植物生理学教案12

合集下载

《植物生理学》教案

《植物生理学》教案

《植物生理学》教案课程代码:090100适用专业:生物科学学时数:54学时学分:学分执笔者:编写日期:2015年2月23日一、本课程的性质和目的本课程是为生物科学专业本科生开设的专业选修课程。

其基本任务是研究植物生命活动的规律和机理及其在植物生产中的应用。

通过学习,使学生掌握该课程的基本理论和研究方法,为学生从事相关教学和研究工作打下坚实的基础。

二、课程教学内容与及要求绪论(2学时)(一)教学要求了解植物生理学的定义、任务、产生、发展及展望。

(二)教学内容重点:植物生理学的定义、研究内容、形成、产生和发展第一节植物生理学的定义和研究内容第二节植物生理学的产生和发展第三节植物生理学与农业生产第四节怎样学好植物生理学,掌握与其有联系的学科的知识、注重实验以及结合生产实践(三)建议教学方法:贯彻少而精、启发式和形象化原则,通过幻灯、录像、多媒体等途径加深学生的印象,提高教学效果。

第一章植物的水分代谢(4学时)(一)教学要求了解植物体内水分存在状态和水分在植物生命活动中的作用;植物细胞及根系对水分的吸收;植物蒸腾作用的意义,发生部位以及影响蒸腾作用的因素;水分在植物体内的运输情况以及合理灌溉的生理基础等。

(二)教学内容重点:水在植物生命活动中的意义和水在细胞中的形态;水势概念、植物对水分的吸收、传导和散失的过程及影响这个过程的环境因素;合理灌溉的生理基础。

难点:水势概念、蒸腾作用、水分在植物体内的运输情况。

第一节水在植物生活中的重要性第二节水分的运动及水分进入植物细胞第三节植物根系对水的吸收。

第四节蒸腾作用。

第五节植物体内水分的运输第六节合理灌溉的生理基础(三)建议教学方法:贯彻少而精、启发式和形象化原则,通过幻灯、录像、多媒体等途径加深学生的印象,提高教学效果。

第二章植物的矿质营养(4学时)(一)教学要求通过学习使学生了解植物必需的矿质元素;植物体及其细胞对矿质元素的吸收;无机养料的同化;矿质元素在植物体内的运输以及合理施肥的生理基础等。

植物生理学教案12

植物生理学教案12

基本容第八章植物生长物质(plant growth substance)植物生长物质(plant growth substance)是一些调节植物生长发育的物质。

植物生长物质可分为两类:1)植物激素(plant hormone或phytohormone);2)植物生长调节剂(plant growth regulator)。

植物激素是指一些在植物体合成,并从产生之处运送到别处,对生长发育产生显著作用的微量(1 μmo1•L-1以下)有机物;而植物生长调节剂是指一些具有植物激素活性的人工合成的物质。

目前,大家公认的植物激素有5类,即生长素类、赤霉素类、细胞分裂素类、乙烯和脱落酸。

近来发现的植物激素还有油菜素酯、多胺和茉莉酸等。

第一节生长素类(auxin)生长素(auxin)是最早发现的一种植物激素。

英国的Charles Darwin(1880)在进行植物向光性实验时,发现在单方向光照射下,胚芽鞘向光弯曲;如果切去胚鞘的尖端或在尖端套以锡箔小帽,即使是单侧光照也不会使胚芽鞘向光弯曲;如果单侧光只照射胚芽鞘尖端而不照射胚芽鞘下部,胚芽鞘还是会向光弯曲(图8-1)。

因此,他认为胚芽鞘产生向光弯曲是由于幼苗在单侧光照下,产生某种影响,从上部传到下部,造成背光面和向光面生长快慢不同。

荷兰的F.W.Went(1928)把燕麦胚芽鞘尖端切下,放在琼脂薄片上,约1h 后,移去芽鞘尖端,将琼脂切成小块,再把这些琼脂小块放在去顶胚芽鞘一侧,置于暗中,胚芽鞘就会向放琼脂的对侧弯曲。

如果放的是纯琼脂块,则不弯曲(图8-1),这证明促进生长的影响从鞘尖传到琼脂,再传到去顶胚芽鞘,这种影响确是化学本质,Went称之为生长素。

根据这个原理,他创作燕麦试法(Avena test),定量测定生长素含量,推动了植物激素的研究。

一、生长素的种类和化学结构荷兰的F·Kogl(1934)等从玉米油、根霉、麦芽等分离和纯化刺激生长的物质,经鉴定是吲哚乙酸(indole acetic acid, IAA),其分子式为C10 H9O2N,相对分子质量为175.19。

植物生理学教案(2024)

植物生理学教案(2024)

26
06
植物的生殖生理与种子形成
2024/1/29
27
植物的生殖方式及特点
有性生殖
通过精子和卵细胞的结合形成合 子,再发育成新个体。有性生殖 具有遗传多样性,有利于植物适
应环境变化。
无性生殖
通过营养器官(如根、茎、叶) 的分裂、出芽或孢子等方式繁殖 新个体。无性生殖繁殖速度快,
能保持母本的优良性状。
研究方法
植物生理学的研究方法包括实验观察、生理生化分析、分子生物学技术、生物信息学分析等多 种手段,以揭示植物生命活动的本质和规律。
2024/1/29
5
植物生理学在农业生产中的应用
01 作物育种
通过了解植物生理机制,可以指导作物育种工作 ,选育出高产、优质、抗逆性强的新品种。
02 栽培技术
根据植物生理学原理,可以制定合理的栽培技术 措施,如合理施肥、灌溉、病虫害防治等,提高 作物产量和品质。
25
植物生长调控技术及其在农业生产中的应用
调控技术
通过外源施加生长物质或其类似物、改变环境条件等手段,调控植物生长发育 过程。
农业生产应用
提高作物产量和品质,改善植物生长环境适应性,促进作物早熟和增产等。例 如,利用赤霉素促进杂交水稻制种产量的提高,利用乙烯利促进棉花叶片脱落 和采收等。
2024/1/29
1. 光照强度
直接影响光反应速率,光 照越强,光合作用速率越 快。
3. 二氧化碳浓度
是光合作用的原料之一, 浓度高低直接影响光合作 用的速率。
2024/1/29
2. 温度
影响酶的活性,适宜的温 度有利于光合作用的进行 。
14
呼吸作用的概念、类型及生理意义
• 概念:呼吸作用是指植物体内的有机物在细胞内经过一系列的 氧化分解,最终生成二氧化碳或其他产物,并且释放出能量的 过程。

植物生理学 教案

植物生理学 教案

植物生理学教案教案标题:植物生理学教学目标:1. 了解植物生理学的基本概念和重要性。

2. 掌握植物的生长和发育过程以及与环境因素的关系。

3. 理解植物的营养需求和光合作用过程。

教学重点:1. 植物的生长和发育过程。

2. 植物对环境因素的反应和适应能力。

3. 植物的营养需求和光合作用的原理。

教学准备:1. 教学资料:教科书、课件、多媒体设备等。

2. 实验设备:显微镜、植物生长箱等。

3. 实验材料:植物样本、培养基等。

教学过程:一、导入(5分钟)利用引人入胜的故事或实例,向学生介绍植物生理学的重要性和应用领域。

二、知识讲解(15分钟)1. 植物的生长和发育过程:种子萌发、幼苗生长、成株发育等。

2. 植物对环境因素的反应和适应能力:光、温度、水分、土壤矿质等。

3. 植物的营养需求和光合作用的原理:养分吸收、运输和利用过程。

三、实验演示(20分钟)1. 示范种子萌发实验:使用显微镜观察种子的发育过程。

2. 示范温度对植物生长的影响实验:设置不同温度条件下的植物生长箱,观察植物的生长情况。

3. 示范养分供应对光合作用的影响实验:在不同营养培养基上培养植物,观察光合作用的效果。

四、讨论与总结(10分钟)与学生进行讨论,回答他们对实验中观察到的现象和原理的疑问。

总结重点概念和实验结果。

五、拓展延伸(10分钟)引导学生思考和探究植物生理学在农业、园艺、药学等领域的应用,展示相关案例或实践经验。

六、作业布置(5分钟)要求学生完成相关阅读和实验报告,以巩固所学内容并培养科学思维能力。

教学反思:教学过程中应注意实验的设计和操作,确保实验过程的安全和有效性。

同时,适时调整教学方法,激发学生的兴趣和参与度。

植物生理学实验教案

植物生理学实验教案

植物生理学实验教案实验指导书:候书林主编. 植物生理学实验指导.科学出版社,2004 实验一、植物组织渗透势测定-质壁分离法实验二、植物组织水势测定-小液流法实验三、叶绿体色素的提取与分离及理化性质鉴定实验四、叶绿素a,b 含量测定实验五、植物体内几种呼吸酶的测定实验六、植物叶面积测定实验七、植物根系对离子的选择性吸收实验八、叶片光合速率的测定及光合仪的使用实验九、种子活力的快速测定实验十、植物组织可溶性糖含量的测定实验十一、低温对植物的伤害实验十二、丙二醛含量的测定实验一、植物组织渗透势测定-质壁分离法[原理]将植物组织置于对其无毒害的一系列不同浓度的溶液里处理一定时间,然后镜检发生质壁分离的细胞数,通常视野中有50%的细胞发生质壁分离时定为初始质壁分离,细胞初始质壁分离时压力势为零,因而可把引起细胞初始质壁分离的外界溶液称之为等渗溶液,其溶液具有的渗透势即为细胞的渗透势。

由于很难正好找到引起50%细胞发生质壁分离的浓度。

因此通常用插值法求得等渗溶液浓度,代入公式即可计算渗透势。

[器材与试剂]器材:显微镜,载玻片,盖玻片,镊子,刀片,培养皿(或具塞试管),记号笔,滴管。

试剂:蔗糖。

[方法与步骤]1. 配制0.2、0.3、0.4、0.5、0.6、0.7mol蔗糖/L水的质量摩尔浓度,贮6个试剂瓶中,必要时配制溶液浓度的相差可≤0.05mol蔗糖/L水。

2. 取6套干净清洁的小培养皿,用记号笔编号,将配制好的不同浓度的蔗糖溶液按顺序倒入各个培养皿中使成一薄层,盖好皿盖。

3. 将带有色素的植物组织或叶片(可选用有色素的洋葱鳞片的外表皮,紫鸭跖草,蚕豆,小麦,玉米等叶的表皮)撕取表皮迅速分别投入各种浓度的蔗糖溶液中,每个培养皿中放材料3个左右,使其完全浸没,浸泡20-40分钟。

4. 到时后,取出表皮,放在载玻片上,滴一滴相同浓度的蔗糖,盖上盖玻片,在显微镜下观察质壁分离的细胞数和细胞总数,直接或间接(插值法)地找出引起50%细胞发生质壁分离的外界溶液浓度,即为细胞渗透浓度值。

《植物生理学》备课备课教案

《植物生理学》备课备课教案

《植物生理学》备课教案一、教学目标:1. 知识与技能:(1)理解植物细胞的基本结构和功能;(2)掌握植物的光合作用和呼吸作用的原理及应用;(3)了解植物生长发育的过程和调控机制。

2. 过程与方法:(1)通过观察植物细胞切片,认识植物细胞的结构;(2)利用实验方法探究植物的光合作用和呼吸作用;(3)观察植物生长发育过程,分析其调控机制。

3. 情感态度价值观:培养学生对植物生理学的兴趣,提高学生关注生态环境、珍惜资源的意识。

二、教学重点与难点:1. 教学重点:(1)植物细胞的基本结构和功能;(2)植物的光合作用和呼吸作用的原理及应用;(3)植物生长发育的过程和调控机制。

2. 教学难点:(1)植物细胞结构与功能的对应关系;(2)光合作用和呼吸作用过程中的物质变化;(3)植物生长发育的分子调控机制。

三、教学方法与手段:1. 教学方法:(1)讲授法:讲解植物细胞结构、光合作用和呼吸作用的原理;(2)实验法:进行植物光合作用和呼吸作用的实验;(3)观察法:观察植物生长发育过程;(4)讨论法:分组讨论植物生长发育的调控机制。

2. 教学手段:(1)多媒体课件:展示植物细胞结构、光合作用和呼吸作用的过程;(2)实验器材:进行光合作用和呼吸作用的实验;(3)观察植物生长发育的实物材料。

四、教学过程:1. 导入:通过展示植物王国的图片,引导学生关注植物的生长发育过程,激发学习兴趣。

2. 植物细胞结构与功能:(1)讲解植物细胞的基本结构,如细胞壁、细胞膜、细胞质、细胞核等;(2)分析植物细胞各结构的功能及对应关系。

3. 光合作用和呼吸作用:(1)讲解光合作用的原理及应用,如绿色植物的光合作用、蓝藻的光合作用等;(2)讲解呼吸作用的原理及应用,如植物的呼吸作用、微生物的呼吸作用等;(3)分析光合作用和呼吸作用之间的关系。

4. 植物生长发育:(1)讲解植物生长发育的过程,如种子萌发、植株生长、开花结果等;(2)分析植物生长发育的调控机制,如激素调节、基因调控等。

2024版植物生理学课程教案

2024版植物生理学课程教案
通过根毛和皮层细胞扩大吸水面 积,利用渗透作用吸收土壤中的 水分。
02
植物体内的水分运 输
通过木质部导管和韧皮部筛管进 行长距离运输,短距离运输则依 靠细胞间的胞间连丝。
03
植物的蒸腾作用
叶片气孔开放,水分以气态形式 从植物体内散失到大气中,是植 物水分散失的主要途径。
植物的水分平衡与渗透调节
植物的水分平衡
吸收
运输
矿质元素在植物体内通过木质部和韧皮部进行长距离 运输,以满足不同器官和组织的需求。
植物通过根系从土壤中吸收矿质元素,吸收过 程受土壤环境、根系发育和元素形态等因素影 响。
利用
植物将吸收的矿质元素用于合成各种有机物质, 如蛋白质、核酸、酶等,以维持正常的生命活 动。
合理施肥的原理与技术
施肥原理
通过喷洒乙烯或脱落酸,促进 或延缓果实成熟。
促进种子萌发
用赤霉素处理种子,打破休眠, 提高发芽率。
提高抗逆性
用脱落酸处理植物,提高抗旱、 抗寒能力。
增产增收
合理使用植物激素,可提高作 物产量和品质,增加经济效益。
THANKS
感谢观看
二氧化碳与五碳糖(RuBP)结合,形 成六碳中间产物。
糖的生成
六碳中间产物经过一系列酶促反应, 最终生成葡萄糖等有机物质。
光合作用的影响因素及其调控
光照强度
光照强度直接影响光 合作用的速率,过弱 或过强的光照都会抑 制光合作用。
温度
温度影响光合作用相 关酶的活性,适宜的 温度有利于光合作用 的进行。
植物通过吸水、运输和蒸腾等过 程维持体内水分的动态平衡,保 证正常生理活动的进行。
植物的渗透调节机制
植物对水分胁迫的响应
通过合成和积累有机溶质(如脯 氨酸、甜菜碱等)和无机离子 (如K+、Cl-等)降低细胞渗透势, 提高吸水能力。

植物生理教案

植物生理教案

《植物生理学》教案安振锋(生命学院植物生理教研室)指导思想与整体计划课程性质:植物生理学是研究植物生命活动规律的科学。

植物生理学是生命科学主要学科之一,也是植物生产类各专业的学科基础课程。

课程目的:通过学习本门课程的理论课程,使学生了解植物生理学的研究内容和发展简史,熟悉植物生命活动的大体规律,理解和掌握植物生理学的大体概念、基础理论知识和主要实验的原理与方式。

能够运用植物生理学的大体原理和方式综合分析、判断、解决有关理论和实际问题。

通过学习本门课程实验课,提高学生科学实践技术,培育学生实事求是的科学态度和工作作风,进一步增强、提高学生科学素质。

推荐教材或参考书目:推荐教材《植物生理学》(第1版). 张继澍主编. 高等教育出版社. 2006年《植物生理学典型题解析及自测试题》(第2版).高等教育出版社.2008年参考书目潘瑞炽主编,《植物生理学》,高等教育出版社,2004年6月第1版。

武维华主编,《植物生理学》,科学出版社,2003年4月第1版教学方式与手腕:课堂教学采用多媒体方式;实验课以班为单位,2人一组进行考核方式:考试成绩评定:平时成绩占50%,形式有:作业(20%)、实验(30%);考试成绩占50%,形式为闭卷考试。

绪论大体内容1)植物生理学的概念、研究对象、内容。

2)植物生理学的产生和发展。

3)植物生理学对农业做出的贡献。

4)植物生理学的发展趋势。

大体要求1)了解植物生理学的对象、内容、产生和发展。

2)了解植物生理学对农业做出的贡献、发展趋势。

3)了解植物生理学与分子生物学的关系。

一、植物生理学的概念、研究对象、内容一、什么是植物生理学:植物生理学是研究植物生命活动规律,揭露植物生命现象本质的科学。

它是植物学的一个分支。

生命活动:水分代谢、矿质代谢、光合作用、呼吸作用、种子萌生、营养器官的生长、生殖器官的形成,开花、传粉、受精、成熟衰老进程。

二、植物生理学研究对象——植物,主如果高等绿色植物,以揭露自养生物的生命现象本质及其与外界条件的彼此关系。

植物生理学教案

植物生理学教案

水孔蛋白的单体是中间狭窄的四聚体,呈“滴漏”模型,每个亚单位的内部形成狭窄的水通道。

水孔蛋白的蛋白相对微小,只有25~30kDa。

水孔蛋白是一类具有选择性、高效转运水分的跨膜通道蛋白,它只允许水分通过,不允许离子和代谢物通过,因为水通道的半径大于0.15nm(水分子半径),但小于0.2nm(最小的溶质分子半径)。

水孔蛋白的活性是被磷酸化和水孔蛋白合成速度调节的。

试验证明,依赖Ca2+的蛋白激酶可使特殊丝氨酸残基磷酸化,水孔蛋白的水通道加宽,水集流通过量剧增。

如果把该残基的磷酸基团除去,则水通道变窄,水集流通过量减少。

水孔蛋白广泛分布于植物各个组织,其功能以存在部位而定。

例如,拟南芥和烟草的水孔蛋白优先在维管束薄壁细胞中表达,可能参与水分长距离的运输;拟南芥的水孔蛋白表达区于根尖的伸长区和分生区,说明它有利于细胞生长和分化;水孔蛋白分布于雄蕊和花药,表明它与生殖有关。

三、渗透作用(osmosis)渗透作用(osmosis)是水分依水势梯度而移动。

也即是水流通过膜的方向和速度不只是决定于水的浓度梯度或压力梯度,而是决定于这两种驱动力的和。

渗透是指溶剂分子通过半透膜而移动的现象。

水分移动需要能量作功,所以下面首先讨论自由能和水势的概念,然后再讲渗透问题。

(一)自由能和水势(free energy and water potential)根据热力学原理,系统中物质的总能量可分为束缚能(bound energy)和自由能上述公式可简化为:p w ψψψπ+=现以图1-3说明细胞水势、渗透势和压力势三者在不同的细胞体积中的变化。

在细胞初始质壁分离时(相对体积=1.0),压力势力零,细胞的水势等于渗透势,两者都呈最小值(约-2.0MPa )。

当细胞吸水,体积增大时,细胞液稀释,渗透势增大,压力势增大,水势也增大。

当细胞吸水达到饱和时(相对体积=1.5),渗透势与压力势的绝对值相等(约1.5MPa ),但符号相反,水势便为零,不吸水。

植物生理学课程教案

植物生理学课程教案
脱落(abscission):是指植物细胞、组织或器官与植物体分离的过程。
脱落有正常脱落,逆境条件的脱落和植物本身条件影响的原因。生产中要减少脱落。
一、影响因子:光、温、水
二、脱落时细胞及生化变化
(一)细胞变化
(二)生化变化
三、脱落与激素
(一)生长素
幼叶植株合成生长素,抑制脱落。随叶龄增加,生长素合成能力减弱。因此,植物器官脱落与生长素有关。1955年阿狄柯特(Addicott)提出生长素梯度假说:当离层远基(轴)端生长素浓度大于近基端时,器官不脱落;当离层远基端生长素浓度等于或小于近基端时,器官脱落。脱落是由生长素的浓度梯度决定而不是绝对含量。
果实生长与受精后子房生长素含量增多有关。在大多数情况下,如果不受精,子房是不会膨大形成果实的。可是,也有不受精而结实的。这种不经受精作用而形成不含种子的果实的,称为单性结实。单性结实有天然的单性结实和刺激性单性结实之分。
天然的单性结实是指不需要经过受精作用就产生无子果实的现象,如无子的香蕉、蜜柑、葡萄等。刺激性单性结实是指必需给以某种刺激才能产生无子果实。
第十二章植物的衰老和器官脱落
第一节种子成熟时的生理生化变化
一、主要有机物的变化
1.糖类的变化
淀粉种子可溶性糖类下降,淀粉积累迅速增加。
2.蛋白质的变化
3.脂肪的变化
油料种子在成熟过程中,脂肪含量不断提高,而糖类(葡萄糖、蔗糖、淀粉)总含量不断下降,这说明脂肪是由糖类转化而来的。总之,在种子成熟过程中,可溶性糖转化为不溶性糖类,非蛋白氮转变为蛋白质,而脂肪则是由糖类转化而来的。
(五)细胞分裂素延缓叶衰老是细胞分裂素特有的作用。离体叶子会逐渐衰老,叶片变黄。细胞分裂素可以显著延长保绿时间,推迟离体叶片衰老。

植物生理学教案

植物生理学教案

植物生理学教案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--植物生理学教案植物生理学教案大学课件下载网,能量转化和生长发育的规律以及植物体内外环境条件对其生命活动的影响,从而更好的调节与控制植物的生长。

二、课程教学的基本任务、要求课程教学的基本任务、本课程的教学环节包括课堂讲授、学生自学、实验、答疑及期末考试。

教师在课堂上应对植物生理学的基本概念、机理和方法进行必要的讲授,并详细讲授每章的重点和难点内容,讲授中注意理论联系实际,通过相应的例子启迪学生的思维,加深学生对有关概念、理论等内容的理解。

本课程自学内容主要安排在各章节中某些相关资料和易于理解的内容上,自学不占上课学时,但必须考试。

实验课主要对学生进行水势测定,光合作用,种子活力的测定等方面的植物生理学研究的方法和技能的训练。

通过上述基本教学步骤,要求学生掌握和了解植物在各种环境条件下进行生命活动的规律和机理,并将这些研究成果用于一切利用植物生产的事业中,为后续课程奠定良好的基础。

本课程课堂讲授60学时,实验、实习40学时。

三、教学方法及手段课堂讲授与实践教学相结合的教学方法,采用讲授法,实验法,演示法等。

四、教学课时分配表总学时64,课堂讲授40学时,试验实习24学时。

植物与植物生理学教学时数分配表植物生理学教学时数分配表章绪论第一章植物细胞的生理基础第二章植物的呼吸作用第三章植物的光合作用第四章植物的水分代谢第五章植物的矿质营养与氮同化第六章植物的生长物质第七章植物的营养生长第八章植物的生殖生长合计节讲授学时2224实验学时五、课程教学内容绪目的要求:1、植物与植物生理学的概念和任务;2、植物与植物生理学的产生和发展;重点:植物生理学的展望难点:植物与植物生理学的概念和任务。

第1章植物细胞的生理基础(4学时)目的要求:1、原生质的化学组成及其胶体特性。

2、生物膜的结构与功能。

3、酶的化学组成与作用特性。

[理学]植物生理学教案

[理学]植物生理学教案

水孔蛋白的单体是中间狭窄的四聚体,呈“滴漏”模型,每个亚单位的内部形成狭窄的水通道。

水孔蛋白的蛋白相对微小,只有25~30kDa。

水孔蛋白是一类具有选择性、高效转运水分的跨膜通道蛋白,它只允许水分通过,不允许离子和代谢物通过,因为水通道的半径大于0.15nm(水分子半径),但小于0.2nm(最小的溶质分子半径)。

水孔蛋白的活性是被磷酸化和水孔蛋白合成速度调节的。

试验证明,依赖Ca2+的蛋白激酶可使特殊丝氨酸残基磷酸化,水孔蛋白的水通道加宽,水集流通过量剧增。

如果把该残基的磷酸基团除去,则水通道变窄,水集流通过量减少。

水孔蛋白广泛分布于植物各个组织,其功能以存在部位而定。

例如,拟南芥和烟草的水孔蛋白优先在维管束薄壁细胞中表达,可能参与水分长距离的运输;拟南芥的水孔蛋白表达区于根尖的伸长区和分生区,说明它有利于细胞生长和分化;水孔蛋白分布于雄蕊和花药,表明它与生殖有关。

三、渗透作用(osmosis)渗透作用(osmosis)是水分依水势梯度而移动。

也即是水流通过膜的方向和速度不只是决定于水的浓度梯度或压力梯度,而是决定于这两种驱动力的和。

渗透是指溶剂分子通过半透膜而移动的现象。

水分移动需要能量作功,所以下面首先讨论自由能和水势的概念,然后再讲渗透问题。

(一)自由能和水势(free energy and water potential)根据热力学原理,系统中物质的总能量可分为束缚能(bound energy)和自由能p w ψψψπ+=现以图1-3说明细胞水势、渗透势和压力势三者在不同的细胞体积中的变化。

在细胞初始质壁分离时(相对体积=1.0),压力势力零,细胞的水势等于渗透势,两者都呈最小值(约-2.0MPa )。

当细胞吸水,体积增大时,细胞液稀释,渗透势增大,压力势增大,水势也增大。

当细胞吸水达到饱和时(相对体积=1.5),渗透势与压力势的绝对值相等(约1.5MPa ),但符号相反,水势便为零,不吸水。

植物生理学教案绪论

植物生理学教案绪论

植物生理学教案绪论一、教学目标1. 了解植物生理学的定义、研究内容和意义。

2. 掌握植物生理学的研究方法和发展趋势。

3. 培养对植物生理学的兴趣和好奇心。

二、教学内容1. 植物生理学的定义和研究对象2. 植物生理学的研究内容3. 植物生理学的研究方法4. 植物生理学的发展趋势5. 植物生理学在生产实践中的应用三、教学重点与难点1. 教学重点:植物生理学的定义、研究内容和发展趋势。

2. 教学难点:植物生理学的研究方法和其在生产实践中的应用。

四、教学准备1. 教材或教参:《植物生理学》2. 教学PPT3. 教学视频或图片五、教学过程1. 导入:通过展示植物生长过程中的有趣现象,引发学生对植物生理学的兴趣,导入新课。

2. 教学新课:(1)介绍植物生理学的定义:植物生理学是研究植物生命活动规律的科学。

(2)讲解植物生理学的研究内容:包括植物的生长、发育、代谢、营养、抗逆性等方面。

(3)介绍植物生理学的研究方法:实验方法、观察方法、比较方法等。

(4)讲解植物生理学的发展趋势:分子植物生理学、细胞植物生理学、环境植物生理学等。

3. 课堂讨论:引导学生探讨植物生理学在生产实践中的应用,如作物产量提高、抗病育种、环境治理等。

4. 总结:对本节课的内容进行总结,强调植物生理学的重要性和应用价值。

5. 布置作业:让学生课后复习植物生理学的定义、研究内容和发展趋势,并结合实际举例说明。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生的学习兴趣和积极性,为后续课程的学习打下坚实基础。

六、教学目标1. 掌握植物细胞的基本结构和功能。

2. 理解植物组织的分类和功能。

3. 了解植物器官的构成和特点。

4. 培养学生的观察能力和分析能力。

七、教学内容1. 植物细胞的结构与功能2. 植物组织的分类与功能3. 植物器官的构成与特点4. 植物体的结构层次八、教学重点与难点1. 教学重点:植物细胞的结构与功能、植物组织的分类与功能、植物器官的构成与特点。

《植物生理学》备课备课教案

《植物生理学》备课备课教案

《植物生理学》备课教案一、教学目标1. 知识与技能:使学生掌握植物生理学的基本概念、原理和知识,能够运用所学知识分析和解决实际问题。

2. 过程与方法:通过观察、实验、讨论等方法,培养学生的实践操作能力和团队协作能力。

3. 情感态度价值观:激发学生对植物生理学的兴趣,培养学生热爱科学、探索真理的精神。

二、教学内容第一章:植物生理学概述1. 植物生理学的定义和研究方法2. 植物体的结构与功能第二章:植物细胞的生理1. 植物细胞的基本结构与功能2. 植物细胞的代谢第三章:植物的光合作用1. 光合作用的发现和发展2. 光合作用的过程和机制第四章:植物的呼吸作用1. 呼吸作用的定义和意义2. 呼吸作用的过程和类型第五章:植物的水分代谢1. 植物细胞的水分平衡2. 植物的吸水与失水三、教学重点与难点1. 教学重点:植物生理学的基本概念、原理和知识;光合作用、呼吸作用和水分代谢的过程和机制。

2. 教学难点:光合作用、呼吸作用和水分代谢的详细过程和机制。

四、教学方法1. 讲授法:讲解植物生理学的基本概念、原理和知识。

2. 实验法:进行光合作用、呼吸作用和水分代谢的实验,观察并分析实验结果。

3. 讨论法:分组讨论实验现象,引导学生运用所学知识分析和解决问题。

五、教学评价1. 课堂评价:通过提问、回答问题、实验操作等方式,评价学生的学习情况。

2. 作业评价:布置相关作业,评价学生对知识的理解和运用能力。

3. 期末考试:设置期末考试,全面检测学生的学习效果。

六、教学计划第1周:植物生理学概述第2周:植物细胞的生理第3周:植物的光合作用第4周:植物的呼吸作用第5周:植物的水分代谢七、教学资源1. 教材:《植物生理学》2. 实验器材:显微镜、植物材料、实验仪器等3. 多媒体课件:制作相关的课件,用于辅助教学八、教学活动1. 课堂讲授:讲解植物生理学的基本概念、原理和知识,引导学生掌握光合作用、呼吸作用和水分代谢的过程和机制。

植物生理学教案

植物生理学教案

植物生理学教案引言:植物生理学是生物学的一个重要分支,研究植物的生理特性和生理过程。

本教案旨在全面介绍植物的生理学知识,帮助学生深入了解植物的生命活动,为进一步学习植物科学奠定基础。

第一部分:植物的生长与发育1. 植物的组织与器官结构1.1 植物细胞的特点与组织系统1.2 各种植物器官的结构与功能2. 植物的生长调控2.1 光合作用与植物生长2.2 激素对植物生长发育的调节2.3 温度、水分和养分对植物生长的影响3. 植物的繁殖方式3.1 有性繁殖与无性繁殖的区别与特点3.2 花的结构与传粉机制3.3 种子的形成与传播第二部分:植物对环境的适应1. 植物的光合作用1.1 光合作用的过程及光合速率的影响因素1.2 光合产物的利用与分配2. 植物的营养吸收2.1 水分吸收与传输系统2.2 植物对氮、磷、钾等营养元素的吸收2.3 植物根际微生物对植物生长发育的影响3. 植物的逆境生理学3.1 植物对干旱、寒冷和盐碱等逆境的适应机制3.2 植物的抗病性与抗虫性第三部分:植物的信号传导与生理响应1. 植物的内外信号传导1.1 植物激素作为内部信号的作用与调控1.2 植物对环境刺激的感知与响应2. 植物光信号转导2.1 光周期调控与植物的开花生理2.2 植物对光质的感知与响应3. 植物对逆境的响应与调控3.1 水分胁迫下的植物生理反应3.2 盐碱胁迫下的植物生理反应3.3 氮素限制下的植物生理反应第四部分:植物与环境的互动1. 植物与土壤之间的关系1.1 植物根系结构与功能1.2 植物根际微生物与植物共生关系2. 植物与气候变化的关系2.1 植物对气候变化的响应与调节2.2 植物的生长对大气中CO2浓度的影响3. 植物与生物圈的联系3.1 植物的生态位与物种多样性维持3.2 植物与其他生物的相互作用结论:植物生理学是一门关于植物生命活动和适应能力的重要学科,通过本教案的学习,学生将全面了解植物的组织结构、生长发育、环境适应、信号传导和与环境互动等方面的知识。

(完整版)植物生理学教案

(完整版)植物生理学教案
重难点
的分析
重点:水分在植物生命活动中的作用、植物根系对水分的吸收、气孔蒸腾的机理和影响因素、植物体内水分运输的途径、作物需水规律和合理灌溉。
难点:气孔开闭的机理。
教学方式
讲授式
教学方法
讲授、讨论
教学手段
多媒体
教学过程设计
预习
检查
提问学生水分在植物生命活动中有何重要作用。
导入
新课
由水分在植物生命活动中的作用引出植物的水分代谢。
第七章植物的光形态建成与运动------------------------------------21-22
第八章植物的生长生理------------------------------------------------23-25
第九章植物的成花生理------------------------------------------------26-28
如何合理灌溉在节水农业中的意义如何?如何才能做到合理灌溉。
三、复习和预习
复习:第一章植物的水分代谢。
预习:第二章植物的矿质与氮素营养。
课后
小结

反思
一、课后小结
本节课主要介绍了水在植物生命活动中的作用、植物细胞对水分的吸收、植物根系对水分的吸收、蒸腾作用、植物体内水分的运输、合理灌溉的生理基础。其中重点介绍的是水分在植物生命活动中的作用、植物根系对水分的吸收、气孔蒸腾的机理和影响因素、植物体内水分运输的途径、作物需水规律和合理灌溉。
5.潘瑞炽,王小菁,李娘辉.植物生理学[M].北京:高等教育出版社,2008年6月第6版.
6.王忠.植物生理学复习思考题与答案[M].北京:中国农业出版社,2009年1月第2版.
7.张继澍.植物生理学学习指导与题解[M].北京:高等教育出版社,2011年7月第1版.

植物生理学教案植物生长物质

植物生理学教案植物生长物质

一、植物生长素的发现与作用1. 教学目标:了解生长素的发现过程,理解生长素的作用及其在植物生长中的重要性。

2. 教学内容:生长素的发现过程,生长素的作用,生长素在植物生长中的应用。

3. 教学方法:讲授法,案例分析法,小组讨论法。

4. 教学步骤:步骤1:引入生长素的概念,讲解生长素的发现过程。

步骤2:分析生长素的作用,如促进细胞伸长、影响植物向光性等。

步骤3:探讨生长素在植物生长中的应用,如促进插条生根、控制植物形态等。

步骤4:案例分析,分析实际应用中生长素的作用及效果。

步骤5:小组讨论,思考生长素在农业生产中的应用前景。

5. 教学评价:课堂问答,小组讨论,课后作业。

二、植物生长素的合成与运输1. 教学目标:了解生长素的合成过程,理解生长素的运输方式及其在植物体内的分布。

2. 教学内容:生长素的合成过程,生长素的运输方式,生长素在植物体内的分布。

3. 教学方法:讲授法,实验分析法,小组讨论法。

4. 教学步骤:步骤1:讲解生长素的合成过程,如色氨酸的转化等。

步骤2:分析生长素的运输方式,如极性运输、非极性运输等。

步骤3:探讨生长素在植物体内的分布,如茎、叶、根等器官。

步骤4:实验分析,观察生长素在植物体内的运输和分布。

步骤5:小组讨论,思考生长素合成和运输的调控机制。

5. 教学评价:课堂问答,实验报告,小组讨论。

三、植物生长素的生物学功能1. 教学目标:了解生长素的生物学功能,理解生长素在植物生长发育中的作用。

2. 教学内容:生长素的生物学功能,生长素在植物生长发育中的应用。

3. 教学方法:讲授法,案例分析法,小组讨论法。

4. 教学步骤:步骤1:讲解生长素的生物学功能,如促进细胞伸长、影响植物向光性等。

步骤2:分析生长素在植物生长发育中的应用,如促进种子萌发、控制植物形态等。

步骤3:案例分析,分析实际应用中生长素的生物学功能及效果。

步骤4:小组讨论,思考生长素在农业生产中的应用前景。

5. 教学评价:课堂问答,小组讨论,课后作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本内容第八章植物生长物质(plant growth substance)植物生长物质(plant growth substance)是一些调节植物生长发育的物质。

植物生长物质可分为两类:1)植物激素(plant hormone或phytohormone);2)植物生长调节剂(plant growth regulator)。

植物激素是指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量(1 μmo1•L-1以下)有机物;而植物生长调节剂是指一些具有植物激素活性的人工合成的物质。

目前,大家公认的植物激素有5类,即生长素类、赤霉素类、细胞分裂素类、乙烯和脱落酸。

近来发现的植物激素还有油菜素内酯、多胺和茉莉酸等。

第一节生长素类(auxin)生长素(auxin)是最早发现的一种植物激素。

英国的Charles Darwin(1880)在进行植物向光性实验时,发现在单方向光照射下,胚芽鞘向光弯曲;如果切去胚鞘的尖端或在尖端套以锡箔小帽,即使是单侧光照也不会使胚芽鞘向光弯曲;如果单侧光只照射胚芽鞘尖端而不照射胚芽鞘下部,胚芽鞘还是会向光弯曲(图8-1)。

因此,他认为胚芽鞘产生向光弯曲是由于幼苗在单侧光照下,产生某种影响,从上部传到下部,造成背光面和向光面生长快慢不同。

荷兰的F.W.Went(1928)把燕麦胚芽鞘尖端切下,放在琼脂薄片上,约1h 后,移去芽鞘尖端,将琼脂切成小块,再把这些琼脂小块放在去顶胚芽鞘一侧,置于暗中,胚芽鞘就会向放琼脂的对侧弯曲。

如果放的是纯琼脂块,则不弯曲(图8-1),这证明促进生长的影响从鞘尖传到琼脂,再传到去顶胚芽鞘,这种影响确是化学本质,Went称之为生长素。

根据这个原理,他创作燕麦试法(Avena test),定量测定生长素含量,推动了植物激素的研究。

一、生长素的种类和化学结构荷兰的F·Kogl(1934)等从玉米油、根霉、麦芽等分离和纯化刺激生长的物质,经鉴定是吲哚乙酸(indole acetic acid, IAA),其分子式为C10 H9O2N,相对分子质量为175.19。

这个工作大大推动了植物激素研究向前发展。

图8-1 生长素发现的一些关键性试验现已证明,除了IAA以外,植物体内还有其他生长素类物质。

例如,苯乙酸(phenylacetic acid, PAA)存在于一些作物(番茄、烟草等)中,4-氯-3-吲哚乙酸(4-chloro-3-indole acetic acid,4-Cl-IAA)存在于豌豆、山黧豆等未成熟种子中,吲哚丁酸(indole butyric acid,IBA)也是植物的内源生长素类物质(图8-2)。

图8-2 几种内源生长素类二、生长素在植物体内的分布和运输生长素在高等植物中分布很广,根、茎、叶、花、果实、种子及胚芽鞘中都有。

它的含量甚微,1 g鲜重植物材料一般含10~100 ng生长素。

生长素大多集中在生长旺盛的部分(如胚芽鞘、芽和根尖端的分生组织、形成层、受精后的子房、幼嫩种子等),而在趋向衰老的组织和器官中则甚少。

以烟草研究得知,细胞内约有2/3的生长素在叶绿体内,余下部分分布在胞质溶胶。

生长素在植物组织内呈不同化学状态。

人们把易于从各种溶剂中提取的生长素称为自由生长素(free auxin),而把通过酶解、水解或自溶作用从束缚物释放出来的那部分生长素,称为束缚生长素(bound auxin)。

自由生长素具有活性,而束缚生长素则没有活性。

自由生长素和束缚生长素可相互转变。

束缚生长素是生长素与其他化合物(糖、氨基酸)结合而形成的,类型不同,生理作用也有差异。

束缚生长素在植物体内的作用可能有下列几个方面:1)作为贮藏形式。

吲哚乙酸与葡萄糖形成吲哚乙酰葡糖(indole acetyl glucose),在种子和贮藏器官中特别多,是生长素的贮藏形式。

2)作为运输形式。

吲哚乙酸与肌醇形成吲哚乙酰肌醇(indole acetyl inositol)贮存于种子中,发芽时,比吲哚乙酸更易于运输到地上部。

3)解毒作用。

自由生长素过多时,往往对植物产生毒害。

吲哚乙酸和天门冬氨酸结合成的吲哚乙酰天冬氨酸(indole actyl aspartic acid),具有解毒功能。

4)调节自由生长素含量。

根据植物体对自由生长素的需要程度,束缚生长素会与束缚物分离或结合,使植物体内自由生长素呈稳衡状态,调节到一个适合生长的水平。

在高等植物中,生长素运输方式有2种:一种和其他同化产物一样,通过韧皮部运输,运输速度约为1~2.4 cm•h-1,运输方向决定于两端有机物浓度差等因素;另一种是仅局限于胚芽鞘、幼茎、幼根的薄壁细胞之间短距离单方向的极性运输(polar transport)。

生长素极性运输是指生长素只能从植物体的形态学上端向下端运输。

如图8-3所示,把含有生长素的琼胶小块放在一段切头去尾的燕麦胚芽鞘的形态学上端,把另一块不含生长素的琼胶小块接在下端,过些时间,下端的琼胶中即含有生长素。

但是,假如把这一段胚芽鞘颠倒过来,把形态学的下端向上,作同样的试验,生长素就不向下运输。

图8-3 生长素的极性运输生长素极性运输是一种主动的运输过程,因为其运输速度比物理扩散约快10倍;缺氧会严重地阻碍生长素的运输;生长素可以逆浓度梯度运输。

一些化合物如2,3,5-三碘苯甲酸(2,3,5-triiodobenzoicacid,TIBA)和萘基邻氨甲酰苯甲酸(naphthyphthalamic acid,简称NPA)能抑制生长素的极性运输。

(图8-4)图8-4 两种抑制生长素极性运输的化合物关于生长素极性运输的机理,Goldsmith(1977)提出化学渗透极性扩散假说(chemiosmotic polar diffusion hypothesis)去解释这种现象。

如图8-5所示,质膜的质子泵把ATP水解,提供能量,同时把H+从细胞质释放到细胞壁,所以细胞壁pH较低(pH5)。

生长素的pKa是4.75,在酸性环境中羧基不易解离,主要呈非解离型(IAAH),较亲脂。

IAAH被动地扩散透过质膜进入胞质溶胶;与此同时,阴离子型(IAA-)通过透性酶主动地与H+协同转运进入胞质溶胶。

IAA就通过上述两种机理进入细胞质。

胞质溶胶的pH高(pH7),所以胞质溶胶中大部分IAA呈阴离子型(IAA-),IAA-比IAAH较难透过质膜。

细胞基部的质膜上有专一的生长素输出载体(auxin efflux carrier),它们集中在细胞基部,可促使IAA-被动地输出到细胞壁,继而进入下一个细胞,这就形成极性运输。

免疫荧光显微试验证实,抑制生长素极性运输的NPA能与生长素输出载体蛋白结合,阻止IAA-向外流出。

图8-5 生长素的化学渗透极性扩散假说三、生长素的生物合成和降解(一)生长素的生物合成生长素在植物体中的合成部位主要是叶原基、嫩叶和发育中的种子。

成熟叶片和根尖也产生生长素,但数量很微。

生长素生物合成的前体主要是色氨酸(tryptophan)。

色氨酸转变为生长素时,其侧链要经过转氨作用、脱羧作用和两个氧化步骤。

生长素生物合成的途径主要有4条(图8-6)。

1.吲哚丙酮酸途径(indole pyruvate pathway)色氨酸通过转氨作用,形成吲哚丙酮酸(indole pyruvic acid),再脱羧形成吲哚乙醛,后者经过脱氢变成吲哚乙酸。

许多高等植物组织和组织匀浆提取物中都发现上述各步骤的酶。

本途径在高等植物中占优势,对一些植物来说是唯一的生长素合成途径(图8-6C)。

2.色胺途径色氨酸脱羧形成色胺(tryptamine),再氧化转氨形成吲哚乙醛,最后形成吲哚乙酸。

本途径在植物中占少数,而大麦、燕麦、烟草和番茄枝条中则同时进行吲哚丙酮酸途径与本途径(图8-6D)。

3.吲哚乙腈途径一些十字花科、禾本科和芭蕉科中,色氨酸首先转变为吲哚-3-乙醛肟(indole-3-acetalcloxime),进而形成吲哚乙腈(indole acetonitrile),后在经过腈水解酶作用生成吲哚乙酸(图8-6B)。

4.吲哚乙酰胺途径——在一些病原菌如假单孢杆菌和农杆菌中,色氨酸在两种酶作用下,经过吲哚乙酰胺(indole-3-acetamide)最后形成吲哚乙酸。

本途径是细菌途径,最终使寄生植物形态发生改变(图8-6A)。

图8-6 植物和细菌中的吲哚乙酸生物合成途径(二)生长素的降解生长素的降解主要有两方面:酶促降解和光氧化。

1.酶促降解生长素的酶促降解可分为脱羧降解(decarboxylated degradation)和不脱羧降解(non-decarboxylated degradation)(图8-7)。

脱羧降解汤玉玮和J.Bonner在1947年发现一种能使IAA氧化的吲哚乙酸氧化酶(IAA oxidase),广泛分布于高等植物。

IAA氧化酶是一种起着氧化酶作用的过氧化物酶,其氧化产物除CO2外,还有其它产物,如3-亚甲基羟吲哚(3-methylene oxindole)等。

不脱羧降解不脱羧的降解物仍然保留IAA侧链的两个碳原子,如,羟-3-吲哚乙酸(oxindole-3-acetic acid)和二羟-3-吲哚乙酸(dioxindole-3-acetic acid)等。

2.光氧化在强光下体外的吲哚乙酸在核黄素催化下,可被光氧化,产物是吲哚醛(indole aldehyde)和亚甲基羟吲哚。

由此可见,植物体内自由生长素水平是通过生物合成、生物降解、运输、结合和区域化(贮存在IAA库)等途径来调节,以适应生长发育的需要(图8-8)。

图8-7 IAA的酶促降解(A)脱羧途径,支径;(B)两条非脱羟途径,主径。

图8-8 自由生长素水平的调节途径四、生长素的信号转导途径(一)受体植物激素深刻地影响植物的生长发育,但植物激素并不直接掺入酶和辅酶的组分之中,而必须与激素受体结合,才能发挥其生理、生化作用。

所谓激素受体(hormone receptor),是指那些特异地识别激素并能与激素高度结合,进一步引起一系列生理、生化变化的物质。

不同激素各有其受体。

生长素受体(auxin receptor)是激素受体的一种。

目前,位于内质网上的生长素结合蛋白1(auxin-binding protein 1,ABP1)被确认为生长素受体,它的分子质量为22 kDa的糖蛋白,无论单子叶植物或双子叶植物都发现有ABP1同系物。

最近研究发现,尽管ABP1主要定位于内质网,但有少数可分泌到质膜外面,与IAA相互作用使原生质体膨胀,H+泵活化。

实验证明,ABP1与生长素诱导的生理效应非常密切。

用NAA处理烟草叶肉原生质体,在短短1-2分钟就导致质膜超极化(hyperpolization);如果事先加入ABP1抗体,则抑制质膜超极化。

相关文档
最新文档