剩下料头0.9m。

为了做100套钢架,需要原材料100根,有90m料头,若改为用套裁,这样可以节约原材料。

下面几种套裁方案,都可以考虑采用。

如表:为了得到100套钢架,需要混合使用各种下料方案。

设按(一)方案下料的原材料根数为想x1,(二)方案为x2,(三)方案为x3,(四)方案为x4,(五)方案为x5.根据方案可列出以下数学模型:Min z = 0x1+0.1x2+0.2x3+0.3x4+0.8x5x1+2x2+ +x4 =1002x3+2x4+x5=1003x1+x2+x3+ +3x5=100x1,x2,x3,x4,x5>=0B、MATLAB编程:c=[0,0.1,0.2,0.3,0.8]aeq=[ 1 2 0 1 0;0 0 2 2 1;3 1 2 0 3 ]Beq=[100 100 100]Lb=[0 0 0 0 0 0 0]Ub=[]C;结果截图:D:运行结果分析:由运行结果得到:由计算得到最优下料方案是:按Ⅰ方案下料30根;Ⅱ方案下料10根;方案下料50根。

即需要90根原材料可以造100套钢架。

4、目标规划A:某公司分厂用一条生产线生产两种产品A和B,每周生产线运行时间为60h,生产一台A产品需要4h,生产一台B产品需要6h。

根据市场预测,A和B产品平均销售量分别为每周9台、8台,它们销售利润分别为12万、18万元。

在指定生产计划时,经理考虑下述4项目标:首先,产量不能超过市场预测的销售量;其次,工人加班时间最少;第三,希望总利润最大;最后,要尽可能满足市场需求,当不能满足时,市场认为B 产品的重要性啊A 产品的2倍。

单目标线性规划模型如下:引入正负偏差变量d+-d-、优先因子P1和权系数Wj ,建立 目标规划的目标函数如下:B:MATLAB 程序C=[0,0,1,1000,2,1000,0,100,10,0]; A=[]; b=[];Aeq=[1,0,1,-1,0,0,0,0,0,0;12121212121846609..8,0Maxz x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩0,1,0,0,1,-1,0,0,0,0;4,6,0,0,0,0,1,-1,0,0;12,18,0,0,0,0,0,0,1,-1];beq=[9;8;60;252];lb=zeros(1,10);ub=[];[x , fval , exitflag , output]=linprog(c , A , b , Aeq , beq , lb , ub)x=3 8 6 0 0 0 0 0 72 0fval=726exitflag=1C;结果截图:D:运行结果分析:由运行结果得到:A产品产量每周生产3台,B产品产量每周为8太时可以得到最大利润,最大利润为726万元。

相关文档
最新文档