不等式的基本性质 习题精选(一)
不等式的基本性质
练一练
3、已知 a﹤b,用“<”或“>”号填空: (1) a-4_<___b-4; (2)3a__<__3b;
(3)-a-2__>__-b -2; (4)a-b_<___0;
(5)-—1 a__>__-—1 b;
3
3
(6)ac2_≤____bc2 ( c 为有理数 )
作业: 习题1.2
;安卓应用 /?s=down-show-id-3.html ;
(1)请同学们回顾 等式的基本性质;
(2)如果在不等式的两边都加上或减去同一个 整式,那么结果会怎样?举例试一试。
不等式的基本性质 1 : 不等式的两边都加上(或减去)同一个整 式,不等号的方向不变。
完成下列填空: 2<3
2×5___<___3× 5 ; 2× ½ ___<___3× ½ ; 2×(-1)__>____3× (-1) ; 2×(-5)__>____3× (-5) ; 2×(- ½)__>____3×(- ½) .
x > -1 + 5 , 即 x >4 ;
(2)根据不等式的基本性质3,两边都除以 -2,得 x < - —3 . 2
练一练
1、将下列不等式化成“ x > a” 或“x < a”的形式:
(1)x – 1 > 2 ;
解:
(2) -x ﹤—56
(1)根据不等式的基本性质1,两边都加上1,得 x>2+1 ,
x >1 ;
(4)根据不等式的基本性质3,两边都除以 -2,得 x ﹤ - —1 . 2
练一练
2、已知x﹥y,下列不等式一定能成立吗?
(1)x - 6﹤y - 6
不等式的基本性质--习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
不等式的基本性质经典练习题
不等式的基本性质经典练习题9.1.2 不等式的基本性质练题要点感知不等式的性质有:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变,即如果 $a>b$,那么 $a\pmc>b\pm c$。
不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变,即如果 $a>b。
c>0$,那么 $ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变,即如果 $a>b。
c<0$,那么 $ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。
预练1-1:若 $a>b$,则 $a-b>0$,其依据是(A)不等式性质1.1-2:若$a”“<”或“=”)。
1-3:设 $a>b$,用“”填空,并说出是根据哪条不等式性质。
1) $3a>3b$,根据不等式性质2.2) $a-8<b-8$,根据不等式性质1.3) $-2a<-2b$,根据不等式性质3.4) $2a-5<2b-5$,根据不等式性质1.5) $-3.5a-1<-3.5b-1$,根据不等式性质2.知识点1:认识不等式的性质1.如果 $b>0$,那么 $a+b$ 与 $a$ 的大小关系是(C)$a+b\geq a$。
2.下列变形不正确的是(D)$-5x>-a$ 得 $x>$。
3.若 $a>b。
am<bm$,则一定有(B)$m<0$。
4.在下列不等式的变形后面填上依据:1) 如果 $a-3>-3$,那么 $a>0$;依据不等式性质1.2) 如果 $3a<6$,那么 $a<2$;依据不等式性质2.3) 如果 $-a>4$,那么 $a<-4$;依据不等式性质3.5.利用不等式的性质填“>”或“<”。
不等式的基本性质-习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
(完整版)《不等式的基本性质》练习题
2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。
其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。
第一讲 不等式的基本性质(基础训练)(解析版)
第一讲不等式的基本性质一、单选题1.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【答案】D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2.下列推理正确的是( )A.因为a<b,所以a+2<b+1 B.因为a<b,所以a-1<b-2C.因为a>b,所以a+c>b+c D.因为a>b,所以a+c>b-d【答案】C【解析】【分析】根据不等式的基本性质逐项分析即可.【详解】A. 因为由a<b,变为a+2<b+1,两边不是加的同一个数,故不正确;B. 因为由a<b,变为a-1<b-2,两边不是减的同一个数,故不正确;C. 因为由a>b,所以a+c>b+c,符合不等式的性质1,故正确;D. 因为由a>b,变为a+c>b-d,两边不是同时加上或减去同一个数,故不正确;故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,①a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4.把不等式-3x>-6变形为x<2的依据是不等式的( )A .基本性质1B .基本性质2C .基本性质3D .以上都不是【答案】C【解析】【分析】根据不等式的基本性质,结合变形的方法求解即可.【详解】①把不等式-3x >-6的两边都除以-2可变形为x <2,①变形的依据是不等式的基本性质3.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.若-2a <-3a ,则a 一定满足的条件是( ) A .a >0B .a <0C .a≥0D .a≤0 【答案】A【解析】将原不等式两边都乘以﹣6,得:3a >2a ,移项、合并,得:a >0,故选A .6.设“○”、“□”、“①”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“①”这样的物体,按质量从小到大的顺序排列为( )A.○□①B.○①□C.□○①D.①□○【答案】D【解析】由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个①的质量,因此1个□质量大于1个①质量.故选D7.a,b,c在数轴上的对应点的位置如图所示,下列式子:①b+c>0;①a+b>a+c;①bc>ac;①ab>ac.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据数轴上右边的数总大于左边的数,原点右边表示正数,左边表示负数,结合有理数运算法则进行判断即可求解.【详解】解:依题意得-2<c<-1<0<b<1<2<a①b+c<0,故说法错误;①a+b>a+c,故说法正确;①bc>ac,故说法正确;①a-b>0,故说法正确;①正确的是①①①,共3个.故选C.【点睛】此题主要考查了利用数轴比较两个负数的大小,绝对值大的反而小.8.2a与3a的大小关系()A.2a<3a B.2a>3a C.2a=3a D.不能确定【答案】D【分析】题目中没有明确a的正负,故要分情况讨论.【详解】当a<0时,2a>3a;当a=0时,2a=3a;当a>0时,2a<3a,故选D.【点睛】本题考查的是不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.9.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12【答案】C【解析】试题分析:根据不等式x+5>0,求得x>﹣5,然后可知:A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项符合题意;D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;故选C.考点:不等式的性质10.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【答案】D【解析】试题分析:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.11.在平面直角坐标系中,点A ()7,21m --+在第三象限,则m 的取值范围是( )A .12m >B .12m >-C .12m <-D .12m < 【答案】A【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-2m+1<0,求不等式的解即可.【详解】解:①点在第三象限,①点的横坐标是负数,纵坐标也是负数,即-2m+1<0,解得m >12. 故选A .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 12.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 【答案】A【解析】 分析:先在不等式0<x <1的两边都乘上x ,再在不等式0<x <1的两边都除以x ,根据所得结果进行判断即可.详解:当0<x <1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又①x<1,①x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题13.用“>”“=”或“<”填空:(1) 若a>b,且a<0,则a2________ab;(2) 若a+5<b+5,则-a_________-b.【答案】<>【解析】【分析】(1)根据不等式的性质3求解即可(2)先根据不等式的性质1,再根据性质3求解即可.【详解】(1) ①a>b,且a<0,①a2>ab;(2) ①a+5<b+5,①a<b,①-a>-b.故答案为:(1)< , (2)>.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.14.已知a>b ,选择适当的不等号填空:(1)-3a ________-3b ; (2)1-5a__________1-5b ;(3)ax 2_________bx 2;(4)a(-c 2-1)_________b(-c 2-1).【答案】< < ≥ <【解析】【分析】(1)根据不等式的性质3两边都除以-3解答即可;(2)先用不等式的性质3两边都乘以-5,,再用不等式的性质1两边都加1解答;(3)先判断x 2的取值范围,再根据不等式的性质解答;(4)先判断-c 2-1的取值范围,再根据不等式的性质解答.【详解】(1) ① a >b ,①-3a <-3b ; (2) ① a >b ,①-5a <-5b , ①1-5a <1-5b ;(3) ① a >b ,x 2≥0,①ax 2≥bx 2;(4) ①c2≥0,①-c2≤0,①-c2-1<0;① a>b,①a(-c2-1)<b(-c2-1).故答案为:(1)<;(2) <;(3) ≥ ;(4) <.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.15.若7x+2<7y+2,则x_______y,它经历了两步,第一步是将不等式7x+2<7y+2的两边_______________,第二步是将不等式的两边_______________.【答案】<都减去2 都除以7【解析】【分析】先根据不等式的性质1两边都减去2,再根据不等式的性质2两边都除以7.【详解】若7x+2<7y+2,则x<y,它经历了两步,第一步是将不等式7x+2<7y+2的两边都减去2,第二步是将不等式的两边都除以7.故答案为:<;都减去2 ;都除以7.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.16.当x____________时,代数式2x-3的值是正数.【答案】>3 2先由题意列出不等式,再根据不等式的基本性质即可得到结果.【详解】由题意得2x-3>0,解得x>3 2 .考点:本题考查的是不等式的基本性质【点睛】解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变.三、解答题17.将下列不等式化为“x>a”或“x<a”的形式:(1)2x>3x-4;(2)5x-1<14;(3)-19x<-3;(4) 13x<12x+1.【答案】(1) x<4;(2) x<3;(3) x>27;(4) x>-6.【解析】(1)先根据不等式的性质1两边都减去3x,合并同类项后,再根据不等式的性质3两边都除以-1;(2)先根据不等式的性质1两边都加1,合并同类项后,再根据不等式的性质2两边都除以5;(3)先根据不等式的性质3两边都乘以-9即可;(4)先根据不等式的性质1两边都减去12x,合并同类项后,再根据不等式的性质2两边都除以6.【详解】(1) ①2x>3x-4,①2x-3x>-4,①-x>-4,①x<4;(2) ①5x-1<14,①5x<14+1,①5x<15,①x<3;(3)-19x<-3,①-19x×(-9)>-3×(-9)①x>27;(4) ① 13x<12x+1,①13x-12x<1,①-16x<1,①x>-6.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.指出下列各式成立的条件.(1)由a>b,得ac≤bc;(2)由(a-3)x>a-3,得x>1;(3)由a<b,得(m-2)a>(m-2)b.【答案】(1)c≤0;(2)a>3;(3)m<2.【解析】试题分析:根据不等式的性质,又不等式的不等号的变化判断即可.试题解析:(1)由a>b,得ac≤bc,根据不等式的性质3,可知c≤0;(2)由(a-3)x>a-3,得x>1,根据不等式的基本性质2,可得a-3>0,即a>3;(3)由a<b,得(m-2)a>(m-2)b,根据不等式的性质3,可知m-2<0,解得m<2.19.已知x>0,试比较10x2-3x+2与8x2-3x+2的大小【答案】10x2-3x+2>8x2-3x+2.【解析】【分析】先把两个式子相减,并去括号合并同类项,然后由x>0,结合不等式的性质判断差的正负即可.【详解】解:(10x2-3x+2)-(8x2-3x+2)=2x2,①x>0,①2x2>0,①10x2-3x+2>8x2-3x+2.【点睛】本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.20.已知x>y,试比较(m-1)x与(m-1)y的大小【答案】见解析【解析】【分析】分三种情况①m-1>0,①m-1=0,①m-1<0,根据不等式的性质解答即可.【详解】解:当m-1>0,即m>1时,(m-1)x>(m-1)y;当m-1=0,即m=1时,(m-1)x=(m-1)y;当m-1<0,即m<1时,(m-1)x<(m-1)y.【点睛】本题考查了不等式的基本性质及分类讨论的数学思想,分三种情况解答是解答本题的关键.21.小明从一商店买了3个相同的玻璃杯,平均每个a元,又从另一个商店买了2个相同的玻璃杯,平均每个b 元,后来他以每个2a b +元的价格把玻璃杯全部都卖给了乙,结果赔了钱,你能用不等式的知识说明原因吗?【答案】见解析【解析】【分析】 先理解题意知道赔钱是什么意思,进而利用题中数量关系列出不等式2a b +<3a +2b >5,根据不等式的基本性质变形即可得到赔钱的原因.【详解】 解:因为赔了钱,所以×5<3a +2b ,①5a +5b <6a +4b ,①-a +b <0,即b <a ,①赔钱的原因是b <a.【点睛】本题考查了不等式的基本性质的应用,根据题意列出不等式并能根据不等式的基本性质变形是解答本题的关键.。
不等式的基本性质习题精选
不等式的基本性质习题精选不等式作为初中数学的重要内容之一,是一个被广泛应用的数学工具。
不同于等式,由于不等式符号的存在,很多时候我们的操作不再严格依照代数的规则。
因此,我们需要了解一些不等式的基本性质,并进行相应的练习。
一、不等式的基本性质1、加减移项:对于不等式a<b,若c是一个正数,则有a+c<b+c;若c是一个负数,则有a+c<b+c。
例1:已知5x-1<4x+3,将常数项移到左边,得到5x-4x<-1+3。
因为x是任意实数,所以我们可以得出:x<2。
即,不等式的解集为x∈(-∞,2)。
2、乘除移项:对于不等式a<b,若c是一个正数,则c×a<c×b;若c是一个负数,则c×a>c×b。
但是在将不等式两边同时乘上一个负数的时候,不等式的方向发生了改变。
例2:已知2x+3>5,将常数项移到左边,得到2x>2。
因为x是任意实数,所以得到x>1。
即,不等式的解集为x∈(1,+∞)。
3、绝对值的基本性质:a. 对于任何实数x,|x|≥0。
当x≠0时,|x|>0。
b. 对于任何实数x,|-x|=|x|。
c. 对于任何实数x和y,|xy|=|x|×|y|。
d. 对于任何实数x和y,|x+y|≤|x|+|y|。
例3:已知|x-5|>3,我们可以将其拆解成两个不等式:x-5>3或x-5<-3。
解得其解集为x∈(-∞,2)并x∈(8,+∞),即x∈(-∞,2)∪(8,+∞)。
二、不等式的练习题1、解不等式 |2x-3|+1<4。
我们可以将式子进行拆解,得到|2x-3|<3,即-3<2x-3<3。
解得x∈(0,3)。
2、已知0<x<1,求证:1/(1-x)>1+x。
将题目中的不等式进行变形,得到1/(1-x)-1>x。
两边同乘以1-x,得到:1-x>x(1-x)1>x^2因为0<x<1,得到x^2<1,所以不等式成立。
2.1不等式的基本性质(习题)
+≥−
移项,得
− ≥ − −
合并同类项,得
−≥ −
系数化为1,得
≤
∴ 不等式的解集为{| ≤ }
()−< ( − ).
解:去括号,得
−< −
移项,得
−−< − −
合并同类项,得
− < −
系数化为1,得
≥
∴ 不等式的解集为{| ≥ }
பைடு நூலகம்
4.若代数式 − 与代数式5 −之和不大于2,求的取值范围.
解:由题意得
( − ) − (−) ≤
∴ − − + ≤
∴ − − ≤
∴ − ≤
∴≥−
∴ 的取值范围为{| ≥ −}
B能力提升
1.设, 是两个不相等的实数,比较 − 与的大小.
正确
(4)若 > 且 < ,那么−> −;
正确
2.用符号“>”或“<”填空.
<
(1)
,
>
(2)如果 > ,那么, −
+ >
>−, +
+ , − +
+>,
<− +.
3.解下列不等式.
+
()
≥ − ;
解:去分母,得
第二章 不等式
2 . 1 不 等 式 的 基 本 性 质 ( 习 题 )
A知识巩固
习题2.1
1.判断下列结论是否正确,并说明理由.
(1)如果 > , c>0
(完整word版)不等式的基本性质__习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a 〉b ,那么 a+c____b+c , a -c____b -c . 不等式的基本性质2:如果a 〉b,并且c 〉0,那么ac_____bc . 不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc . 2.设a 〈b ,用“〈"或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b 2.3.根据不等式的基本性质,用“<"或“〉"填空.(1)若a -1〉b -1,则a____b ;(2)若a+3〉b+3,则a____b ;(3)若2a>2b ,则a____b ; (4)若-2a>-2b ,则a___b .4.若a 〉b ,m<0,n>0,用“〉”或“〈"填空.(1)a+m____b+m;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ; 5.下列说法不正确的是( )A .若a 〉b,则ac 2>bc 2(c 0)B .若a 〉b ,则b 〈aC .若a>b ,则-a 〉-b D .若a>b ,b 〉c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x 〉a 或x>a 的形式: (1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x 〉4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A .bc 〉abB .ac>abC .bc 〈abD .c+b 〉a+b8.已知关于x的不等式(1-a)x〉2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是( ) A.3b〈p<3a B.a+2b〈p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m〉n,且am<an,则a的取值应满足条件( )A.a〉0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是( )A.由4x-1〉2,得4x>1 B.由5x〉3,得x〉35 C.由x2>0,得x〉2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a〉6a进行争论,甲说:“7a>6a正确",乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3〈k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x〉10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x〉4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x〉4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x〉a或x<a的形式:(1)1x2〉-3;(2)-2x〈6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的? [开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m〈n<0,那么下列结论中错误的是()A.m-9〈n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a〉b B.ab>0 C.ab〉0 D.-a〉-b[奥赛赏析]24.要使不等式…〈753246a<a<a<a<a<a<a〈…成立,有理数a的取值范围是()A.0〈a〈1 B.a〈-1 C.-1<a<0 D.a〉1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)〈3.(1)>(2)>(3)〉(4)<4.(1)>(2)〉(3)<(4)〉(5)〈(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3〉1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x〈32;(3)3x<1+2x,3x-2x〈1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x〉4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2〉bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a 为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a〉6a,②当a〈0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1〈x+y〈2点拨:两方程两边相加得3(x+y)=k.3<k〈6,即3<3(x+y)<6,∴1〈x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x〈4x-6,2x-4x<4x-6-4x,-2x〈-6,-2x-6>-2-2,x〉3.解法2:2x+5〈4x-1,2x+5-2x〈4x-1-2x,5+1〈2x-1+1,6<2x,62x<22,3〈x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c〉b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x〉10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1⨯0.85)≈28(本).30>28,故小明最多哥买30本.18.解:(1)a,b是有理数,若a〉b>0,则22a>b(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a〉0时,5a>4a〉0;当a=0时,5a=4a=0;当a<0时,5a〈4a〈0.20.解:这里的变形与方程中的“将未知数的系数化为1"相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b〈0时,a+b<a-b.22.C 23.D24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246a<a<a<0…,则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
高中数学同步练习 课时分层作业1 不等式的基本性质
课时分层作业(一) 不等式的基本性质(建议用时:45分钟)[基础达标练]一、选择题1.设a,b,c,d∈R ,且a>b,c>d,则下列结论正确的是( )A .a +c>b +dB .a -c>b -dC .ac>bdD .a d >b cA [∵a>b ,c>d,∴a+c>b +d.]2.设a,b∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a 3+b 3<0C .b +a>0D .a 2-b 2<0 C [a -|b|>0⇒|b|<a ⇒-a<b<a ⇒a +b>0.故选C.]3.若a<b<0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a|>|b|>0D .⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b B [考查不等式的基本性质及其应用.取a =-2,b =-1验证即可求解.]4.已知a <0,-1<b <0,那么( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a D [ab 2-ab =ab(b -1),∵a<0,-1<b <0,∴b-1<0,ab >0,∴ab 2-ab <0,即ab 2<ab ;又ab 2-a =a(b 2-1),∵-1<b <0,∴b 2<1,即b 2-1<0.又a <0,∴ab 2-a >0,即ab 2>a.故ab >ab 2>a.]5.设a,b 为实数,则“0<ab <1”是“b<1a”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D [∵0<ab <1,当a <0且b <0时可推得b >1a, 所以“0<ab <1”不是“b<1a”的充分条件, ① 反过来,若b <1a, 当b <0且a >0时,有ab <0,推不出“0<ab <1”,所以“0<ab <1”也不是“b<1a”的必要条件, ②由①②知,应选D.]二、填空题6.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是f(x)________g(x).[解析] f(x)-g(x)=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f(x)>g(x).[答案] >7.给出四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0.能得出1a <1b成立的有________.(填序号) [解析] 1a <1b ⇔1a -1b <0⇔b -a ab<0, ∴①②④可推出1a <1b成立. [答案] ①②④8.已知α,β满足-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.[解析] 设α+3β=λ(α+β)+μ(α+2β),可解得λ=-1,μ=2,∴α+3β=-(α+β)+2(α+2β).又-1≤α+β≤1,1≤α+2β≤3,∴1≤α+3β≤7.[答案] [1,7]三、解答题9.(1)已知a >b >0,c <d <0,求证:3a d <3b c;(2)若a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. [证明] (1)∵c<d <0,∴-c >-d >0.∴0<-1c <-1d.又a >b >0, ∴-a d >-b c>0, ∴ 3-a d >3-b c ,即-3a d >-3b c. 两边同乘以-1,得3a d <3b c. (2)∵c<d <0,∴-c >-d >0.∵a>b >0,∴a-c >b -d >0,∴(a-c)2>(b -d)2>0,∴1(a -c )2<1(b -d )2. 又∵e<0,∴e (a -c )2>e (b -d )2. 10.设x,y 为实数,且3≤xy 2≤8,4≤x 2y ≤9,求x 3y 4的取值范围. [解] 由4≤x 2y ≤9,得16≤x 4y2≤81.① 又3≤xy 2≤8,∴18≤1xy 2≤13.② 由①×②得18×16≤x 4y 2·1xy 2≤81×13, 即2≤x 3y 4≤27,因此x 3y4的取值范围是[2,27]. [能力提升练]1.若a,b 为实数,则“0<ab <1”是“a<1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A [对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a<1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a<1b或 b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a<1b 或b >1a”的必要条件,即“0<ab <1”是“a<1b 或b >1a”的充分而不必要条件.] 2.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c)>log a (b -c). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③D [由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c ;因为a -c >b -c,所以log b (a -c)>log a (a -c)>log a (b -c),①②③均正确.]3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b.其中能推出log b 1b <log a 1b<log a b 成立的条件的序号是________.(填所有可能的条件的序号)[解析] ∵log b 1b=-1, 若1<a <b,则1b <1a<1<b, ∴log a 1b <log a 1a=-1,故条件①不可以; 若0<a <b <1,则b <1<1b <1a, ∴log a b >log a 1b >log a 1a =-1=log b 1b, 故条件②可以;若0<a <1<b,则0<1b<1, ∴log a 1b>0,log a b <0,条件③不可以.故应填②. [答案] ②4.已知f(x)=ax 2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.[解] 由-4≤f(1)≤-1,-1≤f(2)≤5,得⎩⎪⎨⎪⎧ -4≤a+c≤-1,-1≤4a+c≤5.设u =a +c,v =4a +c,则有a =v -u 3,c =4u -v 3, ∴f(3)=9a +c =-53u +83v. 又⎩⎪⎨⎪⎧ -4≤u≤-1,-1≤v≤5,∴⎩⎪⎨⎪⎧ 53≤-53u ≤203,-83≤83v ≤403, ∴-1≤-53u +83v≤20,即-1≤f(3)≤20.∴f(3)的取值范围为[-1,20].。
不等式的基本性质经典练习题
9.1.2不等式的基本性质练习题要点感知 不等式的性质有:不等式的性质 1 不等式的两边加(或减)同一个数(或式子),不等号的方向__________,即如果a>b,那么a ±c__________b ±c.不等式的性质2 不等式的两边乘(或除以)同一个__________数,不等号的方向不变,即如果a>b,c>0,那么ac__________bc(或a c __________b c). 不等式的性质3 不等式的两边乘(或除以)同一个__________数,不等号的方向改变,即如果a>b,c<0,那么ac__________bc(或a c __________b c). 预习练习1-1 若a>b ,则a-b>0,其依据是( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上都不对1-2 若a <b ,则3a__________3b ,-7a+5__________-7b+5(填“>”“<”或“=”).1-3设a >b ,用“<”,或“>”填空,并说出是根据哪条不等式性质.(1) 3a 3b ; (2) a -8 b -8;(3) -2a -2b ; (4) 2a -5 2b -5;(5) -3.5a -1 --1.知识点1 认识不等式的性质1.如果b>0,那么a+b 与a 的大小关系是( )+b<a +b>a +b ≥a D.不能确定2.下列变形不正确的是( )A.由b>5得4a+b>4a+5B.由a>b 得b<aC.由-12x>2y 得x<-4y >-a 得x>5a 3.若a >b,am <bm,则一定有( )=0 <0 >0 为任何实数4.在下列不等式的变形后面填上依据:(1)如果a-3>-3,那么a>0;______________________________.(2)如果3a<6,那么a<2;______________________________.(3)如果-a>4,那么a<.5.利用不等式的性质填“>”或“<”.(1)若a>b,则2a+1__________2b+1;(2)若<-10,则y__________8;(3)若a<b,且c<0,则ac+c__________bc+c ;(4)若a>0,b<0,c<0,则(a-b)c__________0.6.判断(1)∵a < b ∴ a -b < b -b (2)∵a < b ∴ 33b a < (3)∵a < b ∴ -2a < -2b (4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 37.填空(1)∵ 2a > 3a ∴ a 是 数 (2)∵ 23a a < ∴ a 是 数(3)∵ax < a 且 x > 1 ∴ a 是 数 8.根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质.(1)a -3 > b -3(2) 33b a < (3)-4a > -4b 例1、设a >b ,用“>”或“<”填空,并说明是根据不等式哪一条性质.3)1(-a 3-b ,依据: .3)2(÷a 3÷b ,依据: .(3),依据: . (4) -4a___-4b ,依据: .(5) 2a+3___2b+3,依据: .(6) (m 2+1) a __ (m 2+1)b (m 为常数) ,依据: .变式1、用“>”或“<”填空. (1) 55,则若-<-n m m n .(2),若n m 3131->- 则m n . (3),若n m 66<则m n .(4),若n a m a )1()1(22+>+则m n .1、若a>b ,则a-b>0,其根据是( )A .不等式性质1B .不等式性质2C .不等式性质3D .以上答案均不对2、若m >n ,则下列不等式中成立的是( ).+a <n+b B. ma <nb C. ma 2<na 2 D. a-m <a-n3、由x <y ,得到ax >ay ,则a 应满足的条件是( ).≥0 B. a ≤0 C. a >0 D. a <04、不等式3—y <3y+41的解集是( ).>811 >813 >1611 >18111.下列各题的横线上填入不等号,使不等式成立.并说明是根据哪一条不等式性质.(1)若a-3<9,则 a_12(根据不等式性质 __)(2)若-a <10,则a__ -10(根据不等式性质: );(3)若0.5a>-2则a_-4(根据不等式性质: _);(4)若-a>0,则a___0(根据不等式性质: )。
不等式的基本性质练习题
不等式的基本性质练习题 1.求证:221a b ab a b +≥++- 证明:22()(1)a b ab a b +-++-2222222222211(222222)21[(2)(21)(21)]21[()(1)(1)]02a b ab a b a b ab a b a ab b a a b b a b a b =+---+=+---+=-++-++-+=-+-+-≥ 221a b ab a b ∴+≥++- 2.设2P =,73Q =-,62R =-,则,,P Q R 的大小顺序是( )A .P Q R >>B .P R Q >>C .Q P R >>D .Q R P >>B 解 22226,262+=>∴>- ,即P R >; 又6372,6273+>+∴->-,即R Q >,所以P R Q >>3.比较大小:36log 4______log 7解.> 设36log 4,log 7a b ==,则34,67a b ==,得7346423a b b b⋅=⋅=⋅⋅ 即4237b a b-⋅=,显然1,22bb >>,则423107b a b a b a b -⋅=>⇒->⇒> 4.已知,,a bc R +∈,比较333a b c ++与222a b b c c a ++的大小。
解:作差基本不等式的练习题 1.下列各式中,最小值等于2的是( )A .x y y x +B .4522++x x C .1tan tan θθ+ D .22x x -+D 解: 20,20,222222xxx x x x --->>∴+≥=2.若,x y R ∈且满足32x y +=,则3271xy++的最小值是( ) A .339 B .122+ C .6 D .7 解:D 33333123312317xyx y x y +++≥⋅+=+=3.若0a b >>,则1()a b a b +-的最小值是_____________。
不等式基本性质 习题精选
不等式基本性质习题精选1.按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以-3;(5)m>n,两边同乘以m.2.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则 a ______12;(2)若-a<10,则a______ -10;3.已知a<0,用不等号填空:(1)a+2 ______ 2;(2)a-1 ______ -1;(3)3a______ 0;(4)a-1______0;(8)|a|______0.4.判断下列各题的推导是否正确?为什么?(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.5.按照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a.6.用不等号填空:(1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0;(6)若b<0,则a+b ______ a;(7)b <a <2,则(a-2)(b-2)______0;(2-a )(2-b )______ ;(2-a )(a-b )______.7.若0a b <<,则下列式子:①12a b +<+; ②1ab >;③a b ab +<; ④11a b <中,正确的有() A .1个 B .2个C .3个D .4个。
不等式的基本性质(一)
试一试
1.若-m>5,则m < -5.
2.如果x/y>0, 那么xy > 0.
3.如果a>-1,那么a-b > -1-b.
4.-0.9<-0.3,两边都除以(-0.3),得
同一个负数,不等号的方向
改变
如果a<b,c>0那么ac<bc,a/c<b/c.
如果a>b,c<0那么ac<bc,a/c<b/c;
选择适当的不等号填空:
(1)∵0 < 1, ∴ a <a+1(不等式的基本性质1)
(2)∵(a-1)2 ≥ 0, ∴(a-1)2-2 ≥ -2(不等式的基本性质1)
(3)若x+1>0,两边同加上-1,得 ___x__>_-_1_____ (依据:__不_等__式__的_基__本_性__质_1_______). (4)若2 x >-6,两边同除以2,得 ___x_>__-3__,依据
会发现:当不等式两边加或减去同一个数时, 不等号的方向_不__变___
当不等式的两边同乘同一个正数时,不 等号的方向__不__变__;而乘同一个负数时,不等 号的方向__改__变____.
不等式的基本性质1 不等式的两边 都加上(或减去)同一个数(或式子), 不等号的方向不变.
即 如果a>b,那么a+c>b+c,a-c>b-c;
5.
__3_>__1__.
8 x 1,两边都乘
7
,得
x7 _____8_.
7
8
思考: 已知a<0 ,试比较2a与a的大小。
(完整版)不等式的基本性质习题
不等式的基本性质习题一、选择题1.若m>n ,且am<an ,则a 的取值应满足条件( )A .a>0B .a<0C .a=0D .a ≥02.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0mn < D .-m >-n3.下列说法正确的是 ( )A.若a 2>1,则a >1B.若a <0,则a 2>aC.若a >0,则a 2>a D .若,则4.如果x >0,那么a +x 与a 的大小关系是( )A .a +x >aB .a +x <aC .a +x≥aD .不能确定5.已知5<7,则下列结论正确的( )①5a <7a ②5+a <7+a ③5-a <7-aA. ①②B. ①③C. ②③D. ①②③6.如果a<b<0,下列不等式中错误的是( )A. ab >0B.C.D.7.-2a 与-5a 的大小关系( )A .-2a <-5aB .2a >5aC .-2a =-5bD .不能确定二、填空题1.用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若5a>5b ,则a____b ; (4)若-5a>-5b ,则a___b .2.x <y 得到ax >ay 的条件应是____________.3.若m +n >m -n ,n -m >n ,那么下列结论(1)m +n >0,(2)n -m <0,(3)mn≤0, 1<a a a <20<+b a 1<b a0<-b a(4)n m<0中,正确的序号为________. 4.满足-3x >-18的非负整数有________________________.5.若am <b ,ac 4<0,则m________.6.如果a -3>-5,则a ;如果-2a <0,那么n . 三、解答题1.如图所示,一个已倾斜的天平两边放有重物,其质量分别为a 和b ,如果在天平两边的盘内分别加上相等的砝码c ,看一看,盘子仍然像原来那样倾斜吗?2.同桌甲和同桌乙正在对7a>6a 进行争论,甲说:“7a>6a 正确”,乙说:“这不可能正确”,你认为谁的观点。
不等式的性质(1)
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
等式基本性质2:
等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 如果a=b,那么ac=bc或 a b(c≠0),
cc
不等式是否具有类似的性质呢? ➢如果 7 > 3 那么 7+5 __>__ 3+ 5 , 7 -5__>__3-5 ➢如果-1< 3, 那么-1+2_<___3+2, -1- 4__<__3 - 4
今天学的是不等式的三个基本性质 ➢不等式的基:.就是说,不等式两边都 加上 (或减去)同一个数(或式子),不等号方向不变。
➢不等式基本性质2: 如果a >b,c > 0 ,那么 ac>bc(或
a c
b c
) 就是说
不等式的两边都乘以(或除以)同一个正数,不等号
(2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2. . (4)正确,根据不等式基本性质1.
(5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3)
例2:设a>b,用“<”或“>”填空并 口答是根据哪一条不等式基本性质。
如果a>b, 那么a±c>b±c
不等式基本性质1:不等式的 两边都加上(或减去)同一 个整式,_不__等__号__的__方__向__不__变__。
如果_a_>_b_,那么_a±__c_>_b_±__c_.
不等式还有什么类似的性质呢?
➢如果 7 > 3 那么 7×5 _>___ 3× 5 ,
不等式的基本性质练习题
不等式的基本性质一、选择题(本大题共13小题,共52分)1.若a>b,则下列式子正确的是()A.-0.5a>-0.5bB.0.5a>0.5bC.a+c<b+cD.a-c<b-c2.若a>b,则下列不等式中错误的是()A.-a5<−b5B.-2a>-2bC.a-2>b-2D.-(-a)>-(-b)3.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c-a<c-bC.a-3c<b-3cD.ac <bc5.若a>b,则下列不等式一定成立的是()A.a-b<0B.a3<b3C.1-a<1-bD.-1+a<-1+b6.若a>b,那么下面关系一定成立的是()A.ac>bcB.ac2>bc2C.a-c>b-cD.a|c|>b|c|7.若a<b,则下列不等式变形错误的是()A.a+x<b+xB.3-a<3-bC.2a-1<2b-1D.a2-b2<08.下列变形中不正确的是()A.由a>b,得b<aB.由-a<-b,得b<aC.由-3x>a,得x>-a3D.由-x3>y,得x<-3y9.若x<y,则下列不等式中成立的是()A.2+x>2+yB.2x>2yC.2-x>2-yD.-2x<-2y10.若∣a|a=-1,则a只能是()A.a≤-1B.a<0C.a≥-1D.a≤011.如果a、b表示两个负数,且a<b,则()A.a b >1B.ab<1 C.1a<1bD.ab<112.若-a2<-a3,则a一定满足是()A.a>0B.a<0C.a≥0D.a≤013.当0<x<1时,x2、x、1x的大小顺序是()A.x2<x<1x B.1x<x<x2 C.1x<x2<x D.x<x2<1x二、填空题(本大题共7小题,共21分)14.当x <a <0时,x 2 ______ ax (填>,<,=)15.已知:x ≤1,含x 的代数式A=3-2x ,那么A 的值的范围是 ______ .16.若a >b ,则2-13a ______ 2-13b (填“<”或“>”).17.如果7x <4时,那么7x -3 ______ 1.(填“>”,“=”,或“<”).18.若a <b <0;则|a | ______ |b |,-a ______ -b .19.用不等号填空,并说明是根据不等式的哪一条性质:(1)若x +2>5,则x ______ 3,根据不等式的性质 ______ ;(2)若−34x <-1,则x ______ 43,根据不等式的性质 ______ .20.若a <b ,用“>”号或“<”号填空:-1+2a ______ -1+2b ,6-a ______ 6-b .三、计算题(本大题共1小题,共6.0分)21.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)x -1<5.(2)4x -1≥3.(3)−12x +1≥4.(4)-4x <-10.四、解答题(本大题共2小题,共21分)22.根据不等式的性质,将下列不等式化成“x >a ”或“x <a ”的形式.(1)10x -1>7x ;(2)-12x >-1.23.【提出问题】已知x -y =2,且x >1,y <0,试确定x +y 的取值范围.【分析问题】先根据已知条件用一个量如y 取表示另一个量如x ,然后根据题中已知量x 的取值范围,构建另一量y 的不等式,从而确定该量y 的取值范围,同法再确定另一未知量x 的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x -y =2,∴x =y +2.又∵x >1,∴y +2>1,∴y >-1.又∵y <0,∴-1<y <0,…①同理得1<x <2…②由①+②得-1+1<y +x <0+2.∴x +y 的取值范围是0<x +y <2.【尝试应用】已知x-y=-3,且x<-1,y>1,求x+y的取值范围.。
不等式复习(一)不等式的基本性质
下列命题正确的是 .(1)如果a >b ,c <d ,那么a +c >b +d ;(2)如果a >b ,c >d ,那么a+2c >b+2d ; (3)如果a >b ,c >d ,那么ac >bd .2.对于实数c b a ,,中,下列命题中真命题有: 。
(1)若b a >,则22bc ac >; (2) 若,22bc ac >则b a >;(3)若,0<<b a 则22b ab a >>; (4)若,0<<b a 则ba 11<; 3.已知0<a ,01<<-b ,则2ab ab a 、、的大小关系是 。
4.已知R b a ∈、,那么“122<+b a ”是“b a ab +>+1”的 。
5.有48支铅笔,在甲组里每人分配3支,则有多余;若每人分配4支,则不够分配;乙组里,若每人分配4支,则有多余;若每人分配5支,则不够分配.设甲组为x 人,乙组y 人,则x 、y 满足不等式组6.:A 120a -<<,21a A +=,21a B -=,a C +=11,a D -=11,则有 6.:B 设a 和b 都是非零实数,则不等式b a >和ba 11>同时成立的充要条件是 .7.设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 ( ) A .||||||c b c a b a -+-≤- B .aa a a 1122+≥+ C .21||≥-+-ba b a D .a a a a -+≤+-+213 8.如果b a >>0且0>+b a ,那么以下不等式正确的个数是 ( ) ①ba 11< ②b a 11> ③33ab b a < ④23ab a < ⑤32b b a <A .2B .3C .4D .59.A :若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-c b a 9.B :若0<<b a ,则下列结论中正确的命题是 ( )A .11a b <和||1||1b a >均不能成立B .b b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和2211⎪⎭⎫ ⎝⎛+>⎪⎭⎫ ⎝⎛+a b b a 均不能成立 D .不等式||1||1b a >和2211⎪⎭⎫ ⎝⎛+>⎪⎭⎫ ⎝⎛+b b a a 均不能成立 10.比较下列各题两式的大小:(1)33-a 与43-a; (2)b a b a -+与; (3)312222222+-+-b a b a 与 11.已知:0>>b a ,0>m ,0>n ,若a b P =,b a q =,m a m b r ++=,nb na S ++=,试由大到小排列P 、q 、r 、S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本性质习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b,那么a+c____b+c,a-c____b-c.不等式的基本性质2:如果a>b,并且c>0,那么ac_____bc.不等式的基本性质3:如果a>b,并且c<0,那么ac_____bc.2.设a<b,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;(5)-a2_____-b2;(6)a2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;(4)若-2a>-2b,则a___b.4.若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;(5)am____bm;(6)an_____bn;5.下列说法不正确的是()A.若a>b,则ac2>bc2(c 0)B.若a>b,则b<aC.若a>b,则-a>-bD.若a>b,b>c,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a或x>a的形式:(1)x-3>1;(2)-23x>-1;(3)3x<1+2x;(4)2x>4.[学科综合]7.已知实数a、b、c在数轴上对应的点如图13-2-1所示,则下列式子中正确的是()A.bc>abB.ac>abC.bc<abD.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3aB.a+2b<p<2a+bC.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0B.a<0C.a=0D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1B.由5x>3,得x>3 5C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9B.-m>-nC.11 > n mD.m n>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>bB.ab>0C.a b>0D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1B.a<-1C.-1<a<0D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A8.负9.D10.B11.B12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。