三角函数的概念教学设计一等奖4篇
三角函数的定义及应用教学教案(优秀4篇)
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
三角函数的定义教案
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数教案
三角函数教案三角函数教案(通用5篇)在教学工作者实际的教学活动中,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!下面是店铺帮大家整理的三角函数教案,仅供参考,希望能够帮助到大家。
三角函数教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。
本节是第一课时,教学内容为公式(二)、(三)、(四)。
教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。
同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
《三角函数的概念》教学设计
《三角函数的概念》教学设计5.2.1 三角函数的概念(第一课时)一、教材分析:三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学、物理和天文等其他学科的重要基础。
传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数。
锐角三角函数的研究对象是三角形,是三角形中边与角的定量关系(三角比)的反映;任意角三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学刻画。
如果以锐角三角函数为基础进行推广,那么三角函数概念发生发展过程的完整性将受到破坏。
因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似,强调以周期变化现象为背景,构建从抽象研究对象(即定义三角函数概念)到研究它的图象、性质再到实际应用的过程,与锐角三角函数的联系可以在给出任意角三角函数定义后再进行考察。
一般地,概念的形成应按“事实—概念”的路径,即学生要经历“情境——共性归纳——定义———辨析———简单应用” 的过程。
二、目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系。
(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,提高数学抽象素养。
2.目标解析(1)学生能如了解前面所学幂函数、指数函数、对数函数的现实背景一样,知道三角函数是刻画现实世界中“周而复始””变化规律的数学工具,能体会到匀速圆周运动在周而复始变化现象中的代表性。
(2)学生在经历“”周期现象——圆周运动——单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三角函数概念;能根据定义求出定角的三角函数值。
教学重点:正弦函数、余弦函数、正切函数的定义三、学情分析前面已学函数的概念,在对幂函数、指数函数、对数函数的学习中,初步理解了研究函数的基本思路、方法,这些认知准备对于分析“周而复始””变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用。
2三角函数的概念单元一等奖教学设计-高中数学新教材必修第一册小单元教学 专家指导( 一等奖创新教案)
2 三角函数的概念单元一等奖创新教学设计-高中数学新教材必修第一册小单元教学专家指导(一等奖创新教案)课题:5.2 三角函数的概念单元教学设计一、内容和及其解析(一)内容三角函数的概念,三角函数值的符号,诱导公式一,同角三角函数的基本关系.本节知识结构框图(二)内容解析1. 内容本质现实世界中存在各种各样的运动变化现象,基本初等函数是对其中基本的变量关系和规律的刻画,例如线性函数、指数函数和对数函数分别刻画了“直线上升”“指数爆炸”“对数增长”等现象.“周而复始”现象随处可见,要用周期函数进行刻画,其中最典型的是三角函数.三角函数是解决实际问题的重要工具,是学习数学、物理和天文等其他学科的基础.三角函数概念的建构过程与前面各类基本初等函数概念的建构过程不同.幂函数、指数函数等是通过具体实例的共性归纳而抽象出来的,而三角函数概念是直接由单位圆上点的运动规律的描述得到的.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数.也可以等价地用与单位圆有关的各种线段的长度来定义.三角函数值的符号规律是三角函数的一条性质.根据定义得出三角函数的定义域和函数值的符号规律,对于三角函数值的符号,只要根据定义以及单位圆上点的位置(在哪个象限),就可以容易地得出判断.公式一从代数的角度揭示了三角函数值的周期变化规律,即“角的终边每绕原点旋转一周,函数值重复出现”,这体现了几何与代数的融合.三个三角函数都是由“角的终边与单位圆的交点”这一共同背景所决定的,并且之间有确定的关系,在此基础上探究出确定的三个三角函数之间的关系.2.蕴含的思想方法三角函数概念的形成中,通过数学抽象,将匀速圆周运动归结到单位圆上点的运动规律的刻画,进而建立三角函数的概念,整个探究过程经历从形到数的思维,蕴含着数形结合的思想、对应的思想,发展直观想象与数学抽象素养.从几个特殊角出发,归纳出共同特征,再概括形成三角函数的概念,这是特殊到一般的研究方法.利用定义证明同角三角函数的基本关系过程,最后形成标准化的求解步骤,蕴含着算法思想.3.知识的上下位关系首先“给定一个角,如何得到对应的函数值”的操作过程,然后再给定义.这是在一般函数概念引导下的“下位学习”,由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.用单位圆上点的坐标定义三角函数,使正弦函数、余弦函数从自变量(角的弧度数)到函数值(单位圆上点的横、纵坐标)之间的对应关系更清楚、简单,突出了三角函数的本质,有利于学生利用已有的函数概念来理解三角函数;其次是使三角函数反映的数形关系更直接,为后面讨论其他问题奠定了思维基础.从整体上看,三角函数处于高中数学课程内容的结合点上,它与向量、复数、解析几何等有着紧密的联系,可以通过加强三角函数在后续相关内容中的应用来体现(如解三角形),也可以通过用向量、复数的方法重新推导三角变换公式来实现,是后续知识学习的基础.4. 育人价值学生经历完整的三角函数的概念形成过程,体会了从特殊到一般,从直观到抽象思想,发展了数学抽象、直观想象等数学核心素养;在利用定义判断三角函数值的符号和同角三角函数基本关系的过程中,有利于发展逻辑推理、数学运算的核心素养;本单元的研究路径:明确研究对象--对应关系特点的分析--定义--性质,体悟研究问题的一般观念.5.教学重点正弦函数、余弦函数、正切函数的定义,公式一,同角三角函数的基本关系.二、目标及其解析(一)目标1. 了解三角函数的背景,体会三角函数与现实世界的密切关系.2.经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.3.掌握三角函数值的符号.4.掌握诱导公式一,初步体会三角函数的周期性.5.理解同角三角函数的基本关系式:,体会三角函数的内在联系性,通过运用基本关系进行三角恒等变换,发展数学运算素养.(二)目标解析达成上述目标的标志是:1.学生能如同了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在周而复始变化现象中的代表性.2. 学生在经历“周期现象--圆周运动--单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆☉上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),学生在教师引导下,发现对任意角,点P 的横坐标x、纵坐标y 都是唯一确定的,建立三角函数的概念,体会三角函数的这种对应与以往的函数有所不同,不是通过运算建立的对应,是自变量a 与函数值之间的直接对应;能够根据定义求给定角的三角函数值.3.学生能根据定义得出三角函数在各象限取值的符号规律.4.学生能根据定义,结合终边相同的角的表示,得出公式一,并能据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.5.学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并得出“同角三角函数的基本关系”,并能用于三角恒等变换.三、教学问题诊断分析1.问题诊断及破解方法问题1.三角函数概念的学习,学生认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验及圆的有关认识,在本节学习中能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)、解析式都有明确的运算含义,而三角函数中,对应关系不以“代数运算”为媒介,是“与,直接对应”,无须计算.虽然,,都是实数,但实际上是“几何元素间的对应”,所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生学习难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.破解方法:为了破除学生在“对应关系”认识上的定势,帮助他们搞清三角函数的“三要素”,应该根据一般函数概念引导下的“下位学习”的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义,这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体的,可让学生先完成“给定一个特殊角,求它的终边与单位圆交点坐标”的任务,例如“当时,请找出相应点P的坐标”并让学生体会到点P的坐标的唯一确定性,再借助信息技术,让学生观察任意给定一个角,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础,教学三角函数时,要恰当利用信息技术.问题2.学生对三角函数的定义的理解存在困难.破解方法:首先,是一个任意角,同时也是一个实数(弧度数),的意义实际上是“对于R中的任意一个数”;其次“的终边与单位圆交于点”,实际上给出了两个对应关系,即,①实数(弧度)对应于点P的纵坐标y,其次,实数(弧度)对应于点P的横坐标x,其中y [-1,1].因为对于R中的任意一个数,它的终边唯一确定,所以交点也唯一确定,也就是纵坐标y和横坐标x都由唯一确定,所以对应关系①②分别确定了一个函数,这是理解三角函数定义的关键;另外,认识符号sin,cos和tan,可以类比符号表示中的,并说明引进这些符号的意义.问题3.由于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这种经验,以及学生从联系的观点看问题的经验不足,对“如何发现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,学生对三角函数内在联系性的本质认识存在困难.破解方法:教学中应在思想方法上加强引导.例如,通过设置问题逐步加深三个函数联系的理解,“对于给定的角,点P(cos,sin)是的终边与单位圆的交点,而tan则是点P的纵坐标与横坐标之比,因此这三个函数之间一定有内在联系,从定义出发,研究一下它们有怎样的联系,引导学生探究同角三角函数基本关系.2.教学难点理解三角函数的定义方式,三角函数内在联系性的认识.四、教学支持条件学生对一般函数概念及基本初等函数的学习经验的积累,对现实生活中“周而复始”现象的理解都成为本单元学习的基础.信息技术的适当使用有利于培养学生的直观想象能力,如,三角函数概念的抽象,可以通过GGB软件动态改变角的终边(为终边与单位圖的交点)的位置,引导学生观察终边位置的变化所引起的点坐标的变化规律,感受三角函数的本质,同时感受终边相同的角具有相同的三角函数值,以及各三角函数在各象限中符号的变化情况.五、课时分配本单元分3课时三角函数的概念;三角函数的定义域和函数值的符号规律;同角三角函数的基本关系.。
三角函数教案
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。
2、若,则,3、的图象的对称中心为( ),对称轴方程为。
4、的图象的对称中心为( ),对称轴方程为。
5、及的图象的对称中心为( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。
7、帮助角公式: ,其中。
帮助角的位置由坐标打算,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有消失,则可设,则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。
三角函数的定义及应用教学教案【优秀4篇】
三角函数的定义及应用教学教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角函数的定义及应用教学教案【优秀4篇】EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?它山之石可以攻玉,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
高中数学说课稿:《三角函数》4篇
高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选4篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。
首先,我将介绍本节课的教学目标。
本节课的目标主要分为两个方面。
一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。
另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。
接下来,我将介绍教学内容和教学方法。
本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。
在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。
通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。
通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。
通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。
在教学过程中,我将注重培养学生的思维能力和合作能力。
我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。
同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。
最后,我将介绍评价方式和教学反思。
在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。
在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。
通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。
同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。
谢谢大家!高中数学说课稿:《三角函数》精选4篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。
希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。
初中数学三角函数市公开课获奖教案省名师优质课赛课一等奖教案
初中数学三角函数教案一、教学目标1. 理解三角函数的基本概念和性质;2. 掌握正弦、余弦以及正切的定义和计算方法;3. 能够运用三角函数解决实际问题。
二、教学重点1. 正弦、余弦、正切的定义和性质;2. 三角函数的计算方法;3. 实际问题的应用。
三、教学难点1. 正弦、余弦、正切的性质理解;2. 实际问题的应用能力培养。
四、教学方法1. 探究教学法:通过引导学生观察实际物体和现象,引发学生对三角函数的兴趣,探索三角函数的性质;2. 归纳总结法:引导学生总结三角函数的定义和计算方法,加深对知识点的理解;3. 分组合作法:将学生分组进行小组合作,共同解决实际问题,培养学生的合作能力和解决问题的能力;4. 演示法:通过教师的演示和示范,帮助学生更直观地理解三角函数的计算方法。
五、教学过程1. 导入环节通过展示一个右脚高度为20cm的台阶和一个10m高的塔,引发学生对三角函数的好奇心,激发学生的学习兴趣。
2. 探索三角函数的定义(1)教师引导学生观察直角三角形中两个锐角的变化,并与各边的比例进行探究;(2)学生合作讨论,总结出正弦、余弦、正切的定义;(3)教师进行讲解和概括总结,确保学生掌握三角函数的定义。
3. 正弦、余弦、正切的计算方法(1)教师以示例的方式,向学生讲解正弦、余弦、正切的计算方法;(2)学生进行课堂练习,加深对计算方法的理解和掌握;(3)教师对计算方法进行巩固和强化训练。
4. 三角函数的性质(1)教师以图示的方式,向学生展示三角函数的周期性和对称性;(2)学生进行观察和分析,总结出三角函数的周期和对称轴;(3)教师进行讲解和概括总结,并进行小结。
5. 实际问题的应用(1)教师通过示例,向学生展示如何运用三角函数解决实际问题;(2)学生进行实际问题的讨论和解答,培养解决问题的能力;(3)教师对实际问题的解决方法进行巩固和强化训练。
六、课堂小结教师对本节课的要点进行总结,并强调三角函数的重要性和应用领域。
三角函数的概念教案
三角函数的概念教案教学目标:1. 掌握三角函数的基本概念和属性;2. 学会利用三角函数计算三角形的面积和周长;3. 建立数学思维,培养分析问题,解决问题的能力。
教学重点:1. 三角函数的定义和性质;2. 利用三角函数计算三角形的面积和周长。
教学难点:1. 理解和掌握三角函数的性质和使用;2. 理解三角函数的意义及其在实际中的应用。
教学内容:一、三角函数的定义1. 正弦函数正弦函数是指一个角的正弦值与其对边的比值,即sin\alpha=\frac{a}{c} ,其中\alpha 为该角的度数,a 为该角的对边长,c 为该角的斜边长。
2. 余弦函数余弦函数是指一个角的余弦值与其邻边的比值,即cos\alpha=\frac{b}{c} ,其中\alpha 为该角的度数,b 为该角的邻边长,c 为该角的斜边长。
3. 正切函数正切函数是指一个角的正切值与其对边与邻边的比值,即tan\alpha=\frac{a}{b} ,其中 \alpha 为该角的度数,a 为该角的对边长,b 为该角的邻边长。
二、三角函数的性质1. 三角函数的定义域和值域正弦函数和余弦函数的定义域为实数集,值域为[-1,1];正切函数的定义域为除了所有余切函数的零点以外的所有实数,值域为(-∞,∞)。
2. 周期性正弦函数和余弦函数的周期为360°或2π;正切函数的周期为180°或π。
3. 奇偶性正弦函数和正切函数是奇函数,余弦函数是偶函数。
4. 关系式\sin^2\alpha+cos^2\alpha=11+tan^2\alpha=sec^2\alpha1+cot^2\alpha=csc^2\alpha5. 单调性正弦函数、余弦函数、正切函数、余切函数在定义域内都有单调性。
三、三角函数的应用1. 三角函数可用于计算三角形的面积和周长(1)利用正弦定理计算三角形面积设已知一个三角形,其三条边长分别为a、b、c,则该三角形的面积可以用正弦定理计算:S=\frac{1}{2}ab\frac{sinC}{C}=\frac{1}{2}(a\cdot b\cdot sinC)其中C为夹角,可以用余弦定理求出。
《三角函数的概念》教学设计
《三角函数的概念》教学设计一、教学目标:1.了解三角函数的定义和性质。
2.掌握常见角的三角函数值的计算方法。
3.能够运用三角函数解决实际问题。
二、教学内容:1.三角函数的定义和性质。
2.常见角的三角函数值的计算。
3.三角函数的应用。
三、教学过程:步骤一:导入新知识教师用一张高中三角函数的海报引入新知识,向学生介绍三角函数在数学中的重要性和广泛使用。
步骤二:三角函数的定义和性质1.教师通过幻灯片和简单的例子,介绍正弦、余弦和正切的定义,并解释它们在定义域和值域上的关系。
2.学生通过小组活动,自主研究并总结正弦、余弦和正切函数的周期、奇偶性和对称性等性质,并在黑板上呈现出来。
3.教师对学生的总结进行点评和补充。
步骤三:常见角的三角函数值的计算1.教师通过多个角度的三角函数值计算,引导学生寻找计算的规律,并总结下来。
2.学生通过小组活动,自主研究不同角度的三角函数值计算,并在黑板上呈现出来。
3.教师对学生的总结进行点评和补充。
步骤四:三角函数的应用1.教师通过实际问题的例子,引入三角函数的应用领域。
2.学生通过小组活动,分析和解决实际问题,并在黑板上呈现出来。
3.教师对学生的解决过程和答案进行点评和补充。
步骤五:课堂练习教师设计一系列练习题,让学生巩固和应用所学的三角函数知识。
步骤六:作业布置教师布置相应的作业,让学生回家进行练习和巩固所学的知识。
四、教学手段和学具1.幻灯片:展示三角函数的定义和性质。
2.海报:引导学生思考三角函数的应用领域。
3.黑板:学生总结和呈现所学的知识。
4.练习题:巩固和应用所学的知识。
五、教学评价:1.教师通过课堂观察、小组活动和学生的呈现,对学生的学习情况进行评价。
2.教师根据学生的学习情况,对下一堂课的教学进行调整和改进。
六、板书设计1.三角函数的定义和性质- 正弦:sin(A)=a/c- 余弦:cos(A)=b/c- 正切:tan(A)=a/b2.常见角的三角函数值的计算- 0度:sin0°=0, cos0°=1, tan0°=0- 30度:sin30°=1/2, cos30°=√3/2, tan30°=√3/3- 45度:sin45°=√2/2, cos45°=√2/2, tan45°=1- 60度:sin60°=√3/2, cos60°=1/2, tan60°=√3- 90度:sin90°=1, cos90°=0, tan90°=无穷3.三角函数的应用-三角函数在航海、建筑、力学等领域的应用。
2《三角函数的概念》课时3 一等奖创新教学设计
2《三角函数的概念》课时3 一等奖创新教学设计《三角函数的概念》教学设计课时3同角三角函数的基本关系必备知识学科能力学科素养高考考向1.三角函数的概念学习理解能力观察记忆概括理解说明论证应用实践能力分析计算推测解释简单问题解决迁移创新能力综合问题解决猜想探究发现创新数学抽象【考查内容】任意角三角函数定义、三角函数值的符号,诱导公式(一)及同角三角函数的基本关系. 【考查题型】选择题、填空题2.三角函数值的符号逻辑推理数学运算3.诱导公式一逻辑推理数学运算4.同角三角函数的基本关系逻辑推理数学运算一、本节内容分析本节内容包含三角函数的定义、性质和同角三角函数的基本关系.通过本节的学习,使学生根据三角函数的有关知识求三角函数值、化简三角函数式、证明三角恒等式.本节包含的核心知识和体现的核心素养如下:核心知识1.三角函数的概念2.三角函数值的符号3.诱导公式一4.同角三角函数的基本关系数学抽象数学运算逻辑推理核心素养二、学情整体分析学生熟悉的函数是实数到实数的对应,这里给出的函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,学生在理解上可能会有一定的困难.学情补充:______ _________________ _________三、教学活动准备【任务专题设计】1.三角函数的概念2.三角函数值的性质3.同角三角函数的基本关系式【教学目标设计】1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义.2.利用相似关系,由角α终边上任意一点的坐标得出任意角的正弦、余弦和正切的三角函数的定义.3.根据定义理解正弦、余弦和正切函数在各个象限及坐标轴上的符号,求一些特殊角的三角函数值.4.理解并掌握诱导公式(一),并会用公式(一)进行三角函数式的化简或恒等式的证明.5.利用同角三角函数的两个基本关系;解决较简单的求值、化简、恒等式证明等有关问题.【教学策略设计】1.理解三角函数的定义,并利用勾股定理得出同角三角函数的基本关系是本节课教学的关键,教学时,利用多媒体工具,可以很容易地建立起角的终边和单位圆的交点坐标的联系,并在角的变化过程中,将这种联系直观地体现出来,引导学生考虑当角的终边与坐标轴重合时怎么处理;引导学生通过自已的思维活动得出教材中“探究”栏目里问题的结论.2.在处理教材上的例题时,建议先让学生独立完成,然后教师指出其中出现的问题,再进行点评、总结、提升,另外,整个教学过程要向学生渗透分类讨论的意识.【教学方法建议】探究教学法,演示教学法,还有______【教学重点难点】重点:1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.理解并掌握同角三角函数基本关系式的推导及应用.难点:1.借助单位圆理解任意角三角函数的定义.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.【教学材料准备】1.常规材料:多媒体课件____________2.其他材料:______ ____四、教学活动设计教学精讲师:诱导公式一表明终边相同的角的同一三角函数值相等,那么,终边相同的角的三个三角函数值之间是否也有某种关系呢【情境设置】探究同角三角函数的基本关系计算:【学生思考,讨论,回答问题】生:.生:.师:观察计算结果,你发现了什么生:同角的正弦平方和余弦平方之和等于1;同角的正弦比余弦等于正切.【先学后教】教师通过诱导公式一,设置特殊角三角函数求值的情境,为分析同角三角函数的关系做准备,让学生先通过自主思考,再进行知识讲解.师:下面请看同角三角函数的基本关系.【要点知识】同角三角函数的基本关系1.2.师:你能证明三角函数这两种关系吗【学生思考,回答问题,教师引导,总结】生:如图,设点是角的终边与单位圆的交点.过作轴的垂线,交轴于,则是直角三角形,且.由勾股定理有.所以,即.当的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当时,有.师:设角的终边与单位圆的交点为,则.点的横坐标与纵坐标之间关系是,所以;角的正弦、余弦与正切之间满足.师:上述关系式对任意角是否都成立生:不是的,当时,不成立.师:同一个角的正弦、余弦的平方和等于1,商等于角的正切.师:若把关系式叫做平方关系,则把关系式叫做商数关系,是否可以把角换成、、、生:可以把关系式中角换成、、、.【推测解释能力】教师分解问題,指出同角三角函数基本关系式的注意事项,学生分析、探究并积极回答,培养学生的推测解释能力,提升学生的逻辑推理素养.【整体设计,分步落实】教师通过将问题分步处理,层层深化,启发学生进行思考,最终共同总结出同角的三角函数关系的规律,加深学生对知识的理解以及对问题的思考连贯性.师:对!但是同学们注意不能把关系式中的角换成、、、.因为在商数关系里要考虑定义域的问题,不能为0.好,那我们对这两个关系就加深了一层认识,同学们记住:“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使得函数有意义的前提下)关系式都成立.请看例题.【概括理解能力】教师对同角三角函数进行讲解,重点强调同角的含义,提升学生的概括理解能力.【典型例题】利用同角三角函数基本关系求值例已知,求的值.师:已知的值,如何求的值生:由求得的值,再由,求得的值.【学生思考,解题,教师强调分类讨论并点评,总结解题步骤】生:因为,所以是第三或第四象限角.由得,如果是第三象限角,那么.于是,从而.如果是第四象限角,那么,从而.【说明论证能力】通过理解同角三角函数的基本关系并证明三角恒等式的过程,体现了学生的说明论证、解决问题的能力.师:解此类题要先定象限,再定号、定值.当角所在象限不确定时,需逐一分情况讨论.下面进行一组巩固练习.【巩固练习】同角三角函数的基本关系1.已知,且为第三象限角,求的值.2.已知,求的值.3.已知,求的值(精确到).4.化箭:(1).(2).(3).5.求证:.师:请同学独立做题.【学生独立计算,并回答问题】生:.2.当为第二象限角时,;当为第四象限角时,,.3.当为第一象限角时,.当为第二象限角时,.4.(1).(2)1.(3)1.5.左边.【整体学习】学完本节,利用课堂练习进行知识的复习整理和巩固,在做题过程中加深对同角三角函数的基本关系的理解与相关做题方法的掌握.师:通过这节课你学到了什么知识【课堂小结】同角三角函数的基本关系【设计意图】通过对同角三角函数的关系内容的学习,利用了先学后教、整体设计分步落实的教学策略和整体学习的学习策略,培养了学生说明论证能力、推测解释能力、概括理解能力,提升了学生的数学运算、逻辑推理、数学抽象核心素养.教学评价通过本节课的学习,学生理解三角函数的概念,能根据三角函数的定义确定三角函数的符号,同时也可以借助单位圆,利用定义推导出同角三角函数的基本关系式,知道同角三角函数的基本关系也反映了三角函数的基本性质,并会运用它们进行简单三角函数式的化简、证明和求值运算.应用所学知识,完成下题:已知:,且有意义.(1)试判断角所在的象限.(2)若角的终边上一点是,且(为坐标原点),求的值及的值.解析:(1)要判断角所在的象限,先确定角的三角函数值的符号.由,可知,由有定义,,所以,角在第四象限.(2)利用勾股定理可得关于的方程,进而解方程、利用定义计算即可.由得,解得.又角在第四象限,由正弦函数的定义可知.【设计意图】围绕本节知识点——三角函数的概念、三角函数的性质、同角三角函数的基本关系引导学生整理知识,体会知识的生成、发展、完善的过程,锻炼学生观察记忆、说明论证、概括理解、推测解释、分析计算,简单问题解决等学科能力,从而达到数学运算、数学抽象、逻辑推理的核心素养目标要求.教学反思本节内容分为3课时,主要是对三角函数这一部分知识的理解与认识,三角函数是一类最典型的周期函数,是解决实际问题的重要工具,同样也是学习数学、物理和天文等其他学科的重要基础.在本节的教学中,应注意强调以周期变化现象为背景,构建从抽象研究对象即定义三角函数概念到后续课程研究同角三角函数的基本关系再到实际应用的过程,借助单位圆,理解正弦、余弦、正切函数的概念,注重同角三角函数基本关系的推导,注重通过实例提升学生的逻辑推理、数学抽象、数学运算核心素养,【以学定教】综合三角函数的概念、性质和同角三角函数的基本关系式分析问题、解决问题.【以学论教】根据学生实际学习情况和课堂效果,总结得出教学过程中应结合实例多角度引发学生的思考,引导学生利用单位圆理解三角函数的概念,结合具体问题理解同角三角函数之间的基本关系.1 / 8。
高中数学三角函数的推导一等奖优秀教学设计
高中数学三角函数的推导一等奖优秀教学设计1. 引言三角函数是高中数学中重要的概念,对于学生理解和应用三角函数有着重要的影响。
本文旨在设计一份优秀的教学方案,引导学生推导三角函数的公式,提升学生的数学思维能力和问题解决能力。
2. 教学目标通过本教学设计,学生将能够:- 理解三角函数的概念和定义;- 掌握推导正弦函数、余弦函数和正切函数的基本方法;- 学会运用推导出的三角函数公式解决实际问题;- 发展数学推理和推导的能力。
3. 教学内容本教学设计将侧重于推导正弦函数、余弦函数和正切函数的公式。
3.1 推导正弦函数公式1. 引导学生根据单位圆的定义,通过相似三角形推导出正弦函数的关系式;2. 进一步推导出正弦函数的周期性和对称性;3. 通过具体例子展示如何应用正弦函数公式解决实际问题。
3.2 推导余弦函数公式1. 类似于推导正弦函数,引导学生通过相似三角形推导出余弦函数的关系式;2. 推导余弦函数的周期性和对称性;3. 举例说明如何运用余弦函数公式解决实际问题。
3.3 推导正切函数公式1. 利用正弦函数和余弦函数的定义,推导出正切函数的关系式;2. 引导学生理解正切函数的周期性和对称性;3. 通过实例演练,让学生熟练运用正切函数公式。
4. 教学方法本教学设计将采用以下教学方法:- 演绎法:通过具体的推导过程,引导学生逐步理解和掌握三角函数的推导方法;- 解决问题法:通过实际问题的解决过程,激发学生的思考和创新能力;- 合作研究:鼓励学生在小组中合作讨论、分享推导思路和答案,促进学生之间的互动和合作。
5. 教学评价为了评估学生的研究效果和教学方案的有效性,将采用以下评价方式:- 课堂表现:观察学生在课堂上的参与度、思维活跃度和问题解决能力;- 作业评价:通过布置相关练和问题,评估学生对三角函数推导的理解和应用能力;- 小组合作评估:评估学生在小组合作过程中的合作能力和互动情况。
6. 结论通过本教学设计,学生将能够理解和掌握三角函数的推导方法,提高他们的数学思维和问题解决能力。
认识三角函数—教学设计及点评(获奖版)
认识三角函数—教学设计及点评(获奖版)
引言
三角函数是数学中一种非常重要的概念,它在几何、物理、工程、统计等各个领域都有应用。
本文主要介绍三角函数的教学设计
和点评。
教学设计
1. 教材选择:使用相应级别的教材,确保内容覆盖面广,易于
理解。
2. 课堂教学设计:结合具体的例子,讲解正弦函数、余弦函数、正切函数等,帮助学生理解概念。
3. 提供练:设计一定数量的题,不仅帮助学生巩固知识,还能
让他们应用所学知识,有助于提高学生的自信心。
点评
三角函数是数学中的基础概念,学生对它的理解和掌握程度直
接影响到其后对高等数学的研究。
本文教学设计清晰,步骤分明,
不仅使学生能够快速掌握知识,而且设计的题有针对性,能够很好
地帮助学生将所学知识应用到实践当中。
结论
三角函数作为数学基础概念之一,在教学中需要细心设计,让学生能够轻松理解、掌握并应用知识。
本文教学设计清晰,习题丰富,是一份值得借鉴的教学资料。
【一等奖教案】 三角函数【一等奖教案】
第四章三角函数总第1教时4.1-1角的概念的推广(1)教学目的:1、推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。
2、让学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义,以及相应的表示方法。
3、从“射线绕其端点旋转而形成角”的过程,培养学生用运动变化的观点审视事物;通过与数(轴)的类比,理解“正角”“负角”“零角,让学生感受图形的对称美、运动美。
教学重点:1、理解并掌握正角、负角、零角、象限角的定义;2、掌握总边相同角的表示方法及判定。
教学难点:把终边相同角用集合和符号语言正确的表示出来。
过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同 2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒)0(=k1470︒=30︒+4×360︒ )4(=k -1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 4.(P6例1)例1 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-120°;(2)640°;(3)-950°12′. 解:(1)-120°=240°-360°,所以与-120°角终边相同的角是240°角,它是第三象限角; (2)640°=280°+360°,所以与640°角终边相同的角是280°角,它是第四象限角; (3)-950°12′=129°48′-3×360°,所以与-950°12′角终边相同的角是129°48′,它是第二象限角. (P5) 五、小结: 1︒ 角的概念的推广,用“旋转”定义角 角的范围的扩大 2︒“象限角”与“终边相同的角” 六、作业: P7 练习1、2、3、4习题1.4 1总 第2课时4.1-2 角的概念的推广(2)教学目的:1、进一步理解角的概念,能表示特殊位置(或给定区域内)的角的集合;2、能进行角的集合之间的交与并运算;3、讨论等分角所在象限问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。
三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
(2)对公式要抓住其特点进行。
有的公式运用一些顺口溜进行。
(3)三角函数是阶段研究的一类初等函数。
故对三角函数的性质研究应结合一般函数研究方法进行对比。
如定义域、值域、奇偶性、周期性、图象变换等。
通过与函数这一章的对比,加深对函数性质的理解。
但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。
(4)由于三角函数是我们研究的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。
如平面向量、参数方程、换元法、解三角形等。
(2003年高考应用题源于此)(5)重视数学思想方法的复习,如前所述本章都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等.另外对有些具体问题还需要掌握和运用一些基本结论.如:关于对称问题,要利用y=sinx的对称轴为x=kπ+(k∈Z),对称中心为(kπ,0),(k∈Z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征.在求三角函数值的问题中,要学会用勾股数解题的方法,因为高题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果.(6)加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的`方法.(7)变为主线、抓好训练.变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考.在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
多数题型为选择题或填空题;其次是三角函数式的恒等变形。
如运用三角公式进行化简、求值解决简单的综合题等。
除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题。
第2篇三角函数的概念教学设计一等奖一.学习目标:1.知识与技能(1)能够由和角公式而导出倍角公式;(2)能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力;(3)能推导和理解半角公式;(4)揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力.2.过程与方法让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识.3.情感态度价值观通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力.二.学习重、难点重点:倍角公式的应用.难点:公式的推导.三 .学法:(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的`差距.四.学习设想1、复习两角和与差的正弦、余弦、正切公式:2、提出问题:公式中如果,公式会变得如何?3、让学生板演得下述二倍角公式:这组公式有何特点?应注意些什么?注意:1.每个公式的特点,嘱记:尤其是“倍角”的意义是相对的,如:是的倍角. 2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)3.特别注意公式的三角表达形式,且要善于变形:这两个形式今后常用.例题讲评(学生先做,学生讲,教师提示或适当补充)例1.(公式巩固性练习)求值:①.sin2230’cs2230’=②.③.④.例2.化简①.②.③.④.例3、已知,求sin2,cs2,tan2的值。
解:∵∴∴sin2 = 2sincs =cs2 =tan2 =思考:你能否有办法用sin、cs和tan表示多倍角的正弦、余弦和正切函数?你的思路、方法和步骤是什么?试用sin、cs和tan分别表示sin3,cs3,tan3.例题讲评(学生先做,学生讲,教师提示或适当补充)例4. cs20cs40cs80 =例5.求函数的值域.解:————降次学生练习:思考(学生思考,学生做,教师适当提示)你能够证明:证:1在中,以代2,代即得:∴2在中,以代2,代即得:∴3以上结果相除得:这组公式有何特点?应注意些什么?注意:1左边是平方形式,只要知道角终边所在象限,就可以开平方。
2公式的“本质”是用角的余弦表示角的正弦、余弦、正切3上述公式称之谓半角公式(课标规定这套公式不必记忆)4还有一个有用的公式:(课后自己证)例题讲评(学生先做,学生讲,教师提示或适当补充)例6.已知cs ,求的值.例7.求cs 的值.例8.已知sin ,,求的值.[学习小结]1.公式的特点要嘱记:尤其是“倍角”的意义是相对的,如:是的倍角.2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次).3.特别注意公式的三角表达形式,且要善于变形:这两个形式今后常用.4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的“本质”是用角的余弦表示角的正弦、余弦、正切.5.注意公式的结构,尤其是符号.第3篇三角函数的概念教学设计一等奖作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的任意角的三角函数教学设计,欢迎大家分享。
(一)概念及其解析这一栏目的要点是:阐述概念的内涵;在揭示内涵的基础上说明本课内容的核心所在;必要时要对概念在中学数学中的地位进行分析;明确概念所反映的数学思想方法。
在此基础上确定教学重点。
概念描述周期现象的数学模型,最基本而重要的背景:匀速圆周运动。
定义域:(弧度制下)任意角的集合;对应法则:任意角α的终边与单位圆的交点坐标为(x,y),正弦函数为y=sinα,余弦函数为x=cosα;值域:[-1,1]。
概念解析核心:对应法则。
思想方法:函数思想——一般函数概念的指导作用;形与数结合——象限角概念基础上;模型思想——单位圆上的点随角的变化而变化的规律的数学刻画。
重点:理解任意角三角函数的对应法则——需要一定时间。
(二)目标和目标解析一堂课的教学目标是教学目的的具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。
当前,许多教师没有意识到制定教学目标的重要性,他们往往只从“课标”或“教参”上抄录,而且表述目标时,“八股”现象严重。
我们主张,课堂教学目标不以“三维目标”(知识与技能、过程与方法、情感态度价值观)或“四维目标”(知识技能、数学思考、解决问题、情感态度)分列,而以内容及由内容反映的思想方法为载体,将数学能力、情感态度等隐性目标融于其中,并用了解、理解、掌握等及相应的行为动词经历、体验、探究等表述目标,特别要阐明经过教学,学生将有哪些变化,会做哪些以前不会做的事。
为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。