(衡水金卷)届高考数学二轮复习二十八概率作业专练1文【含答案】

合集下载

高考概率大题及答案

高考概率大题及答案

高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。

已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。

现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。

2.一批产品某种型号有20%的不合格品。

现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。

首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。

而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。

因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。

假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。

因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。

3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。

现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。

河北省衡水市2025届高三上学期第二次调研考试数学试卷(含解析)

河北省衡水市2025届高三上学期第二次调研考试数学试卷(含解析)

河北省衡水市2025届高三上学期第二次调研考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知数列满足,则( )2.已知是第四象限角且,则的值为( )A.1B.C.3.函数处的切线的倾斜角为( )4.如图,平行四边形ABCD中,,,若,,则( )C.5.已知等差数列的公差小于0,前n项和为,若,则的最大值为( )A.45B.52C.60D.906.设内角A,B,C所对应的边分别为a,b,c,已知,若的周长为1.则( )D.2{}na12na+=11=-4a=αsinα=cos0ββ-=tan()αβ-1--()f x=())0,0f2AE EB=DF FC=CB m=CE n=AF=32+12n-1322m-+32n-{}nanS2a=844=nS ABC△2sin sin sinABCS A B C=△ABCsin sin sinA B C++=7.设函数,若函数在区间上有且仅有1个零点,则的取值范围为( )A. B. C. D.8.已知,在R 上单调递增,则a 的取值范围是( )A. B. C. D.二、多项选择题9.以下正确的选项是( )A.若,,则 B.若,C.若,则D.若,10.设正项等比数列的公比为q ,前n 项和为,前n 项积为,则下列选项正确的是( )A.B.若,则C.若,则当取得最小值时,D.若,则11.以下不等式成立的是( )A.当时,B.当时,C.当时,D.当时,三、填空题()()3ππ40,0,3πππ4tan ,4k x f x k k x x ωωωω⎧+⎪=⎪⎪=>∈⎨⎪+⎛⎫⎪--≠ ⎪⎪⎝⎭⎩Z ()f x π3π,88⎛⎫- ⎪⎝⎭ω2,23⎛⎤ ⎥⎝⎦20,3⎛⎤⎥⎝⎦210,33⎡⎤⎢⎥⎣⎦(]0,211e e ,12()1x xax x f x x --⎧--≤⎪⎪=>()a ∈R []2,1-[]2,1--(],1-∞[)2,-+∞a b >c d <a c b d ->-a b >c d <bd >22ac bc >33a b >a b >m >ba>{}n a n S n T 4945S S q S =+20252020T T =20231a =194a a =2246a a +1a =21()n n n a T +>11a <(0,1)x ∈1e ln 2x x x x+>-+(1,)x ∈+∞1e ln 2x x x x+>-+π0,2x ⎛⎫∈ ⎪⎝⎭e sin x x x >π,π2x ⎛⎫∈ ⎪⎝⎭e sin x x x >,,13.已知函数的最小正周期为,则在区间上所有零点之和为________.14.若定义在上的函数满足:对任意的x ,,都有:,当时,还满足:,则不等式的解集为________.四、解答题15.已知函数.(1)求函数的单调区间;(2)函数在上恒成立,求最小的整数a .16.已知数列的前n 项和为,,.(1)证明:数列为等比数列;(2)若,求n 的值.17.凸函数是数学中一个值得研究的分支,它包括数学中大多数重要的函数,如,等.记为的导数.现有如下定理:在区间I 上为凸函数的充要条件为.(1)证明:函数上的凸函数;(2)已知函数.①若为上的凸函数,求a 的最小值;②在①的条件下,当a 取最小值时,证明:,在上恒成立.18.如图,在平面直角坐标系中,质点A 与B 沿单位圆周运动,点A 与B 初始位置如图所示,A 点坐标为,的速度运动,点A 逆时针24a b ⋅=λ∈R +()()2sin πcos (0)f x x x x ωωωω=->π()f x []2024π,2024π-()(),00,-∞+∞ () f x ()(),00,y ∈-∞+∞ ()1x f f x f y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,0x y >()110x y f f x y ⎛⎫⎛⎫⎛⎫--> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1f x x ≤-()()2e 1x f x x x =-+()f x ()f x a ≤[]2,1-{}n a n S 113a =18,3,nn na n a a n +-⎧=⎨⎩为奇数为偶数{}2112n a --21161469n S n +=+2x e x ()f x ''()y f x '=()f x ()()0f x x I ''≥∈()f x =)1,+∞()2()2ln ln g x ax x x x a =--∈R ()g x [)1,+∞()()31()223231x xxg x x -+≥+-+[)1,+∞()1,0AOB ∠=//s运动,点B 顺时针运动,问:(1)ls 后,扇形AOB 的面积及的值.(2)质点A 与质点B 的每一次相遇的位置记为点,连接一系列点,,构成一个封闭多边形,求该多边形的面积.19.已知函数,(1)讨论的单调性;(2)当时,恒成立,求m 的取值范围;(3)当时,若的最小值是0,求的最大值.sin AOB ∠n P 1P 2P 3P ⋅⋅⋅()e x f x mx =-()g x =()f x 0x ≥()()f x g x ≥0x ≥()()f x ng x -m +参考答案1.答案:C 解析:因为当,;当,,故选:C.2.答案:C解析:因为是第四象限角且因为,所以所以,故选:C.3.答案:D解析:因为时,即故选:D.4.答案:D解析:因为四边形ABCD 为平行四边形,且,,所以,即①,又,即②,由①②得到,又,,所以.故选:D.5.答案:A12n a +=1n =21123a a =-=2n =3212a a =-=3=4312a a =-=αsin α=α=α=2sin cos 0ββ-=tan β=tan tan tan()211tan tan 31421234αβαβαβ--===-+⎛⎫+⨯ ⎪⎝⎭---()f x =()15f x x ='0=()15f x x ='()f x =0x =2AE EB =DF FC =12AF AD DF AD DC =+=+ 22AF AD DC =+ 13CE CB BE CB BA =+=+ 33CE CB BA =+ +23AF CE CB += CB m = CE n =1322A m n F =-解析:设等差数列的首项为,公差为,由①,由,得到②,由①②得到,,又,,由,解得,,所以,,,又因为,所以当或时,的值最大,最大值为45,故选:A.6.答案:B(R 为的外接圆半径),可得,,,且A ,B ,,则,,均为正数,因为,可得,又因为的周长为,所以故选:B.7.答案:A解析:因为,由正切型函数可知:的最小正周期且,显然在区间内至少有1个零点,在区间内至少有2个零点,若函数在区间上有且仅有1个零点,{}n a 1a (0)d d <2a =272713a a a ++=1888()442a a S +==1811a a +=2724a a =182711a a a a +=+=0d <27272411a a a a =⎧⎨+=⎩28a =73a =72381725a a d --===--19a =2(1)1199222n n n S n n n -=-=-+n *∈N 9n =10n =n S 2sin sin b cR B C===ABC △2sin a R A =2sin b R B =2sin c R C =()0,πC ∈sin A sin B sin C 11sin 2sin 2sin sin 2sin sin sin 22ABC S ab C R A R B C A B C ==⨯⨯⨯=△1R =ABC △()2sin 2sin 2sin 2sin sin sin 1a b c R A R B R C A B C ++=++=++=sin sin sin A B C ++=0ω>()f x T =(f x ∈Z ()f x (),x x T +3,2x x T ⎛⎫+ ⎪⎝⎭()f x π3π,88⎛⎫- ⎪⎝⎭,若,因为,则,且,即则,结合题意可知:,由题意可知:或,,所以的取值范围为.故选:A.8.答案:A解析:因为,当时,,所以时,,即上单调递增,当时,,所以,由题知在上恒成立,在上恒成立,3ππ88⎛⎫>--= ⎪⎝⎭πω=>3ω<<03ω<<π3π,88x ⎛⎫∈- ⎪⎝⎭πππ3ππ,48484x ωωω⎛⎫-∈--- ⎪⎝⎭5ππππ3ππ7π8844848ωω-<--<-<-<5ππππ3ππ884484x ωωω-<--<-<-<ππ5π7π,0,,2288⎛⎫-∈- ⎪⎝⎭ππ3ππ,8484ωω⎫---⎪⎭π3ππ0284πππ842ωω⎧-<-≤⎪⎪⎨⎪--<-⎪⎩3πππ0842πππ0284ωω⎧<-≤⎪⎪⎨⎪-≤--<⎪⎩2ω<≤ω2,23⎛⎤ ⎥⎝⎦11e e ,12()1x xax x f x x --⎧--≤⎪⎪=⎨>1x >()f x =()f x '==1x >()0f x '>()f x =)+∞1x ≤11e e ()2x x f x ax ---=-11e e ()2x x f x a --+'=-11e e ()02x x f x a --+'=-≥(,1]-∞a ≥,当且仅当,即时取等号,所以,,得到,所以,故选:A.9.答案:AC解析:对于选项A,由,得到,又,所以,故选项A 正确,对于选项B,取,显然有,,不满足对于选项C,由,得到,又,所以,即,所以,故选项C 正确,对于选项D,取,,,显然有,,所以选项D 错误,故选:AC.10.答案:AB解析:因为数列为正项等比数列,则,,,对于选项A:因为,所以,故A 正确;对于选项B:若,所以,故B 正确;对于选项C:因为,则,当且仅当时,等号成立,若取得最小值,则,即,解得,故C 错误;112≥⨯=11e e x x --=1x =1a ≤13211a +≤=+2a ≥-21a -≤≤c d <c d ->-ab >ac bd ->-3,2,3,2a b c d ===-=-a b >c d <1,1bd=-=-a c >22ac bc >2()0a b c ->20c >0a b ->a b >33a b >3a =-4b =-5m =a b >m >4514435233b a-+-==<==-+-{}n a 10a >0q >0n T >9123456789S a a a a a a a a a =++++++++()4441234545S q a a a a a S q S =+++++=+4945S S q S =+20252020T T =52021202220232024202520231a a a a a a =⋅⋅⋅⋅==20231a =19464a a a a ==22446628a a a a +≥=462a a ==2246a a +462a a ==34156122a a q a a q ⎧==⎨==⎩121a q =⎧⎨=⎩对于选项D:例如,,则,可得,,因为,则,可得,即,符合题意,但,故D 错误;故选:AB.11.答案:ABC解析:A 选项,令,,则恒成立,故在上单调递增,则,令,则,故在上单调递增,故,所以,A 正确;B 选项,由A 选项知,时,单调递增,单调递减,则,所以,B 正确;C 选项,令,,则,,,11a =2q =12n n a -=011121122222n n n n T a a a -++⋅⋅⋅+-=⋅⋅⋅=⨯⨯⋅⋅⋅⨯==()21()22nn n n n a +==()2212222n n n n n T --⎛⎫== ⎪ ⎪⎝⎭*n ∈N 22n n n >-2222n n n ->21()n n n a T +>11a =()e 1x f x x =--(0,1)x ∈()e 10x f x ='->()f x (0,1)x ∈()()00f x f >=()1ln g x x =-(0,1)x ∈()221110xg x x x x='-=-+>()g x (0,1)x ∈()()10g x g <=e 11ln x x x -->-1ln 2x x x x+>-+(1,)x ∈+∞()f x ()g x ()()1e 2f x f >=-()()10g x g <=e 11ln x x x -->-1ln 2x x x x+>-+()e sin x w x x x =-π0,2x ⎛⎫∈ ⎪⎝⎭()()πe sin cos 1e sin 14x x w x x x x ⎛⎫=+-=+- ⎪⎝⎭'π0,2x ⎛⎫∈ ⎪⎝⎭ππ3π,444x ⎛+∈ ⎝(π4x ⎛⎫+∈ ⎪⎝⎭又在上恒成立,故在恒成立,故在上单调递增,又,故,即当时,,C 正确;D 选项,令,则当时,,当时,,在上单调递增,在上单调递减,其中,在上单调递增,在上单调递减,且,,画出两函数图象如下:时,不满足存在,使得当时,,D 错误.故选:ABC 12.答案:4e 1x >π0,2x ⎛⎫∈ ⎪⎝⎭()πe sin 104x w x x ⎛⎫=+-> ⎪⎝⎭'π0,2x ⎛⎫∈ ⎪⎝⎭()e sin x w x x x =-π0,2x ⎛⎫∈ ⎪⎝⎭()00w =e sin 0x x x ->π0,2x ⎛⎫∈ ⎪⎝⎭e sin x x x >()t x =()0,π∈()t x ='()10e x x t x -'=>()1,πx ∈()10exxt x -'=<()ex xt x =()1,πx ∈π2ππ122et ⎛⎫=< ⎪⎝⎭()πt =()sin q x x =π0,2x ⎛⎫∈ ⎪⎝⎭π,π2x ⎛⎫∈ ⎪⎝⎭π12q ⎛⎫= ⎪⎝⎭()π0q =π,π2x ⎛⎫∈ ⎪⎝⎭sin x >1π,π2x ⎛⎫∈ ⎪⎝⎭()1,πx x ∈sin x <sin x x x <,,,当且仅当时,等号成立,故答案为:4.13.答案:解析:因为且,则的最小正周期为,解得,所以令,解得,令,可得可知在,内有2个零点,且这2个零点关于直线对称,即这2个零点和为,所以所有零点之和为.故答案为:.14.答案:解析:因为对任意的x ,,都有:令,可知24a b ⋅=()2222224432164421616a a b b b λλλλλλ=+⋅+=++=+++≥ 2λ=-+ +10120π3-()21cos 2()sin πcos sin cos 2xf x x x x x x ωωωωωω-=-=1πsin 22sin 223x x x ωωω⎛⎫=+=+ ⎪⎝⎭0ω>()f x 2ππ2T ω==1ω=()πsin 23f x x ⎛⎫=+ ⎪⎝⎭π22π3x k +=+∈Z πx k =∈Z ()πsin 203f x x ⎛⎫=+= ⎪⎝⎭πsin 23x ⎛⎫+= ⎪⎝⎭()f x ()π,1πk k +⎡⎤⎣⎦k ∈Z πx k =∈Z 2πx k =∈Z ()()π101202202420232023π4048π63-+-+⋅⋅⋅++⨯=-⎡⎤⎣⎦10120π3-(][),11,-∞-+∞ ()(),00,y ∈-∞+∞ ()1x f f x f y y ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭1x y ==()()()12110f f f =⇒=令,可知令,得故函数为偶函数,令要使则显然函数为偶函数;因为当时,得所以当时函数单调递减,此时也单调递减因为需要故因为为偶函数所以当时,的解为故不等式的解集为故答案为:15.答案:(1)单调增区间为,,单调减区间为(2)3解析:(1)因为,则,因为恒成立,由,得到或,由,得到,所以函数的单调增区间为,,减区间为.(2)由(1)知在区间上单调递增,在区间上单调递1x y ==-()()()12110f f f =-⇒-=1y =-()()()()()1f x f x f f x f x -=+-⇒-=() f x ()()1g x f x x =-+()1f x x ≤-()0g x ≤()()1g x f x x =-+,0x y >()110x y f f x y ⎛⎫⎛⎫⎛⎫-->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11110f f x y x y ⎛⎫⎛⎫⎛⎫⎛⎫--< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭0x >()f x ()()1g x f x x =-+()()11110g f =-+=()0g x ≤1x ≥()()1g x f x x =-+0x <()0g x ≤1x ≤-()1f x x ≤-(][),11,-∞-+∞ (][),11,-∞-+∞ (),1-∞-()0,+∞(1,0)-()()2e 1x f x x x =-+()()2e (1)e x x f x x x x x '=+=+e 0x >()0f x '>1x <-0x >()0f x '<10x -<<()f x (),1-∞-()0,+∞(1,0)-()()2e 1x f x x x =-+[)2,1--(1,0)-减,在区间上单调递增,又,,显然有,所以在区间上最大值为,又函数在上恒成立,所以,得到最小的整数.16.答案:(1)证明见解析(2)6解析:(1)因为,所以当,时,,即,时,,又时,,所以数列为首项为1,公比为3的等比数列.(2)由(1)知,所以,又由,可得,,,所以,又,所以,整理得到,解得,所以n 的值为6.17.答案:(1)证明见解析解析:(1)因为因为,又,所以,(]0,1()31ef -=()1e f =(1)(1)f f -<()()2e 1x f x x x =-+[]2,1-e ()f x a ≤[]2,1-e a ≥3a =18,3,nn n a n a a n +-⎧=⎨⎩为奇数为偶数2n ≥n *∈N 212(1)122(23)1232312123123123(8)123(12)n n n n n n a a a a a a --+--+---=-=-=-=--=-2n ≥n *∈N 212(1)112336n n a a ----=-1n =11213121a -=-={}2112n a --121123n n a ---=121312n n a --=+18,3,nn n a n a a n +-⎧=⎨⎩为奇数为偶数22234n n a --=+2n ≥n *∈N 211232211321242()()n n n n n S a a a a a a a a a a a +++=+++++=+++++++ 1011313[33312(1)](3334)16122316111313n nnn n n n n n +---=++++++++++=+++=⨯++-- 21161469n S n +=+231611161469n n n ++⨯+=3729n =6n =()f x =()f x '=()f x ''=4222156316(048x x x -+=-+>()1,x ∈+∞63(1)0x x ->故在区间上恒成立,即函数上的凸函数.(2)①因为,所以由题知在区间上恒成立,即上恒成立,,则在区间上恒成立,令,对称轴为,所以当时,取到最大值,最大值为1,所以,得到.②由(1)知,令,则令在区间恒成立,当且仅当时取等号,所以上单调递增,得到,当且仅当时取等号,即在区间恒成立,当且仅当时取等号,即在区间上单调递增,所以令,令,得到,则在区间上恒成立,即在区间上单调递减,()42632(631)0(1)x x f x x x -+''=>-()1,+∞()f x =)1,+∞()2()2ln ln g x ax x x x a =--∈R ()22ln 2g x ax x '=---2()2g x a x ''=-221()20g x a x x ''=-+≥[)1,+∞22a x ≥-)1,+∞(]0,1t =∈222a t t ≥-(]0,122y t t =-1t =1t =22y t t =-21a ≥a ≥()21()2ln ln 2g x x x x x a =--∈R 21()()22ln ln 22H x g x x x x x x x =+=--+1()2ln 222ln H x x x x x x '=---+=-()2ln m x x x =--222222121(1)()10x x x x x x x x-+-'=-+==≥[)1,+∞1x =()2ln m x x x =--)1,+∞()(1)0m x m ≥=1x =1()2ln 0H x x x x'=--≥[)1,+∞1x =21()2ln ln 22H x x x x x x =--+[)1,+∞1()(1)22H x H ≥=+=()()31()23231x x xF x -=+-+312x t =-≥2(1)(2)t y t t =+-+22220(2)t y t t --'=<+-[2,)+∞2(1)(2)t y t t =+-+[2,)+∞所以即当,时取等号,所以,在上恒成立.(2)2解析:(1)由题意可知:,,且点,若,则所以扇形AOB 的面积且(2)若质点A 与质点B 的每一次相遇,,,解得,,的周期为4,即交点有4个,当时,;当时,;当时,;当时,;22(21)(22)y ≤+=-+[)1,x ∞∈+()()31()23231x xxF x -=+≤-+1x =()()31()223231x xxg x x -+≥+-+[)1,+∞AOB ∠=s t π12t -ππcos ,sin 44A t t ⎛⎫ ⎪⎝⎭1t =πππ4412AOB ⎛⎫∠=+--=⎪⎝⎭217π1212S =⨯⨯=ππππππ1sin sin sin cos cos sin 4343432AOB ⎛⎫∠=+=+=+= ⎪⎝⎭ππ2π124t k ⎛⎫--+= ⎪⎝⎭k ∈N 6t k =∈N 3π2k =∈N 3π2k =∈N 1k =13π2θ=-()111cos ,sin P θθ2k =23π3ππ16θ=-=()222cos ,sin θθ3k =39π3ππ2162θ=-=-()333cos ,sin θθ4k =43π6π16θ=-=()444cos ,sin P θθ可得即,O ,以及,O ,均三点共线,且,,.19.答案:(1)答案见解析(2)(3)解析:(1)由函数,可得,若时,可得,所以在R 上单调递增;若时,令,解得,当时,,函数在上单调递减;当时,,函数在上单调递增.综上可得:当时,在R 上单调递增;若时,在上单调递减,在上单调递增.(2)令函数因为当时,恒成立,所以在上恒成立,又因为,要使得在上恒成立,则恒成立,令可得,即在上为单调递增函数,所以,解得,即实数m 的取值范围为.(3)当时,若的最小值是0,即在上恒成立,34θθ-=23θ-=12θ-=1P 3P 2P 4P 1324PP P P ⊥13242PPP P ==132412222PP P P ⋅=⨯⨯=(,1]-∞177e()e x f x mx =-()e x f x m '=-0m ≤()0f x '>()fx 0m >()0f x '=ln x m =ln x m <()0f x '<()f x (,ln )m -∞ln x m >()0f x '>()f x (ln ,)m +∞0m ≤()f x 0m >()f x (,ln )m -∞(ln ,)m +∞()()()e x h x f x x g x m =-=-()e x x m '-=0x ≥()()f x g x ≥()0h x ≥[0,)+∞()00h =()0h x ≥[0,)+∞()0h x '≥()()e x x h x m ϕ-'==()e e e 0xx x x ϕ'==--=>()h x [0,)+∞()()min 010h x h m ''==-≥1m ≤(,1]-∞0x ≥()()f x ng x -()()()e 0x m x f x n mx g x ---=≥=[0,)+∞即在上恒成立,显然相切时取得等号,由函数,可得所以切线方程为即因为切线过原点,则解得,,所以,令,其中,可得,令,解得当时,,单调递增;当时,,单调递减,所以可得则,e x mx -≥[0,)+∞e x y -=00,e x x -e x y -'=00e |x x x y ='=00e ()x y x x ⎛=-- ⎝000e (1)e x x y x x ⎛=+-- ⎝00e 0(1)e x x m x ⎧=-⎪⎪⎨⎪=--+⎪⎩00(1e x n x =-0002000e (1)e (1)e x x x m x x x =--=-+02000(1(1e )x m x x x +=-++-02000(1(1e x x x x =-++-⋅()2(1(1e x F x x x x =-++-⋅0x >()(1)F x x x '=+-()0F x '=x =10,7x ⎛⎫∈ ⎪⎝⎭()0F x '>()F x 1,7x ⎛⎫∈+∞ ⎪⎝⎭()0F x '<()F x ()177F x F ⎛⎫≥= ⎪⎝⎭4349==()1743e e 49xm x x =-()1743e e 49xm x -'-=107⎛⎫'= ⎪⎝⎭只需证明:当时,,当时,,令因为和为增函数,所以,所以为增函数,因为,所以当时,,当时,,所以即的最大值为10,7x ⎛⎫∈ ⎪⎝⎭()0m x '<1,7x ⎛⎫∈+∞ ⎪⎝⎭()0m x '>()()7143e e 49xn x m x '=--=()e x x =-'e xy =y =()x '()()010n x n ''>=>()m x 107m ⎛⎫'= ⎪⎝⎭10,7x ⎛⎫∈ ⎪⎝⎭()0m x '<1,7x ⎛⎫∈+∞ ⎪⎝⎭()0m x '>7m +≤4349==m +7。

2024届修改病句最新试题对点专(1)练解析版

2024届修改病句最新试题对点专(1)练解析版

2024届语言文字运用修改病句专题2024届修改病句最新试题对点专练(一)教师版01【2024届新高三摸底联考语文试题(衡水金卷)】《流浪地球2》电影中,人类为了应对太阳危机,启动了“移山计划”。

即给地球安装上万座巨大的行星发动机,利用“烧石头”产生核聚变释放巨大的能量,推动地球开启“流浪之旅”。

什么是核聚变反应呢?①简单来说,②核聚变反应是将两个原子核重新结合生成一个较重的原子核,③因而产生巨大能量的过程。

④这是太阳及其他恒星内部源源不断产生能量的方式。

⑤我们所熟知的氩弹,⑥其爆炸过程也是一种核聚变反应,⑦只不过这种核聚变反应是不可控的。

⑧因此,⑨人类始终有一个愿望:通过可控核聚变反应来解决能源短缺。

⑩目前可控核聚变已经是最前沿世界的重大科学问题之一。

19.文中第二段有三处表述不当,请指出其序号并做修改,使语言表达准确流畅,逻辑严密。

不得改变原意。

(6分)01【2024届新高三摸底联考语文试题(衡水金卷)】19.③句中的“因而”改为“从而”;⑨句中的“通过可控核聚变反应来解决能源短缺”改为“通过可控核聚变反应来解决能源短缺问题”;⑩句中的“最前沿世界”改为“世界最前沿”。

(每改对一处得2 分,如有其他答案,只要言之成理,可酌情给分)【解析】第③处语境“核聚变反应是……原子核,因而……的过程”不合逻辑。

第⑨处“通过可控核聚变反应来解决能源短缺”成分残缺。

第⑩处“最前沿世界”语序不当。

02【2024届高三第一次联考湖南师大附中】三、语言文字运用(20 分)(一)语言文字运用I(本题共2 小题,10分)阅读下面的文字,完成 18~19 题。

2023年7月,第5号台风“杜苏芮”在我国东南沿海地区强势登陆。

截至7月28 日,台风“杜苏芮”造成的直接经济损失已达 5227 万元。

不过,与它的超强破坏力相比,“杜苏芮”这个名字却显得十分小清新。

人们怎么给超强台风起了这么个名字呢?从“山竹”“玉免”再到如今的“杜苏芮”,这些千奇百怪的名字究竟从何而来?台风是一种产生于热带洋面上的强烈气旋,这种气旋可以持续一周或更长时间,所以同一时间内可能会存在多个台风共舞的现象。

高考数学《概率》综合复习练习题(含答案)

高考数学《概率》综合复习练习题(含答案)

高考数学《概率》综合复习练习题(含答案)一、单选题1.如图,用随机模拟方法近似估计在边长为e (e 2.718≈为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间[]0,e 上的随机数1231000,,,x x x x 和1y ,2y ,3y ,…,1000y ,从而得到1000个点的坐标(),i i x y (1,2,3,1000i =),再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为( )A .0.70B .1.04C .1.26D .1.922.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为( ) A .125 B .85C .35D .253.从1,2,3,4,5中选出三个不同的数字组成一个三位数,则这个三位数是3的倍数的概率为( ) A .320B .310 C .25D .154.已知ABC 和ABD △都内接于同一个圆,ABC 是正三角形,ABD △是直角三角形,则在ABD △内任取一点,该点取自ABC 内的概率为( )A .14B .12C .34D 35.现代健康生活的理念,每天锻炼1小时,健康工作50年,幸福生活一辈子.我国每所学校都会采取一系列措施加强学生的体育运动.在某校举行的秋季运动会中,来自同一队的甲乙丙丁四位同学参加了4100⨯米接力赛,则甲乙互不接棒的概率为( ) A .16B .13C .12D .236.某校对高一新生进行体能测试(满分100分),高一(1)班有40名同学成绩恰在[]60,90内,绘成频率分布直方图(如图所示),从[)60,70中任抽2人的测试成绩,恰有一人的成绩在[)60,65内的概率是()A.715B.815C.23D.137.我国拥有包括民俗、医药、文学、音乐等国家级非物质文化遗产3000多项,下图为民俗非遗数进前10名省份排名,现从这10个省份中任取2个,则这2个省份民俗非遗数量相差不超过1个的概率为()A.215B.15C.415D.258.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.在各不相同的10个球中有6个红球和4个白球,不放回地依次摸出两个球,第一次摸出红球的条件下,第二次也摸出红球的概率为 A .110 B .13C .25D .5910.有5把外形一样的钥匙,其中3把能开锁,2把不能开锁,现准备通过一一试开将其区分出来,每次随机抽出一把进行试开,试开后不放回,则恰好试开3次就将能开锁的和不能开锁的钥匙区分出来的概率是( )A .35B .310 C .45D .2511.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为 A .27B .57C .29D .5912.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学,每人随机写下一个都小于1的正实数对(),x y ,再统计x 、y 两数能与1构成钝角三角形时的数对(),x y 的个数m ,最后再根据m 来估计π的值.假如统计结果是60m =,那么π≈( )A .165 B .65C .7825D .14245二、填空题13.已知某人同时抛掷了两枚质地均匀的正方体骰子,记“两枚骰子的点数之和是6的倍数”为事件A ,则()P A =______________.14.如图,连接△ABC 的各边中点得到一个新的111A B C △,又连接111A B C △的各边中点得到222A B C △,如此无限继续下去,得到一系列三角形:ABC ,111A B C △,222A B C △,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是______.15.某校有高一、高二、高三、三个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为___________.16.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位,如果他记得密码的最后一位是奇数,则他不超过两次就按对密码的概率是________.三、解答题17.在第29届“希望杯”全国数学邀请赛培训活动中,甲、乙两名学生的6次培训成绩(单位:分)如茎叶图所示.(1)若从甲、乙两名学生中选择一人参加第29届“希望杯”全国数学邀请赛,你会选择哪一位?说明理由;(2)从甲的6次成绩中随机抽取2次,试求抽到119分的概率.18.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,甲、乙都中靶的概率为0.72,求下列事件的概率; (1)乙中靶; (2)恰有一人中靶; (3)至少有一人中靶.19.从0,1,2,3,4,5,6,7,8,9这10个自然数中,任取3个不同的数. (1)这3个数组成一个三位数,求这个三位数能够被5整除的概率; (2)设X 为所取的3个数中奇数的个数,求X 的可能取值及相应的概率.20.在全国防控疫情阻击战关键阶段,校文艺团排练了4个演唱节目,2个舞蹈节目参加社区慰问演出.(结果用数字作答)(1)若从6个节目中选3个参加市演出汇报,求3个节目中恰有1个舞蹈节目的选法种数; (2)现对6个节目安排演出顺序,求4个演唱节目接在一起的概率;(3)现对6个节目安排演出顺序,求节目甲不在第一个且不在最后一个演出的概率.21.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.22.为了研究性格和血型的关系,随机抽查了100个人的血型和性格,其情况如下表:(1)根据上面的22⨯列联表,判断是否有95%的把握认为性格与血型有关?(2)在“内向型”性格的人中,用分层抽样的方法抽取5人.若从5人中抽取3人进一步分析性格和血型的关系,求恰好抽到两名“O型或A型”人的概率.附表:其中22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++23.某科研机构为了研究喝酒与糖尿病是否有关,对该市30名成年男性进行了问卷调查,并得到了如下列联表,规定“”平均每天喝100mL以上的”为常喝.已知在所有的30人中随机抽取1人,患糖尿病的概率为4 .(1)请将上表补充完整,并判断是否有99.5%的把握认为糖尿病与喝酒有关?请说明理由;(2)已知常喝酒且有糖尿病的6人中恰有两名老年人,其余为中年人,现从常喝酒且有糖尿病的这6人中随机抽取2人,求恰好抽到一名老年人和一名中年人的概率.参考公式及数据:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.24.A,B,C三个班共有180名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):(Ⅰ)试估计B班的学生人数;(Ⅱ)从这180名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率; (Ⅲ)从A班抽出的6名学生中随机选取2人,从C班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率。

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。

答案:首先计算总球数为8个,红球数为5个。

根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。

2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。

答案:首先列出所有可能的结果:正正、正反、反正、反反。

其中正正和正反、反正是至少出现一次正面的情况。

根据概率公式,P(至少一次正面) = 3/4。

3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。

答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。

然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。

根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。

二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。

今天工厂生产了200个零件,求至少有10个次品的概率。

答案:首先确定次品数为10、11、...、20。

使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。

计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。

2. 题目:一个盒子里有10个球,编号为1到10。

随机抽取3个球,求抽取的球的编号之和大于15的概率。

答案:列出所有可能的抽取组合,计算和大于15的组合数。

然后根据概率公式计算概率。

3. 题目:一个班级有50名学生,其中男生30名,女生20名。

随机选取5名学生,求选取的学生中恰好有3名男生的概率。

答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。

三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。

精品解析:【全国百强校首发】河北省衡水中学2023届高三下学期第二次调研考试理数试题解析(原卷版)

精品解析:【全国百强校首发】河北省衡水中学2023届高三下学期第二次调研考试理数试题解析(原卷版)

河北省衡水中学2016届高三下学期二调考试数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合,集合,则地子集个数为( )A .2B .4C .8D .162.如图,复平面上地点到原点地距离都相等,若复数所对应地点为,则复数(是虚数单位)地共轭复数所对应地点为( )A .B .C .D .3.下列四个函数中,在处取得极值地函数是( )①;②;③;④A .①② B .①③ C .③④ D .②③4.已知变量满足:,则地最大值为( )AB ..2 D .45.执行如下图所示地程序框图,输出地结果是( )A .5B .6C .7D .86.两个等差数列地前项和之比为,则它们地第7项之比为( ){}1,3,4,5A ={}2|450B x Z x x =∈--<A B 1234,,,Z Z Z Z z 1Z z i ⋅i 1Z 2Z 3Z 4Z 0x =3y x =21y x =+y x =2xy =,x y 202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩2x yz +=n 51021n n +-A .2B .3C .D .7.在某次联考数学测试中,学生成绩服从正态分布,若在(80,120)内地概率为0.8,则落在(0,80)内地概率为( )A .0.05B .0.1C .0.15D .0.28.函数地部分图象如下图所示,地值为( )A .0B .. D .9.若,则地值是( )A .-2 B.-3 C .125 D .-13110.已知圆,圆,椭圆(,焦距为),若圆都在椭圆内,则椭圆离心率地范围是( )A .B .C .D .11.定义在上地函数对任意都有,且函数地图象关于(1,0)成中心对称,若满足不等式,则当时,地取值范围是( )A . B . C . D .12.正三角形地边长为2,将它沿高翻折,使点与点间地距离为,此时四面体外接球表面积为( )A .7B .19 CD第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)45137027ξ()()21000,σσ>ξ()()sin 0,0f x A x A ωω=>>()()()()1232015f f f f +++⋅⋅⋅+()()7280128112x x a a x a x a x +-=+++⋅⋅⋅+127a a a ++⋅⋅⋅+221:20C x cx y ++=222:20C x cx y -+=2222:1x y C a b+=0a b >>2c 12,C C 1,12⎡⎫⎪⎢⎣⎭102,⎛⎤ ⎥⎝⎦⎫⎪⎪⎭0⎛ ⎝R ()f x ()1212,x x x x ≠()()12120f x f x x x -<-()1y f x =-,s t ()()2222f s s f t t -≤--14s ≤≤2t ss t-+13,2⎡⎫--⎪⎢⎣⎭13,2⎡⎤--⎢⎥⎣⎦15,2⎡⎫--⎪⎢⎣⎭15,2⎡⎤--⎢⎥⎣⎦ABC AD B C ABCD ππ13.一个几何体地三视图如下图所示,该几何体体积为 .14.已知向量与地夹角为60°,且,若,且,则实数地值为 .15.已知双曲线地半焦距为,过右焦点且斜率为1地直线与双曲线地右支交于两点,若抛物线地准线被双曲线截得地弦长是(为双曲线地离心率),则地值为 .16.用表示自然数地所有因数中最大地那个奇数,例如:9地因数有1,3,9,地因数有1,2,5,10,,那么.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在锐角中,角所对地边分别为,已知.(1)求角地大小;(2)求地面积.18.(本小题满分12分)某厂商调查甲、乙两种不同型号电视机在10个卖场地销售量(单位:台),并根据这10个卖场地销售情况,得到如下图所示地茎叶图.为了鼓励卖场,在同型号电视机地销售中,该厂商将销售量高于数据平均数地卖场命名为该型号电视机地"星级卖场".(1)当时,记甲型号电视机地"星级卖场"数量为,乙型号电视机地"星级卖场"数量为,比较,地大小关系;AB AC ||||2AB AC ==AP AB AC λ=+ AP BC ⊥ λ()222210,0x y a b a b-=>>c 24y cx =2e e ()g n n ()99,10g =()105g =()()()()201512321g g g g +++⋅⋅⋅+-=ABC ∆,,A B C ,,a b c sin a b B A ==+=A ABC ∆3a b ==m n m n(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机地"星级卖场"地个数,求地分布列和数学期望;(3)若,记乙型号电视机销售量地方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)19.(本小题满分12分)如图1,在边长为4地菱形中,,于点,将沿折起到地位置,使,如图2.(1)求证:平面;(2)求二面角地余弦值;(3)判断在线段上是否存在一点,使平面平面?若存在,求出地值;若不存在,说明理由.20.(本小题满分12分)如图,已知椭圆:,点是它地两个顶点,过原点且斜率为地直线与线段相交于点,且与椭圆相交于两点.(1)若,求地值;(2)求四边形面积地最大值.21.(本小题满分12分)设函数.(1)求函数地单调区间;(2)若函数有两个零点,求满足条件地最小正整数地值;(3)若方程有两个不相等地实数根,比较与0地大小.请从下面所给地22 , 23 ,24三题中任选一题做答,如果多做,则按所做地第一题计分.X X 1a =2s b 2s ABCD 60BAD ∠=DE AB ⊥E ADE ∆DE 1A DE ∆1A D DC ⊥1A E ⊥BCDE 1E A B C --EB P 1A DP ⊥1A BC EPPB2214x y +=,A B k lAB D ,E F 6ED DF =k AEBF ()()22ln f x x a x a x =---()f x ()f x a ()()f x c c R =∈12,x x 12'2x x f +⎛⎫⎪⎝⎭22. (本小题满分10分)选修4-1:几何证明选讲如图,直线与⊙相切于点是⊙地弦,地平分线交⊙于点,连接,并延长与直线相交于点.(1)求证:;(2)若,求弦地长.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线地参数方程为(为参数),在以原点为极点,轴正半轴为极轴地极坐标中,圆地方程为.(1)写出直线地普通方程和圆地直角坐标方程;(2)若点坐标,圆与直线交于两点,求地值.24.(本小题满分10分)选修4-5:不等式选讲(1)已知函数,求地取值范围,使为常函数;(2)若,求地最大值.PQ O ,A AB O PAB ∠AC O C CB PQ Q 22QC BC QC QA ⋅=-6,5AQ AC ==AB xoyl 3x y ⎧=-⎪⎪⎨⎪=+⎪⎩t O x C ρθ=l C P (C l ,A B |||PB |PA +()13f x x x =-++x ()f x 222,,z R,x 1x y y z ∈++=m y =++。

2024年高考生物二轮复习选择题3组1练五

2024年高考生物二轮复习选择题3组1练五

选择题3组1练(五)(建议用时:45分钟)第1组1.(2024·吉林长白山质量监测)有关细胞中的元素和化合物,下列说法中正确的是( )A.蛋白质、脂肪彻底氧化分解的产物都只有CO2和H2OB.ATP、腺苷和磷脂分子都含有元素C、H、O、N、PC.糖原和淀粉的元素组成和基本单位相同,但空间结构不同D.细胞内全部的核酸分子都与生物的遗传变异亲密相关2.(2024·广东佛山综合实力测试二)下图为细胞膜部分结构与功能的示意图。

依据此图作出的推断不正确的是( )A.细胞膜上的钠—钾泵同时具有运输和催化的功能B.K+通过K+通道的外流最终导致细胞内外K+浓度相等C.膜两侧K+、Na+浓度差依靠钠—钾泵和脂双层共同维持D.细胞内K+外流和细胞外Na+内流的过程不消耗ATP3.(2024·甘肃高三其次次高考诊断考试)异色瓢虫是一种有益的变温动物,越冬期间体内甘油、葡萄糖的含量会增多。

下列有关异色瓢虫在越冬期间的推断,错误的是( ) A.体内甘油、葡萄糖含量增多,可防止冻伤,有利于抗寒B.因气温较低,异色瓢虫有氧呼吸增加,消耗的葡萄糖和氧气增多C.体内自由水与结合水的比值会下降,相关酶活性也下降D.细胞膜的结构特性和功能特性都会不同程度地减弱4.(2024·安徽皖南八校第三次联考)下列有关人体内环境稳态及其调整的叙述,正确的是( )A.一般燥热环境中机体的散热量少于寒冷环境中的散热量B.人体的脑组织细胞内液中O2与CO2的比值大于组织液中的C.动作电位时,神经细胞膜外Na+进入细胞须要消耗能量D.当人体免疫功能减弱时,可引起免疫缺陷病或过敏反应5.(2024·辽宁大连渤海中学猜题卷)在生物体的各项生命活动中发生着不同的变更,下列有关曲线中相对变更的描述合理的是( )A.在变更某一环境条件时,若a代表叶绿体中ADP与[H]含量之比,则b可代表C5与C3含量之比B.在细胞有丝分裂的某一时期,若a代表染色体与核DNA数量之比,则b可代表细胞膜上物质运输效率的变更C.在植物个体发育过程中,若a代表植株干重的相对含量变更,则b可代表细胞数量的变更D.在突触小体中,若a代表突触前膜内侧Na+的含量变更,则b可代表突触小体表面积变更6.(2024·江苏南通高考生物考前卷五)转座子是一段可移动的DNA序列,这段DNA序列可以从原位上单独复制或断裂下来,插入另一位点。

高2数学试题概率及答案

高2数学试题概率及答案

高2数学试题概率及答案一、选择题(每题3分,共15分)1. 一个袋子里有5个红球和3个蓝球,随机取出一个球,下列哪个概率是正确的?A. 取出红球的概率是1/3B. 取出蓝球的概率是1/2C. 取出红球的概率是5/8D. 取出蓝球的概率是3/82. 抛一枚公正的硬币两次,下列哪个事件的概率是1/4?A. 两次都是正面B. 两次都是反面C. 至少一次是正面D. 至少一次是反面3. 一个班级有30个学生,其中10个是男生,20个是女生。

随机选择一个学生,下列哪个概率是正确的?A. 选择男生的概率是1/3B. 选择女生的概率是2/5C. 选择男生的概率是1/2D. 选择女生的概率是3/54. 一个骰子有6个面,每个面出现的概率相等。

投掷一次骰子,下列哪个事件的概率是1/6?A. 得到1点B. 得到2点C. 得到3点D. 所有选项都是1/65. 一个盒子里有3个白球和2个黑球,随机取出两个球,下列哪个组合的概率是1/5?A. 两个都是白球B. 两个都是黑球C. 一个白球和一个黑球D. 没有可能的组合二、填空题(每题2分,共10分)6. 如果一个事件的概率是0.6,那么它的对立事件的概率是________。

7. 一个袋子里有7个球,其中2个是红球,5个是蓝球。

如果随机取出一个球,再放回去,然后再取出一个球,两次取出的都是红球的概率是________。

8. 抛一枚公正的硬币三次,至少出现一次正面的概率是________。

9. 一个袋子里有4个白球和6个黑球,随机取出3个球,取出的球都是同一种颜色的概率是________。

10. 如果一个事件的概率是p,那么它的必然事件的概率是________。

三、解答题(每题5分,共20分)11. 一个袋子里有10个球,其中4个是红球,6个是蓝球。

求以下事件的概率:- 随机取出一个球,是红球的概率。

- 随机取出两个球,两个都是红球的概率。

12. 一个班级有50个学生,其中25个是男生,25个是女生。

高中数学概率试题及答案

高中数学概率试题及答案

高中数学概率试题及答案一、选择题(每题3分,共15分)1. 一个袋子里装有5个红球和3个蓝球,随机取出一个球,取出红球的概率是多少?A. 1/2B. 3/8C. 5/8D. 1/82. 抛一枚硬币两次,出现两次正面的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 一个班级有30名学生,其中10名男生和20名女生。

随机选取一名学生,该学生是女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/54. 一个骰子连续抛掷两次,两次点数之和为7的概率是多少?A. 1/6B. 1/9C. 1/36D. 2/95. 一个盒子里有3个白球和2个黑球,不放回地连续取出两个球,取出的都是白球的概率是多少?A. 1/10B. 1/5C. 3/10D. 1/4二、填空题(每题2分,共10分)6. 一个事件的概率P(A) = _______,如果这个事件是必然事件。

7. 一个事件的概率P(B) = _______,如果这个事件是不可能事件。

8. 如果事件A和事件B是互斥事件,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B) = _______。

9. 一个事件的概率P(C) = 0.05,它的对立事件P(C') = _______。

10. 如果一个随机变量X服从二项分布B(n, p),其中n = 10,p = 0.2,那么P(X=2) = _______。

三、解答题(每题5分,共20分)11. 一个袋子里有7个白球和3个黑球,不放回地随机取出两个球。

求第一个取出的是白球,第二个取出的是黑球的概率。

12. 在一个班级中,有40名学生,其中20名男生和20名女生。

随机选取两名学生,求至少有一名是女生的概率。

13. 一个工厂生产一批零件,其中有5%的次品率。

如果随机抽取5个零件进行检查,求至少有1个是次品的概率。

14. 一个骰子连续抛掷三次,求至少出现一次6点的概率。

四、综合题(每题10分,共10分)15. 一个盒子里有5个红球和5个蓝球,随机取出两个球。

河北省衡水市部分学校2024届高三下学期二模考试 数学试题(含解析)

河北省衡水市部分学校2024届高三下学期二模考试 数学试题(含解析)

2023—2024学年度下学期高三年级二调考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共4页,总分150分,考试时间120分钟.第Ⅰ卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a b a b +=- ,()()1,2,,3a b m == ,则实数m =()A .6B .6-C .3D .3-2.某中学举行数学解题比赛,其中5人的比赛成绩分别为:70,85,90,75,95,则这5人成绩的上四分位数是()A .90B .75C .95D .703.生活中有很多常见的工具有独特的几何体结构特征,例如垃圾畚箕,其结构如图所示的五面体ADE BCF -,其中四边形ABFE 与CDEF 都为等腰梯形,ABCD 为平行四边形,若AD ⊥面ABFE ,且222EF AB AE BF ===,记三棱锥D ABF -的体积为1V ,则该五面体的体积为()A .18V B .15V C .14V D .13V 4.已知tan 2α=,则sin3sin cos ααα=+()A .215-B .215C .79-D .795.将5本不同的书(2本文学书、2本科学书和1本体育书)分给甲、乙、丙三人,每人至少分得1本书,每本书只能分给一人,其中体育书只能分给甲、乙中的一人,则不同的分配方法数为()A .78B .92C .100D .1226.已知12,F F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A .3B CD .27.已知函数(),()f x g x 的定义域为R ,()g x '为()g x 的导函数,且()()2f x g x '+=,()()42f x g x '--=,若()g x 为偶函数,则下列结论一定成立的是()A .(4)2f =B .()20g '=C .(1)(3)f f -=-D .(1)(3)4f f +=8.已知正数a ,b ,c 满足3e 1.1a =,251030b b +-=,e 1.3c =,则()A .a c b <<B .b a c <<C .c<a<bD .c b a<<二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,z z ∈C 是z 的共轭复数,则()A .若13i13i z +=-,则43i 5z --=B .若z 为纯虚数,则20z <C .若(2i)0z -+>,则2iz >+D .若{||3i3}M z z =+≤∣,则集合M 所构成区域的面积为6π10.如图,点,,A B C 是函数()()sin (0)f x x ωϕω=+>的图象与直线2y =相邻的三个交点,且ππ,0312BC AB f ⎛⎫-=-= ⎪⎝⎭,则()A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ的最小值为π2411.如图所示,有一个棱长为4的正四面体-P ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是()A .直线AE 与PB 所成的角为π2B .ABE 的周长最小值为4C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为3D .如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为25第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2230,A x x x x =--<∈R ,{},0B x x a a =>>,则A B = R ,则实数a 的取值范围为.13.已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C的圆的方程为.14.已知等差数列{}n a (公差不为0)和等差数列{}n b 的前n 项和分别为,n n S T ,如果关于x 的实系数方程21003100310030x S x T -+=有实数解,则以下1003个方程()201,2,,1003i i x a x b i -+== 中,有实数解的方程至少有个.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()21sin 02f x x x ωωω=-+>的最小正周期为4π.(1)求()f x 在[]0,π上的单调递增区间;(2)在锐角三角形ABC 中,内角,,A B C 的对边分别为,,,a b c 且()2cos cos ,a c B b C -=⋅求()f A 的取值范围.16.如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,MB =MD =(1)证明:AB ⊥平面ADM ;(2)若23DC AB = ,2BE EM = ,求直线CE 与平面BDM 所成角的正弦值.17.王老师每天早上7:00准时从家里出发去学校,他每天只会从地铁与汽车这两种交通工具之间选择一个乘坐.王老师多年积累的数据表明,他到达学校的时间在两种交通工具下的概率分布如下表所示:到校时间7:30之前7:30-7:357:35-7:407:40-7:457:45-7:507:50之后乘地铁0.10.150.350.20.150.05乘汽车0.250.30.20.10.10.05(例如:表格中0.35的含义是如果王老师当天乘地铁去学校,则他到校时间在7:35-7:40的概率为0.35.)(1)某天早上王老师通过抛一枚质地均匀的硬币决定乘坐地铁还是乘坐汽车去学校,若正面向上则坐地铁,反面向上则坐汽车.求他当天7:40-7:45到校的概率;(2)已知今天(第一天)王老师选择乘坐地铁去学校,从第二天开始,若前一天到校时间早于7:40,则当天他会乘坐地铁去学校,否则当天他将乘坐汽车去学校.且若他连续10天乘坐地铁,则不论他前一天到校的时间是否早于7:40,第11天他都将坐汽车到校.记他从今天起(包括今天)到第一次乘坐汽车去学校前坐地铁的次数为X ,求()E X ;(3)已知今天(第一天)王老师选择乘坐地铁去学校.从第二天开始,若他前一天坐地铁去学校且到校时间早于7:40,则当天他会乘坐地铁去学校;若他前一天坐地铁去学校且到校时间晚于7:40,则当天他会乘坐汽车去学校;若他前一天乘坐汽车去学校,则不论他前一天到校的时间是否早于7:40,当天他都会乘坐地铁去学校.记n P 为王老师第n 天坐地铁去学校的概率,求{}n P 的通项公式.18.已知()2e 2e x xf x a x =-(其中e 2.71828= 为自然对数的底数).(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程,(2)当12a =时,判断()f x 是否存在极值,并说明理由;(3)()1R,0x f x a∀∈+≤,求实数a 的取值范围.19.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m -,若曲线C 上两动点,M N 均在x 轴上方,AM BN ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ 的周长均为定值;②当m n >时,记ABQ 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由.1.B【分析】利用向量数量积坐标公式即可求解.【详解】因为a b a b +=-,所以()()22a ba b+=- ,即222222a b a b a b a b ++⋅=+-⋅,所以0a b ⋅= ,因为()1,2a =r ,(),3b m = ,所以6a b m ⋅=+,所以60+=m ,解得6m =-.故选:B.2.A【分析】根据第p 百分位数定义计算判断即可.【详解】将5人的比赛成绩由小到大排列依次为:70,75,85,90,95,575% 3.75i =⨯=,5人成绩的上四分位数为第四个数:90.故选:A.3.C【分析】将五面体分割成三个三棱锥,,D AEF D ABF F BCD ---,通过选择适当定点可得其体积关系,然后可得五面体体积.【详解】因为ABCD 为平行四边形,所以ABD BCD S S =△△,所以1F BCD F ABD V V V --==.记梯形ABFE 的高为h ,因为2EF AB =,所以112222AEF ABF S EF h AB h S =⋅=⨯⋅= ,所以122D AEF D ABF V V V --==,所以该五面体的体积111124D AEF D ABF F BCD V V V V V V V V ---=++=++=.故选:C4.A【分析】利用两角和的正弦,二倍角余弦结合齐次式化简求值.【详解】sin3sin cos2cos sin2tan cos2sin2sin cos sin cos tan 1ααααααααααααα++==+++()()22222cos sin 2sin cos 2cos2sin233sin cos αααααααα-++==+()()2221tan 2tan 2153tan 1ααα-+==-+.故选:A 5.C【分析】分体育书分给甲和乙两种情况求解.【详解】若将体育书分给甲,当剩余4本书恰好分给乙、丙时,此时的分配方法有22312242412222C C C C A A 14A ⋅⋅⋅+⋅=种,当剩余4本书恰好分给甲、乙、丙三人时,此时的分配方法有2343C A 36⋅=种.综上,将体育书分给甲,不同的分配方法数是143650+=.同理,将体育书分给乙,不同的分配方法数也是50.故不同的分配方法数是5050100+=.故选:C 6.C【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan bF F P a ∠=可得12cos aF F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-⋅∠,即有2229422a a a c a c c=+-⨯⨯,化简可得223c a =,所以双曲线的离心率==ce a.故选:C .7.ABD【分析】根据复合函数的导数法则,结合偶函数的性质、函数的对称性逐一判断即可.【详解】对A :∵()g x 为偶函数,则()()g x g x =-,两边求导可得()()g x g x ''=--,∴()g x '为奇函数,则()00g '=,令=4x ,则可得()0(4)2f g '-=,则(4)2f =,A 成立;对B :令=2x ,则可得()()(2)22(2)22f g f g ⎧+='-='⎪⎨⎪⎩,则()(2)=22=0f g '⎧⎨⎩,B 成立;∵()()2f x g x '+=,则可得()(2)22f x g x '+++=,()()42f x g x '--=,则可得()(2)22f x x g '+--=,两式相加可得:()(2)42x x f f ++=-,∴()f x 关于点()2,2成中心对称,则(1)(3)4f f +=,D 成立,又∵()()2f x g x '+=,则可得()()(4)4(4)42f x g x f x g x ''-+-=---=,()()42f x g x '--=,则可得()()4f x f x =-,∴()f x 以4为周期的周期函数,根据以上性质只能推出(1)(3)4f f -+-=,不能推出(1)(3)f f -=-,C 不一定成立,故选:ABD.【点睛】关键点睛:本题的关键是对已知等式进行求导、利用偶函数的性质.8.D【分析】分别构造函数21()ln(1)2f x x x x =--+,(1)x >-,2311()ln(1)23g x x x x x =-+-+,(1)x >-,利用导数研究其单调性,得到223111ln(1)223x x x x x x -<+<-+,(0)x >,再将a 看成3ln(10.1)+,c 看成ln(10.3)+,利用上述的不等式比较大小即可.【详解】解:由251030b b +-=解得1b =-,构造函数21()ln(1)2f x x x x =--+,(1)x >-,显然2()01x f x x -'=<+,故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,故21ln(1)2x x x +>-,(0)x >,再令2311()ln(1)23g x x x x x =-+-+,(1)x >-,3()1x g x x'=+,当0x >时,()0g x '>,故()g x 在(0,)+∞单调递增,结合(0)0g =,故2311ln(1)23x x x x +<-+,(0)x >,则11ln1.3ln(10.3)0.30.090.0270.26423c ==+<-⨯+⨯=,13ln1.13(0.10.01)0.2852a =>⨯-⨯=,所以22(1)(10.285) 1.651225a +>+=,28(1) 1.65b +==,22(1)(10.264) 1.597696c +=+=,故222(1)(1)(1)a b c +>+>+,由a ,b ,c 都是正数,故a b c >>.故选:D .9.AB【分析】根据共轭复数的定义以及复数四则运算可判断A ;z 为纯虚数,可设()i 0z b b =≠,根据复数的四则运算可判断B ;由()2i 0z -+>结合数大小比较只能在实数范围内可判断C ;设复数i z a b =+,根据复数模长定义计算可判断D.【详解】()()()213i 13i 43i13i 13i 13i 5z ++-+===--+,所以43i 5z --=,故A 正确;由z 为纯虚数,可设()i R,0z b b b =∈≠,所以222i z b =,因为2i 1=-且0b ≠,所以20z <,故B 正确;由()2i 0z -+>,得i(2)z a a =+>,因为i(2)z a a =+>与2i +均为虚数,所以二者之间不能比较大小,故C 错误;设复数i,,R z a b a b ∈=+,所以()3ia b ++由|3i3z +≤∣得()2239a b ++≤,所以集合M 所构成区域是以()0,3-为圆心3为半径的圆,所以面积为9π,故D 错误.故选:AB.10.ACD【分析】令()f x =,,A B C x x x 根据π3BC AB -=求得4ω=,根据π012f ⎛⎫-= ⎪⎝⎭求得()f x 的解析式,再逐项验证BCD 选项.【详解】令()()sin 2f x x ωϕ=+得,π2π3x k ωϕ+=+或2π2π3x k ωϕ+=+,Z k ∈,由图可知:π2π3A x k ωϕ+=+,π2π+2π3C x k ωϕ+=+,2π2π3B x k ωϕ+=+,所以1π2π3C B BC x x ω⎛⎫=-=-+ ⎪⎝⎭,1π3B A AB x x ω=-=⋅,所以π12π2π33BC AB ω⎛⎫=-=- ⎪⎝⎭,所以4ω=,故A 选项正确,所以()()sin 4f x x ϕ=+,由π012f ⎛⎫-= ⎪⎝⎭且π12x =-处在减区间,得πsin 03ϕ⎛⎫-+= ⎪⎝⎭,所以ππ2π3k ϕ-+=+,Z k ∈,所以4π2π3k =+ϕ,Z k ∈,所以()4π4ππsin 42πsin 4sin 4333f x x k x x ⎛⎫⎛⎫⎛⎫=++=+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,9π9ππ1sin 8232f ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,故B 错误.当ππ,32x ⎛⎫∈ ⎪⎝⎭时,π5ππ42π333x ⎛⎫+∈+ ⎪⎝⎭,因为sin y t =-在5ππ,2π33t ⎛⎫∈+ ⎝⎭为减函数,故()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减,故C 正确;将函数()f x 的图象沿x 轴平移θ个单位得()πsin 443g x x θ⎛⎫=-++ ⎪⎝⎭,(0θ<时向右平移,0θ>时向左平移),()g x 为偶函数得ππ4π32k θ+=+,Z k ∈,所以ππ244k θ=+,Z k ∈,则θ的最小值为π24,故D 正确.故选:ACD.11.ACD【分析】A 选项,作出辅助线,由三线合一得到线线垂直,进而得到线面垂直,进而得到线线垂直,求出答案;B 选项,把ACD 沿着CD 展开与平面BDC 同一平面内,由余弦定理求出AE BE +的最小值,得到周长的最小值;C 选项,求出正四面体的内切球即为小球半径的最大值;D 选项,当四个小球相切且与大正四面体相切时,小球半径最大,连接四个小球的球心,构成正四面体,设出半径,结合C 选项中结论得到方程,求出小球半径的最大值.【详解】A 选项,连接AD ,由于D 为PB 的中点,所以PB ⊥CD ,PB ⊥AD ,又CD AD D = ,,AD CD ⊂平面ACD ,所以直线PB ⊥平面ACD ,又AE ⊂平面ACD ,所以PB ⊥AE ,故A 正确;B 选项,把ACD 沿着CD 展开与平面BDC 同一个平面内,连接AB 交CD 于点E ,则AE BE +的最小值即为AB 的长,由于AD CD ==4AC =,22222241cos23CD AD ACADC CD AD+-+-∠===⋅,π1cos cos sin 23ADB ADC ADC ⎛⎫∠=+∠=-∠=- ⎪⎝⎭,所以(222222cos 22222163AB BD AD BD AD ADB ⎛=+-⋅∠=+-⨯⨯-=+ ⎝⎭故AB ==ABE 的周长最小值为4+B 错误;C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设球心为O ,取AC 的中点M ,连接,BM PM ,过点P 作PF 垂直于BM 于点F ,则F 为ABC 的中心,点O 在PF 上,过点O 作ON ⊥PM 于点N ,因为2,4AM AB ==,所以BM =PM =,则133MF BM ==,故PF =设OF ON R ==,故OP PF OF R =-=,因为PNO ∽PFM △,所以ON OP FM PM =3R-=解得3R =,C正确;D 选项,4个小球分两层(1个,3个)放进去,要使小球半径要最大,则4个小球外切,且小球与三个平面相切,设小球半径为r ,四个小球球心连线是棱长为2r 的正四面体Q VKG -,由C选项可知,其高为3r ,由C 选项可知,PF 是正四面体-P ABC 的高,PF 过点Q 且与平面VKG 交于S ,与平面HIJ 交于Z ,则3QS r =,SF r =,由C 选项可知,正四面体内切球的半径是高的14得,如图正四面体P HJI -中,QZ r =,3QP r =,正四面体P ABC -高为34r r r +⨯,解得r =,D 正确.故选:ACD【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径12.()0,1【分析】由题意可以先将所给集合化简,若满足A B = R ,则B A ⊆R ð,故只需根据包含关系列出不等式组求出参数范围即可.【详解】由题意{}{}2230,|13A x x x x x x =--<∈=-<<R ,{}{,0B x x a a x x a =>>=或},0x a a -,若满足A B = R ,则B A ⊆R ð,又因为{}|B x a x a =-≤≤R ð,所以130a a a -<-⎧⎪<⎨⎪>⎩,解得01a <<.故答案为:()0,1.13.()(223328x y -+=【分析】设()()1122,,,A x y B x y ,直线方程与圆的方程联立求出,A B 点坐标,设经过点A ,B ,C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,代入三点坐标解方程组可得答案.【详解】设()()1122,,,A x y B x y ,由2216y x y ⎧=⎪⎨+=⎪⎩解得121222x x y y ==-⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩可得((2,,2,A B --,设经过点A ,B ,()8,0C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,所以412204120640800D F Dx F D F ⎧++-+=⎪⎪+-++=⎨⎪++++=⎪⎩,解得616D E F =-⎧⎪=-⎨⎪=-⎩,即226160+---=x y x ,可得()(22328x y -+=.故答案为:()(22328x y -+=.14.502【分析】依题意,由等差数列的性质及求和公式得到250250240a b -≥,想要有实根,则240(1,2,,1003)i i a b i -≥= ,结合根的判别式与基本不等式得10∆≥,10030∆≥中至少一个成立,同理得到20∆≥,10020∆≥中至少一个成立,L ,5010∆≥,5030∆≥中至少一个成立,且5020∆≥,即可解决问题.【详解】由题意得,210031003410030S T -⨯≥,又因为1100310035021003()10032a a S a +==,1100310035021003()10032b b T b +==,代入得250250240a b -≥,要使方程()201,2,,1003i i x a x b i -+== 有实数解,则240(1,2,,1003)i i a b i -≥= ,显然第502个方程有解,设方程2110x a x b -+=与方程1003103200x a x b -+=的判别式分别为11003,∆∆,则22222110031100311100310031100311003502()(4)(4)4()422a a ab a b a a b b b +∆+∆=-+-=+-+≥-⨯即2250211003502502502(2)82(4)02a b a b ∆+∆≥-=-≥,等号成立的条件11003a a =,所以10∆≥,10030∆≥中至少一个成立,同理可得20∆≥,10020∆≥中至少一个成立,L ,5010∆≥,5030∆≥中至少一个成立,且5020∆≥,综上,在所给的1003个方程中,有实根的方程最少502个,故答案为:502.15.(1)2π0,3⎡⎤⎢⎥⎣⎦;(2)⎫⎪⎪⎝⎭.【分析】(1)根据二倍角公式及辅助角公式化简函数解析式,根据周期求得ω的值,从而得到函数的解析式,整体代入法求解单调区间即可;(2)利用正弦定理即两角和的正弦公式化简条件,从而求得π,3B =继而得到ππ,62A <<整体代入求函数值的范围即可.【详解】(1)()21sin 22f x x x ωω=-+11cos2sin2222x x ωω-=-1πcos2sin 2226x x x ωωω⎛⎫=+=+ ⎪⎝⎭.因为2π4π,2T ω==所以1,4ω=故()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π,,2262k x k k -+≤+≤+∈Z 解得4π2π4π4π,,33k x k k -≤≤+∈Z 当0k =时4π2π,,33x -≤≤又[]0,π,x ∈所以()f x 在[]0,π上的单调递增区间为2π0,3⎡⎤⎢⎥⎣⎦.(2)由()2cos cos ,a c B b C -=⋅得(2sin sin )cos sin cos ,A CB BC -=所以()2sin cos sin cos cos sin sin sin =+=+=A B B C B C B C A .因为sin 0,A ≠所以1cos ,2B =又()0,π,B ∈所以π,3B =又三角形为锐角三角形,则π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩,则ππ62A <<,所以ππ5π42612A <+<,又()26πsin A f A ⎛⎫=+ ⎪⎝⎭,5πππππππsin sin sin cos cos sin 12464646⎛⎫=+=+= ⎪⎝⎭,则πsin 2264A ⎛⎫<+< ⎪⎝⎭,所以()f A的取值范围为⎝⎭.16.(1)证明见解析(2)15【分析】(1)根据2AB AM ==,MB =利用勾股定理得到AB AM ⊥,再由AB AD ⊥,利用线面垂直的判定定理证明.(2)由2AM AD ==,MD =120MAD ∠=︒,在平面ADM 内过点A 作x 轴垂直于AM ,再结合(1)以AM ,AB 所在直线为y ,z 轴建立空间直角坐标系,求得EC的坐标,平面BDM 的一个法向量n,利用空间向量求线面夹角.【详解】(1)为2AB AM ==,MB =,所以222AM AB MB +=,所以AB AM ⊥.又AB AD ⊥,且AM AD A = ,AM ⊂平面ADM ,AD ⊂平面ADM ,所以AB ⊥平面ADM .(2)因为2AM AD ==,MD =则44121cos 2222MAD +-∠==-⨯⨯,且0180MAD ︒<∠<︒,可知120MAD ∠=︒,在平面ADM 内过点A 作x 轴垂直于AM ,又由(1)知AB ⊥平面ADM ,分别以AM ,AB 所在直线为y ,z 轴建立如图所示空间直角坐标系A xyz -.则)3,1,0D-,43,1,3C ⎫-⎪⎭,()0,0,2B ,()0,2,0M .因为2BE EM =,则420,,33E ⎛⎫⎪⎝⎭,可得723,,33EC ⎫=-⎪⎭ ,()0,2,2BM =-,)3,1,2BD =-- ,设平面BDM 的一个法向量为(),,n x y z =,则·220·320BM n y z BD n y z ⎧=-=⎪⎨=--=⎪⎩ ,取1z =得)3,1,1n = ,设直线EC 与平面BDM 所成角为π0,2θ⎡⎤∈⎢⎥⎣⎦,则413sin cos ,54553EC n EC n EC nθ⋅====⨯,所以直线EC 与平面BDM 所成角的正弦值为15.17.(1)0.15(2)()10553225E X ⎛⎫=-⨯ ⎪⎝⎭(3)1225757n n P -⎛⎫=⨯-+⎪⎝⎭【分析】(1)由全概率公式求解即可;(2)X 可取1,2,3,…,9,10,由题:对于()*19N k k ≤≤∈,()12355k P X k -⎛⎫==⨯ ⎪⎝⎭;()93105P X ⎛⎫== ⎪⎝⎭,即可求出数学期望;(3)由题意:11P =,()1321155n n n n P P P P +=+-=-+,由递推关系求出数列的通项.【详解】(1)记事件A =“硬币正面向上”,事件B =“7:40-7:45到校”则由题有()0.5P A =,()0.2P B A =,()0.1P B A =,故()()()()()0.50.20.50.10.15P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(2)X 可取1,2,3,…,9,10,由题:对于()*19N k k ≤≤∈,()12355k P X k -⎛⎫==⨯ ⎪⎝⎭;()93105P X ⎛⎫== ⎪⎝⎭,故()2892232323312391055555555E X ⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2891032323232331289105555555555E X ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯+⨯⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,以上两式相减得:()28922232323235555555555E X ⎛⎫⎛⎫⎛⎫=+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()1028910313333553513555522515E X ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅++==-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-.所以()10553225E X ⎛⎫=-⨯ ⎪⎝⎭.(3)由题意:11P =,()1321155n n n n P P P P +=+-=-+,则1525757n n P P +⎛⎫-=-- ⎪⎝⎭,这说明57n P ⎧⎫-⎨⎬⎩⎭为以15277P -=为首项,25-为公比的等比数列.故1522775n n P -⎛⎫-=⨯- ⎪⎝⎭,所以1225757n n P -⎛⎫=⨯-+ ⎪⎝⎭.18.(1)4e 2ey x =-+(2)有一个极大值,一个极小值,理由见解析(3)()1⎡⎣【分析】(1)当0a =时,求得()()21e xf x x +'=-,结合导数的几何意义,即可求解;(2)当12a =时,求得()()e e 22x xf x x '=--,令()e 22x F x x =--,利用导数求得()F x 的单调性与min ()0F x <,得到存在()11,ln2x ∈-使得()10F x =,存在()2ln2,2x ∈使得()20F x =,进而得到答案;(3)求得()()2e e 1x xf x a x '=--,根据题意,得到a<0,令()e 1xg x a x =--,得到()01,1x a ∃∈--使得()00g x =,利用函数()f x 的单调性,求得002max 0()e 2e x x f x a x =-,再由max 1()0f x a +≤,求得01x ≤<-,再由001e x x a +=,设()1ex x h x +=,利用导数求得函数()h x 的单调性,即可求解.【详解】(1)解:当0a =时,()2e x f x x =-,可得()()21e xf x x +'=-,则()()14e,12e f f =-=-',所以曲线()y f x =在点()()1,1f 处的切线方程为()2e 4e 1y x +=--,即4e 2e y x =-+.(2)解:当12a =时,()21e 2e 2x xf x x =-,定义域为R ,可得()()()2e 21e e e 22x x x xf x x x =-+=--',令()e 22x F x x =--,则()e 2xF x '=-,当(),ln2x ∞∈-时,()0F x '<;当()ln2,x ∞∈+时,()0F x '>,所以()F x 在(),ln2∞-递减,在()ln2,∞+上递增,所以()min ()ln222ln222ln20F x F ==--=-<,又由()()2110,2e 60eF F -=>=->,存在()11,ln2x ∈-使得()10F x =,存在()2ln2,2x ∈使得()20F x =,当()1,x x ∞∈-时,()()()0,0,F x f x f x >'>单调递增;当()12,x x x ∈时,()()()0,0,F x f x f x <'<单调递减;当()2,x x ∞∈+时,()()()0,0,F x f x f x >'>单调递增;所以12a =时,()f x 有一个极大值,一个极小值.(3)解:由()2e 2e x x f x a x =-,可得()()()22e 21e 2e e 1x x x xf x a x a x =-+=--',由()1R,0x f x a ∀∈+≤,因为()211100a f a a a a++=+=≤,可得a<0,令()e 1xg x a x =--,则()g x 在R 上递减,当0x <时,可得e (0,1)x ∈,则e (,0)x a a ∈,所以()e 11xg x a x a x =-->--,则()()1110g a a a ->---=,又因为()11e 0g a --=<,()01,1x a ∃∈--使得()00g x =,即()000e 10x g x a x =--=且当()0,x x ∞∈-时,()0g x >,即()0f x '>;当()00,x x ∞∈+时,()0g x <,即()0f x '<,所以()f x 在()0,x ∞-递增,在()0,x ∞+递减,所以()002max 00()e 2e x xf x f x a x ==-,由()000e 10xg x a x =--=,可得001e x x a +=,由max1()0f x a+≤,可得()000000e 1e 201x x x x x e x +-+≤+,即()()00011101x x x -++≤+,由010x +<,可得2011x -≤,所以01x ≤<-,因为001e x x a +=,设()1(1)e x x h x x +=≤<-,则()0x xh x e-='>,可知()h x在)⎡⎣上递增,()((1e h x h ≥=-()()10h x h <-=,所以实数a的取值范围是()1⎡⎣.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.19.(1)答案见解析(2)①证明见解析;②存在;2()2m n nλ+=【分析】(1)设(),P x y ,由题意可得222221x y n n m+=-,结合椭圆、双曲线的标准方程即可求解;(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =-=-.(ⅰ)由//AM BN 可知,,M A M '三点共且BN AM =',设MM ':x ty =+C 的方程,利用韦达定理表示1313,y y y y +,进而表示出11AM BN+,结合(1)化简计算即可;由椭圆的定义,由//AM BN 得()8AM BNBQ AM BN-⋅=+,()8BN AMAQ AM BN-⋅=+,进而表示出AQ BQ +,化简计算即可;(ii )由(ⅰ)可知,,M A M '三点共线,且BN AM =',设MM ':x sy m =+,联立C 的方程,利用韦达定理表示1313,y y y y +,计算化简可得22112nAM BN m n +=-,结合由内切圆性质计算即可求解.【详解】(1)设点(),P x ym n =,即222()m x m y x n n ⎛⎫-+=- ⎪⎝⎭,经化简,得C 的方程为222221x y n n m +=-,当m n <时,曲线C 是焦点在x 轴上的椭圆;当m n >时,曲线C 是焦点在x 轴上的双曲线.(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =-=-,(ⅰ)由(1)可知C的方程为()()221,,168x y A B +=-,因为//AM BN=因此,,,M A M '三点共线,且BN AM =='=,(法一)设直线MM '的方程为x ty =+C 的方程,得()22280t y ++-=,则1313282y y y y t +==-+,由(1)可知1134,4AM x BN AM x ====',所以131344222222112222x x ty ty AM BN AM BN AM BN ⎛⎫⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪ ⎪++=⋅--⎝⎭⎝⎭⎝⎭⎝⎭()()21321313442221142t y y t y y t y y ⎛⎫-⋅- ⎪++==++,所以11AM BN+为定值1;(法二)设MAx θ∠=4=,解得AM =,4=,解得AM =',所以111122144AM BN AM AM θθ=+'+=+=,所以11AM BN+为定值1;由椭圆定义8BQ QM MA ++=,得8QM BQ AM =--,8//,AM QM BQ AMAM BN BNBQBQ--∴==,解得()8AM BNBQ AM BN-⋅=+,同理可得()8BN AMAQ AM BN -⋅=+,所以()()()8882BN AM AM BNAM BN AM BNAQ BQ AM BNAM BNAM BN-⋅-⋅+-⋅+=+=+++2882611AM BN=-=-=+.因为AB =ABQ 的周长为定值6+.(ⅱ)当m n >时,曲线C 的方程为222221x yn m n-=-,轨迹为双曲线,根据(ⅰ)的证明,同理可得,,M A M '三点共线,且BN AM =',(法一)设直线MM '的方程为x sy m =+,联立C 的方程,得()()()222222222220m n s n y sm m n y m n ⎡⎤--+-+-=⎣⎦,()()()()222221313222222222,sm m n mn y y y y mn s nmn s n--∴+=-=----,(*)因为2113,m n m mAM x x n BN AM x n n m n n⎛⎫=-=-==- ⎝'⎪⎭,所以1111AM AM AM BN AM AM AM AM ''+=+=⋅'+2222131322221313sm m n sm m n m m y y x n x n n n n n n n m m sm m n sm m n x n x n y y n n nn n n ⎛⎫⎛⎫--⎛⎫⎛⎫+++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫----++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()()2213222222213132222m n smy y n n m n ms m n m s y y y y n n n -++=--+++,将(*)代入上式,化简得22112nAM BN m n +=-,(法二)设MAx θ∠=,依条件有2cos AMmn n m AM m θ=⎛⎫-+ ⎪⎝⎭,解得22cos m n AM n m θ-=-,同理由cos AM mn n m AM m θ=⎛⎫-- ⎪⎝⎭'',解得22cos m n AM n m θ-+'=,所以2222221111cos cos 2n m n m nAM BN AM AM m n m n m nθθ'-++=+=+=---.由双曲线的定义2BQ QM MA n +-=,得2QM n AM BQ =+-,根据AM QM BNBQ=,解得()2n AM BNBQ AM BN+⋅=+,同理根据AM AQ BNQN=,解得()2n BN AMAQ AM BN+⋅=+,所以()()2222n BN AM n AM BNAM BNAQ BQ n AM BNAM BNAM BN+⋅+⋅⋅+=+=++++222222211m n m n n n n n AM BN-+=+=++,由内切圆性质可知,()12S AB AQ BQ r =++⋅,当S r λ=时,()2221()222m n m n AB AQ BQ m n n λ++=++=+=(常数).因此,存在常数λ使得S r λ=恒成立,且2()2m n nλ+=.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

高考概率经典解答题及答案

高考概率经典解答题及答案

高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。

3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。

因此,两次投掷的点数之和为7的概率为6/36,即1/6。

以上是一些经典的高考概率题目及其答案,希望对您有帮助。

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,,,恒成立,则的最大值为()A.B.C.D.第(2)题一组数据,,…,满足(),若去掉,后组成一组新数据,则新数据与原数据相比,下列说法正确的是()A.方差变小B.平均数变大C.极差变大D.中位数变小第(3)题为圆()内异于圆心的一点,则直线与该圆的位置关系为()A.相离B.相交C.相切D.相切或相离第(4)题若函数既有极大值也有极小值,则()A.B.C.D.第(5)题设,,,则()A.B.C.D.第(6)题已知圆半径是1,直线与圆相切于点,过点的直线与圆交于,两点,且点与点在直线的两侧,点为中点,若,则的最大值为()A.B.C.D.第(7)题已知函数()在有且仅有三个零点,则的取值范围是()A.B.C.D.第(8)题已知是椭圆的左焦点,直线与交于、两点,则周长为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若非零函数对任意实数x,y均有,且当时.则().A.B.对任意实数x,都有C.为是增函数D .当时,对时恒有,则实数第(2)题已知红箱内有6个红球、3个白球,白箱内有3个红球、6个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依此类推,第次从与第k次取出的球颜色相同的箱子内取出一球,然后再放回去.记第次取出的球是红球的概率为,则下列说法正确的是()A.B.C.第5次取出的球是红球的概率为D.前3次取球恰有2次取到红球的概率是第(3)题已知函数,则真命题有()A.函数的最小正周期为B .函数的图像关于点中心对称C .是函数图像的一条对称轴D.将函数的图像向右平移个单位后得到函数的图像三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题过抛物线的焦点F作直线,交抛物线于A,B两点,若|FA|=3|FB|,则直线的倾斜角为___________.第(2)题函数的最小正周期是_____,值域是________.第(3)题已知直线和曲线相切于点,则____________;若关于的方程恰有一个实数解,则实数取值的集合为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,正四棱柱的底面边长为1,高为2,点是棱上一个动点(点与均不重合).(1)当点是棱的中点时,求证:直线平面;(2)当平面将正四棱柱分割成体积之比为的两个部分时,求线段的长度.第(2)题某中学对该校学生的学习兴趣和预习情况进行长期调查,学习兴趣分为兴趣高和兴趣一般两类,预习分为主动预习和不太主动预习两类,设事件A:学习兴趣高,事件B:主动预习.据统计显示,,,.(1)计算和的值,并判断A与B是否为独立事件;(2)为验证学习兴趣与主动预习是否有关,该校用分层抽样的方法抽取了一个容量为的样本,利用独立性检验,计算得.为提高检验结论的可靠性,现将样本容量调整为原来的倍,使得能有99.5%的把握认为学习兴趣与主动预习有关,试确定的最小值.附:,其中.0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828第(3)题圆心为的圆与抛物线相交于A,B,C,D四个点.(1)求圆的半径r的取值范围;(2)当四边形ABCD面积最大时,求对角线AC与BD的交点P的坐标.第(4)题已知等差数列的公差,且,的前项和为.(1)求的通项公式;(2)若,,成等比数列,求的值.第(5)题已知函数和有相同的最小值.(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.。

2024届新高考数学大题精选30题--概率统计(1)含答案

2024届新高考数学大题精选30题--概率统计(1)含答案

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。

高三数学试卷概率题及答案

高三数学试卷概率题及答案

一、选择题(每题5分,共50分)1. 从一副52张的扑克牌中(去掉大小王),随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 4/132. 一个袋子里装有5个红球和7个蓝球,随机取出一个球,取出红球的概率是多少?A. 5/12B. 7/12C. 1/2D. 5/73. 一枚均匀的硬币连续抛掷两次,至少出现一次正面的概率是多少?A. 3/4B. 1/2C. 1/4D. 1/34. 一个班级有40名学生,其中有20名男生和20名女生。

随机选择一名学生,这名学生是女生的概率是多少?A. 1/2B. 1/4C. 1D. 05. 一批产品中有10个正品和5个次品,随机抽取3个产品,至少抽取到2个正品的概率是多少?A. 21/55B. 36/55C. 45/55D. 54/55二、填空题(每题5分,共50分)6. 从1到10这10个数字中随机抽取一个数字,抽到偶数的概率是______。

7. 一批产品中有30%是次品,随机抽取5个产品,其中至少有1个次品的概率是______。

8. 抛掷两个均匀的正方体,两个正方体上点数之和为7的概率是______。

9. 一个密码锁由3位数字组成,每个数字可以是0到9中的任意一个,随机输入一个密码,输入正确的概率是______。

10. 一个班级有30名学生,其中有10名喜欢数学,15名喜欢物理,5名两者都喜欢。

随机选择一名学生,这名学生既喜欢数学又喜欢物理的概率是______。

三、解答题(每题20分,共40分)11. 甲、乙两人进行一场比赛,甲获胜的概率是0.6,乙获胜的概率是0.4。

如果比赛进行到一半时,甲领先2分,请问此时甲最终获胜的概率是多少?12. 一个袋子里装有10个球,其中有3个红球、4个蓝球和3个绿球。

随机取出3个球,求以下事件的概率:(1)取出3个球都是同一种颜色的概率;(2)取出3个球中有2个红球和1个蓝球的概率。

答案一、选择题1. A2. A3. A4. A5. B二、填空题6. 1/27. 0.7298. 6/36 = 1/69. 1/100010. 5/30 = 1/6三、解答题11. 由于甲领先2分,且甲获胜的概率为0.6,所以甲最终获胜的概率仍然是0.6。

高中数学概率练习题含答案

高中数学概率练习题含答案

高中数学概率练习题含答案练题一某班级有30名学生,其中15人是女生,15人是男生。

如果从班级中随机选择一个学生,求选择一个男生的概率。

解答选择一个男生的概率为 15/30,即 1/2。

练题二一副扑克牌共有52张牌,其中有4种花色(红桃、黑桃、梅花、方块),每种花色有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。

从中随机选择一张牌,求选中一张红桃的概率。

解答选中一张红桃的概率为 13/52,即 1/4。

练题三某公司招聘的两个部门分别是市场部和研发部。

市场部共有8名员工,研发部共有12名员工。

如果从公司中随机选择一个员工,求选择一个市场部员工的概率。

解答选择一个市场部员工的概率为 8/20,即 2/5。

练题四一个骰子有6个面,分别标有1、2、3、4、5、6。

投掷这个骰子一次,求出现奇数的概率。

解答出现奇数的概率为 3/6,即 1/2。

练题五一只袋子中有红球5个,蓝球3个。

从袋子中随机选择一个球,求选择一个蓝球的概率。

解答选择一个蓝球的概率为 3/8。

练题六某商店的销售记录显示,星期一销售了100个产品,其中有20个是绿色的,星期二销售了120个产品,其中有25个是绿色的。

从这两天销售的产品中随机选择一个,求选择一个绿色产品的概率。

解答选择一个绿色产品的概率为 (20+25)/(100+120),即 45/220。

练题七某学校的学生中,60%擅长数学,40%擅长英语。

一名学生同时擅长数学和英语的概率为20%。

如果从学校中随机选择一名学生,求选择一名既擅长数学又擅长英语的概率。

解答选择一名既擅长数学又擅长英语的概率为 (60%*40%*20%),即 4%。

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2120,{23},P xx x Q x m x m P Q =--≤=≤≤-=∅ ∣∣,则实数m 的取值范围是().A .{0m m <∣或4}m >B .{04}m m <<∣C .{3mm <∣或4}m >D .{34}mm <<∣2.某同学统计最近5次考试成绩,发现分数恰好组成一个公差不为0的等差数列,设5次成绩的平均分数为x ,第60百分位数为m ,当去掉某一次的成绩后,4次成绩的平均分数为y ,第60百分位数为n .若y x =,则()A .m n >B .m n=C .m n<D .m 与n 大小无法判断3.吹气球时,气球的体积V (单位:L )与半径r (单位:dm )之间的关系是343V r π=.当4L 3V π=时,气球的瞬时膨胀率为()A .1dm /L 4πB .1dm /L3C .3L /dmD .4L /dmπ4.设实数x ,y 满足22154x y +=)A .B .2-C .D .前三个答案都不对5.记数列{}n a 的前n 项和为n S ,设甲:{}n a 是公比不为1的等比数列;乙:存在一个非零常数t ,使1n S t ⎧⎫+⎨⎬⎩⎭是等比数列,则()A .甲是乙的充要条件B .甲是乙的充分不必要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件6.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ABCD F --的棱长为a ,下列说法中正确的个数有()①此八面体的表面积为2;②异面直线AE 与BF 所成的角为45 ;③此八面体的外接球与内切球的体积之比为④若点P 为棱EB 上的动点,则AP CP +的最小值为.A .1个B .2个C .3个D .4个7.在ABC V 中,2AB AC =,AD 是A ∠的平分线,交BC 于点D ,且AC tAD =,则t 的取值范围是A .3,4⎛⎫+∞ ⎪⎝⎭B .3,14⎛⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭8.已知,,(1,)a b c ∈+∞,且e 9ln11,e 10ln10,e 11ln 9a b c a b c ===,则,,a b c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .c b a>>二、多选题9.下列四个命题正确的是()A .若1i 1z +-=,则1i z --的最大值为3B .若复数12,z z满足12122,2,1z z z z ==+=,则12z z -=C .若()sin sin C A AB A AB B AC C P λλ⎛⎫ ⎪=+∈ ⎪⎝⎭R,则点P 的轨迹经过ABC V 的重心D .在ABC V 中,D 为ABC V 所在平面内一点,且1132+= AD AB AC ,则16BCD ABDS S =△△10.由倍角公式2cos 22cos 1x x =-可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n ∈N 次多项式()110n n n n n P t a t a t a --=+++ (0a ,1a ,…,n a ∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得()A .()3343P t t t=-+B .()424881P t t t =-+C.1sin 544+︒=D.1cos546︒=11.已知n S 是数列{}n a 的前n 项和,且21n n S S n +=-+,则下列选项中正确的是().A .121n n a a n ++=-(2n ≥)B .22n n a a +-=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫- ⎪⎝⎭三、填空题12.已知:平面l αβ= ,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥,3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为.13.数列{}满足()2*114,13n n n a a a a n N +==-+∈,则122017111a a a +++ 的整数部分是.14.极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b +=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.四、解答题15.在数列{}n a 中,已知321212222n n a a a a n -++++= .(1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a + 成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).16.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,左顶点为A ,短轴长为点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.17.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,E 是BC 的中点,点F 在棱AD 上,且PA AD ⊥,2cos5PAE ∠=-,PA =(1)若平面PAB ⋂平面PCD l =,证明://l 平面ABCD ;(2)求平面PEF 与平面PCD 的夹角的余弦值的最大值.18.近年来,购买盲盒成为当下年轻人的潮流之一,为了引导青少年正确消费,国家市场监管总局提出,盲盒经营行为应规范指引,经营者不能变相诱导消费.盲盒最吸引人的地方,是因为盒子上没有标注,只有打开才会知道自己买到了什么,这种不确定性的背后就是概率.几何分布是概率论中非常重要的一个概率模型,可描述如下:在独立的伯努利(Bernoulli )试验中,若所考虑事件首次出现,则试验停止,此时所进行的试验次数X 服从几何分布,事件发生的概率p 即为几何分布的参数,记作()~X G p .几何分布有如下性质:分布列为()()11k P X k p p -==-,1,2,,,k n =⋅⋅⋅⋅⋅⋅,期望()()1111k k E X k p p p+∞-==-⋅=∑.现有甲文具店推出四种款式不同、单价相同的文具盲盒,数量足够多,购买规则及概率规定如下:每次购买一个,且买到任意一种款式的文具盲盒是等可能的.(1)现小嘉欲到甲文具店购买文具盲盒.①求他第二次购买的文具盲盒的款式与第一次购买的不同的概率;②设他首次买到两种不同款式的文具盲盒时所需要的购买次数为Y ,求Y 的期望;(2)若甲文具店的文具盲盒的单价为12元,乙文具店出售与甲文具店款式相同的非盲盒文具且单价为18元.小兴为了买齐这四种款式的文具,他应选择去哪家文具店购买更省钱,并说明理由.19.牛顿在《流数法》一书中,给出了代数方程的一种数值解法——牛顿法.具体做法如下:如图,设r 是()0f x =的根,首先选取0x 作为r 的初始近似值,若()f x 在点00(,())x f x 处的切线与x 轴相交于点1(,0)x ,称1x 是r 的一次近似值;用1x 替代0x 重复上面的过程,得到2x ,称2x 是r 的二次近似值;一直重复,可得到一列数:012,,,,,n x x x x .在一定精确度下,用四舍五入法取值,当()*1,N n n x x n -∈近似值相等时,该值即作为函数()f x 的一个零点r .(1)若32()33f x x x x =++-,当00x =时,求方程()0f x =的二次近似值(保留到小数点后两位);(2)牛顿法中蕴含了“以直代曲”的数学思想,直线常常取为曲线的切线或割线,求函数()e 3x g x =-在点(2,(2))g 处的切线,并证明:23ln31e <+;(3)若()(1ln )h x x x =-,若关于x 的方程()h x a =的两个根分别为1212,()x x x x <,证明:21e e x x a ->-.参考答案:题号12345678910答案C CACBBADABCBC题号11答案AC1.C【分析】化简集合A 后,根据P Q =∅ 分类讨论即可.【详解】由{}2120[3,4]P xx x =--≤=-∣,P Q =∅ ,当Q =∅时,需满足23m m >-,解得3m <;当Q ≠∅时,需满足34m m ≥⎧⎨>⎩,解得4m >,综上3m <或4m >.故选:C 2.C【分析】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,即可求出x 、m ,要使去掉一个数据之后平均数不变,则去掉的一定是2a d +,从而求出n ,即可判断.【详解】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,所以()123425x a a d a d a d a d a d =++++++++=+,又560%3⨯=,所以第60百分位数为23522a d a d m a d +++==+,要使4次成绩的平均分数为y 且y x =,则去掉的数据一定是2a d +,即还剩下a 、a d +、3a d +、4a d +()0,0a d >>,又460% 2.4⨯=,所以第60百分位数为3n a d =+,因为0d >,所以n m >.故选:C 3.A【分析】气球膨胀率指的是气球体积变化的值与半径变化值之间的比值,即rV∆∆,但此题所求的时瞬时变化率,故需要利用导数求解.【详解】因为343V r π=,所以r =,所以12333143r π-⎛⎫'=⨯ ⎪⎝⎭,所以,当43V π=时,12123333314313131433434344r ππππππ-⎛⎫⎛⎫⎛⎫⎛⎫'=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭dm /L .故选:A 4.C【分析】转化为动点到两定点之间距离和,再利用焦点三角形的性质可求最小值.,点(,)P x y 是椭圆22:154x y C +=上的点,设(1,0),(1,0),(0,1)E F A -,如图.记题中代数式为M ,则||||||||||M PA PF PA PE AE =+=+≥=等号当点E ,A ,P 依次共线时取得.因此所求最小值为故选:C.5.B【分析】利用等比数列前n 项和公式,结合充分条件、必要条件的定义判断即得.【详解】设数列{}n a 的首项和公比分别为1a ,(1)≠q q ,则111n n q S a q -=⋅-,取11a t q =-,得1n n S q t +=,显然数列{1}n S t +是等比数列;反之,取1t =,0n a =,此时11n S +=,数列{1}nS t+为等比数列,而{}n a 不是等比数列,所以甲是乙的充分不必要条件.故选:B 6.B【分析】对①:计算出一个三角形面积后乘8即可得;对②:借助等角定理,找到与AE 平行,与BF 相交的线段,计算即可得;对③:借助外接球与内切球的性质计算即可得;对④:空间中的距离和的最值问题可将其转化到同意平面中进行计算.【详解】对①:由题意可得2284S =⨯=表,故①正确;对②:连接AC ,取AC 中点O ,连接OE 、OF ,由题意可得OE 、OF 为同一直线,A 、E 、C 、F 四点共面,又AE EC CF FA ===,故四边形AECF 为菱形,故//AE CF ,故异面直线AE 与BF 所成的角等于直线CF 与BF 所成的角,即异面直线AE 与BF 所成的角等于60CFB ∠=,故②错误;对③:由四边形ABCD 为正方形,有2222222AC BC AB EC AE a =+=+=,故四边形AECF 亦为正方形,即点O 到各顶点距离相等,即此八面体的外接球球心为O,半径为2aR =,设此八面体的内切球半径为r ,则有2112233E ABCD F E ABCD V S r V a ---=⨯==⨯⨯⨯表r =,则此八面体的外接球与内切球的体积之比为33R r ⎛⎫⎪⎛⎫== ⎪⎝⎭对④:将AEB 延EB 折叠至平面EBC中,如图所示:则在新的平面中,A 、P 、C 三点共线时,AP CP +有最小值,则()min 22AP CP a +=⨯=,故④错误.故选:B.【点睛】关键点点睛:本题④中,关键点在于将不共面的问题转化为同一平面的问题.7.A【解析】在ABC V 中,2AB AC =,AD 是A ∠的平分线,由角平分线性质可得2BD ABCD AC==,利用cos cos BAD CAD ∠=∠结合余弦定理化简可得22212CD AC AD =-,再代入cos CAD ∠的式子中消去CD ,通过AC tAD =,化简整理得出3cos 4CAD t∠=,即可得到t 的取值范围.【详解】在ABC V 中,2AB AC =,AD 是A ∠的平分线,∴由角平分线的性质可得2BD ABCD AC==,BAD CAD ∠=∠,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,在ACD 中,由余弦定理得222cos 2AC AD CD CAD AC AD +-∠=⋅,∴22222222AB AD BD AC AD CD AB AD AC AD+-+-=⋅⋅,化简得22222AD AC CD =-,即22212CD AC AD =-,∴22223332cos 2244AD AC AD CD AD CAD AC AD AC AD AC t+-∠===⋅⋅而0,2CAD π⎛⎫∠∈ ⎪⎝⎭,故()3cos 0,14CAD t ∠=∈,∴3,4t ⎛⎫∈+∞ ⎪⎝⎭.故选:A.【点睛】本题考查了三角形内角平分线的性质以及余弦定理在解三角形中的应用,考查了转化能力与计算能力,属于中档题.8.D【分析】构造函数()()e ,1,xf x x x∞=∈+,利用导数讨论其单调性,将问题转化为比较,,,再转化为比较9ln11,10ln10,11ln 9,构造函数()()20ln g x x x =-,利用导数讨论其单调性,利用单调性即可得答案.【详解】由题知,e e e 9ln11,10ln10,11ln 9a b ca b c ===,记()()e ,1,x f x x x ∞=∈+,则()()21e x x f x x-'=,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,故比较,,a b c 的大小关系,只需比较,,的大小关系,即比较9ln11,10ln10,11ln 9的大小关系,记()()20ln ,1g x x x x =->,则()20ln 1g x x x=-+-',记()20ln 1h x x x =-+-,则()21200h x x x=--<',所以()h x 在()1,+∞上单调递减,又()220338ln 81ln 8ln e 0822h =-+-=-<-<,所以,当()8,x ∈+∞时,()0h x <,()g x 单调递减,所以()()()11109g g g <<,即9ln1110ln1011ln 9<<,所以()()()f a f b f c <<,所以a b c <<.故选:D【点睛】本题难点在于构造函数()()e ,1,xf x x x∞=∈+,将问题转化成比较,,的大小关系后,需要再次构造函数()()20ln ,1g x x x x =->,对学生观察问题和分析问题的能力有很高的要求,属于难题.9.ABC【分析】A 根据复数模的几何意义及圆的性质判断;B 利用复数的运算和模的运算求解即可;C 结合重心的性质进行判断;D 利用平面向量基本定理,判断出D 点位置,进而可求.【详解】对A ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1,即动点Z 的轨迹以(1,1)-为圆心,1为半径的圆,1i z --表示动点点Z 的轨迹以(1,1)的距离,由圆的性质知:max |i |z --==113,A 正确;对B ,设i,i,(,,,R)z m n z c d m n c d =+=+∈12,因为12122,2,1z z z z ==+=,所以,m n c d +=+=222244,,m c n d +=+=1,所以mc nd +=-2,所以12()()i z z m c n d -=-+-====,B 正确;对C ,由正弦定理的sin sin AC C AB B ⋅=⋅,即||sin ||sin AC C AB B =,()sin sin sin AB AC AP AB AC AB B AC C AB B λλ⎛⎫ ⎪∴==+ ⎪⎝⎭,设BC 中点为E ,如图:则AB +AC =2AE,则||sin AP AE AB Bλ=2 ,由平面向量的共线定理得,,A P E 三点共线,即点P 在边BC 的中线上,故点P 的轨迹经过ABC V 的重心,C 正确;对D ,如图由已知点D 在ABC V 中与AB 平行的中位线上,且靠近BC 的三等分点处,故有,,ABD ABC ACD ABC BCD S S S S S ===1123 1111236ABC ABC S S ⎛⎫--= ⎪⎝⎭ ,所以13BCD ABDS S =△△,D 错误.故选:ABC 10.BC【分析】根据两角和的余弦公式,以及二倍角的正余弦公式化简可得3cos34cos 3cos x x x =-,根据定义即可判断A 项;根据二倍角公式可推得()424cos 8cos 8cos 1P x x x =-+,即可得出B 项;根据诱导公式以及A 的结论可知,3cos544cos 183cos18︒=︒-︒,2sin 54cos 362cos 181︒=︒=︒-.平方相加,即可得出25cos 188︒+=,进而求出C 项;假设D 项成立,结合C 项,检验即可判断.【详解】对于A 项,()cos3cos 2cos 2cos sin 2sin =+=-x x x x x x x ()222cos 1cos 2cos sin x x x x=--()()222cos 1cos 2cos 1cos x x x x =---34cos 3cos x x =-.由切比雪夫多项式可知,()3cos3cos x P x =,即()33cos 4cos 3cos P x x x =-.令cos t x =,可知()3343P t t t =-,故A 项错误;对于B 项,()cos 4cos 22x x =⨯()2222cos 2122cos 11x x =-=⨯--428cos 8cos 1x x =-+.由切比雪夫多项式可知,()4cos 4cos x P x =,即()424cos 8cos 8cos 1P x x x =-+.令cos t x =,可知()424881P t t t =-+,故B 项正确;对于C 项,因为36218︒=⨯︒,54318︒=⨯︒,根据A 项3cos34cos 3cos x x x =-,可得3cos 544cos 183cos18︒=︒-︒,2cos 362cos 181︒=︒-.又cos 36sin 54︒=︒,所以2222cos 36cos 54sin 54cos 541︒+︒=︒+︒=,所以,()()22324cos 183cos182cos 1811︒-︒+︒-=.令cos180t =︒>,可知()()223243211t tt -+-=,展开即可得出642162050t t t -+=,所以42162050t t -+=,解方程可得258t ±=.因为cos18cos320t =︒>︒,所以258t =,所以,2cos 362cos 181︒=︒-512184=⨯=,所以,sin 54cos36︒=︒=C 项正确;对于D 项,假设1cos546︒=,因为1sin 544︒=,则22221si c s n o 5445⎫︒=+≠⎪⎪⎝⎭⎝⎭︒+,显然不正确,故假设不正确,故D 项错误.故选:BC.【点睛】方法点睛:根据题意多项式的定义,结合两角和以及二倍角的余弦公式,化简可求出()()34cos ,cos P x P x ,换元即可得出()()34,P t P t .11.AC【分析】对于A ,由21n n S S n +=-+,多写一项,两式相减即可得出答案.对于B ,由121n n a a n ++=-(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥.对于C ,由分析知22n n a a +-=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案.对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<< ,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=-+,当()2121n n n S S n -≥=-+-,,两式相减得:121n n a a n ++=-(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=-(2n ≥),所以()+122+11=21n n a a n n ++=-+,两式相减得:22n n a a +-=(2n ≥),所以B 不正确.对于C ,21n n S S n +=-+ ,令1n =,则211S S =-+,1211a a a +=-+,因为10a =,所以21a =.令2n =,则324S S =-+,112324a a a a a ++=--+,所以32a =.因为22n n a a +-=(2n ≥),而312a a -=,所以22n n a a +-=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列.偶数项是以21a =为首项,2为公差的等差数列.则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++ 5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=-+,令1n =,则211S S =-+,1211a a a +=-+,则2121a a =-+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a -=--+=+,同理:()4311=552223a a a a -=-+=-+,()5411=772324a a a a -=--+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<< ,解12a a <得:113a <,解23a a <得:114a >-,解34a a <得:114a <,解45a a <得:114a >-,解56a a <得:114a <,所以1a 的取值范围是11,44⎛⎫- ⎪⎝⎭,所以D 不正确.故选:AC.【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=-,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.12.5【分析】作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,证明DE EC ⊥,先求出EC ,再得CD .【详解】如图,作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,因为//AE BD 且AE BD =,所以ABDE 是平行四边形,所以//DE AB ,4DE AB ==,因为,AB AC AB BD ⊥⊥,所以,ED AC ED AE ⊥⊥,AC AE A ⋂=,所以BD ⊥平面AEC ,CE ⊂平面AEC ,所以ED CE ⊥,3AC AE ==,若60CAE ∠=︒,则3CE =,5CD ==,若120CAE ∠=︒,则23sin 60CE =⨯︒=,CD =故答案为:5【点睛】本题考查异面直线所成角的应用,都可空间两点间的距离.解题关键是作出异面直线所成的角.构造三角形,在三角形中求线段长.13.2【详解】因为()2*114,13n n n a a a a n N +==-+∈,所以211(1)0n n n n n a a a a a ++-=->⇒>,数列{}单调递增,所以1(11)0n n n a a a +-=->,所以111(1)1111n n n n na a a a a +--=--=,所以121122111111111111()()()11111n n n n n S a a a a a a a a a a a =+++=-+-++-=------ ,所以20172017131m S a ==--,因为143a =,所以22223444131313133133133()1,()1,()12,33999818181a a a =-+==-+==-+> ,所以20172016201542a a a a >>>>> ,所以201711a ->,所以20171011a <<-,所以201512331a <-<-,因此m 的整数部分是2.点睛:本题考查了数列的综合应用问题,其中解答中涉及到数列的通项公式,数列的裂项求和,数列的单调性的应用等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,本题的借助数列递推关系,化简数列为111111n n na a a +=---,再借助数列的单调性是解答的关键.14.103tyx -+-=(或330x ty -+=);【分析】(1)根据已知直接写出直线AB 的方程;(2)求出cos ,OP n →→〈〉=sin PMB ∠利用基本不等式求解.【详解】解:(1)由题得AB :4143x ty-+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t→=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉==sin PMB ∠==,即()min sin PMB ∠=.故答案为:103tyx -+-=.15.(1)2n n a =(2)14337【分析】(1)根据数列的前n 项和求数列的通项公式,一定要分1n =和2n ≥讨论.(2)首先弄清楚新数列前55项的构成,再转化为错位相减法求和.【详解】(1)当1n =时,12a =;当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a ----⎛⎫⎛⎫=++++-++++ ⎪ ⎪⎝⎭⎝⎭()2212n n =--=,所以122nn a -=⇒2n n a =,2n ≥.当1n =时,上式亦成立,所以:2n n a =.(2)由()123155n n ⎡⎤+++++-=⎣⎦ ⇒10n =.所以新数列前55项中包含数列的前10项,还包含,11x ,21x ,22x ,31x ,32x ,L ,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=,()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+ .设123935719T a a a a =++++ 1239325272192=⨯+⨯+⨯++⨯ 则234102325272192T =⨯+⨯+⨯++⨯ ,所以()1239102322222192T T T -=-=⨯+⨯+++-⨯ 101722=-⨯-.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【点睛】关键点点睛:本题的关键是要弄清楚新数列前55项的构成.可先通过列举数列的前几项进行观察得到规律.16.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,2y M x +,同理226(4,)2y N x +,由斜率公式计算即可.【详解】(1)因为2b =b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;(2)由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为−2,0,所以直线PA 的方程为=+2,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.(1)证明见解析(2)14【分析】(1)证明出//CD 平面PAB ,利用线面平行的性质可得出//CD l ,再利用线面平行的判定定理可证得结论成立;(2)计算出cos PAB ∠的值,以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立空间直角坐标系,设()0,,0F a ()02a ≤≤,利用空间向量法结合二次函数的基本性质可求得平面PEF 与平面PCD 的夹角的余弦值的最大值.【详解】(1)证明:因为四边形ABCD 正方形,所以//AB CD .因为CD ⊂/平面PAB ,AB ⊂平面PAB ,所以//CD 平面PAB .又因为CD ⊂平面PCD ,平面PAB ⋂平面PCD l =,所以//CD l .因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:由题意可得AE ==,PE =因为四边形ABCD 是正方形,所以AB AD ⊥.又因为PA AD ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以AD ⊥平面PAB .因为//AD BC ,所以⊥BC 平面PAB ,因为PB ⊂平面PAB ,所以,BC PB⊥.则PB ===.所以,222cos 2PA AB PB PAB PA AB +-∠==⋅以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的空间直角坐标系.点P 到平面yAz的距离为()cos π1AP PAB -∠=,点P 到平面xAy2==.则()1,0,2P -,()2,2,0C ,()0,2,0D ,()2,1,0E ,设()0,,0F a ()02a ≤≤,则()3,2,2PC =-,()2,0,0CD =- ,设平面PCD 的法向量为()111,,x n y z = ,则1111322020PC n x y z CD n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,取11y =,可得()0,1,1n = .设平面PEF 的法向量为()222,,m x y z = ,()3,1,2PE =-,()1,,2PF a =- ,则22222232020PE m x y z PF m x ay z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩,取24y =,可得()22,4,31m a a =-- .设平面PEF 与平面PCD 的夹角为α,则cos m n m nα⋅==⋅ 令[]11,3a t +=∈,则cosα==.当1512t =时,211484013t t ⎛⎫-⨯+⎪⎝⎭取得最小值,最小值为143,所以cos α75a =.故平面PEF 与平面PCD 的夹角的余弦值的最大值为14.18.(1)①34;②73(2)应该去乙店购买非盲盒文具,理由见解析【分析】(1)①明确第二次只需买到其余的三种文具盲盒的任意一款即可求解;②结合已知由几何分布的性质即可求解.(2)由随机变量以及相应的均值结合几何分布的性质即可求解.【详解】(1)①由题意可知,当第一次购买的文具盲盒已经确定时,第二次只需买到其余的三种文具盲盒的任意一款即可,所以34p =;②设从第一次购买文具后直到购买到两种不同款式的文具盲盒所需要的购买次数为X ,则由题意可知3~4X G ⎛⎫ ⎪⎝⎭,又1Y X =+,所以()()()4711133E Y E X E X =+=+=+=.(2)由题意,在乙店买齐全部文具盲盒所花费的费用为18472⨯=元,设从甲店买齐四种文具盲盒所需要的购买次数为Z ,从第一次购买到1i -种不同款式的文具开始,到第一次购买到i 种不同款式的文具盲盒所需要的购买次数为随机变量i Z ,则5~4i i Z G -⎛⎫ ⎪⎝⎭,其中1,2,3,4i =,而1234Z Z Z Z Z =+++,所以()()()441234114425124533i i i E Z E Z Z Z Z E Z i===+++===+++=-∑∑,所以在甲店买齐全部文具盲盒所需费用的期望为()1210072E Z =>,所以应该去乙店购买非盲盒文具.19.(1)1.83(2)22e e 30x y ---=,证明见解析(3)证明见解析【分析】(1)根据题意分别计算出12,x x ,取2x 得近似值即为方程()0f x =的二次近似值;(2)分别求出(2)g ,(2)g ',即可写出函数()g x 在点(2,(2))g 处的切线方程;设2()ln 1,1ex m x x x =-->,证明出2()(e )m x m ≤,得出2(3)(e )m m <,即可证明;(3)先判断出1201e x x <<<<,然后辅助证明两个不等式()()()1e 1e 1e h x x x ≥-≤≤-和()(01)h x x x ≥<≤即可.【详解】(1)2()361f x x x '=++,当00x =时,(0)1f '=,()f x 在点(0,3)-处的切线方程为3y x +=,与x 轴的交点横坐标为(3,0),所以13x =,(3)46f '=,()f x 在点(3,54)处的切线方程为5446(3)y x -=-,与x 轴的交点为42(,0)23,所以方程()0f x =的二次近似值为1.83.(2)由题可知,2(2)e 3g =-,()e x g x '=,2(2)e g '=,所以()g x 在(2,(2))g 处的切线为22(e 3)e (2)y x --=-,即22e e 30x y ---=;设2()ln 1,1e x m x x x =-->,则211()em x x '=-,显然()m x '单调递减,令()0m x '=,解得2e x =,所以当2(1,e )x ∈时,()0m x '>,则()m x 在2(1,e )单调递增,当2(e ,)x ∈+∞时,()0m x '<,则()m x 在2(e ,)+∞单调递减,所以2222e ()(e )ln e 10em x m ≤=--=,所以2(3)(e )m m <,即2233ln 310ln 31e e --<⇔<+.(3)由()ln h x x x x =-,得()ln h x x '=-,当01x <<时,ℎ′>0;当1x >时,ℎ′<0,所以ℎ在0,1上单调递增,在1,+∞上单调递减,所以1x =是ℎ的极大值点,也是ℎ的最大值点,即()max ()11h x h ==,又0e x <<时,()0h x >,e x >时,()0h x <,所以当方程()h x a =有两个根时,必满足1201e x x <<<<;曲线()y h x =过点()1,1和点()e,0的割线方程为1(e)1e y x =--,下面证明()()()1:e 1e 1e h x x x ≥-≤≤-,设()()()()1e 1e 1eu x h x x x =--≤≤-,则()1e 11ln ln lne e 1u x x x -⎛⎫=-+=-'- ⎪-⎝⎭,所以当1e 11e x -<<时,()0u x '>;当1e 1e e x -<<时,()0u x '<,所以()u x 在1e 11,e -⎛⎫ ⎪⎝⎭上单调递增,()()10u x u ≥=;在1e 1e ,e -⎛⎫ ⎪⎝⎭上()u x 单调递减,()()e 0u x u ≥=,所以当1e x ≤≤时,()0u x ≥,即()1()e (1e)1ef x x x ≥-≤≤-(当且仅当1x =或e x =时取等号),由于21e x <<,所以()()221e 1e a f x x =>--,解得2e e x a a >-+;①下面证明当01x <≤时,()h x x ≥,设()()ln ,01n x h x x x x x =--<≤=,因为ln 0x ≤,所以当01x <≤时,()f x x ≥(当且仅当1x =时取等号),由于101x <<所以()11a h x x =>,解得1x a ->-,②①+②,得21e e x x a ->-.【点睛】关键点睛:第三问的难点在于辅助构造出两个函数不等式,这样再利用函数单调性,得到相关不等式,然后进行估计21x x -的范围.。

2023高考数学概率知识点练习及答案

2023高考数学概率知识点练习及答案

2023高考数学概率知识点练习及答案高考数学概率知识点练习及答案一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是( )A. 1/2B.2C. -1D.1答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P==.3.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,则n的所有可能值为( )A.3B.4C.2和5D.3和4答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.4.记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为( )A. 3/4B.1/2C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+π2有零点,需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b[-π,π],建立平面直角坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为________.答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y2≤2的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x∈[-1,1],都有f(x)≥0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)≥0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且m≠n,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足m≠n的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率.命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且m≠n)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x 的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为“方程x2+2ax+b2=0有实根”.当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件“在该样本中任取2辆轿车,其中至少有1辆标准型轿车”,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=×(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4”,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.。

河北省衡水市冀州区滏运中学2025届高三复习班上学期第二次调研数学试题

河北省衡水市冀州区滏运中学2025届高三复习班上学期第二次调研数学试题

河北省衡水市冀州区滏运中学2025届高三复习班上学期第二次调研数学试题一、单选题1.已知集合()(){}{|320},15A x x x B x x =-+<=∈-≤≤∣N,则A B =I ( ) A .[)1,3- B .{}1,0,1,2- C .(]2,5- D .{}0,1,22.求值:sin300tan 600︒+︒=( )A B .C D .3.若0,0m n >>,且3210m n +-=,则32m n+的最小值为( ) A .20B .12C .16D .254.已知()f x 是定义在R 上的可导函数,若0(2)(2)1lim 22h f h f h →+-=,则(2)f '=( )A .1-B .14-C .1D .145.已知方程e 20x x +-=,ln 20x x +-=的根分别为,a b ,则a b +的值为( ) A .1 B .2C .3D .46.若ππ24α-<<-,则点()sin cos ,tan sin P αααα+-位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.函数()221,1e ln ,1x x ax xf x x x ⎧--+<=⎨+≥⎩在R 上单调递增,则a 的取值范围是( )A .[)1,-+∞B .(],1-∞-C .e ,12⎡⎤--⎢⎥⎣⎦D .e ,12⎛⎫-- ⎪⎝⎭8.已知(),,e xa b f x ax b ∈=-+R ,若()1f x ≥恒成立,则b a a-的取值范围是( )A .[)0,+∞B .[)1,+∞C .[)2,-+∞D .[)1,-+∞二、多选题9.设1z ,2z 为复数,则下列说法中正确的有( )A .若1i z a b =+,2i z c d =+,其中a ,b ,c ,d ∈R ,且a c >,b d >,则12z z >B .若()22321i m m m -++-(m ∈R )为纯虚数,则2m =C .若关于x 的方程20x px q ++=,p ,q ∈R 的一个虚根为2i 1-,则5p q +=-D .若112i z =-+,234i z =+,则复数12z z -在复平面内对应的点位于第三象限 10.已知tan 2tan αβ=,则下列说法正确的是( )A .若tan tan 2αβ=,则tan tan 0αβ==B .若2sin cos 5αβ=,则()7cos 2225αβ+=C .若α,π0,2β⎛⎫∈ ⎪⎝⎭,则()tan αβ-D .α∃,π0,2β⎛⎫∈ ⎪⎝⎭,使得2αβ=11.已知函数()32f x x ax =-+,则下列说法正确的是( )A .点 0,2 是曲线y =f x 的对称中心B .当1a =时,函数()f x 有3个零点C .若函数()f x 有两个零点,则3a =D .过坐标原点可以作曲线y =f x 三条切线三、填空题12.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点()1,2P ,则c o s 2α=.13.已知函数()e e x x f x a -=+(a 为常数)为奇函数, 且()()g x f x mx =-为增函数, 则实数m 的取值范围是.14.已知函数()()6log 1f x x k k =--∈R .若0k =,则()f x 的零点为;若函数()f x 有两个零点()1212,x x x x <,则1225x x +的最小值为.四、解答题15.已知π2sin(π)sin 323π135cos 3cos(2π)2x x x x ⎛⎫--+ ⎪⎝⎭=⎛⎫++- ⎪⎝⎭.(1)求tan x 的值;(2)若sin x ,cos x 是方程20x mx n -+=的两个根,求23+m n 的值.16.已知函数()31443f x x x =-+.(1)求函数()f x 在点()()33f , 处的切线方程; (2)求函数()f x 在[]0,3上的最大值与最小值. 17.已知ππ42α≤≤,3ππ2β≤≤,4sin 25α=,cos()10αβ+=-, (1)求225sin 8sincos11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭的值(2)求角βα-的值. 18.已知函数()e lnx xf x a a=-()0a > (1)若()f x 在1x =处取得极值,求函数()f x 的单调区间. (2)若函数()f x 有两个零点,求a 的取值范围. 19.已知函数()()()1ln ,R af x x a xg x a x+=-=-∈. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若在[]()1,e e 2.718=上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡水万卷作业卷二十八文数概率作业专练一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2015陕西高考真题)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .1672.在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是( )A .B .C .D .3.在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 4.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为(A )0.2 (B )0.4(C )0.5 (D )0.65.(2015福建高考真题)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .126.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7.掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D 8.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B pp p =< 132.C p p p =< 123.D p p p ==9.已知实数[]10,1∈x 执行如图所示的流程图,则输出的x 不小于63的概率为( )103.52.94.31.D C B A 10.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )(高中部)(初中部)男男女女60%70%1.5A2.5B3.5C4.5D 11.v 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+ B . 112π+ C .1142π- D . 112π-12.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则A .123p p p <<B .213p p p <<C .132p p p <<D .312p p p << 二、填空题(本大题共4小题,每小题4分,共16分) 13. 在某市2015年“创建省文明卫生城市”知识竞赛中 ,考评组从中抽取200份试卷进行分析,其分数的频率分 布直方图如右图所示,则分数在区间[60,70)上的人数大约有 人.14.在平面区域0202x y ≤≤⎧⎨≤≤⎩内任取一点(,)P x y ,若(,)xy 满足x y b +≤的概率大于18,则b 的取值范围是___________.15.第十二届全运会于2013年8月31日在沈阳举行,运动会期间从来自A 大学的2名志愿者和来自B大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是_______.16.已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为 . 三、解答题(本大题共2小题,共24分) 17.2013年4月14日,CCTV 财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关(1)根据表中数据,求出s ,t 的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?(2)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?参考公式: 2()()()()()n ad bc k a b c d a c b d -=++++18.某学科测试,要求考生从A ,B ,C 三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择A ,B ,C 题作答的人数如表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A 题作答的试卷中抽出了3份,则应从选择B ,C 题作答的试卷中各抽出多少份? (Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A ,B ,C 题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A ,B ,C 题作答的试卷中各随机选1份,求这3份试卷都得优的概率.分数(分)40 50 60 70 80 频率 0.01 0.02 0.03 0.04衡水万卷作业卷二十八文数答案解析一、选择题 1.C【解析】试题分析:由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+= 故答案选C 考点:概率与统计.2.【考点】: 几何概型.【专题】: 概率与统计. 【分析】: 设正方形的边长,求出面积以及内切圆的四分之一圆面积,利用几何概型求概率. 【解析】: 解:设正方形的边长为2,则面积为4;圆与正方形内切,圆的半径为1,所以圆的面积为π,则阴影部分的面积为,所以所求概率为P==.故选:C . 【点评】: 本题考查了几何概型概率的求法,属于基础题. 3.B 4.B 5.B解析试题分析:由已知得B (1,0),C (1,2),D (-2,2),F (0,1)。

则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率为326=14考点:古典概型. 6.B 7.【答案】B【解析】点数之和为5的基本事件有:(1,4)(4,1)(2,3)(3,2),所以概率为364=918.D 9.A 10.B 11.C【解析】试题分析:22(1)||1(1)1z x yi z x y =-+⇒=≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=- 若||1z ≤,则y x ≥的概率211142142πππ-=-⨯ 故答案选C考点:1.复数的模长;2.几何概型. 12.C二、填空题 13.8014.(1,+∞) . 15.【知识点】概率K2【答案】35解析:设“至少有一名A 大学志愿者”为M ,从6名志愿者抽2人有2615C =,事件M 包含有24159C -=个基本事件,所以()93155P M ==. 【思路点拨】本题为古典概型的概率求法,结合古典概型概率计算公式求值即可.16.5164π-三、解答题 17.解:(Ⅰ)15, 5.s t ==由已知数据可求得:2260(2515155)7.5 6.635,30304020k ⨯⨯-⨯=≈>⨯⨯⨯故能在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标关.(Ⅱ)用分层抽样的方法在使用淡化海砂的样本中抽取了6个,其中应抽取“混凝土耐久性达标”的为2565,30⨯=“混凝土耐久性不达标”的为1. “混凝土耐久性达标”的记为12345,,,,,A A A A A “混凝土耐久性不达标”的记为B .从这6个样本中任取2个,共有15可能,设“取出的2个样本混凝土耐久性都达标”为事件A ,它的对立事件A 为“取出的2个样本至少有一个混凝土耐久性不达标”,包含(1,A B ),(2,A B ),(3,A B ),(4,A B ),(5,A B )共5种可能,所则以52()1()1153P A P A =-=-=.取出的2个样本混凝土耐久性都达标的概率是23.18.【考点】: 列举法计算基本事件数及事件发生的概率.【专题】: 概率与统计. 【分析】: (Ⅰ)根据分层抽样即可得到应从选择B ,C 题作答的试卷中各抽出得份数;(Ⅱ)记(Ⅰ)中抽取得选择A 题作答的试卷分别为a 1,a 2,a 3,其中a 1,a 2得优,选择B 题作答的试卷分别为b 1,b 2,其中b 1,b 2得优,选择C 题作答的试卷分别为c 1,c 2其中c 1得优,一一列举出所有得结果,再找到满足条件的基本结果,根据概率公式计算即可.【解析】: 解(Ⅰ)由题意可得,试卷的抽出比例为=,所以应从选择B 题作答试卷中抽取2份,从选择C 题作答试卷中抽出2份,(Ⅱ)记(Ⅰ)中抽取得选择A 题作答的试卷分别为a 1,a 2,a 3,其中a 1,a 2得优,选择B 题作答的试卷分别为b 1,b 2,其中b 1,b 2得优,选择C 题作答的试卷分别为c 1,c 2其中c 1得优,从三种试一份卷中分别抽取所有得结果如下, {a 1,b 1,c 1},{a 1,b 1,c 2},{a 1,b 2,c 1},{a 1,b 2,c 2}, {a 2,b 1,c 1},{a 2,b 1,c 2},{a 2,b 2,c 1},{a 2,b 2,c 2}, {a 3,b 1,c 1},{a 3,b 1,c 2},{a 3,b 2,c 1},{a 3,b 2,c 2},所以结果共有12种可能,其中3份都得优得有{a 1,b 1,c 1},{a 1,b 2,c 1},{a 2,b 1,c 1},{a 2,b 2,c 1},共4种,故这3份试卷都得优的概率P==.【点评】: 本题考查了分层抽样和古典概率的问题,关键是不重不漏的列举所有得基本事件,属于基础题.。

相关文档
最新文档