函数及其表示.板块二.函数的表示法.学生版

合集下载

函数概念及表示法教案

函数概念及表示法教案

函数概念及表示法教案一、引言函数是数学中的一个重要概念,也是学习和应用数学的基础。

本教案将介绍函数的概念及相关表示法,以帮助学生深入理解和掌握函数的基本原理。

二、函数的概念函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

简而言之,函数就是一个输入输出的规则。

示例1:考虑一个函数f(x),它将自然数集合N的每个元素x映射到其平方,即f(x) = x^2。

例如,当x = 2时,f(2) = 4。

这里,N为输入集合,f(x)为输出集合。

三、函数的表示法函数有多种表示方法,以下是常见的几种表示法:1. 集合表示法函数可以使用集合表示法表示为 {(x, f(x)) | x ∈ N},表示函数包括了所有输入与输出的有序对。

2. 公式表示法函数可以使用公式表示法表示为 f(x) = x^2,通过一个明确的公式表达函数的输入与输出之间的关系。

3. 图像表示法函数可以使用图像表示法,通过绘制函数的图像来显示输入与输出之间的关系。

例如,绘制函数f(x) = x^2的平面直角坐标系图像。

示例2:考虑函数f(x) = x^2,它可以表示为以下三种方式:- 集合表示法:{(x, x^2) | x ∈ N}- 公式表示法:f(x) = x^2- 图像表示法:绘制平面直角坐标系图像,横轴为x,纵轴为f(x)四、函数的性质函数具有以下几个重要的性质:1. 定义域:函数的定义域是指所有可能的输入值的集合。

对于函数f(x) = x^2,定义域可以是实数集R。

2. 值域:函数的值域是函数在定义域中所有可能的输出值的集合。

对于函数f(x) = x^2,值域可以是非负实数集R≥0。

3. 单调性:函数的单调性描述了函数在定义域内的增减关系。

例如,函数f(x) = x^2在定义域上是非递减的。

4. 奇偶性:函数的奇偶性描述了函数在定义域内的对称性。

例如,函数f(x) = x^2是偶函数。

五、函数的应用函数在数学和科学中有广泛的应用,例如:1. 函数在代数和几何中的应用:函数在解方程、求导数、计算曲线的性质等方面起着重要作用。

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义第6讲函数及其表示1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.3.函数的表示法表示函数的常用方法有解析法、图像法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.➢考点1 函数的概念[名师点睛](1)函数的定义要求非空数集A中的任何一个元素在非空数集B中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B中有可能存在与A中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同1.(2022·全国·高三专题练习)下列四个图像中,是函数图像的是()A .(1)(2)B .(1)(2)(3)C .(1)(3)(4)D .(1)(2)(3)(4) 【答案】C 【解析】根据函数的定义,一个自变量值对应唯一一个函数值,或者多个自变量值对应唯一一个函数值,显然只有(2)不满足. 故选:C.2.(2021·湖南·雅礼中学高三阶段练习)下列各组函数中,()f x ,()g x 是同一函数的是( )A .()2f x x =,()4g x x =B .()2log a f x x =,()2log a g x x =C .()4121x x f x -=-,()21x g x =+D .()11f x x x --()11g x x x --【答案】D 【解析】解:对于A 选项,()2f x x =的定义域为R ,()4g x x =的定义域为[)0,∞+,故不满足;对于B 选项,()2log a f x x =的定义域为{}0x x ≠,()2log a g x x =的定义域为()0,∞+,故不满足;对于C 选项,()4121x x f x -=-的定义域为{}0x x ≠,()21xg x =+的定义域为R ,故不满足;对于D 选项,()f x ,()g x 的定义域均为{}1,对应关系均为0y =,故是同一函数.故选:D [举一反三]1.(2022·全国·高三专题练习)函数y =f (x )的图象与直线1x =的交点个数( ) A .至少1个B .至多1个C .仅有1个D .有0个、1个或多个 【答案】B 【解析】若1不在函数f (x )的定义域内,y =f (x )的图象与直线1x =没有交点, 若1在函数f (x )的定义域内,y =f (x )的图象与直线1x =有1个交点, 故选:B.2.(2022·天津市西青区张家窝中学高三阶段练习)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =211x x -+B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (xg (x 【答案】D 【解析】对于A ,函数y =x -1定义域是R ,函数y =211x x -+定义域是(,1)(1,)-∞-⋃-+∞,A 不是;对于B ,0y x =定义域是(,0)(0,)-∞+∞,函数y =1定义域是R ,B 不是;对于C ,()2f x x =和()2(1)g x x =+对应法则不同,C 不是;对于D ,f (x和g (x (0,)+∞,并且对应法则相同,D 是.故选:D3.(2022·全国·高三专题练习)下列各组函数中,表示同一个函数的是( )A .1y =与0y x =B .y x =与2y =C .22log y x =与22log y x =D .1ln 1xy x+=-与()()ln 1ln 1y x x =+-- 【答案】D 【解析】对于A :1y =定义域为R ,0y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项A 不正确;对于B :y x =定义域为R ,2y =的定义域为{}|0x x ≥,定义域不同不是同一个函数,故选项B 不正确;对于C :22log y x =的定义域为{}|0x x >,22log y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项C 不正确; 对于D :由101xx +>-可得()()110x x +-<,解得:11x -<<,所以1ln 1x y x+=-的定义域为{}|11x x -<<,由1010x x +>⎧⎨->⎩可得11x -<<,所以函数()()ln 1ln 1y x x =+--的定义域为{}|11x x -<<且()()1ln 1ln 1ln1xy x x x+=+--=-,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.➢考点2 函数的定义域[典例]1.(2022·北京·模拟预测)函数()()=-的定义域是_______.lg2f x x【答案】1[,2)2- 【解析】 由题意可得,21020x x +≥⎧⎨->⎩,解之得122x -≤<则函数()()lg 2f x x =-的定义域是1[,2)2- 故答案为:1[,2)2-2.(2022·全国·高三专题练习)若函数()y f x =的定义域是[0,8],则函数()g x =义域是( )A .(1,32)B .(1,2)C .(1,32]D .(1,2] 【答案】D 【解析】因为函数()y f x =的定义域是[0,8], 所以04802,,12101x x x x x ≤≤≤≤⎧⎧∴∴<≤⎨⎨->>⎩⎩.故选:D.3.(2022·全国·高三专题练习)已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为( )A .(-1,0)B .(-2,0)C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【解析】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C4.(2022·全国·高三专题练习)已知函数()f x =的定义域是R ,则实数a 的取值范围是( )A .(12,0)-B .(12,0]-C .1(,)3+∞D .1(,]3-∞ 【答案】B 【解析】∵()f x =的定义域为R ,∴只需分母不为0即可,即230ax ax +-≠恒成立, (1)当0a =时,30恒成立,满足题意,(2)当0a ≠时,24(3)0a a ∆=-⨯-<,解得120a -<<, 综上可得120a -<≤. 故选:B. [举一反三]1.(2022·全国·高三专题练习)函数y =13x -的定义域为( ) A .3,2⎡⎫+∞⎪⎢⎣⎭B .(-∞,3)∪(3,+∞)C .3,32⎡⎫⎪⎢⎣⎭(3,+∞)D .(3,+∞)【答案】C 【解析】要使函数y =13x -有意义,则 所以x x -≥-≠⎧⎨⎩23030,解得32x ≥且3x ≠,所以函数y =13x -的定义域为3,32⎡⎫⎪⎢⎣⎭∪(3,+∞). 故选:C.2.(2022·全国·高三专题练习)函数y 22x ππ-≤≤)的定义域是( )A .,02π⎡⎤-⎢⎥⎣⎦B .,26ππ⎡⎫-⎪⎢⎣⎭C .,02π⎡-⎫⎪⎢⎣⎭D .,26ππ⎡⎤-⎢⎥⎣⎦【答案】A由题意,得512sin 0log (12sin )022x x x ππ⎧⎪->⎪-≥⎨⎪⎪-≤≤⎩,则1sin 212sin 122x x x ππ⎧<⎪⎪-≥⎨⎪⎪-≤≤⎩,即sin 022x x ππ≤⎧⎪⎨-≤≤⎪⎩,∴[,0]2x π∈-.故选:A.3.(2022·全国·高三专题练习)已知函数(1)=-y f x 的定义域为[]1,3,则函数()3log y f x =的定义域为( )A .[]0,1B .[]1,9C .[]0,2D .[]0,9 【答案】B 【解析】由[]1,3x ∈,得[]10,2x -∈, 所以[]3log 0,2x ∈,所以[]1,9x ∈. 故选:B .4.(2022·全国·高三专题练习)定义域是一个函数的三要素之一,已知函数()Jzzx x 定义域为[211,985],则函数 ()shuangyiliu x (2018)(2021)Jzzx x Jzzx x =+的定义域为( )A .211985,20182021⎡⎤⎢⎥⎣⎦B .211985,20212018⎡⎤⎢⎥⎣⎦ C .211985,20182018⎡⎤⎢⎥⎣⎦D .211985,20212021⎡⎤⎢⎥⎣⎦【答案】A 【解析】由抽象函数的定义域可知,21120189852112021985x x ≤≤⎧⎨≤≤⎩,解得21198520182021x, 所以所求函数的定义域为211985,20182021⎡⎤⎢⎥⎣⎦. 故选A.5.(2022·全国·高三专题练习)已知函数()f x =R ,则m 的取值范围是( )A .12m -<<B .12m -<≤C .12m -≤≤D .12m -≤< 【答案】C 【解析】由题意得:()()231104m x m x +-++≥在R 上恒成立.10m +=即1m =-时,()f x =10m +≠时,只需()()2101310m m m +>⎧⎪⎨∆=+-+≤⎪⎩, 解得:12m -<≤, 综上:1,2m ,故选:C .6.(2022·上海市奉贤中学高三阶段练习)函数()f x =___________.【答案】(,0]-∞【解析】解:由1102x⎛⎫-≥ ⎪⎝⎭,得011122⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭x ,所以0x ≤,所以函数的定义域为(,0]-∞,故答案为:(,0]-∞7.(2022·全国·高三专题练习)函数y =的定义域是R ,则a 的取值范围是_________. 【答案】[)0,4【解析】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4.8.(2022·全国·高三专题练习)已知函数()f x =R ,则a的范围是________. 【答案】[1,5) 【解析】当1a =时,()1f x =,即定义域为R ;当1a ≠,要使()f x 的定义域为R ,则2()(1)(1)10g x a x a x =-+-+>在x ∈R 上恒成立,∴()()210{1410a a a ->∆=---<,解得15a <<, 综上,有15a ≤<, 故答案为:[1,5)➢考点3 函数解析式[典例]1.(1)已知f(x+1)=x+2x,则f(x)的解析式为________________.(2)若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为________.(3)已知函数f(x)满足2f(x)+f(-x)=2x,则f(x)的解析式为________.【答案】(1)f(x)=x2-1(x≥1)(2)f(x)=x2-x+3(3)f(x)=2x【解析】(1)方法一(换元法):令x+1=t,则x=(t-1)2,t≥1,所以f(t)=(t-1)2+2(t-1)=t2-1(t≥1),所以函数f(x)的解析式为f(x)=x2-1(x≥1).方法二(配凑法):f(x+1)=x+2x=x+2x+1-1=(x+1)2-1.因为x+1≥1,所以函数f(x)的解析式为f(x)=x2-1(x≥1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3, 所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2. 所以⎩⎨⎧4a =4,4a +2b =2,所以⎩⎨⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .2.(2022·全国·高三专题练习)根据下列条件,求函数f (x )的解析式. (1)f (x )是一次函数,且满足f (f (x ))=4x -3;(2)已知f (x )满足2f (x )+f (1x)=3x ,求f (x )的函数解析式.(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1). 【解】(1)因为f (x )是一次函数,所以设()()0f x kx b k =+≠,所以()()()2f f x k kx b b k x kb b =++=++,又因为f (f (x ))=4x -3,所以243k x kb b x ++=-,故243k kb b ⎧=⎨+=-⎩,解得21k b =⎧⎨=-⎩或23k b =-⎧⎨=⎩,所以()21f x x =-或()23f x x =-+;(2)将1x 代入()123f x f x x ⎛⎫+= ⎪⎝⎭,得()132f f x x x ⎛⎫+= ⎪⎝⎭,因此()()123132fx f x x ff x x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得()()120f x x x x=-≠. (3)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y=()()21y y -+-+,所以f (y )=y 2+y +1,即f (x )=x 2+x +1.[举一反三]1.(2022·全国·高三专题练习)已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为( ) A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+ C .()()211x f x x x =≠-+D .()()211x f x x x =-≠-+ 【答案】A 【解析】令11x t x -=+,则11t x t -=+ ,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭, 所以()()2211xf x x x =≠-+,故选:A. 2.(2022·全国·高三专题练习)已知函数f (x ﹣1)=x 2+2x ﹣3,则f (x )=( ) A .x 2+4x B .x 2+4C .x 2+4x ﹣6D .x 2﹣4x ﹣1 【答案】A【解析】()()()22123141f x x x x x -=+-=-+-,所以()24f x x x =+.故选:A3.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且2()2()f x f x x x +-=-,则()f x =( )A .223x x +B .223x x +C .2223x x+D .23x x +【答案】D【解析】令x 为x -,则2()2()f x f x x x -+=+, 与2()2()f x f x x x +-=-联立可解得,2()3x f x x =+.故选:D .4.(多选)(2022·全国·高三专题练习)已知函数()f x 是一次函数,满足()()98f f x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =- C .()34f x x =-+D .()34f x x =-- 【答案】AD 设()f x kx b =+,由题意可知()()()298f f x k kx b b k x kb b x =++=++=+,所以298k kb b ⎧=⎨+=⎩,解得32k b =⎧⎨=⎩或34k b =-⎧⎨=-⎩,所以()32f x x =+或()34f x x =--. 故选:AD.5.(2022·山东济南·二模)已知函数2()23f x x x =--+,则(1)f x +=______. 【答案】24x x -- 【解析】解:因为2()23f x x x =--+,所以()()22(+1)+12+143f x x x x x =--+-=-,(1)f x +=24x x --.故答案为:24x x --.6.(2022·全国·高三专题练习)已知()49f f x x =+⎡⎤⎣⎦,且()f x 为一次函数,求()f x =_________【答案】23x +或29x --. 【解析】因为()f x 为一次函数,所以设()()0f x kx b k =+≠,所以()()()()21f f x f kx b k kx b b k x b k =+=++=++⎡⎤⎣⎦, 因为()49f f x x =+⎡⎤⎣⎦,所以()2149k x b k x ++=+恒成立, 所以()2419k b k ⎧=⎪⎨+=⎪⎩,解得:23k b =⎧⎨=⎩或29k b =-⎧⎨=-⎩,所以()23f x x =+或()29f x x =--, 故答案为:23x +或29x --.7.(2022·全国·高三专题练习)已知函数)25f x =+,则()f x 的解析式为_______【答案】()()212f x x x =+≥【解析】2t +=,则2t ≥,且()22x t =-, 所以()()()2224251f t t t t =-+-+=+,()2t ≥所以()()212f x x x =+≥,故答案为:()()212f x x x =+≥.8.(2022·全国·高三专题练习)设函数f (x )对x ≠0的一切实数都有f (x )+2f (2020x)=3x ,则f (x )=_________. 【答案】4040()f x x x=- 【解析】 因为()202023f x f x x ⎛⎫+=⎪⎝⎭,可得()2020232020x f f x x ⎛⎫+= ⎪⎝⎭,由()()2020232020232020f x f x x x f f x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得4040()f x x x=-. 故答案为:4040()f x x x=-. 9.(2022·全国·高三专题练习)已知定义域为R 的函数()f x 满足()()323f x f x x --=,则()f x =___________.【答案】3x【解析】因为()()323f x f x x --=,所以()()323f x f x x --=-,同除以2得()()31322f x f x x --=-,两式相加可得()33322f x x =,即()3f x x =.故答案为:3x .10.(2022·全国·高三专题练习)(1)已知()f x 是二次函数且(0)2f =,(1)()1f x f x x +-=-,求()f x ;(2)已知1()2(0)f x f x x x ⎛⎫+=≠ ⎪⎝⎭,求()f x .【解】(1)∵f (x )为二次函数,∴f (x )=ax 2+bx +c (a ≠0),∵f (0)=c =2,∵f (x +1)﹣f (x )=x ﹣1,∴2ax +a +b =x ﹣1,∴a 12=,b 32=-, ∴f (x )12=x 232-x +2. (2)∵()12f x f x x ⎛⎫+= ⎪⎝⎭,①,∴f (1x )+2f (x )1x=,② ①-②×2得:﹣3f (x )=x 2x-, ∴2()(0)33xf x x x =-≠➢考点4 分段函数1.(2022·广东梅州·二模)设函数()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,则()()22log 6f f -+=( ) A .2B .6C .8D .10 【答案】B 【解析】 解:因为()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,所以()()2log 61222log 83,log 623f f --====,所以()()22log 66f f -+=. 故选:B.2.(2022·山东潍坊·模拟预测)设函数()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()8f =( )A .10B .9C .7D .6【答案】C 【解析】因为()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()()()()()()()812913107f f f f f f f =====.故选:C.3.(2022·浙江省江山中学高三期中)已知[]1,1∈-a ,函数()()()22sin 2, 21,π⎧⎡⎤-≤⎪⎣⎦=⎨-++>⎪⎩x a x a f x x a x a x a 若()() 1=f f a ,则=a _______.【答案】1-或34【解析】()()()01f f a f ==,当01a ≤≤时,()()0sin 21π=-=f a ,得14a k =--,故34a =;当10a -≤<时,()201f a ==,故1a =-.故答案为:34a =或1a =-.4.(2022·湖南湘潭·三模)已知0a >,且1a ≠,函数()()2log 21,0,0a xx x f x a x ⎧+≥⎪=⎨<⎪⎩,若()()12f f -=,则=a ___________,()4f x ≤的解集为___________.【答案】∞⎛- ⎝⎦【解析】①由题可知,()()()()121log 212a f f f a a ---==+=,则2221a a -=+,即4220a a --=,解得22a =,故a =②当0x 时,())2214f x x=+,解得602x;当0x <时,()4x f x =恒成立.故不等式的解集为∞⎛- ⎝⎦.∞⎛- ⎝⎦. [举一反三]1.(2022·山东·济南一中高三阶段练习)已知函数()()21,13,1xx f x f x x ⎧+<⎪=⎨-≥⎪⎩,则()9f =( ) A .2B .9C .65D .513 【答案】A 【解析】()09(93)(6)(3)(0)212f f f f f =-====+=,故选:A2.(2022·重庆八中模拟预测)已知函数()()1,221,2xx f x f x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,则()2log 12f =( )A .13B .6-C .16D .3- 【答案】A 【解析】因为()2log 31,2∈,则()22log 122log 33,4=+∈,所以()()()()22log 31log 322211log 122log 3log 3223f f f -⎛⎫=+==== ⎪⎝⎭,故选:A.3.(2022·安徽安庆·二模)已知函数()()()lg ,10R 10,01axx x f x a x ⎧--≤<=∈⎨≤≤⎩且()12f =,则()41log 310f f ⎛⎫--= ⎪⎝⎭( ) A.1-.1-.1.1【答案】A【解析】∵()1102a f ==,∴lg 2a =,由()()()lg ,10R 10,01ax x x f x a x ⎧--≤<=∈⎨≤≤⎩,知()()lg ,102,01x x x f x x ⎧--≤<=⎨≤≤⎩. 于是()241log 3log log 32411log 3lg 2121211010f f ⎛⎫--=-=--=--=- ⎪⎝⎭故选:A4.(2022·福建三明·模拟预测)已知函数()33,0log ,0x x f x x x ⎧≤=⎨>⎩,则()2f f -=⎡⎤⎣⎦___________. 【答案】-2【解析】因为()33,0log ,0x x f x x x ⎧≤=⎨>⎩,所以()()()22323log 32f f f ---===-⎡⎤⎣⎦ 故答案为:-25.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________. 【答案】9,2⎛⎫-∞ ⎪⎝⎭ 【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增, ()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<,又()()120f x f -≤=,()()10f x f x ∴+-<恒成立; ③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-; ()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-, ()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭. 故答案为:9,2⎛⎫-∞ ⎪⎝⎭. 6.(2022·浙江省临安中学模拟预测)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则=a __________,1f a ⎛⎫= ⎪⎝⎭__________. 【答案】146 【解析】 若01a <<,则112a <+<,由()()1f a f a =+,得()211a a =+-,即24a a =, 解得:0a =(舍去)或14a =;若1a ≥,由()()1f a f a =+,得()()21211a a -=+-,该方程无解.综上可知,14a =,()()142416f f a =⎛⎫ =⎪-⎝=⎭ 故答案为:14; 67.(2022·浙江·湖州中学高三阶段练习)已知函数,则()()1f f =___________;方程()1f x =的解集为___________. 【答案】 1 {1,e}【解析】()()()()11e e,1e lne 1f f f f =====,()1,1e 10x x f x x ≤=⇒=⇒=, ()1,1ln 1e x f x x x >=⇒=⇒=, {}0,e .x ∴∈故答案为:1;{}0,e .8.(2022·浙江·高三专题练习)已知()23log ,1,,1,x x f x x x ≥⎧=⎨-<⎩则()(2)f f -=______;若()1f x <,则x 的取值范围是______.【答案】 3 ()1,2-【解析】因为()32(2)8f -=--=, ()()()328l g 8o 3f f f ∴-===,当1x <时,()31f x x =-<,得11x -<<,当1≥x 时,()2log 1f x x =<,得12x ≤<, 故x 的取值范围是()1,2-故答案为:3;()1,2-.9.(2022·浙江浙江·二模)设a ∈R ,函数33(0)()log (0)ax x f x x x ⎧≤=⎨>⎩.则(9)f =________;若1273f f ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,则实数a 的取值范围是________. 【答案】 2 [)3,∞-+【解析】3(9)log 92f ==, 311log 133f ⎛⎫==- ⎪⎝⎭由()31132733a f f f -⎛⎫⎛⎫=-=≤= ⎪ ⎪⎝⎭⎝⎭,则3a -≤,所以3a ≥- 故答案为:2;[)3,∞-+。

函数的概念及其表示方法

函数的概念及其表示方法

教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。

2.1 函数及其表示(新授学生版)

2.1 函数及其表示(新授学生版)

1.函数的有关概念(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.2.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】求函数定义域常见结论:(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1;(k∈Z);(5)正切函数y=tan x,x≠kπ+π2(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.()(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(3)映射是特殊的函数.()(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.()(5)分段函数是由两个或几个函数组成的.()1.函数y =2x -3+1x -3的定义域为()A .[32,+∞)B .(-∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(3,+∞)2.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()3.下列函数中,与函数y =x +1是相等函数的是()A .y =(x +1)2B .y =3x3+1C .y =x2x+1D .y =x2+14.已知f (1x)=x 2+5x ,则f (x )=________.5.已知函数f (x )=2x +1,若f (a )=5,则实数a 的值为________.题型一函数的概念例1有以下判断:①f (x )=|x |x 与g (x )=1(x ≥0)-1(x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则0))21((=f f 其中正确判断的序号是________.(1)下列所给图象是函数图象的个数为()A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是()A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x (x )2题型二函数的定义域问题命题点1求函数的定义域例2(1)函数f(x)=1-2x+1x+3的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1](2)若函数y=f(x)的定义域为[0,2],则函数g(x)=f(2x)x-1的定义域是________引申探究本例(2)中,若将“函数y=f(x)的定义域为[0,2]”改为“函数y=f(x+1)的定义域为[0,2]”,则函数g(x)=f(2x)x-1的定义域为________________.命题点2已知函数的定义域求参数范围例3(1)若函数f (x )=2221x ax a +--的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.(1)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为()A .(-1,1)B .(-1,-12)C .(-1,0)D .(12,1)(2)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是()A .(0,34]B .(0,34)C .[0,34]D .[0,34)题型三求函数解析式例4(1)已知函数f (x -1)=11x ,则函数f (x )的解析式为.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x );(3)已知f (x )+3f (-x )=2x +1,求f (x ).2.分类讨论思想在函数中的应用典例(1)已知实数a≠0,函数f(x)=2x+a,x<1,-x-2a,x≥1,若f(1-a)=f(1+a),则a的值为________________.(2)(2019·长春模拟)已知函数f(x)=2x,x>0,x+1,x≤0.若f(a)+f(1)=0,则实数a=________.1.下列各组函数中,表示同一函数的是()A.y=x2-9x-3与y=x+3B.y=2x-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z2.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)3.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为() A.g(x)=2x2-3x B.g(x)=3x2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x4.(2015·陕西)设f (x )=1-x ,x ≥0,2x,x <0,则f (f (-2))等于()A .-1 B.14C.12D.325.(2016·安徽六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为()A .-2B .2C .-2或2D.2*6.(2016·唐山期末)已知f (x )=(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是()A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)7.(2016·济南模拟)已知函数f(1-x1+x)=x,则f(2)=________.8.设函数f(x)=113e,1,,1,x xx x-⎧<⎪⎨⎪⎩≥则使得f(x)≤2成立的x的取值范围是________________.9.(2015·浙江)已知函数f(x)=x+2x-3,x≥1,lg(x2+1),x<1,则f(f(-3))=________,f(x)的最小值是________.*10.设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,下列关于高斯函数的说法正确的有________.①[-x ]=-[x ];②x -1<[x ]≤x ;③∀x ,y ∈R ,[x ]+[y ]≤[x +y ];④∀x ≥0,y ≥0,[xy ]≤[x ][y ];⑤离实数x 最近的整数是-[-x +12].11.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.12.已知f(x)=f(x+1),-2<x<0,2x+1,0≤x<2,x2-1,x≥2.(1)求f(-32)的值;(2)若f(a)=4且a>0,求实数a的值.。

函数的表示高一数学知识点

函数的表示高一数学知识点

函数的表示高一数学知识点函数的表示函数是数学中的一种重要概念,对于高一学生来说,理解和掌握函数的表示方法是非常关键的数学知识点之一。

本文将介绍常见的函数表示方式,包括文字描述、符号表示和图像表示。

一、文字描述法文字描述法是最基本的函数表示方式之一。

通过用自然语言来描述函数的特征和性质,可以简单明了地表达函数的规律。

例如,对于函数y = 2x + 1,我们可以用文字描述为:函数y等于2乘以x再加1。

二、符号表示法符号表示法是一种常用的函数表示方式,用数学符号和表达式来表示函数的关系。

常见的函数表示符号包括等式、不等式、代数式等等。

1. 函数等式表示函数等式表示是一种常见的函数表示方式,可用于表示函数的映射关系。

例如,函数y = 2x + 1就是一种函数等式表示。

其中,x表示自变量,y表示因变量,2x + 1表示函数的规律。

2. 函数不等式表示函数不等式表示常用于表示函数的定义域、值域以及不等式关系。

例如,对于函数y = x^2,我们可以用不等式|x| ≤ 1来表示其定义域为[-1, 1]。

3. 函数代数式表示函数代数式表示是基于代数式的表达方式,常用于表示函数的表达式和方程。

例如,函数y = ax^2 + bx + c就是一种函数代数式表示,其中a、b、c为常量。

三、图像表示法图像表示法通过绘制函数的图像来展示函数的特征和规律。

常用的图像表示方式包括直角坐标系上的函数图像、极坐标系上的函数图像等。

1. 直角坐标系上的函数图像直角坐标系上的函数图像是最常见的函数表示方式之一。

通过在平面直角坐标系上绘制自变量和因变量的关系,可以直观地展示函数的变化规律。

例如,对于函数y = sin(x),我们可以在直角坐标系上绘制正弦曲线。

2. 极坐标系上的函数图像极坐标系上的函数图像常用于表示周期性函数,通过在极坐标系上绘制自变量和因变量的关系,可以更准确地展示函数的周期性特征。

例如,对于函数r = a + bcosθ,我们可以在极坐标系上绘制螺旋线。

函数及其表示方法

函数及其表示方法

函数及其表示方法(讲义)知识点睛一、映射设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.二、函数:1.(1)函数定义:设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()f x与之对应,那么就称f:A→B为从集合A到集合B的一个函数,记作()=,y f x x∈A.(2)构成函数的三要素:________、_________、_______.(3)两个函数相等⇔______________、__________________.(4)区间的表示:设a,b是两个实数,且a<b,规定:{x|a≤x≤b}=__________;{x|a<x<b}=__________;{x|a≤x<b}=__________;{x|a<x≤b}=__________;R=______________;{x|x≥a}=__________;{x|x>a}=__________;{x|x≤b}=__________;{x|x<b}=__________.(5)函数的表示方法:解析法、图象法、列表法.2.分段函数:对于定义域内的不同取值范围,函数的解析式不同.分段函数的值域是各段函数值域的并集.3.复合函数:若()()=∈∈⊆u g x x A u C'C,,则,且()()=∈∈y f u u C y B=与()u g x=的复合函数.y f u[()]()y f g x x A y B=∈∈,叫做函数()精讲精练1.给出以下对应:①集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;②集合A={x|x是直角三角形},集合B={x|x是圆},对应关系f:作三角形的外接圆;③集合A={x|x是希望中学的班级},集合B={x|x是希望中学的学生},对应关系f:每一个班级都对应班里的学生;④A=N,B={1,2},对应关系f:除以2的余数;⑤集合A={0,1,2},集合B={0,1,12},对应关系2f x y x→=:;⑥集合A={1,2},集合B={0,1,12},对应关系1f x yx→=:.是从集合A到集合B的映射的是__________________,是从集合A到集合B 的函数的是_____________.2.已知集合A={1,2,3,4},B={5,6,7},在下列A到B的四种关系中,存在函数关系的个数是()A.1B.2C.3D.43.下图中,能表示函数()y f x=的图象的是()A.B.C.D.4.已知函数()f x的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示()f x的图象的只可能是()A.B.C.D.5. 已知函数2()352f x x x =-+,则(3)f =___________;()f a -=___________;(3)f a +=_________________; ()(3)f a f +=____________.6. 已知函数2()f x x bx c =++满足(1)(3)0f f ==,则(1)f -的值是_________.7. 给出下列六组函数:①0121y x y ==,;②12||y y x ==;③22()21g()21f x x x t t t =--=--,;④12y y ==;⑤12()()f x f x == ⑥1(0)||()()1(0)x x f x g x x x ⎧==⎨-<⎩≥,. 其中,表示同一函数的为_________________.8. 设全集为R,函数()f x =M ,则C R M 为( )A .(-1,1)B .[-1,1]C .(-∞,-1)∪(1,+∞)D .(-∞,-1]∪[1,+∞)10. 已知函数2()4f x x x k=++的定义域为R ,则实数k 的取值范围为____________. 11. 直接写出下列函数的值域:①21{12345}y x x=+∈,,,,,:________________; ②2()[0,3]f x x x x =-∈,:________________;③211y x=+:________________; ④()f x :________________; ⑤y x =+________________; ⑥312xy x-=+(0≤x ≤1):________________.A.2B.2-C.3D.3-回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】【知识点睛】二、1.(2)定义域 对应关系 值域 (3)定义域相同 对应关系完全一致(4)[a ,b ](a ,b ) [a ,b )(a ,b ](-∞,+∞)[a ,+∞) (a ,+∞) (-∞,b ] (-∞,b )【精讲精练】 1.①②⑥⑥2.B 3.D 4.D 5.14 2352a a ++231314a a ++23516a a -+6.8 7.②③⑤ 8.C 9.D 10.(4)+∞,11.①{3,5,7,9,11};②1[6]4-,;③(0,1];④[0,2]; ⑤(-∞,4];⑥2[3]3, 12.24vtx d=π2[0]4d h vπ,[0,h ]13.(1)[1,2];(2)[4,6];(3)5[0]2,14.(1)222x x +-;(2)5;(3)115.B 16.(-∞,-1) 17.(-1,2)∪{3} 18.[-3,+∞) 19.D 20.12 21.A22.22222(0)2 (11) 43(0) 3 (11) x x x x x x x x x x x ≥≥≤或⎧⎧---⎨⎨-+<-+-<<⎩⎩ 23.()31()32f x x f x x =+=--或24.3(21)1(10)()1(01)3(12)x x f x x x ≤≤≤≤--<-⎧⎪--<⎪=⎨<⎪⎪<⎩;图象略函数及其表示方法(随堂测试)1. 若集合A =R ,B =R ,x ∈A ,y ∈B ,下列对应关系中,是从集合A 到集合B 的映射的是( )2. 已知函数232(1)()(1)x x f x x ax x +<⎧⎪=⎨+⎪⎩≥,若[(0)]=4f f a ,则实数a =____________.3. 函数r =f ( p )的图象如图所示.(1)函数r =f ( p )的定义域是什么? (2)函数r =f ( p )的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?【参考答案】1.B 2.23.(1)[-5,0]∪[2,6)(2)[0,+∞)(3)025r r≤或<>函数及其表示方法(作业)25.下列说法中不正确的是()A.函数值域中的每一个数在定义域中都有值相对应B.函数的定义域和值域一定是不包括数0的数集C.定义域和对应法则确定后,函数的值域也就确定了D.若函数的定义域中只含有一个元素,则值域中也只含有一个元素26.函数y = f (x)的图象与直线x=1的公共点的个数是()A.1 B.0C.0或1D.1或227.若1()xf xx-=,则方程f (4x)=x的根是()A.12B.12-C.2D.-228. 若函数y = f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )A .B .C .D .29. 集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )A .12:f x y x →=B .13:f x y x →= C .23:f x y x →= D.:f x y →=30. 下列各项表示同一函数的是( )A .21()1x f x x -=-与()1g x x =+B.()1f x =与()1g x x =- C.()f t =()g x =D .()1f x =与1()g x x x=⋅31. 函数||x y x x=+的图象是图中的( )A .B .yD.32.已知2211()11x xfx x--=++,则f (x)的解析式为()A.2()1xf xx=+B.22()1xf xx=-+C.22()1xf xx=+D.2()1xf xx=-+33.若一系列函数的解析式相同、值域相同,但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为221y x=+,值域为{9,19}的“孪生函数”共有()A.4个B.6个C.8个D.9个34.设集合A={a,b},集合B={0,1},则从集合A到B的不同映射共有_________个.35.下列对应关系:①A={1,4,9},B={-3,-2,-1,1,2,3},f x x→:的平方根;②A=R,B=R,f x x→:的倒数;③A=R,B=R,22f x y x→=-:;④A={-1,0,1},B={-1,0,1},f:x x→的平方.其中是从集合A到集合B的函数的是_____________.36.(1)函数()f x=________________.(2)函数y=_____________________.37.直接写出下列函数的值域:①2124(2)2x x xy=--∈-,,:________________;②6[34]1y xx=∈-,,:________________;③()|32(26]|f x x x=--∈,,:________________;④()f x x=+________________.38. 已知函数(21)f x +的定义域为(2,5],则函数(32)f x +的定义域为___________.39. (1)若函数2(21)2f x x x +=-,则(3)f =_________.(2)函数(1)f x +=()3f a =,则实数a =______.40. 函数f (x )在闭区间[-1,2]上的图象如图所示,此函数的解析式为________________________.41. 设函数221(1)()2(1)x x f x x x x ⎧-⎪=⎨+->⎪⎩≤,则1[](2)f f 的值为________. 42.已知(0)()(0)x f x x =<≥,若()(1)2f a f +-=,则a 的值为____________.43. 若函数246(0)()+6(0)x x x f x x x ⎧-+⎪=⎨<⎪⎩≥,则不等式()(1)f x f >的解集为___________________.44. 已知()3+2g x x =,221[()](0)x f g x x x-=≠,则(1)f =________. 45. 函数2(0)()2(0)x bx c x f x x ⎧++⎪=⎨>⎪⎩≤,若f (-4)= f (0),f (-2)=-2,求方程()f x x =的解.46. 作出函数24||3y x x =-+的图象,并说明y 为何值时,有4个不同的x 值与之对应.【参考答案】1.B 2.C 3.A 4.B 5.C6.C 7.C 8.C 9.D 10.411.③④12.(1)[0,1];(2)(-∞,-1)∪(-1,0)13.①5(2]2-,;②[2,3];③[-2,1];④(-∞,1]14.(1,3]15.(1)-1;(2)1116.1(10)1(02)2x x y x x ≤≤≤+-<⎧⎪=⎨-⎪⎩17.151618.±119.(-3,1)∪(3,+∞)20.821.123122x x x =-=-=,,22.当13y -<<时,有4个不同的值与之对应;图象略。

函数的概念及表示方法

函数的概念及表示方法

函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。

注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。

4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。

举例:如222321,,2,6y x x S r C r S t ππ=++===等。

优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。

优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。

(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。

5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。

拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。

函数的基础知识大全

函数的基础知识大全

函数的基础知识大全在数学的广阔天地中,函数就像是一座桥梁,连接着不同的数学概念和实际问题。

函数的概念虽然看似抽象,但它却在我们的日常生活和科学研究中有着广泛的应用。

接下来,让我们一起走进函数的世界,探索它的基础知识。

一、函数的定义简单来说,函数是一种对应关系。

给定一个输入值(通常称为自变量),通过这种对应关系,能唯一确定一个输出值(通常称为因变量)。

比如说,我们有一个函数 f(x) = 2x ,当 x = 3 时,通过这个对应关系,就能确定 f(3) = 6 。

函数通常用字母 f 、g 等表示,自变量常用 x 、y 等表示。

函数的表达式可以是多种多样的,比如常见的整式、分式、根式等等。

二、函数的三要素1、定义域定义域是自变量 x 的取值范围。

例如,对于函数 f(x) = 1 / x ,由于分母不能为 0 ,所以其定义域就是x ≠ 0 。

确定定义域时,需要考虑函数的表达式、实际问题的背景等因素。

2、值域值域是因变量 y 的取值范围。

它是由定义域和函数的对应关系共同决定的。

比如对于函数 f(x) = x²,因为 x²总是大于等于 0 的,所以其值域就是y ≥ 0 。

3、对应法则对应法则是函数的核心,它规定了自变量和因变量之间的具体关系。

不同的对应法则会产生不同的函数。

三、函数的表示方法1、解析法用数学表达式来表示函数,如前面提到的 f(x) = 2x 、f(x) = 1 / x 等。

2、列表法通过列出自变量和对应的因变量的值来表示函数。

例如,在一个表格中列出不同时刻的温度值,就可以看作是一个函数。

3、图像法将函数用图像的形式表示出来。

图像能够直观地反映函数的性质,比如单调性、奇偶性等。

四、常见的函数类型1、一次函数形如 f(x) = kx + b (k、b 为常数,k ≠ 0 )的函数称为一次函数。

它的图像是一条直线。

2、二次函数形如 f(x) = ax²+ bx + c (a ≠ 0 )的函数称为二次函数。

函数表示方法

函数表示方法

函数表示方法函数是数学中非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。

在数学中,函数是一种特殊的关系,它将一个集合中的元素对应到另一个集合中的唯一元素上。

函数的表示方法有很多种,下面我们将介绍几种常见的函数表示方法。

1. 公式表示法。

最常见的函数表示方法就是公式表示法。

在这种表示方法中,我们用一个数学表达式来表示函数。

例如,我们可以用f(x) = x^2来表示一个将自变量x映射到其平方的函数。

公式表示法简洁明了,能够清晰地表达函数的计算规则,因此在数学和物理问题中被广泛使用。

2. 图形表示法。

另一种常见的函数表示方法是图形表示法。

通过绘制函数的图像,我们可以直观地看出函数的性质。

例如,对于f(x) = x^2这个函数,我们可以绘制出抛物线的图像,从而直观地了解函数的增减性、极值点、凹凸性等信息。

图形表示法能够帮助我们直观地理解函数,因此在教学和科研中被广泛应用。

3. 表格表示法。

除了公式和图形表示法,我们还可以用表格表示法来表示函数。

通过列出自变量和函数值的对应关系,我们可以清晰地展现函数的取值情况。

表格表示法在实际问题中非常实用,特别是在计算机程序设计和数据分析中经常使用。

4. 文字描述法。

除了以上几种常见的表示方法外,有时候我们还可以用文字来描述函数。

通过文字的方式,我们可以对函数的性质、定义域、值域等进行详细的描述。

文字描述法能够帮助我们对函数进行深入的分析和理解。

5. 符号表示法。

在一些高级的数学理论中,为了简化表示和分析,人们还会使用符号表示法来表示函数。

例如,利用极限、导数、积分等符号来表示函数的性质和变化规律。

符号表示法通常用于高等数学、物理学等领域的专业研究中。

综上所述,函数的表示方法有很多种,每种表示方法都有其独特的优势和适用范围。

在实际问题中,我们可以根据具体的情况选择合适的表示方法来研究和应用函数,以便更好地理解和利用函数的性质和规律。

希望本文介绍的函数表示方法能够对您有所帮助。

函数的概念及其表示法

函数的概念及其表示法

时,有x=f^(-1)(y),则称x=f^(-1)(y)为y=f(x)的反函数。
性质
02
原函数和反函数在相应的区间上单调性相同。
求导法则
03
原函数的导数等于反函数的导数的倒数。
05 函数的实际应用
一次函数的应用
01
02
03
线性回归分析
一次函数是线性回归分析 的基础,通过拟合数据点, 可以预测因变量的变化趋 势。
函数的概念及其表示法
目录
• 函数的基本概念 • 函数的表示法 • 函数的定义域和值域 • 函数的运算 • 函数的实际应用
01 函数的基本概念
函数的定义
01
函数是一种特殊的对应关系,它 使得集合A中的每一个元素都能通 过某种法则对应到集合B中的唯一 一个元素。
02
函数通常用大写字母表示,如f(x), g(x)等,其中x是自变量,f(x)是因 变量。
初等函数
由代数函数和三角函数经过有限次四则运算 得到的函数。
三角函数
与三角学相关的函数,如正弦函数、余弦函 数等。
超越函数
不能表示为有限次四则运算的初等函数的函 数,如自然对数函数、正切函数等。
02 函数的表示法
解析法
解析法
使用数学表达式来表示函数,如 $f(x) = x^2 + 2x + 1$。解析法 精确地描述了函数与自变量之间的数学关系,适用于需要精确计算 的情况。
表格法
01 02
表格法
列出自变量和因变量的若干组对应数值,以表格的形式表示函数。适用 于已知部分函数值的情况,可以通过插值或拟合的方法确定其他点的函 数值。
优点
简单、直观,能够提供一定程度的近似值。

《函数及其表示方法》课标解读

《函数及其表示方法》课标解读

《函数及其表示方法》课标解读教材分析1.函数是数学的重要的基础概念之一,也是中学数学的主要内容,它与中学数学中很多内容都密切相关,初中代数中的“函数及其图像”就属于函数的内容.2.本节内容包括函数的概念、构成函数的三要素、简单函数的定义域、值域以及函数的三种表示方法:解析法、图像法、列表法.3.教材从熟悉的例子引入函数的概念,注重体现数学抽象、直观想象、逻辑推理等核心素养.学情分析1.函数是学生熟悉的数学概念,初中已经学习了正比例函数、一次函数、反比例函数以及二次函数.2.函数的概念与表示是学生的兴趣点,也是学习的难点.教学建议1.对比初中学习的函数的定义,提高对函数的认识.引导学生阅读教材,特别是“情境与问题”“拓展阅读”,在此基础上帮助学生理解函数的概念.2.对函数的概念的理解,要使学生明确以下两点:(1)定义域、值域、对应关系是决定函数的三要素,这是一个整体.(2)函数记号()=”y f x=的内涵,同时也应用具体的函数说明符号“()y f x是“y是x的函数”这句话的数学表示,它仅仅是函数符号.要注意的是()y f x=不是表示“y等于f与x的乘积”.()f a表示当f x既有区别又有联系,()f a与()自变量x a=时函数()f x的值,是一个常量.3.函数的三种表示方法中解析法用得最多,对于列表法、图像法,应多举例说明.第1课时函数的概念学科核心素养目标与素养1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.促进学生数学抽象素养的形成,达到水平一的要求.2.了解构成函数的要素,会求一些简单函数的定义域和值域.促进学生数学运算素养的形成,达到水平一的要求.3.能够正确使用区间表示数集.促进学生直观想象素养的形成,达到水平一的要求.情境与问题通过实例说明初中定义函数的方法未能完全揭示函数的本质,故需要用集合与对应的思想来理解和定义函数引入新课,使学生感知并体会用集合与对应的思想定义函数的必要性.内容与节点本节课是在学习了集合的基础上,学习函数的概念,为学习函数的性质打基础,做准备.过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要模型,在此基础上学习用集合与对应语言来刻画函数,体会对应关系在刻画函数概念中的作用. 教学重点难点重点理解函数的概念,了解构成函数的三要素,会求一些简单函数的定义域和值域.难点1.能够正确使用区间表示数集.2.会求一些简单函数的定义域、值域.第2课时函数的表示方法学科核心素养目标与素养1.了解函数的三种表示方法:解析法、图像法、列表法.促进学生数学学科直观想象的核心素养的形成,达到水平一的要求.2.在实际情境中,会根据不同的需要选择恰当表示方法表示函数.促进学生数学学科数学建模的核心素养的形成,达到水平一的要求.3.了解简单的分段函数,并能简单应用.促进学生数学学科数学运算的核心素养的形成,达到水平一的要求.情境与问题1.案例一通过西瓜价格的表述和人与人沟通的语言的不同表示方法引出对函数的表示方法的探究.2.案例二通过教材“情境与问题”中的中国创新指数的取值i与年度值y,以及测量的指标值v与测量的时间t之间的函数关系判断及表示引出函数的表示方法.内容与节点在学习函数的概念的基础上学习函数的表示方法,为学习函数的性质做准备.过程与方法1.通过用函数知识解决实际问题的体验,培养学生灵活运用数学知识解决问题的能力.2.通过数形结合思想在理解函数的表示方法中的运用,使学生在图形变化中感受数学的直观美.教学重点难点重点1.了解函数的三种表示方法:解析法、图像法、列表法.2.了解简单的分段函数,并能简单应用.难点了解简单的分段函数,并能简单应用.。

高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件

高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
0, < 0,
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||

2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个

函数概念及表示法教案

函数概念及表示法教案

函数概念及表示法教案一、引言函数在数学中是一个常见且重要的概念,它在各个领域都有广泛的应用。

本教案旨在介绍函数的基本概念以及表示法,帮助学生理解函数的本质与特点,并能够熟练运用函数的表示方法。

二、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。

形式化地说,设集合A和B,如果对于任意的a∈A,存在唯一的b∈B与之对应,那么我们就说存在一个从A到B的函数。

三、函数的表示法1. 函数的映射表表示法以映射表的形式表示函数,将集合A中的元素与集合B中的元素一一对应。

例如,对于函数f:A→B,可以使用以下形式表示: ![函数的映射表表示法](Function_Representation_1.png)2. 函数的解析式表示法使用方程或者公式来表示函数的规律。

例如,考虑函数f(x)=2x+1,其中x为实数。

这个函数表达了将实数x映射为2x+1的规则。

3. 函数的图像表示法将函数的映射关系可视化为图像,横轴表示定义域内的元素,纵轴表示值域内的元素。

函数的图像可以直观地展示函数的变化趋势。

例如,对于函数f(x)=2x+1,其图像为一条斜率为2的直线。

四、函数的性质1. 定义域和值域函数的定义域是输入变量的取值范围,值域是输出变量的取值范围。

通过确定定义域和值域,可以限定函数的输入和输出。

2. 奇偶性如果对于任意的x∈定义域,有f(-x)=-f(x),则函数为奇函数;如果对于任意的x∈定义域,有f(-x)=f(x),则函数为偶函数。

奇偶性可以由图像的对称性来判断。

3. 单调性如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为增函数;如果当x1<x2时,有f(x1)>f(x2),则函数为减函数。

4. 极值与最值若函数在某个点处的函数值大于或小于它邻近的函数值,则称该点为极值点。

最大极值即为函数的最大值,最小极值即为函数的最小值。

函数及其表示法

函数及其表示法

指数表示法
使用指数函数的公式来表示函数,例如 $f(x) = e^x$。
优点
可以方便地表示快速增长或衰减的函数。
3
缺点
对于非指数型函数,可能不适用,且公式较为复 杂。
04 函数的参数表示法
参数方程的概念
参数方程定义
参数方程是一种描述函数关系的 方法,通过引入一个或多个参数, 将自变量和因变量的关系表示出 来。
分段函数的应用
解决实际问题
分段函数常常用于解决一些实际问题,例如利润计算、成本分析、人口统计等。通过分段来表示不同情况下的函数关 系,能够更准确地描述实际问题。
数学建模
在数学建模中,分段函数也经常被用来描述一些复杂的现象或关系。例如,在物理学、生物学、经济学等领域中,分 段函数可以用来描述一些非线性关系或突变现象。
01
Байду номын сангаас
02
03
观察图像形状
通过观察图像的形状,可 以初步判断函数的单调性、 周期性等性质。
分析函数性质
结合函数表达式和图像, 可以分析函数的极值点、 拐点等关键点,从而理解 函数的性质。
比较函数差异
通过比较不同函数的图像, 可以直观地了解它们之间 的差异和联系。
函数图像的应用
解决实际问题
教育与教学
在解决一些实际问题时,如最优化问 题、物理现象模拟等,可以通过绘制 函数图像来直观地理解和分析问题。
优点
简洁明了,易于理解和计算。
缺点
对于复杂的函数,可能难以找到合适的代数表示法。
三角表示法
三角表示法
使用三角函数的公式来表示函数,例如 $f(x) = sin(x) + cos(x)$。
优点

函数的定义及其表示法

函数的定义及其表示法

定义: 设x与y是两个变量,D是实数集R的某个子集.
如果对任何的x D,变量y按照一定的规律,有确定
的数值与之对应,则称y是x的函数,记作
y=f (x) 称D为该函数的定义域.称x为自变量,称y为因变量.
当自变量x取数值 x0 D 时,与 x0对应的因变量y 的值称为函数y=f (x)在点x0 处的函数值,记为f (x0 ) 或y |xx0 .当x取遍D的各个数值时,对应的变量y取值 的全体组成数集称做这个函数的值域.
函数的记号f :表示自变量x与因变量y的对应规则,
也可用
F,, f1等, f.2
函数的定义域:使函数表达式有意义的自变量的
一切实数值所组成的数集.
实际问题中,函数的定义域由实际意义确定.
函数的值域:全体函数值的集合.
两个函数相同:(1)定义域相同 (2)对应规则相同
例1:设f(x)=x2-2x+3,求f(0),f(3),f(-3),f(a) 解:f(0)=3
2x+1 (x≥0) f(x)=
-2x (x<0) 就是一个分段函 数。这里f(1)=3,f(-1)=2。
分段函数的表达式虽然不止一个, 但它不是几个函数,而是一个函数.
例2 求函数y x 1的定义域 . x3
解 当分母x 3 0时,此函数式都有意义. 因此函数的定义域为 (,3)和(3,).
以确定相应的s值.
复利问题 :存入银行 元ko本金,月利率为2%,
那么在第t个月后的存款余额(本利和) 与at t的关系:
at ko 1.02t
两个变量按一定的规律相联系,其中一个变量 的变化将会引起另一个变量的变化,当前者(自变量) 的值确定后,后者(因变量)的值按照一定的关系相 应被确定.

函数及其表示方法ppt课件

函数及其表示方法ppt课件

(2)正比例函数
y kx, (k 0)
(3)反比例函数
k
y
, (k 0)
x
(4)二次函数
y ax 2 bx c,(a 0)
一、概念的引入
随着研究的深入,我们会遇到更多的问题,例如:
(1)正方形的周长与边长的对应关系:
= 4,
这个函数与正比例函数 = 4相同吗?
二、概念的形成
某电气维修告诉要求工人每周工作
至少1天,至多不超过6天.如果公司确定的
工资标准是每人每天350元,而且每周付一
次工资,那么
(4)问题1和问题2中的函数有相同的对应关系,
你认为它们是同一个函数吗?为什么?
影响函数的要素有哪些?
不是.自变量的取值范围不一样.
问题3 如图3.1-1,是北京市2016年11月23日
的空气质量指数变化图.(1)你认为这里的I是的函数吗?
如果是,你能仿照前面的方法描述与对应关系吗?


图3.1-1
一、概念的形成
是,对应关系:图3.1-1
的变化范围是 A 3 {t | 0 t 24}

的值都在数集 B3 {I | 0 I 150 }
问题3 如图3.1-1,是北京市2016年11月23日
2010, 2011, 2012, 2013, 2014, 2015}
r的取值范围是数集B4 ={r | 0 r 1}
二、概念的形成
思考1.上述四个问题中的函数有哪些共同特征?
共同特征有:
(1)都包含两个非空数集,用,来表示;
(2)都有一个对应关系;
(3)尽管对应关系的表示方法不同,但它们都有如下特性:

高考数学讲义函数及其表示.板块二.函数的表示法1.教师版

高考数学讲义函数及其表示.板块二.函数的表示法1.教师版

板块二.函数的表示法一、知识点1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一 求函数值【例1】若函数()f x 满足(21)1f x x -=+,则(1)f = .【例2】(2006年安徽高考)函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若(1)5f =-,则((5))f f = .【例3】若函数2(21)2f x x x +=-,则(3)f = .【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.【例5】已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值.【例6】若函数2()f x x =,则对任意实数12,x x ,下列不等式总成立的是( )A .12()2x x f +≤12()()2f x f x + B .12()2x x f +<12()()2f x f x + C .12()2x x f +≥12()()2f x f x + D .12()2x x f +>12()()2f x f x +典例分析板块二.函数的表示法【例7】(2006.台湾)将正整数18分解成两个正整数的乘积有:118⨯,29⨯,36⨯三种,又36⨯是这三种分解中两数的差最小的,我们称36⨯为18的最佳分解.当p q ⨯()p q ≤是正整数n 的最佳分解时,我们规定函数()p F n q =,例如31(18)62F ==,下列有关函数()F n 的叙述,正确的序号为 (把你认为正确的序号都写上)⑴(4)1F =;⑵3(24)8F =;⑶1(27)3F =;⑷若n 是一个质数,则()F n 1n=;⑸若n 是一个完全平方数,则()1F n =【例8】设函数3(100)(),(89).[(5)](100)x x f x f f f x x -≥⎧=⎨+<⎩求【例9】(2001上海理,1)设函数f (x )=812,(,1]log ,(1,)x x x -⎧∈-∞⎪⎨∈+∞⎪⎩,则满足f (x )=14的x 值为 。

【例10】(2006山东 文2)设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A .0 B .1 C .2 D .3题型二 求函数解析式一、定义法:【例11】设23)1(2+-=+x x x f ,求)(x f .【例12】设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +【例13】设21)]([++=x x x f f ,求)(x f .【例14】设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .【例15】设)(sin ,17cos )(cos x f x x f 求=.二、待定系数法:【例16】如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为【例17】在反比例函数ky x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,则k =【例18】已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法:【例19】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例20】(1)已知1)f x =+()f x 及2()f x ; (2)已知()3()21f x f x x +-=+,求()f x .【例21】已知22111(),x x f x x x++=+求()f x .【例22】设x x f 2cos )1(cos =-,求)(x f .【例23】设()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .四、反解函数法:【例24】已知2)(21+=-x a f x ,求)(x f .五、特殊值法:【例25】设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均有xy y x f y f x f -+=+)()()(,求)(x f .六、累差法:【例26】若af 1lg)1(=,且当),0(,lg )()1(,21*∈-=-≥-N x a a x f x f x x 满足时,求)(x f .七、归纳法:【例27】已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .八、微积分法:【例28】设2)1(,cos )(sin 22=='f x x f ,求)(x f .九、其他综合问题【例29】(1)已知3311()f x x x x +=+,求()f x ;(2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。

【例30】(2006重庆理21)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x 。

(Ⅰ)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(Ⅱ)设有且仅有一个实数x 0,使得f (x 0)= x 0。

求函数f (x )的解析表达式。

【例31】已知函数()y f x =的图象关于直线1x =-对称,且当(0,)x ∈+∞时,有1(),f x x=则当(,2)x ∈-∞-时,()f x 的解析式为( )A .1x -B .12x --C .12x +D .12x -+【例32】(05全国卷I )已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为(1,3).⑴方程()60f x a +=有两个相等的根,求()f x 的解析式; ⑵若()f x 的最大值为正数,求a 的取值范围.题型三 分段函数【例33】画出下列函数的图象:(1)|2|y x =-;(2)|1||24|y x x =-++.【例34】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当(2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.【例35】画出下列函数的图象.(1)y =x 2-2,x ∈Z 且|x |2≤;(2)y =-22x +3x ,x ∈(0,2];(3)y =x |2-x |; (4)3232232x y x x x ⎧⎪⎨⎪⎩≤≥<-,=--<-..【例36】已知函数22()2x f x x x +⎧⎪=⎨⎪⎩(1)(12)(2)x x x --<<≤≥,⑴ 求()f π; (2) 若()3f a =,求a ; ⑶ 作出此函数的图象.【例37】作出函数()|2||1|f x x x =--+的图象.【例38】已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x ++⋅+≤的解集是 .【例39】函数x y x x=+的图象是( )【例40】设2,(10)()[(6)],(10)x x f x f f x x -≥⎧=⎨+<⎩,则(5)f 的值为( )A .10B .11C .12D .13【例41】设函数11(0),2()1(0).x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .【例42】若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .【例43】已知函数21(0)()2(0)x x f x x x ⎧+≤=⎨->⎩,若()10f x =,则x = .【例44】由函数的解析式,求函数值⑴已知函数2()352f x x x =-+,求(1)f ,1f a ⎛⎫⎪⎝⎭,(1)f x +;⑵已知1(0)()π(0)0(0)x x f x x x +>⎧⎪==⎨⎪<⎩,求{}[(1)]f f f -; ⑶已知()f x 的定义域为{}0x x >,且()()()f x y f x f y =+,若(9)8f =,求(3)f .【例45】已知f (x)=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.题型三 实际应用问题【例46】经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g(t )=-13 t +1093 (t ∈N *,0<t ≤100),在前40天内价格为f (t )=14 t +22(t ∈N *,0≤t ≤40),在后60天内价格为f (t )=-12 t +52(t ∈N *,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).【例47】某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(1)写出图一表示的市场售价间接函数关系P =f (t ).写出图二表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg ,时间单位:天)【例48】季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式.(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*试问该服装第几周每件销售利润L最大?【例49】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是_____,这个函数的定义域为_______.【例50】某商场做活动,某款玩具小熊的单价是5元,买x(x∈{1,2,3,4,5})个玩具小熊需要y元.试用函数的三种表示法表示函数()=.y f x【例51】如图,在边长为4的正方形ABCD 的边上有一动点P ,从点B 开始,沿折线BCD向点A 运动.设点P 移动的距离为x ,ABP ∆的面积为y ,求函数()y f x =及其定义域,并根据所求函数画出函数图象.x yP A B CD【例52】如右图所示,在平行四边形ABCD 中,60DAB ∠=︒,5AB =,3BC =,点P 从起点D 出发,沿DC ,CB 向终点B 匀速运动,设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成的图形的面积为y ,y 随x 变化而变化,在下列图象中,能正确反映y 与x 的函数关系的是( )【例53】如图,铁路线上AB 长100千米,工厂C 到铁路的距离CA 为20千米.现打算从AB 上某一点D 处向C 修一条公路,已知铁路每吨每千米的运费与公路每吨每千米的运费之比为3:5.为了使原料从供应站B 到工厂C 的运费最少, D 点应选在何处?PCD C B【例54】如图,动点P从单位正方形ABCD顶点A开始,顺次经C、D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f(52)的值.【例55】(2003北京春,理文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。

相关文档
最新文档