2019高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题练习

合集下载

高考数学(理)二轮配套训练【专题6】(3)圆锥曲线中的热点问题(含答案)

高考数学(理)二轮配套训练【专题6】(3)圆锥曲线中的热点问题(含答案)

第3讲圆锥曲线中的热点问题考情解读 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.4.轨迹方程问题(1)求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.热点一 圆锥曲线中的范围、最值问题例1 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.思维启迪 (1)P 点是椭圆上顶点,圆C 2的直径等于椭圆长轴长;(2)设直线l 1的斜率为k ,将△ABD 的面积表示为关于k 的函数.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S , 则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 思维升华 求最值及参数范围的方法有两种:①根据题目给出的已知条件或图形特征列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∵a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2, S Q PF 1∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,则y 1=-3k +6k 2+k 43+4k 2,y 2=-3k -6k 2+k 43+4k 2,S Q PF 1∆=12×|F 1F 2|×|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴S Q PF 1∆=3-3(1t +13)2+43,∵0<1t <13,∴S Q PF 1∆∈(0,3),∴当直线PQ 与x 轴垂直时S △PF 1Q 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则S Q PF 1∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.热点二 圆锥曲线中的定值、定点问题例2 (2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.思维启迪 (1)设动圆圆心坐标,利用圆的半径、半弦长和弦心距组成的直角三角形求解;(2)设直线方程y =kx +b ,将其和轨迹C 的方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,推出k 和b 的关系,最后证明直线过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 如图由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.得x 1,2=(8-2bk )±-32kb +642k 2,则x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线, ∴y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).思维升华 (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).已知椭圆C 的中点在原点,焦点在x 轴上,离心率等于12,它的一个顶点恰好是抛物线x 2=83y 的焦点. (1)求椭圆C 的方程;(2)已知点P (2,3),Q (2,-3)在椭圆上,点A 、B 是椭圆上不同的两个动点,且满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则b =2 3.由c a =12,a 2=c 2+b 2,得a =4,∴椭圆C 的方程为x 216+y 212=1.(2)当∠APQ =∠BPQ 时,P A 、PB 的斜率之和为0, 设直线P A 的斜率为k ,则PB 的斜率为-k ,P A 的直线方程为y -3=k (x -2), 由⎩⎪⎨⎪⎧y -3=k (x -2),x 216+y212=1,整理得 (3+4k 2)x 2+8(3-2k )kx +4(3-2k )2-48=0, x 1+2=8(2k -3)k 3+4k 2,同理PB 的直线方程为y -3=-k (x -2), 可得x 2+2=-8k (-2k -3)3+4k 2=8k (2k +3)3+4k 2.∴x 1+x 2=16k 2-123+4k 2,x 1-x 2=-48k3+4k 2, k AB =y 1-y 2x 1-x 2=k (x 1-2)+3+k (x 2-2)-3x 1-x 2=k (x 1+x 2)-4k x 1-x 2=12, ∴直线AB 的斜率为定值12.热点三 圆锥曲线中的探索性问题例3 已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:x 3 -2 4 (1)求C 1,C 2(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,说明理由.思维启迪 (1)比较椭圆及抛物线方程可知,C 2的方程易求,确定其上两点,剩余两点,利用待定系数法求C 1方程.(2) 联立方程,转化已知条件进行求解.解 (1)设抛物线C 2:y 2=2px (p ≠0), 则有y 2x=2p (x ≠0),据此验证四个点知(3,-23),(4,-4)在C 2上, 易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎨⎧4a 2=12a 2+12b2=1,解得⎩⎪⎨⎪⎧a 2=4b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1), 与C 1的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -1)消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0, 于是x 1,2=8k 2±64k 4-16(1+4k 2)(k 2-1)2(1+4k 2),则x 1+x 2=8k 21+4k 2,①x 1x 2=4(k 2-1)1+4k 2.②所以y 1y 2=k 2(x 1-1)(x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2[4k 2-11+4k 2-8k 21+4k 2+1]=-3k 21+4k 2.③由OM →⊥ON →,即OM →·ON →=0,得x 1x 2+y 1y 2=0.(*) 将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2,所以存在直线l 满足条件, 且直线l 的方程为2x -y -2=0或2x +y -2=0.思维升华 解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型.解决问题的一般策略是先假设结论成立,然后进行演绎推理或导出矛盾,即可否定假设或推出合理结论,验证后肯定结论,对于“存在”或“不存在”的问题,直接用条件证明或采用反证法证明.解答时,不但需要熟练掌握圆锥曲线的概念、性质、方程及不等式、判别式等知识,还要具备较强的审题能力、逻辑思维能力以及运用数形结合的思想分析问题和解决问题的能力.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎨⎧y =32x +t ,x 216+y212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去).从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一.1.圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围. 2.定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果. 3.探索性问题的解法探索是否存在的问题,一般是先假设存在,然后寻找理由去确定结论,如果真的存在,则可以得出相应存在的结论;若不存在,则会由条件得出矛盾,再下结论不存在即可.真题感悟(2014·北京)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2, 圆心O 到直线AB 的距离d = 2. 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ).即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离 d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0, 故d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 2+162x 20= 2. 此时直线AB 与圆x 2+y 2=2相切. 押题精练已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2. (1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围.解 (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42, ∴a 2=2,b 2=1.∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12. ∴x 1,2=8k 2±64k 4-4(2k 2+1)(8k 2-2)2(1+2k 2), ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2, ∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2), y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆C 上,∴(8k 2)2[t (1+2k 2)]2+2(-4k )2[t (1+2k 2)]2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209, ∴(1+k 2)[64k 4(1+2k 2)2-4·8k 2-21+2k 2]<209, ∴(4k 2-1)(14k 2+13)>0,∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, 又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2, ∴实数t 的取值范围为(-2,-263)∪(263,2).(推荐时间:50分钟)一、选择题1.已知点M 与双曲线x 216-y 29=1的左、右焦点的距离之比为2∶3,则点M 的轨迹方程为( ) A .x 2-y 2+26x +25=0B .x 2+y 2+16x +81=0C .x 2+y 2+26x +25=0D .x 2+y 2+16x -81=0答案 C解析 设点M (x ,y ),F 1(-5,0),F 2(5,0),则由题意得|MF 1||MF 2|=23, 将坐标代入,得(x +5)2+y 2(x -5)2+y 2=49, 化简,得x 2+y 2+26x +25=0.2.已知椭圆E 的左、右焦点分别为F 1、F 2,过F 1且斜率为2的直线交椭圆E 于P 、Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( ) A.53 B.23 C.23 D.13答案 A解析 由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴|PF 2||PF 1|=2,又|PF 1|+|PF 2|=2a , ∴|PF 1|=2a 3,|PF 2|=4a 3. 根据勾股定理得⎝⎛⎭⎫2a 32+⎝⎛⎭⎫4a 32=(2c )2, 所以离心率e =c a =53. 3.已知抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455,点P 是抛物线y 2=8x 上的一动点,P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3,则该双曲线的方程为( )A.y 22-x 23=1 B .y 2-x 24=1 C.y 24-x 2=1 D.y 23-x 22=1 答案 C解析 由题意得,抛物线y 2=8x 的焦点F (2,0),双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线的方程为ax -by =0, ∵抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455, ∴2a a 2+b 2=455, ∴a =2b .∵P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3, ∴|FF 1|=3,∴c 2+4=9,∴c =5,∵c 2=a 2+b 2,a =2b ,∴a =2,b =1.∴双曲线的方程为y 24-x 2=1,故选C. 4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 设P (x 0,y 0),则 x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.5.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|,∴|FM |>4,即|y 0+2|>4,又y 0≥0,∴y 0>2.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若双曲线上存在点P 满足a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该双曲线的离心率的取值范围为( ) A .(1,2+1) B .(1,3)C .(3,+∞)D .(2+1,+∞) 答案 A解析 根据正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1, 所以由a sin ∠PF 1F 2=c sin ∠PF 2F 1可得a |PF 2|=c |PF 1|, 即|PF 1||PF 2|=c a=e , 所以|PF 1|=e |PF 2|.因为e >1,所以|PF 1|>|PF 2|,点P 在双曲线的右支上.又|PF 1|-|PF 2|=e |PF 2|-|PF 2|=|PF 2|(e -1)=2a ,解得|PF 2|=2a e -1, 因为|PF 2|>c -a ,所以2a e -1>c -a ,即2e -1>e -1, 即(e -1)2<2,解得1-2<e <2+1.又e >1,所以e ∈(1,2+1),故选A.二、填空题7.直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________. 答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m=1表示椭圆, ∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有:025+12m≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.答案 (0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为:y -2=12tx ,因此直线AB 恒过定点(0,2).9.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3.如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.10.(2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 三、解答题11.已知点A 、B 的坐标分别是(0,-1)、(0,1),直线AM 、BM 相交于点M ,且它们的斜率之积为-12. (1)求点M 轨迹C 的方程;(2)若过点D (0,2)的直线l 与(1)中的轨迹C 交于不同的两点E 、F ,试求△OEF 面积的取值范围.(O 为坐标原点)解 (1)设点M 的坐标为(x ,y ),∵k AM ·k BM =-12. ∴y +1x ·y -1x =-12. 整理,得x 22+y 2=1(x ≠0), 即M 的轨迹方程为x 22+y 2=1. (2)由题意知直线l 的斜率存在,设l 的方程为y =kx +2,①将①代入x 22+y 2=1得: (2k 2+1)x 2+8kx +6=0,由Δ>0,解得k 2>32. 设E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧ x 2=-4k -4k 2-62k 2+1,x 1=-4k +4k 2-62k 2+1,则|x 1-x 2|=24k 2-62k 2+1. S △OEF =S △OED -S △OFD =12OD ·|x 1|-12OD ·|x 2|=12OD ·|x 1-x 2|=12×2·|x 1-x 2|=|x 1-x 2| = 16(k 2-32)(2k 2+1)2. 令k 2-32=t (t >0),所以k 2=t +32(t >0),所以S △OEF =|x 1-x 2|= 16t (2t +4)2= 4t (t +2)2 =2t t 2+4t +4=21t +4t +4≤214+4=22, 故△EOF 面积的取值范围是(0,22].12.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM →·TN →的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.(1)解 依题意,得a =2,e =c a =32, 所以c =3,b =a 2-c 2=1.故椭圆C 的方程为x 24+y 2=1. (2)解 点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0.由于点M 在椭圆C 上,所以y 21=1-x 214.(*) 由已知得T (-2,0),则TM →=(x 1+2,y 1),TN →=(x 1+2,-y 1),所以TM →·TN →=(x 1+2)2-y 21=(x 1+2)2-(1-x 214)=54x 21+4x 1+3 =54(x 1+85)2-15. 由于-2<x 1<2,故当x 1=-85时,TM →·TN →取得最小值为-15. 把x 1=-85代入(*)式,得. y 1=35,故M (-85,35), 又点M 在圆T 上,代入圆的方程得到r 2=1325.故圆T 的方程为:(x +2)2+y 2=1325. (3)证明 设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0), 令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1, 故x R ·x S =x 21y 20-x 20y 21y 20-y 21,(**) 又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式,得x R ·x S =4(1-y 21)y 20-4(1-y 20)y 21y 20-y 21=4(y 20-y 21)y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.。

2019高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题练习

2019高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题练习

地地道道的达到第 3 讲圆锥曲线中的热门问题高考定位 1. 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考察,常常作为试卷的压轴题之一; 2. 以椭圆或抛物线为背景,特别是与条件或结论有关存在性开放问题 . 对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考察 .真题感悟x2 2 →→1.(2018 ·浙江卷 ) 已知点P(0 ,1) ,椭圆4+y = m( m>1)上两点 A, B 知足 AP=2PB,则当m =________时,点B横坐标的绝对值最大 .→ →- x1=2x2,1 12 2) ,由 AP=2PB,得 1 2 1 -分析设 A( x , y ) ,B( x,y 1-y1= 2(y2- 1),即 x =-2x , y =34 2 2x 2 22y2 . 因为点A,B在椭圆上,所以4+( 3- 2y )=m, 1 3 2 22 得y2=m+,所以 x2= m-(3-2y2) x2 2 4 4+ y2= m,4=-1 2+5 -9=-1( - 5) 2+4≤4,所以当=5 时,点B横坐标的绝对值最大,最大值为4m2m4 4mm2.答案 52.(2018 ·北京卷 ) 已知抛物线C:y2= 2px经过点P(1 ,2). 过点Q(0 ,1) 的直线l 与抛物线 C 有两个不一样的交点A, B,且直线 PA交 y 轴于 M,直线 PB交 y 轴于 N.(1) 求直线l的斜率的取值范围;→→→→ 1 1(2) 设O为原点,QM=λQO,QN=μQO,求证:λ+μ为定值 .(1)解因为抛物线 y2=2px 过点(1,2),2所以 2p= 4,即p= 2. 故抛物线C的方程为 y =4x.设直线 l 的方程为 y= kx +1( k≠0).由y2=4x,得 k2x2+(2 k-4) x+1=0. y= kx+1依题意= (2 k - 4) 2-4× k 2×1>0,解得 k <1,又因为 ≠0,故k <0 或 0< <1.kk又 , 与 y 轴订交,故直线l 可是点 (1 ,- 2).PA PB进而 k ≠- 3.所以直线 l 斜率的取值范围是( -∞,- 3) ∪ ( - 3, 0) ∪ (0 , 1).(2) 证明 设 A ( x 1, y 1) ,B ( x 2, y 2).12=-2k - 41 21由(1) 知 x + x k 2, x x =k 2.y 1- 2直线 PA 的方程为 y - 2= x 1- 1( x - 1). 令 x = 0,M - y 1+ 2+2= - kx 1+1得点 M 的纵坐标为 y = x 1- 1x 1- 1 +2.- kx 2+1同理得点 N 的纵坐标为 y N = 2+ 2.x - 1由 → = λ → , → = μ→ 得 λ = 1- y My N,μ= 1-QMQO QNQO所以1 1=1 + 1= x 1- 1+ x 2 -1+ μ( k - 1) x 2 λ 1- y M 1-y N( k - 1) x 1 2 2 k - 4= 1 2x 1x 2-( x 1+ x 2) = 1 k 2+ k2=2. · x x · 1k - 12k - 11k 21 1所以 λ + μ =2 为定值 .3.(2017 ·全国Ⅰ卷 ) 已知椭圆 x 2 y 2 - 1,3 C : 2+2= 1( a >b >0) ,四点 P 1(1 ,1) ,P 2(0 ,1) ,P 3,ab243中恰有三点在椭圆 C 上 . P 1, 2(1) 求 C 的方程;(2) 设直线 l 不经过 P 2 点且与 C 订交于 A ,B 两点 . 若直线 P 2A 与直线 P 2B 的斜率的和为- 1,证明: l 过定点 .(1) 解 因为点 P 3, P 4 对于 y 轴对称,由题设知 C 必过 P 3,P 4 . 又由 1 1 1 32知,椭圆 Ca 2+ 2> 2+ 4b b a不经过点 P ,1所以点 P 2在椭圆 C 上.12= 1, 22b a =4,x+ y 2= 1.所以解得故 C 的方程为1 3b 2= 1.4a +4b =1,(2) 证明设直线 P2A 与直线 P2B的斜率分别为k1, k2. 假如直线l 的斜率不存在, l 垂直于 x 轴.设 l : x= m, A( m, y A),B( m,- y A),y A-1- y A-1-2k1+k2=m +m =m=- 1,得m= 2,此时 l 过椭圆右极点,不存在两个交点,故不知足.进而可设l :=kx+ ( ≠1).y m mx2 2 222将 y= kx +m代入4+y =1 得(4 k+ 1) x+ 8kmx+ 4m- 4= 0. 由题设可知= 16(4 2 -2+ 1)>0.k m28km4m- 4 设 A( x1, y1), B( x2, y2),则 x1+ x2=-4k2+1, x1x2=4k2+1.则 k1+ k2=y1-1 y2-1 kx1+m-1 kx2+ m-1 +=+x2x1 x2 x1=2kx1x2+(m-1)(x1+x2).x1x2由题设 k1+ k2=-1,故(2 k+1) x1x2+( m-1)( x1+x2)=0.24m- 4-8km∴(2 k+1) ·4k2+1+ ( m-1) ·4k2+1= 0.解之得 m=-2k-1,此时=32(m+1)>0,方程有解,∴当且仅当m>-1时,>0,∴直线 l 的方程为 y= kx -2k-1,即 y+1= k( x-2).所以 l 过定点(2,-1).考点整合1.圆锥曲线中的范围、最值问题,能够转变为函数的最值问题 ( 以所求式子或参数为函数值 ) ,或许利用式子的几何意义求解 .温馨提示圆锥曲线上点的坐标是有范围的,在波及到求最值或范围问题时注意坐标范围的影响 .2.定点、定值问题(1)定点问题:在分析几何中,有些含有参数的直线或曲线的方程,无论参数怎样变化,其都过某定点,这种问题称为定点问题.若获得了直线方程的点斜式:y- y0= k( x- x0),则直线必过定点( x0,y0) ;若获得了直线方程的斜截式: y= kx+ m,则直线必过定点(0 ,m).呵呵复生复生复生地地道道的达到标或动直线中的参变量没关,这种问题统称为定值问题.3. 存在性问题的解题步骤:(1) 先假定存在,引入参变量,依据题目条件列出对于参变量的方程( 组 ) 或不等式 ( 组 ).(2) 解此方程 ( 组 ) 或不等式 ( 组) ,如有解则存在,若无解则不存在.(3) 得出结论 .热门一圆锥曲线中的最值、范围x 2y23,直线【例 1】 (2018 ·西安质检 ) 已知椭圆: 2 + 2= 1( > >0) 的离心率 =x+ 3C a b a be2y-1= 0 被以椭圆 C 的短轴为直径的圆截得的弦长为3.(1) 求椭圆 C 的方程;(2) 过点 M (4 , 0) 的直线 l 交椭圆于 A , B 两个不一样的点,且 λ= | MA |·|MB | ,求 λ 的取值 范围 .1解 (1) 原点到直线 x +3 y - 1= 0 的距离为 2,22由题得1 3= b 2( b >0) ,解得 b = 1.+222c 2b 2 3又 e = a 2= 1-a 2= 4,得 a =2.x 22所以椭圆 C 的方程为 4+ y = 1.(2) 当直线 l 的斜率为 0 时, λ = | MA |·|MB | =12.当直线 l 的斜率不为 0 时,设直线 l : x = my + 4,点 A ( x 1, y 1) , B ( x 2, y 2) ,x = my + 4,联立 x2消去 x 得22+8my + 12= 0.2( m + 4) y4 + y =1,由222= 64m -48( m + 4)>0 ,得 m >12,所以 y 1y 2=12.2m + 4λ= ||·| |=2+ 1|y 1|·2+ 1| y 2|mmMAMB232y 1y 2|12( m + 1)=( m + 1)|=+= 12-m +4 .m 42233 39 由 m >12,得 0<2+ 4<16,所以 4 <λ <12.m地地道道的达到3939综上可得: 4 <λ ≤12,即 λ ∈ 4 , 12 .研究提升求圆锥曲线中范围、最值的主要方法: (1) 几何法:若题目中的条件和结论能明显表现几何特点和意义,则考虑利用图形性质数形联合求解.(2) 代数法:若题目中的条件和结论能表现一种明确的函数关系,或许不等关系,或许已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【训练 1】 (2018 ·浙江卷 ) 如图,已知点 P 是 y 轴左边 ( 不含 y 轴 ) 一点,抛物线 : y 2= 4 上存在不一样的两点 , B 知足 ,的中点均在CxAPA PBC上 .(1) 设 AB 中点为 M ,证明: PM 垂直于 y 轴;2 y 2(2) 若 P 是半椭圆 x + 4 = 1( x <0) 上的动点,求△ PAB 面积的取值范围 .1 2 1 2 (1) 证明 设 P ( x 0, y 0) ,A 4y 1, y 1 ,B 4y 2, y 2 .2 为方程 y+ y 0 2 1 y 2+ x 0 因为 , 的中点在抛物线上,所以 y 1, =4· 4 , PA PB y 2222 的两个不一样的实根 .即 y- 2y y + 8x - y = 00 0所以 y 1+ y 2= 2y 0,所以, PM 垂直于 y 轴 .(2) 解由 (1) 可知y 1+ y 2= 2y 0,2y 1y 2= 8x 0- y 0,所以 | | =1(y 12+ y 22) - x 0=32- 3 x 0,PM 84y2| y 1 -y 2| = 2 2( y 0- 4x 0).1 所以,△ PAB 的面积 S △ PAB = | PM |·|y 1- y 2|23 223= 4 ( y 0-4x 0) 2.22y 0因为 x 0 + 4 = 1( x 0<0) ,所以y 02- 4 0=- 4 02- 4 x 0+4∈ [4 ,5] ,x x所以,△ PAB 面积的取值范围是6 2,1510.4热门二定点、定值问题考法 1圆锥曲线中的定值呵呵复生复生复生【例 2- 1】 (2018 ·烟台二模 ) 已知椭圆x 2 y 2= 1(> >0) 的焦距为 2 3,斜率为 1 : 2 + 2的直C a ba b2线与椭圆交于 , 两点,若线段AB 的中点为 ,且直线的斜率为- 1 .A BDOD 2(1) 求椭圆 C 的方程;(2) 若过左焦点 F 斜率为 k 的直线 l 与椭圆交于 M ,N 两点,P 为椭圆上一点, 且知足 OP ⊥ MN ,问: 1+ 1能否为定值?假如,求出此定值;若不是,说明原因. | MN | |OP |2 解 (1) 由题意可知 c = 3 ,设 A ( x 1, y 1) , B ( x 2, y 2) ,222 2x 1y 1x 2 y 2则 a 2+ b 2= 1, a 2+b 2= 1,y - yy + y222 b11两式相减并整理得, x 1-x 2·x 1 + x 2 =- a 2 ,b 2即 k AB · k OD =- a 2.112 2又因为 k =2, k =-2,代入上式得, a =4b .ABOD又 a 2= b 2+ c 2, c 2=3,所以 a 2=4, b 2= 1, 故椭圆的方程为x 22+ y = 1.4(2) 由题意可知, F ( - 3, 0) ,当 MN 为长轴时, OP 为短半轴,111 5则 | MN |+ | OP | 2= 4+ 1=4,不然,可设直线 l 的方程为 y =k ( x + 3) ,x 22联立4 + y =1,消 y 得,y = k (x + 3),(1+42)x 2+8 3 k 2 x + 12 2- 4= 0,kk8 3 212 k2- 4k 则有 x 1+ x 2=- 1+ 4k 2, x 1x 2= 1+ 4k 2 ,所以 | |= 1+ k 2| x 1- x 1|MN8 3k2212k 2- 44+ 4k 2 = 1+ k 2- + 4k 2 -41+ 4k 2=1+4 k 2,11设直线 OP 方程为 y =- k x ,2x+ y 2= 1,4联立1y =- k x ,2k2依据对称性不如令P-2, 2,k +4 k + 42k 2224+ 4k 2所以|OP |=-k 2+ 4 +k 2+ 4 =k 2+ 4.11 1+ 4k 211+ 4k 2 k 2+ 4 5故 | MN |+ | OP | 2= 4+ 4k 2+ 4+ 4k 2 2= 4+ 4k 2+4+ 4k 2= 4,k 2+ 41 15综上所述, | MN |+ | OP | 2为定值 4.研究提升1. 求定值问题常有的方法有两种:(1) 从特别下手,求出定值,再证明这个值与变量没关.(2) 直接推理、计算,并在计算推理的过程中消去变量,进而获得定值 .2. 定值问题求解的基本思路是使用参数表示要解决的问题,而后证明与参数没关, 这种问题选择消元的方向是特别重点的.x 2 y 2【训练 2】 已知椭圆 C : a 2+ b 2= 1 过点 A (2 , 0) , B (0 , 1) 两点 .(1) 求椭圆 C 的方程及离心率;(2) 设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M ,直线 PB 与 x 轴交于点 N ,求证:四边形 ABNM 的面积为定值 .x 2(1) 解 由题意知 a = 2, b = 1. 所以椭圆方程为4 + y 2= 1,22c3又 c = a - b = 3. 所以椭圆离心率 e = a = 2 .(2) 证明 设 P 点坐标为 ( x 0, y 0)( x 0< 0, y 0< 0) ,22则 x + 4y = 4,y 0- 1由 B 点坐标 (0 ,1) 得直线 PB 方程为: y - 1= x 0 ( x - 0) , 令 y = 0,得 x N = x 0,1- y 0x 0进而 | AN | =2- x N = 2+y 0- 1,由 A 点坐标 (2 , 0) 得直线方程为 y -0= y 0 ( x -2) ,PA x 0 - 2地地道道的达到令 x = 0,得 y M = 2y 0,进而| | = 1- M =1+ 2y 0 ,BM yx 0- 22-x 0所以S 四边形 ABNM= 1 ||·| | 2 ANBM = 12+ x 0 1+ 2 y 02 0 0y - 1 x - 222x 0+ 4y 0+ 4x 0y 0- 4x 0- 8y 0+ 4=2( x 0y 0- x 0- 2y 0+ 2)2x 0y 0- 2x 0- 4y 0+4 =x 0y 0- x 0- 2y 0+ 2 =2.即四边形 ABNM 的面积为定值 2. 考法 2圆锥曲线中的定点问题【例 2- 2】 (2018 ·衡水中学质检 ) 已知两点 A ( - 2,0) , B ( 2,0) ,动点 P 在 y 轴上的→→→2投影是 Q ,且 2PA ·PB = | PQ | .(1) 求动点 P 的轨迹 C 的方程;(2) 过 (1 , 0) 作相互垂直的两条直线交轨迹C 于点 ,,,,且1, 2 分别是 , 的F GHMN E E GH MN中点 . 求证:直线 E 1E 2 恒过定点 .(1) 解 设点 P 坐标为 ( x , y ) ,∴点 Q 坐标为 (0 , y ).→→ → 2∵2PA · PB = | PQ | ,∴2[( -2- x )( 2- x ) + y 2 ] = x 2,x 2 y 2化简得点 P 的轨迹方程为4 + 2 = 1.(2) 证明 当两直线的斜率都存在且不为0 时,设l GH: = ( x -1), ( 1,1), (2, 2) ,y k G x y H x y1l MN : y =- k ( x -1) , M ( x 3,y 3) , N ( x 4, y 4) ,22xy联立4+ 2=1, y =k ( x - 1),消去 y 得 (2 k 2+ 1) x 2- 4k 2x + 2k 2- 4=0.则 >0恒成立 .4k 22k 2 -4∴x 1+ x 2=2k 2+ 1,且 x 1x 2= 2k 2+1.2k 2 , - k ,12 2 2k +1 2k + 1 ∴GH 中点 E 坐标为 2 k同理, MN 中点 E 2 坐标为 k 2+ 2, k 2+2 ,地地道道的达到-3k∴k E1E2=2(k2-1),lE E y -3k 2 2∴的方程为=x-,∴过点, 0 ,1 2 22(k- 1) 3 31 22 , 0 1 2当两直线的斜率分别为0 和不存在时,lE E的方程为y= 0,也过点3 ,综上所述, lE E 2过定点3,0 .研究提升 1. 动直线l过定点问题 . 设动直线方程( 斜率存在 ) 为y=kx+t,由题设条件将t 用 k 表示为 t = mk,得 y= k( x+ m),故动直线过定点( -m, 0)2.动曲线 C过定点问题.引入参变量成立曲线 C的方程,再依据其对参变量恒成立,令其系数等于零,得出定点.【训练 3】已知曲线C: y2=4x,曲线 M:( x-1)2+y2=4( x≥1),直线 l 与曲线 C交于 A,B两点, O为坐标原点.→→(1) 若OA·OB=- 4,求证:直线l 恒过定点;→→(2) 若直线l与曲线M相切,求PA·PB( 点P坐标为 (1 , 0)) 的最大值 .解设 l :x= my+ n, A( x1, y1), B( x2, y2).x = my+ n,2-4 - 4 =0.由得y 2= 4x,y my n∴y1+ y2=4m,y1y2=-4n.∴x1+ x 2 22=4m+2n,x1x2=n.(1) 证明→→由 OA· OB=-4,2得 x1x2+ y1y2= n -4n=-4,解得 n=2.∴直线 l 恒过定点(2,0).(2)∵直线 l 与曲线 M:( x-1)2+ y2=4( x≥1)相切,|1 -n|∴2=2,且n≥3,1+m2 2整理得 4m=n-2n- 3( n≥3). ①又点 P 坐标为(1,0),∴由已知及①,得→→PA· PB=( x1-1, y1)·(x2-1, y2)=( x1- 1)( x2-1) +y1y2= x 1x 2- ( x 1+ x 2) + 1+ y 1y 222= n - 4m - 2n +1- 4n22= n - 4m - 6n +1= 4- 4n .又 y = 4- 4n ( n ≥3) 是减函数,∴当 n = 3 时, y = 4- 4n 获得最大值- 8.→ → 故PA · PB 的最大值为- 8. 热门三圆锥曲线中的存在性问题x 2 y 2【例 3】 (2018 ·江南名校联考 ) 设椭圆 M : a 2+ b 2= 1( a >b >0) 的左、右焦点分别为 A ( -1,0), (1,0), C 为椭圆 上的点,且∠ = π, △ ABC = 3 .B M ACB 3 S 3(1) 求椭圆 M 的标准方程;(2) 设过椭圆 M 右焦点且斜率为 k 的动直线与椭圆 M 订交于 E ,F 两点,研究在 x 轴上能否存→ →D 的坐标; 若不存在, 请说明原因 .在定点 D ,使得 DE · DF 为定值?若存在, 试求出定值和点2222解 (1) 在△ ABC 中,由余弦定理 AB = CA +CB - 2CA ·CB ·cos C = ( CA +CB ) - 3CA ·CB = 4.1 33 ,又 S △ ABC = CA · CB ·sin C =CA · CB =243∴ · =4,代入上式得+ = 2 2.CACB 3CA CB椭圆长轴 2a = 2 2,焦距 2c = AB = 2.2x2所以椭圆 M 的标准方程为+ y = 1.(2) 设直线方程 y = k ( x - 1) ,E ( x 1, y 1) , F ( x 2, y 2) ,2x+ y 2=1,联立2y = k (x - 1),消去 y 得 (1 + 2k 2) x 2- 4k 2x + 2k 2- 2=0, = 8k 2+8>0,4k 22k 2- 2∴ x 1+ x 2= 1+ 2k 2, x 1x 2= 1+ 2k 2.→ →假定 x 轴上存在定点D ( x 0, 0) ,使得 DE ·DF 为定值 .→ →∴DE · DF = ( x 1- x 0, y 1) ·(x 2- x 0, y 2)2=x 1x 2- x 0( x 1+ x 2) +x 0+ y 1y 22 2= x 1x 2- x 0( x 1+ x 2) +x 0+ k ( x 1- 1)( x 2 -1)2 ) x 1x 2- 2 2 2=(1 + k ( x 0+ k )( x 1+ x 2) +x 0+ k22 2( 2x 0- 4x 0+ 1) k +( x 0- 2)=1+ 2k 2要使→ · →为定值,则 → · →的值与k 没关,DE DFDE DF225∴2x - 4x +1=2( x - 2) ,解得 x = ,4 此时→ · →=- 7 为定值,定点为5 , 0 .DE DF164研究提升1. 此类问题一般分为研究条件、研究结论两种 . 若研究条件,则可先假定条件成立,再考证结论能否成立,成立则存在,不可立则不存在;若研究结论,则应先求出结论的表达式,再针对其表达式进行议论,常常波及对参数的议论.2. 求解步骤:假定知足条件的元素 ( 点、直线、曲线或参数 ) 存在,用待定系数法设出,列出对于待定系数的方程组,若方程组有实数解,则元素( 点、直线、曲线或参数 ) 存在,不然,元素 ( 点、直线、曲线或参数 ) 不存在 .x 2 y 21 3【训练 4】 已知椭圆 C : a 2+ b 2= 1( a >b >0) 的离心率为 2,且过点 P 1,2 ,F 为其右焦点 .(1) 求椭圆 C 的方程;(2) 设过点 A (4 ,0) 的直线 l 与椭圆订交于M , N 两点 ( 点 M 在 A , N 两点之间 ) ,能否存在直线 l 使△ AMF 与△ MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明原因.c 1解 (1) 因为 a = 2,所以 a = 2c , b = 3c ,x 2y 2设椭圆方程 4c 2+ 3c 2= 1,又点 P 1, 3 1 3 2= 1,在椭圆上,所以 2+2 4c 4c22 2x 2 y 2解得 c = 1, a =4, b = 3,所以椭圆方程为 4+ 3=1.(2) 易知直线 l 的斜率存在,设 l 的方程为 y = ( x -4) ,k y = k ( x - 4), 由 x 2 y 2 消去 y 得 (3 + 4k 2) x 2- 32k 2x + 64k 2-12= 0,4+ 3=1,由题意知= (32 k 2) 2- 4(3 + 4k 2)(64 k 2- 12)>0 ,1 1 解得- <k < .22设 M ( x 1, y 1) , N ( x 2, y 2) ,32k 2则 x 1+ x 2= 3+ 4k 2,①地地道道的达到264k- 12因为△ AMF与△ MFN的面积相等,所以 | AM| =| MN|,所以 2x1=x2+4. ③4+ 16k2由①③消去x2得 x1=3+4k2.④64k2- 12 将 x2=2x1-4代入②,得x1(2 x1-4)=3+4k2⑤将④代入到⑤式,整理化简得36k2= 5.∴k=±56,经查验知足题设5 5故直线 l 的方程为 y=6 ( x- 4) 或y=-6 ( x- 4).1.解答圆锥曲线的定值、定点问题,从三个方面掌握:(1) 从特别开始,求出定值,再证明该值与变量没关:(2) 直接推理、计算,在整个过程中消去变量,得定值;(3) 在含有参数的曲线方程里面,把参数从含有参数的项里面分别出来,并令其系数为零,能够解出定点坐标.2.圆锥曲线的范围问题的常有求法(1) 几何法:若题目的条件和结论能显然表现几何特点和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能表现一种明确的函数关系,则可第一成立起目标函数,再求这个函数的最值 .3. 存在性问题求解的思路及策略(1)思路:先假定存在,推证知足条件的结论,若结论正确,则存在;若结论不正确,则不存在 .(2)策略:①当条件和结论不独一时要分类议论;②当给出结论而要推导出存在的条件时,先假定成立,再推出条件.一、选择题x2 y21. 若双曲线λ-1-λ= 1(0< λ <1) 的离心率e∈ (1 , 2) ,则实数λ的取值范围为 ()1 1A. 2,1B.(1 , 2)C.(1 ,4)D. 4,1地地道道的达到易 c = 1, a = λ ,且 e ∈ (1 ,2) ,∴ 1< 11分析 λ <2,得 4<λ <1. 答案 D2. 若点 P 为抛物线 y = 2x 2 上的动点, F 为抛物线的焦点,则 | PF | 的最小值为 ( )A.21C. 11B.4D.28分析 依据题意,抛物线 y =2x 2 上,设 P 到准线的距离为 d ,则有 | PF | =d ,抛物线的方程 为= 2221 ,其准线方程为1在抛物线的极点时,有最小值1 y x ,即x =2y y=- ,∴当点P d ,881即| PF | min = .8答案 D22x 2 y 23.(2018 ·北京东城区调研 ) 已知圆 M :( x - 2) + y =1 经过椭圆 C : m + 3 = 1 的一个焦点,圆 M 与椭圆 C 的公共点为 A ,B ,点 P 为圆 M 上一动点,则 P 到直线 AB 的距离的最大值为( ) A.2 10-5B.2 10- 4C.4 10-11D.4 10- 10分析 易知圆 M 与 x 轴的交点为 (1 ,0) ,(3 ,0) ,∴ m - 3=1 或 m - 3= 9,则 m = 4 或 m =12.( -2)2+y 2=1,x当 m = 12 时,圆 M 与椭圆 C 无交点,舍去 . ∴ m = 4. 联立x 2y 2 得 x 2- 16x + 244+ 3=1,=0. ∵ x ≤2,∴ x = 8- 2 10. 故点 P 到直线 AB 距离的最大值为 3-(8 - 2 10) = 2 10- 5. 答案 Ax 2 y 24.(2018 ·全国Ⅲ卷 ) 设 F 1, F 2 是双曲线 C :a 2- b 2= 1( a >0, b >0) 的左、右焦点, O 是坐标原 点. 过 F 2 作 C 的一条渐近线的垂线,垂足为 P . 若| PF 1| = 6| OP | ,则 C 的离心率为 ()A. 5B.2C.3D. 2b2b| bc |2分析 不如设一条渐近线的方程为y = a x ,则 F 到 y = a x 的距离 d = a 2+ b 2=b ,在Rt △ F PO中, | F O | = c ,所以 | PO |= a ,所以 | PF |= 6a ,又 | F O | = c ,所以在△ F PO 与 Rt △F PO 中,21112依据余弦定理得 cos ∠a 2+ c 2-( 6a )2==12aca226 ) 22=2 ,所以 c-cos ∠2=- ,则3 +c - (=0,得 3a ce ==3.POFcaaa答案C二、填空题呵呵复生复生复生地地道道的达到5. 设双曲线x 2y 2= 1( a >0, >0) 的一条渐近线与抛物线y 2x 的一个交点的横坐标为x 0,: 2-2=C a b b若 x 0>1,则双曲线 C 的离心率 e 的取值范围是 ________.: x 22= b分析 双曲线 2- y2=1 的一条渐近线为y,C aba xy 2= x ,b 2联立b消去 y2.,得 2=a xxy = a x2由 x 0>1,知b2<1, b 2<a 2.a2c 2 a 2+ b 2∴e = a 2=a 2<2,所以 1<e < 2.答案 (1, 2)6.(2018 ·武汉模拟 ) 已知抛物线y 2= 4x ,过焦点 F 的直线与抛物线交于A ,B 两点,过 A ,B分别作 x 轴, y 轴垂线,垂足分别为 C ,D ,则 | AC | + | BD | 的最小值为 ________.分析 不如设 A ( x 1, y 1)( y 1>0) ,B ( x 2, y 2)( y 2<0).2则| |+| | = 2+ y 21.1= +AC BD x y 4 y又 y 1y 2=- p 2=- 4. ∴| |+|| =24 (2<0).y -ACBD 2y 4 y 2 x 2 4设 g ( x ) = 4 -x ,在 ( -∞,- 2) 递减,在 ( - 2, 0) 递加 .∴当 x =- 2,即 y 2=- 2 时, | AC | + | BD | 的最小值为 3.答案3三、解答题7. 已知动圆 M 恒过点 (0 , 1) ,且与直线 y =- 1 相切 .(1) 求动圆心 M 的轨迹方程;(2) 动直线 l 过点 P (0 ,- 2) ,且与点 M 的轨迹交于 A , B 两点,点 C 与点 B 对于 y 轴对称,求证:直线 AC 恒过定点 .(1) 解 由题意得点与点 (0 , 1) 的距离等于点 与直线 =-1的距离 .MM yp由抛物线定义知圆心 M 的轨迹为以点 (0 ,1) 为焦点, 直线 y =- 1 为准线的抛物线, 则2= 1, = 2.p∴圆心 的轨迹方程为x 2= 4 y .M地地道道的达到 (2) 证明 由题意知直线 l 的斜率存在, 设直线 l :y = kx - 2,A ( x 1,y 1) ,B ( x 2,y 2) ,则 C ( -x 2,y 2) ,由x 2=4y ,得 x 2- 4kx + 8= 0,y = kx - 2= 16k 2- 32>0 得 k 2>2,∴ x 1+ x 2= 4k ,x 1x 2= 8.22x 1x 2k AC =y1- 2 4 -41- 2y =x 1=xx ,x 1+ x 2 + x 24直线的方程为y-x 1- x 2x -1).1=(ACy4xx 1- x 2x 1-x 2x 1( x 1- x 2 )2x 1- x 2 x 1x 2x 1即 y = y 1+ 4 ( x - x 1) =4 x -4+ 4 =4 x + 4 ,1 2x - x21∵x x = 8,∴ y = 4 x + 2,则直线恒过点 (0 , 2).ACx 2 y 28. 在平面直角坐标系 xOy 中,已知椭圆C :a 2+ b 2= 1( a > b ≥1) 过点 P (2 ,1) ,且离心率e =3.2(1) 求椭圆 C 的方程;1(2) 直线 l 的斜率为 2,直线 l 与椭圆 C 交于 A , B 两点,求△ PAB 面积的最大值 .(1) ∵ e 2=c22 23,∴ a 2= 4解 2=a-2b = b 2.aa44 122又 a 2+ b 2= 1,∴ a = 8, b = 2.x 2 y 2故所求椭圆 C 的方程为 8 + 2 = 1.1(2) 设 l 的方程为 y = 2x + m ,点 A ( x 1, y 1) ,B ( x 2, y 2) ,1y = x + m ,2 2 2联立 x 2 y 2消去 y 得 x +2mx + 2m - 4= 0,8+ 2= 1,鉴别式22= 16- 4m > 0,即 m < 4.2又 x 1+ x 2=- 2m , x 1· x 2= 2m -4,则| AB | =1+ 1× ( x 1+ x 2)2- 4x 1x 2 4= 25( 4-m ),| |2| |点 P 到直线 l的距离 d =m m=.151+ 411 2| m |2所以 S △ PAB =2d | AB | =2×5 × 5(4- m )22= 2 2m +( 4- m )= 2,当且仅当 m ( 4-m )≤2故△ PAB 面积的最大值为 2.2m = 2 即 m =± 2时上式等号成立,9. 已知椭圆 x 2 y 2= 1( a >b >0) 的左、 右焦点分别为 F 1 ( - 1,0) ,F 2(1 ,0) ,点 A 1,2 C : 2 + 2 在a b2椭圆 C 上.(1) 求椭圆 C 的标准方程;(2) 能否存在斜率为 2 的直线,使适当该直线与椭圆 C 有两个不一样交点 M ,N 时,能在直线 y5→ →= 3上找到一点P ,在椭圆 C 上找到一点 Q ,知足 PM =NQ ?若存在, 求出直线的方程;若不存在,说明原因 .解 (1) 设椭圆 C 的焦距为 2c ,则 c = 1, 因为A 1, 2在椭圆 C 上,所以 2 =| 1|+|2| = 2 2,则 = 2, b 2= a 2- c 2 =1.2a AFAFa2x2故椭圆 C 的方程为+y = 1.(2) 不存在知足条件的直线,原因以下:设直线的方程为 y =2 x + t ,设 M ( x ,y ) ,N ( x ,y ) ,P x3 ,Q ( x ,y ) ,MN 的中点为 D ( x ,1 122 3,544y 0) ,y = 2 + ,xt由 x 22消去 x 得 9y 2- 2ty +t 2- 8= 0,2 + y = 1,所以 y 1+ y 2=2t,且 =4t 2- 36( t 2- 8)>0 ,9y 1+ y 2 t故 y 0== ,且- 3<t <3.29 由 → = → 得 x 1- x 3, y 1- 5 = ( x 4- 2, y 4- 2 ) ,PM NQ 3 xy154 24 125 2 5所以有 y - 3= y - y , y = y +y - 3= 9t -3.7又- 3<t <3,所以- 3<y 4<- 1,与椭圆上点的纵坐标的取值范围是[ -1,1] 矛盾 .地地道道的达到所以不存在知足条件的直线 .10.(2018 ·惠州调研 ) 在平面直角坐标系xOy 中,过点 (2 , 0) 的直线与抛物线 2= 4 订交C yx于 A , B 两点,设 A ( x 1,y 1) , B ( x 2, y 2).(1) 求证: y 1y 2 为定值;(2) 能否存在平行于 y 轴的定直线被以 AC 为直径的圆截得的弦长为定值?假如存在, 求出该直线的方程和弦长,假如不存在,说明原因 .(1) 证明 法一 当直线垂直于x 轴时,不如取 y 1= 2 2, 2=- 2 2,AB y所以 y 1y 2=- 8( 定值 ).当直线 AB 不垂直于 x 轴时,设直线 AB 的方程为 y = k ( x -2) ,y = k (x - ),由y 2= 4x2得 ky 2- 4y -8k = 0,所以 y 1 y 2=- 8. 综上可得, y 1y 2=- 8 为定值 . 法二 设直线AB 的方程为 = - 2.my x由my =x -2,得 y 2-4my - 8=0,所以 y 1y 2=-8. y 2= 4x所以有 y 1y 2=- 8 为定值 .(2) 解 存在 . 原因以下:设存在直线 l : x = a 知足条件,则x 1+ 2 y 122AC 的中点 E ,,| AC | =112 2 ( x - 2 ) +y ,所以以 AC 为直径的圆的半径r= 1|| =1( 1-2) 2+12=1x 12+ 4,2 AC 2 x y 2点 E 到直线 x = a 的距离 d = x 1+2- a ,2所以所截弦长为2212x + 224( x 1+ 4)-12 r - d = 22 - a222= x 1+ 4-( x 1+ 2- 2a ) = - 4( 1- a ) x 1+ 8a -4a , 当 1- a = 0,即 a =1 时,弦长为定值2,这时直线的方程为 x = 1.21 / 22 地地道道 的达到:x 2 2 11.(2018 ·西安模拟 ) 如图,椭圆2+ y 2= 1( > >0) 的左右 C a b a b焦点分别为 F 1, F 2,左右极点分别为 A , B , P 为椭圆 C 上任一点( 不与 A ,B 重合 ). 已知△ PFF 的内切圆半径的最大值为 2-1 22,椭圆 C 的离心率为 22.(1) 求椭圆 C 的方程;(2) 直线 l 过点 B 且垂直于 x 轴,延伸 AP 交 l 于点 N ,以 BN 为直径的圆交 BP 于点 M ,求证: O , M , N 三点共线 .c 2 2解 (1) 由题意知, a = 2 ,∴ c = 2 a .又 b 2= a 2- c 2,2∴b = 2 a .设△ PF 1F 2 的内切圆半径为 r ,1 1| +| 2| +| 12|)· r ,则 △PFF = (| S 1 2 2 PF PF F F= 1(2 a + 2c ) · r = ( a + c )r , 2故当△ PF 1F 2 面积最大时, r 最大,即 P 点位于椭圆短轴极点时, r = 2- 2,∴ ( a + c )(2 - 2) = bc ,2 2把 c = 2 a , b = 2 a 代入,解得 a =2, b = 2,x 2 y 2∴椭圆方程为 4 + 2 = 1.(2) 由题意知,直线 AP 的斜率存在,设为 k ,则 AP 所在直线方程为 y = k ( x + 2) ,y = k (x + 2),联立 x 2 y 2 消去y ,得4 +2=1,(2 k 2+ 1) x 2+ 8k 2x + 8k 2- 4=0,则有 x P ·( - 2) = 8k 2- 42 ,2k + 1∴x P = 2- 4k 2 4k2 ,y P = k ( x P + 2) = 2 ,2k + 1 2k + 1→ - 8k 2 4k →得BP = 2 2 + 1, 2 2+ 1 ,又 N (2 ,4k ) ,∴ ON = (2 , 4k ).k k呵呵复生复生复生地地道道的达到则→·→=-16k216k2= 0,2 + 2ON BP 2k + 1 2k+ 1∴ON⊥ BP,而 M在以 BN为直径的圆上,∴MN⊥ BP,∴ O, M,N三点共线.呵呵复生复生复生22 / 22。

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.

将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.

2019高考数学二轮复习 专题五 解析几何 第三讲 圆锥曲线的综合应用

2019高考数学二轮复习 专题五 解析几何 第三讲 圆锥曲线的综合应用

第三讲 圆锥曲线的综合应用 第二课时 圆锥曲线的定点、定值、存在性问题1.(2018·云南师大附中质检)已知椭圆C 的焦点在x 轴上,离心率等于255,且过点⎝ ⎛⎭⎪⎫1,255.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于M 点,若MA →=λ1AF →,MB →=λ2BF →,求证:λ1+λ2为定值.解析:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎪⎨⎪⎧c a =255,1a 2+⎝ ⎛⎭⎪⎫255b 22=1,∴a 2=5,b 2=1,∴椭圆C 的标准方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),M (0,y 0) , 又易知F 点的坐标为(2,0). 显然直线l 存在斜率, 设直线l 的斜率为k ,则直线l 的方程是y =k (x -2),将直线l 的方程代入椭圆C 的方程中,消去y 并整理得(1+5k 2)x 2-20k 2x +20k 2-5=0,∴x 1+x 2=20k 21+5k 2,x 1x 2=20k 2-51+5k2.又∵MA →=λ1AF →,MB →=λ2BF →,将各点坐标代入得λ1=x 12-x 1,λ2=x 22-x 2,∴λ1+λ2=x 12-x 1+x 22-x 2=x 1+x 2-2x 1x 24-x 1+x 2+x 1x 2=2⎝ ⎛⎭⎪⎫20k 21+5k 2-20k 2-51+5k 24-2·20k 21+5k 2+20k 2-51+5k2=-10, 即λ1+λ2为定值.2.(2018·贵阳一模)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A ,B 两点,且|AB |=8.(1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 恒过定点,并求出该点的坐标.解析:(1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1, ∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1),直线BD 的斜率k B D =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 恒过点(-1,0).3.(2018·南宁模拟)已知抛物线C :y 2=ax (a >0)上一点P (t ,12)到焦点F 的距离为2t .(1)求抛物线C 的方程;(2)抛物线C 上一点A 的纵坐标为1,过点Q (3,-1)的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解析:(1)由抛物线的定义可知|PF |=t +a4=2t ,则a =4t ,由点P (t ,12)在抛物线上,得at =14,∴a ×a 4=14,则a 2=1,由a >0,得a =1, ∴抛物线C 的方程为y 2=x . (2)∵点A 在抛物线C 上,且y A =1, ∴x A =1.∴A (1,1),设过点Q (3,-1)的直线的方程为x -3=m (y +1), 即x =my +m +3,代入y 2=x 得y 2-my -m -3=0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=m ,y 1y 2=-m -3, ∴k 1k 2=y 1-1x 1-1·y 2-1x 2-1=y 1y 2-y 1+y 2+1m 2y 1y 2+m m +y 1+y 2+m +2=-12,∴k 1k 2为定值.4.(2018·福州四校联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.解析:(1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k x -,3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立,由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k x 1-x 2-t +k x 2-x 1-tx1-t x 2-t=k [2x 1x 2-t +x 1+x 2+2t ]x 1-t x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③, 将①代入③得8k 2-24-t +k 2+2t+4k23+4k 2=6t -243+4k2=0 ④, 则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.。

高考数学二轮复习专题五解析几何第3讲圆锥曲线的综合问题课件

高考数学二轮复习专题五解析几何第3讲圆锥曲线的综合问题课件

解:(1)设 F(c,0),由条件知,2c=233,得 c= 3. 又ac= 23,所以 a=2,b2=a2-c2=1. 故 E 的方程为x42+y2=1. (2)当 l⊥x 轴时不合题意,
故设 l:y=kx-2,P(x1,y1),Q(x2,y2).
将 y=kx-2 代入x42+y2=1, 得(1+4k2)x2-16kx+12=0. 当 Δ=16(4k2-3)>0, 即 k2>34时,x1,2=8k±24k2+4k12-3.
令 x=0,得 yM=-x02-y02,从而|BM|=1-yM=1+ 2y0 . x0-2
y0-1 直线 PB 的方程为 y= x0 x+1.
令 y=0,得 xN=-y0x-0 1, 从而|AN|=2-xN=2+y0x-0 1. 所以四边形 ABNM 的面积 S=12|AN|·|BM|=122+y0x-0 11+x02-y02
2.解析几何中的定值问题是指某些几何量(线段的长 度、图形的面积、角的度数、直线的斜率等)的大小或某 些代数表达式的值等与题目中的参数无关,不依参数的 变化而变化,而始终是一个确定的值.
命题视角 1 圆锥曲线中的定值问题 [例 2-1] (2016·北京卷)已知椭圆 C:xa22+by22=1 过 A(2,0),B(0,1)两点.(导学号 55410054) (1)求椭圆 C 的方程及离心率; (2)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N.求证:四边 形 ABNM 的面积为定值.
(1)解:设点 P 坐标为(x,y),所以点 Q 的坐标为(x, 0).
因为 2P→A·P→B=|P→Q|2, 所以 2[(- 2-x)( 2-x)+y2]=y2, 化简得点 P 的轨迹方程为x42+y22=1.

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。

2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)

2019届高考数学二轮复习  专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)

第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1­A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC ­ A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M ­ AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F ­ BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1­ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。

第3讲 圆锥曲线中的热点问题

第3讲 圆锥曲线中的热点问题

S=12|PQ||PG|=(1+8k2(k2)1+(k22)+k2)=1+821k+ 1k+kk 2. 设 t=k+1k, 则由 k>0 得 t≥2,当且仅当 k=1 时取等号. 因为 S=1+8t2t2在[2,+∞)单调递减,
所以当 t=2,即 k=1 时,S 取得最大值,最大值为196. 因此,△PQG 面积的最大值为196.

令 x=0,得点 M 的纵坐标为 yM=-x1y-1+12+2= -xk1x-1+1 1+2.
同理得点 N 的纵坐标为 yN=-xk2x-2+1 1+2. 由Q→M=λQ→O,Q→N=μQ→O,得 λ=1-yM,μ=1-yN. 所以1λ+μ1=1-1yM+1-1yN=(kx-1-1)1 x1+
(1)设 AB 中点为 M,证明:PM 垂直于 y 轴; (2)若 P 是半椭圆 x2+y42=1(x<0)上的动点,求△PAB 面积的取值范围.

(1)证明:设 P(x0,y0),A14y21,y1,B14y22,y2. 因为 PA,PB 的中点在抛物线上, 所以 y1,y2 为方程y+2 y02=4·14y2+2 x0, 即 y2-2y0y+8x0-y20=0 的两个不同的实根. 所以 y1+y2=2y0, 因此,PM 垂直于 y 轴.
1.几何法:若题目中的条件和结论能明显体现几何 特征和意义,则考虑利用图形性质数形结合求解.
2.代数法:若题目中的条件和结论能体现一种明确 的函数关系,或者不等关系,或者已知参数与新参数之 间的等量关系等,则利用代数法求参数的范围.

[变式训练] (2018·浙江卷)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上存在不同的两点 A,B 满足 PA,PB 的中点 均在 C 上.

2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]

2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]

第3讲 圆锥曲线中的综合问题专题强化训练1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,2 B .(1,+∞)C .(1,2)D.⎝ ⎛⎭⎪⎫12,1 解析:选C.由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 2.(2019·浙江高考冲刺卷)已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA →·OB →=15(O 为原点),则△ABO 和△AFO 的面积之和的最小值为( )A.18B.52C.54D.652 解析:选D.设直线AB 的方程为:x =ty +m ,A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m ,0),⎩⎪⎨⎪⎧4y 2=x x =ty +m ,可得4y 2-ty -m =0, 根据根与系数的关系有y 1·y 2=-m4,因为OA →·OB →=15,所以x 1·x 2+y 1·y 2=15,从而16(y 1·y 2)2+y 1·y 2-15=0, 因为点A ,B 位于x 轴的两侧, 所以y 1·y 2=-1,故m =4.不妨令点A 在x 轴上方,则y 1>0,如图所示.又F (116,0), 所以S △ABO +S △AFO =12×4×(y 1-y 2)+12×116y 1=6532y 1+2y 1≥265y 132×2y 1=652, 当且仅当6532y 1=2y 1,即y 1=86565时,取“=”号,所以△ABO 与△AFO 面积之和的最小值是652,故选D.3.(2019·绍兴市柯桥区高考数学二模)已知l 是经过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =60°,则双曲线的离心率的最大值为( )A.233B. 3 C .2 D .3 解析:选A.设双曲线的焦点F (c ,0),直线l :x =c , 可设点P (c ,n ),A (-a ,0),B (a ,0), 由两直线的夹角公式可得tan ∠APB =⎪⎪⎪⎪⎪⎪k PA-k PB1+k PA ·k PB=⎪⎪⎪⎪⎪⎪n c +a -n c -a 1+n 2c 2-a 2=2a |n |n 2+(c 2-a 2)=2a|n |+c 2-a 2|n |=tan 60°=3,由|n |+c 2-a 2|n |≥2|n |·c 2-a 2|n |=2c 2-a 2,可得3≤a c 2-a2,化简可得3c 2≤4a 2,即c ≤233a ,即有e =c a ≤233.当且仅当n =±c 2-a 2,即P (c ,±c 2-a 2),离心率取得最大值233.故选A.4.(2019·福州质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5解析:选C.由题意知,抛物线C :y 2=4x 的焦点F (1,0),准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1y =2(x -1),x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.5.(2019·鄞州中学期中)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是( )A .4B .6C .8D .16解析:选C.设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴长为2a 2,取椭圆与双曲线在一象限内的交点为P ,由椭圆和双曲线的定义分别有|PF 1|+|PF 2|=2a 1①,|PF 1|-|PF 2|=2a 2②,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2③,①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22④,将④代入③得a 21+a 22=2c 2,则9e 21+e 22=9c 2a 21+c 2a 22=5+9a 222a 21+a 212a 22≥8,故9e 21+e 22的最小值为8.6.(2019·金华十校二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长为42,虚轴的一个端点与抛物线x 2=2py (p >0)的焦点重合,直线y =kx -1与抛物线相切且与双曲线的一条渐近线平行,则p =( )A .4B .3C .2D .1解析:选A.抛物线x 2=2py 的焦点为⎝ ⎛⎭⎪⎫0,p 2,所以可得b =p2,因为2a =42⇒a =22,所以双曲线的方程为x 28-4y 2p 2=1,可求得渐近线方程为y =±p 42x ,不妨设y =kx -1与y =p42x 平行,则有k =p 42.联立⎩⎪⎨⎪⎧y =p 42x -1x 2=2py⇒x 2-p 222x +2p =0,所以Δ=⎝ ⎛⎭⎪⎫-p 2222-8p =0,解得p =4.7.(2019·浙江“七彩阳光”联盟高三联考)已知椭圆的方程为x 29+y 24=1,过椭圆中心的直线交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长的最小值为________,△ABF 2的面积的最大值为________.解析:连接AF 1,BF 1,则由椭圆的中心对称性可得C △ABF 2=AF 2+BF 2+AB =AF 1+AF 2+AB =6+AB ≥6+4=10,S △ABF 2=S △AF 1F 2≤12·25·2=2 5.答案:10 2 58.(2019·东阳二中改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析:不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255. 答案:2559.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是________.解析:设椭圆的长轴长为2a ,双曲线的实轴长为2m ,则2c =|PF 2|=2a -10,2m =10-2c ,所以a =c +5,m =5-c ,所以e 1e 2=c c +5×c 5-c =c 225-c 2=125c2-1,又由三角形的性质知2c +2c >10,由已知2c <10,c <5,所以52<c <5,1<25c 2<4,0<25c 2-1<3,所以e 1e 2=125c2-1>13.答案:⎝ ⎛⎭⎪⎫13,+∞ 10.(2019·杭州市高考数学二模)抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,过弦AB 中点M 作准线l 的垂线,垂足为M 1,则|MM 1||AB |的最大值为________.解析:设|AF |=a ,|BF |=b ,连接AF 、BF , 由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MM 1|=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab , 配方得,|AB |2=(a +b )2-ab ,又因为ab ≤⎝ ⎛⎭⎪⎫a +b 22,所以(a +b )2-ab ≥(a +b )2-14(a +b )2=34(a +b )2,得到|AB |≥32(a +b ). 所以|MM 1||AB |≤12(a +b )32(a +b )=33,即|MM 1||AB |的最大值为33. 答案:3311.(2019·衢州市教学质量检测)已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的长轴长为22,左焦点F (-1,0),若过点B (-2b ,0)的直线与椭圆交于M ,N 两点.(1)求椭圆G 的标准方程; (2)求证:∠MFB +∠NFB =π; (3)求△FMN 面积S 的最大值.解:(1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的长轴长为22,焦距为2,即2a =22,2c =2,所以2b =2,所以椭圆的标准方程为x 22+y 2=1.(2)证明:∠MFB +∠NFB =π,即证:k MF +k NF =0, 设直线方程MN 为y =k (x +2),代入椭圆方程得: (1+2k 2)x 2+8k 2x +8k 2-2=0, 其中Δ>0,所以k 2<12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2= -8k 21+2k 2,x 1x 2=8k 2-21+2k2, k MF +k NF =y 1x 1+1+y 2x 2+1=k (x 1+2)x 1+1+k (x 2+2)x 2+1=k [2+x 1+x 2+2(x 1+1)(x 2+1)]=0.故∠MFB +∠NFB =π.(3)S =12·FB |y 1-y 2|=12|k ||x 1-x 2|=128(1-2k 2)k2(1+2k 2)2.令t =1+2k 2, 则S =2-t 2+3t -22t2=-2⎝ ⎛⎭⎪⎫1t -342+18,当k 2=16(满足k 2<12)时,S 的最大值为24.12.(2019·浙江金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值.解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m , 所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减,当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.13.(2019·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23, 由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条; 当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得:y 20<59,由:r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .14.(2019·严州中学月考改编)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点且斜率为45的直线l 交C 于A ,B 两点.当m =0时,PA →·PB →=-412.(1)求椭圆C 的方程;(2)证明:|PA |2+|PB |2为定值. 解:(1)因为离心率为35,所以b a =45.当m =0时,l 的方程为y =45x ,代入x 2a 2+y 2b 2=1并整理得x 2=a 22.设A (x 0,y 0),则B (-x 0,-y 0), PA →·PB →=-x 20-y 20=-4125x 20=-4125·a 22. 又因为PA →·PB →=-412,所以a 2=25,b 2=16,椭圆C 的方程为x 225+y 216=1.(2)证明:将l 的方程为x =54y +m ,代入x 225+y216=1,并整理得25y 2+20my +8(m 2-25)=0. 设A (x 1,y 1),B (x 2,y 2), 则|PA |2=(x 1-m )2+y 21=4116y 21,同理|PB |2=4116y 22.则|PA |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4m 52-16(m 2-25)25=41.所以|PA |2+|PB |2为定值.15.(2019·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A 、B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px ,即3x 2-5px +34p 2=0, 所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b ,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 中点的坐标M 为(m 28+b ,m 8),即线段CD 的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以k MC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m 2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

2019年高考二轮复习必备解析几何圆锥曲线解答题

2019年高考二轮复习必备解析几何圆锥曲线解答题

2019年高考二轮复习必备解析几何圆锥曲线解答题1、(定值问题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线x-y +6=0相切.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A 、B 两点,且k OA ·k OB =-b 2a 2,试判断△AOB 的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.2、(定值问题)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.3、(过定点问题)已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E .(1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点. 4、(过定点问题)已知动圆过定点A(4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程; (Ⅱ) 已知点B(-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P, Q, 若x 轴是PBQ 的角平分线, 证明直线l 过定点.5、(最值问题)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围; (2)求△AOB 面积的最大值(O 为坐标原点).6、(最值问题)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆C 的方程; (2)直线l :y =kx +t (t ≠0)与椭圆C 交于M 、N 两点,线段MN 的垂直平分线与y 轴交点P ⎝⎛⎭⎫0,-14,求△MON (O 为坐标原点)面积的最大值.7、(存在性问题)已知椭圆:C 12222=+by a x (0>>b a )的左,右焦点分别为21,F F ,上顶点为B .Q 为抛物线xy 122=的焦点,且01=⋅F ,=+1212QF F F 0.(Ⅰ)求椭圆C 的标准方程; (Ⅱ)过定点)2,0(P 的直线l 与椭圆C 交于N M ,两点(M 在N P ,之间),设直线l 的斜率为k (0>k ), 在x 轴上是否存在点)0,(m A ,使得以AN AM ,为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.8、(存在性问题)已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点.(Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;2019年高考二轮复习必备解析几何圆锥曲线解答题答案1、(定值问题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A 、B 两点,且k OA ·k OB =-b 2a 2,试判断△AOB 的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.[解析] (1)由题意知e =c a =12,∴e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2,又b =61+1=3,∴a 2=4,b 2=3,故椭圆的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +mx 24+y 23=1得(3+4k 2)x 2+8mkx +4(m 2-3)=0,△=64m 2k 2-16(3+4k 2)(m 2-3)>0,3+4k 2-m 2>0.x 1+x 2=-8mk3+4k 2,x 1·x 2=4(m 2-3)3+4k 2. y 1·y 1=(kx 1+m )·(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k2.k OA ·k OB =-34,y 1y 2x 1x 2=-34, y 1y 2=-34x 1x 2,3(m 2-4k 2)3+4k2=-34·4(m 2-3)3+4k 2 2m 2-4k 2=3, |AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+k 248(4k 2-m 2+3)(3+4k 2)2=24(1+k 2)3+4k 2.d =|m |1+k 2=1-14(1+k 2)≥1-14=32,S =12|AB |d =1224(1+k 2)3+4k 2|m |1+k 2=1224(1+k 2)m2(3+4k 2)(1+k 2)=1224m2(3+4k 2) =12243+4k 2·3+4k 22= 3. [方法点拨] 定值问题的求解策略(1)在解析几何中,有些几何量与参数无关,这就是“定值”问题,解决这类问题常通过取特殊值,先确定“定值”是多少,再进行证明,或者将问题转化为代数式,再证明该式是与变量无关的常数,或者由该等式与变量无关,令其系数等于零即可得到定值.(2)求解定值问题的三个步骤①由特例得出一个值,此值一般就是定值;②证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;③得出结论.2、(定值问题)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.[解析] (1)因为e =32=c a ,所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1.故椭圆的方程为x24+y 2=1. (2)方法一:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)(k ≠0,k ≠±12).①①代入x 24+y 2=1,解得P (8k 2-24k 2+1,-4k 4k 2+1).直线AD 的方程为:y =12x +1.②①与②联立解得M (4k +22k -1,4k2k -1), 由D (0,1),P (8k 2-24k 2+1,-4k4k 2+1),N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N (4k -22k +1,0).所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值). (2)方法二:设P (x 0,y 0)(x 0≠0,±2),则k =y 0x 0-2,直线AD 的方程为:y =12(x +2).直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为:y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N (-x 0y 0-1,0).联立⎩⎨⎧y =12(x +2),y =y0x 0-2(x -2).解得M (4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2),因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 2+4 =4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2,所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).3、(过定点问题)已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E .(1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点.[解析] (1)⊙O 的圆心M (0,2),半径r =1,设动圆圆心P (x ,y ),由条件知|PM |-1等于P 到l 的距离, ∴|PM |等于P 到直线y =-2的距离,∴P 点轨迹是以M (0,2)为焦点,y =-2为准线的抛物线.方程为x 2=8y . (2)设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2)将直线AB 的方程代入到x 2=8y 中得x 2-8kx -8b =0,所以x 1+x 2=8k ,x 1x 2=-8b ,又因为OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16⇒b =4所以直线BC 恒过定点(0,4).4、(过定点问题)已知动圆过定点A(4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程; (Ⅱ) 已知点B(-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P, Q, 若x 轴是PBQ∠的角平分线, 证明直线l 过定点. 解:(Ⅰ) A(4,0),设圆心C 2222,2),,(EC ME CM CA MN ME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ) 点B(-1,0), 222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y 所以,直线PQ 过定点(1,0) 5、(最值问题)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[分析] 考查直线与椭圆的位置关系;点到直线的距离公式;求函数的最值及运算求解能力、函数与方程的思想.(1)可设出直线AB 的方程,与椭圆方程联立消元化为一元二次方程,由AB 的中点在已知直线上知方程有两个不同的解,由此可得到关于m 的不等式,从而求解;(2)令t =1m,可将△AOB 表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而获解.[解析](1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1mx +b 消去y ,得(12+1m 2)x 2-2bmx +b 2-1=0,∵直线y=-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,∴Δ=-2b 2+2+4m 2>0,①,将AB 中点M (2mb m 2+2,m 2b m 2+2)代入直线方程y =mx +12解得b=-m 2+22m 2,②.由①②得m <-63或m >63. (2)令t =1m ∈(-62,0)∪(0,62),则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1,设△AOB 的面积为S (t ),∴S (t )=12|AB |·d =12-2(t 2-12)2+2≤22,当且仅当t 2=12时,等号成立,故△AOB 面积的最大值为22.6、(最值问题)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆C 的方程;(2)直线l :y =kx +t (t ≠0)与椭圆C 交于M 、N 两点,线段MN 的垂直平分线与y 轴交点P ()0,-14,求△MON (O 为坐标原点)面积的最大值.[解析] (1)∵e =33,∴a 2=3c 2=3a 2-3b 2,∴2a 2=3b 2 将x =-c 代入椭圆方程得:y 2=b 4a 2,y =±b 2a,由题意:2b 2a =433,∴2a =3b 2 ,解得:a 2=3,b 2=2∴椭圆C 的方程为:x 23+y 22=1(2)联立方程组:⎩⎪⎨⎪⎧x 23+y 22=1y =kx +t 消去y 整理得:(3k 2+2)x 2+6ktx +3t 2-6=0 ①∴Δ=36k 2t 2-4(3k 2+2)·(3t 2-6)=24(3k 2+2-t 2)>0,∴3k 2+2>t 2 ② 设M (x 1,y 1),N (x 2,y 2),则x 1,x 2是方程①的两个解,由韦达定理得: x 1+x 2=-6kt3k 2+2, y 1+y 2=k (x 1+x 2)+2t =-6k 2t3k 2+2+2t =4t3k 2+2设MN 的中点为G (x 0,y 0),则 x 0=x 1+x 22=-3kt 3k 2+2,y 0=y 1+y 22=2t3k 2+2∴线段MN 的垂直平分线方程为:y -2t 3k 2+2=-1k ⎝⎛⎭⎫x +3kt 3k 2+2将P ()0,-14代入得:14+2t 3k 2+2=3t3k 2+2化简得:3k 2+2=4t 代入②式得:4t >t 2,∴0<t <4|MN |=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·26·3k 2+2-t 23k 2+2=1+k 2·26·4t -t 24t=1+k 2·6·4t -t 22t设O 到直线MN 的距离为d ,则d =t 1+k 2∴S △NOM =12·|MN |·d =12·1+k 2·6·4t -t 22t ·t 1+k 2=64·4t -t 2=64·-(t -2)2+4≤62(当且仅当t =2,k =±2时取“=”号)∴△MON 面积的最大值为62,此时直线l 的方程为:y =±2x +2. 7、(存在性问题)已知椭圆:C 12222=+by a x (0>>b a )的左,右焦点分别为21,F F ,上顶点为B .Q 为抛物线x y 122=的焦点,且01=⋅F ,=+1212QF F F 0.(Ⅰ)求椭圆C(Ⅱ)过定点)2,0(P 的直线l 与椭圆C 交于N M ,的斜率为k (0>k ),在x 轴上是否存在点(A 邻边的平行四边形为菱形?若存在,求出实数m 解:(Ⅰ)由已知)0,3(Q ,QB B F ⊥1,c QF +==34||1在BQ F Rt 1∆中,2F 为线段Q F 1的中点,故=||2BF 22=c ,所以2=a .……… 2分于是椭圆C 的标准方程为13422=+y x .…4分 (Ⅱ)设2:+=kx y l (0>k ),),(),,(2211y x N y x M ,取MN 的中点为),(00y x E .假设存在点)0,(m A 使得以AN AM ,为邻边的平行四边形为菱形,则MN AE ⊥.0416)34(13422222=+++⇒⎪⎩⎪⎨⎧=++=kx x k y x kx y , 4102>⇒>∆k ,又0>k ,所以21>k . ………………………… 6分因为3416221+-=+k k x x ,所以34820+-=k kx ,3462200+=+=k kx y . ……… 8分 因为MN AE ⊥,所以k k AE1-=,即kmk k k 1348034622-=-+--+,整理得kk k km 3423422+-=+-=. ………………………… 10分因为21>k 时,3434≥+k k ,]123,0(341∈+k k ,所以)0,63[-∈m . ……… 12分8、(存在性问题)已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;【解析】(I )设圆心P 的坐标为(,)x y ,半径为R由于动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,所以动圆P 与圆221:(3)81F x y ++=只能内切12||9||1PF RPF R =-⎧∴⎨=-⎩1212||||8||6PF PF F F ⇒+=>= ………………………………………2分 ∴圆心P 的轨迹为以12, F F 为焦点的椭圆,其中28, 26a c ==,2224, 3, 7a c b a c ∴===-= 故圆心P 的轨迹C :221167xy +=………4分 (II )设112233(,), (,), (,)M x y N x y Q x y ,直线:OQ xmy =,则直线:3MN x my =+由221167x my x y=⎧⎪⎨+=⎪⎩可得:22222112716112716m x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩, 2232232112716112716m x m y m ⎧=⎪⎪+∴⎨⎪=⎪+⎩2222233222112112112(1)||716716716m m OQ x y m m m +∴=+=+=+++ ……………………………6分由2231167x my x y=+⎧⎪⎨+=⎪⎩可得:22(716)42490m y my ++-= 1212224249,716716m y y y y m m ∴+=-=-++∴||MN ==21|y y =-=2256(1)716m m ++………………………………8分∴222256(1)||1716112(1)||2716m MN m m OQ m ++==++ ∴||MN 和2||OQ 的比值为一个常数,这个常数为12……………9分。

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
(1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).

高考数学二轮复习 第二层提升篇 专题五 解析几何 第3讲 圆锥曲线的综合问题讲义-人教版高三全册数学

高考数学二轮复习 第二层提升篇 专题五 解析几何 第3讲 圆锥曲线的综合问题讲义-人教版高三全册数学

第3讲 圆锥曲线的综合问题[全国卷3年考情分析]解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断(与证明)及探究问题.第1课时 圆锥曲线中的定值、定点、证明问题[例1] (2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB . [解] (1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 成立.[题后悟通] 几何证明问题的解题策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.[跟踪训练]设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .解:(1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510. 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM ―→=⎝ ⎛⎭⎪⎫a 6,5b 6.又AB ―→=(-a ,b ),从而有AB ―→·NM ―→=-16a 2+56b 2=16(5b 2-a 2).由(1)可知a 2=5b 2,所以AB ―→·NM ―→=0,故MN ⊥AB .[例2] (2019·福建五校第二次联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,上顶点M 到直线3x +y +4=0的距离为3.(1)求椭圆C 的方程;(2)设直线l 过点(4,-2),且与椭圆C 相交于A ,B 两点,l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值.[解] (1)由题意可得⎩⎪⎨⎪⎧e =c a =32,|b +4|2=3,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =4,b =2,所以椭圆C 的方程为x 216+y24=1.(2)证明:易知直线l 的斜率恒小于0,设直线l 的方程为y +2=k (x -4),k <0且k ≠-1,A (x 1,y 1),B (x 2,y 2),联立得⎩⎪⎨⎪⎧y +2=k (x -4),x 216+y 24=1,得(1+4k 2)x 2-16k (2k +1)x +64k (k +1)=0, 则x 1+x 2=16k (2k +1)1+4k 2,x 1x 2=64k (k +1)1+4k 2, 因为k MA +k MB =y 1-2x 1+y 2-2x 2=(kx 1-4k -4)x 2+(kx 2-4k -4)x 1x 1x 2,所以k MA +k MB =2k -(4k +4)×x 1+x 2x 1x 2=2k -4(k +1)×16k (2k +1)64k (k +1)=2k -(2k +1)=-1(为定值).[题后悟通]求解定值问题的2大途径[跟踪训练]已知椭圆方程为x 24+y 23=1,右焦点为F ,若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3),此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3. (*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.[例3] (2019·北京高考)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.[解] (1)由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).[题后悟通] 直线过定点问题的解题模型[跟踪训练](2019·重庆市七校联合考试)已知O 为坐标原点,抛物线C :y 2=4x ,点A (-2,0),设直线l 与C 交于不同的两点P ,Q .(1)若直线l ⊥x 轴,求直线PA 的斜率的取值范围;(2)若直线l 不垂直于x 轴,且∠PAO =∠QAO ,证明:直线l 过定点. 解:(1)当点P 在第一象限时,设P (t ,2t ),则k PA =2t -0t +2=2t +2t≤222=22, ∴k PA ∈⎝ ⎛⎦⎥⎤0,22,同理,当点P 在第四象限时,k PA ∈⎣⎢⎡⎭⎪⎫-22,0. 综上所述,直线PA 的斜率k PA ∈⎣⎢⎡⎭⎪⎫-22,0∪⎝⎛⎦⎥⎤0,22. (2)证明:设直线l 的方程为y =kx +b (k ≠0),联立方程得⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b=0,Δ=16-16kb >0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4k ,y 1·y 2=4bk,∵∠PAO =∠QAO , ∴k AP +k AQ =y 1x 1+2+y 2x 2+2=y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=4y 1y 2(y 2+y 1)+32(y 1+y 2)y 21y 22+8(y 21+y 22)+64=4b +8kb 2+4k 2-4kb +8=0,∵b =-2k ,∴y =kx -2k =k(x -2),直线l 恒过定点(2,0).[专题过关检测]大题专攻强化练1.(2019·全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点.(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.解:(1)证明:设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0.于是x 1+x 2=2t ,y 1+y 2=t (x 1+x 2)+1=2t 2+1. 设M 为线段AB 的中点,则M ⎝⎛⎭⎪⎫t ,t 2+12.由于EM ―→⊥AB ―→,而EM ―→=(t ,t 2-2),AB ―→与向量(1,t )平行, 所以t +(t 2-2)t =0.解得t =0或t =±1.当t =0时,|EM ―→|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=4;当t =±1时,|EM ―→|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=2.2.(2019·济南市学习质量评估)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右焦点为F ,且该椭圆过点⎝ ⎛⎭⎪⎫1,-32. (1)求椭圆C 的方程;(2)当动直线l 与椭圆C 相切于点A ,且与直线x =433相交于点B 时,求证:△FAB 为直角三角形.解:(1)由题意得c a =32,1a 2+34b2=1,又a 2=b 2+c 2,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)证明:由题意可得直线l 的斜率存在,设l :y =kx +m ,联立得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0,判别式Δ=64k 2m 2-16(4k 2+1)(m 2-1)=0,得m 2=4k 2+1>0.设A (x 1,y 1),则x 1=-8km 2(4k 2+1)=-8km 2m 2=-4k m ,y 1=kx 1+m =-4k 2m +m =1m,即A ⎝ ⎛⎭⎪⎫-4k m ,1m .易得B ⎝⎛⎭⎪⎫433,433k +m ,F (3,0),则FA ―→=⎝ ⎛⎭⎪⎫-4k m -3,1m ,FB ―→=⎝ ⎛⎭⎪⎫33,433k +m , FA ―→·FB ―→=33⎝ ⎛⎭⎪⎫-4k m -3+1m ⎝ ⎛⎭⎪⎫433k +m =-43k 3m -1+43k 3m +1=0, 所以FA ―→⊥FB ―→,即△FAB 为直角三角形,得证.3.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解:(1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意可知,M ,N 是轨迹C 上不同的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0, (*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2,又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62. 4.(2019·福州市质量检测)已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN ―→=MA ―→+MB ―→,求证:点N 在定直线上,并求该定直线的方程.解:(1)依题意,设直线l 1的方程为y =x +p2,因为直线l 1与圆C 2相切,所以圆心C 2(-1,0)到直线l 1:y =x +p2的距离d =⎪⎪⎪⎪⎪⎪-1+p 212+(-1)2= 2. 即⎪⎪⎪⎪⎪⎪-1+p 22=2,解得p =6或p =-2(舍去).所以p =6.(2)法一:依题意设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,所以y =x 212,所以y ′=x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+y 1.令x =0,则y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即B 点的坐标为(0,-y 1),所以MA ―→=(x 1-m ,y 1+3), MB ―→=(-m ,-y 1+3),所以MN ―→=MA ―→+MB ―→=(x 1-2m ,6), 所以ON ―→=OM ―→+MN ―→=(x 1-m ,3). 设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上. 法二:设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,①设l 2的斜率为k ,A ⎝ ⎛⎭⎪⎫x 1,112x 21,则以A 为切点的切线l 2的方程为y =k (x -x 1)+112x 21,②联立①②得,x 2=12⎣⎢⎡⎦⎥⎤k (x -x 1)+112x 21,因为Δ=144k 2-48kx 1+4x 21=0,所以k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+112x 21.令x =0,得B 点坐标为⎝ ⎛⎭⎪⎫0,-112x 21,所以MA ―→=⎝ ⎛⎭⎪⎫x 1-m ,112x 21+3,MB ―→=⎝ ⎛⎭⎪⎫-m ,-112x 21+3,所以MN ―→=MA ―→+MB ―→=(x 1-2m ,6), 所以ON ―→=OM ―→+MN ―→=(x 1-m ,3), 所以点N 在定直线y =3上.第2课时 圆锥曲线中的最值、范围、探索性问题[例1] (2019·广州市综合检测(一))已知椭圆C 的中心在原点,焦点在坐标轴上,直线y =32x 与椭圆C 在第一象限内的交点是M ,点M 在x 轴上的射影恰好是椭圆C 的右焦点F 2,椭圆C 的另一个焦点是F 1,且MF 1―→·MF 2―→=94.(1)求椭圆C 的方程;(2)若直线l 过点(-1,0),且与椭圆C 交于P ,Q 两点,求△F 2PQ 的内切圆面积的最大值.[解] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∵点M 在直线y =32x 上,且点M 在x 轴上的射影恰好是椭圆C 的右焦点F 2(c ,0),∴点M ⎝⎛⎭⎪⎫c ,3c 2.∵MF 1―→·MF 2―→=⎝ ⎛⎭⎪⎫-2c ,-32c ·⎝ ⎛⎭⎪⎫0,-32c =94,∴c =1. ∴⎩⎪⎨⎪⎧1a 2+94b 2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)由(1)知,F 1(-1,0),过点F 1(-1,0)的直线与椭圆C 交于P ,Q 两点,则△F 2PQ 的周长为4a =8,又S △F 2PQ =12·4a ·r (r 为△F 2PQ 的内切圆半径),∴当△F 2PQ 的面积最大时,其内切圆面积最大. 设直线l 的方程为x =ky -1,P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x =ky -1,x 24+y23=1, 消去x 得(4+3k 2)y 2-6ky -9=0, ∴⎩⎪⎨⎪⎧y 1+y 2=6k 3k 2+4,y 1y 2=-93k 2+4,∴S △F 2PQ =12·|F 1F 2|·|y 1-y 2|=12k 2+13k 2+4. 令k 2+1=t ,则t ≥1,∴S △F 2PQ =123t +1t, 令f (t )=3t +1t,则f ′(t )=3-1t2,当t ∈ [1,+∞)时,f ′(t )>0,f (t )=3t +1t在[1,+∞)上单调递增,∴S △F 2PQ =123t +1t≤3,当t =1时取等号,即当k =0时,△F 2PQ 的面积取得最大值3, 结合S △F 2PQ =12·4a ·r ,得r 的最大值为34,∴△F 2PQ 的内切圆面积的最大值为916π.[题后悟通] 最值问题的2种基本解法[跟踪训练](2019·河北省九校第二次联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM ―→·PN ―→的最小值.解:(1)由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,则直线MN 的方程为y =x -p2,代入y 2=2px (p >0)得x 2-3px +p 24=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=3p ,∵|MN |=8,∴x 1+x 2+p =8,即3p +p =8,解得p =2, ∴抛物线C 的方程为y 2=4x .(2)设直线l 的方程为y =x +b ,代入y 2=4x ,得x 2+(2b -4)x +b 2=0, ∵直线l 为抛物线C 的切线,∴Δ=0,解得b =1, ∴l :y =x +1.由(1)可知,x 1+x 2=6,x 1x 2=1,设P (m ,m +1),则PM ―→=(x 1-m ,y 1-(m +1)),PN ―→=(x 2-m ,y 2-(m +1)), ∴PM ―→·PN ―→=(x 1-m )(x 2-m )+ [y 1-(m +1)][y 2-(m +1)]=x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2,(y 1y 2)2=16x 1x 2=16,∴y 1y 2=-4,y 21-y 22=4(x 1-x 2),∴y 1+y 2=4×x 1-x 2y 1-y 2=4,PM ―→·PN ―→=1-6m +m 2-4-4(m +1)+(m +1)2=2(m 2-4m -3)=2[(m -2)2-7]≥-14,当且仅当m =2,即点P 的坐标为(2,3)时,PM ―→·PN ―→取得最小值-14.[例2] (2019·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝ ⎛⎭⎪⎫14,0,若|AQ |=|BQ |,求k 的取值范围.[解] (1)由题意设|PF 1|=r 1,|PF 2|=r 2,则3r 1=5r 2,又r 1+r 2=2a ,∴r 1=54a ,r 2=34a . 在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=r 21+r 22-|F 1F 2|22r 1r 2=⎝ ⎛⎭⎪⎫54a 2+⎝ ⎛⎭⎪⎫34a 2-222×54a ×34a =35, 解得a =2,∵c =1,∴b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,且Δ=48(3+4k 2-m 2)>0,①设AB 的中点为M (x 0,y 0),连接QM ,则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k2, ∵|AQ |=|BQ |,∴AB ⊥QM ,又Q ⎝ ⎛⎭⎪⎫14,0,M 为AB 的中点,∴k ≠0,直线QM 的斜率存在,∴k ·k QM =k ·3m3+4k 2-4km 3+4k 2-14=-1,解得m =-3+4k24k,②把②代入①得3+4k 2>⎝⎛⎭⎪⎫-3+4k 24k 2,整理得16k 4+8k 2-3>0,即(4k 2-1)(4k 2+3)>0,解得k >12或k <-12,故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞.[题后悟通] 范围问题的解题策略解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式来构造不等式,从而确定所求范围(如本例);(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围;(6)利用已知,将条件转化为几个不等关系,从而求出参数的范围(如本例).[跟踪训练](2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.[例3] (2019·石家庄市质量检测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝ ⎛⎭⎪⎫-1,32. (1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q ,使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.[解] (1)由题意可得c a =32,1a 2+34b2=1, 又a 2-b 2=c 2,所以a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称. 设直线l 的方程为x +my -3=0,与椭圆C 的方程联立得⎩⎪⎨⎪⎧x +my -3=0,x 24+y 2=1,整理得,(4+m 2)y 2-23my -1=0.设A (x 1,y 1),B (x 2,y 2),定点Q (t ,0)(依题意t ≠x 1,t ≠x 2). 由根与系数的关系可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2.直线QA 与直线QB 恰关于x 轴对称,则直线QA 与直线QB 的斜率互为相反数, 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又x 1+my 1-3=0,x 2+my 2-3=0,所以y 1(3-my 2-t )+y 2(3-my 1-t )=0,整理得,(3-t )(y 1+y 2)-2my 1y 2=0, 从而可得,(3-t )·23m 4+m 2-2m ·-14+m 2=0,即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称.特别地,当直线l 为x 轴时,Q ⎝⎛⎭⎪⎫433,0也符合题意. 综上所述,在x 轴上存在定点Q ⎝ ⎛⎭⎪⎫433,0,使得直线QA 与直线QB 恰关于x 轴对称.[题后悟通] 探索性问题的解题策略探索性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.[跟踪训练]如图,由部分抛物线y 2=mx +1(m >0,x ≥0)和半圆x 2+y 2=r 2(x ≤0)所组成的曲线称为“黄金抛物线C ”,若“黄金抛物线C ”经过点(3,2)和⎝ ⎛⎭⎪⎫-12,32. (1)求“黄金抛物线C ”的方程;(2)设P (0,1)和Q (0,-1),过点P 作直线l 与“黄金抛物线C ”交于A ,P ,B 三点,问是否存在这样的直线l ,使得QP 平分∠AQB ?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)因为“黄金抛物线C ”过点(3,2)和⎝ ⎛⎭⎪⎫-12,32,所以r 2=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1,4=3m +1,解得m =1. 所以“黄金抛物线C ”的方程为y 2=x +1(x ≥0)和x 2+y 2=1(x ≤0). (2)假设存在这样的直线l ,使得QP 平分∠AQB . 显然直线l 的斜率存在且不为0,结合题意可设直线l 的方程为y =kx +1(k ≠0),A (x A ,y A ),B (x B ,y B ),不妨令x A <0<x B .由⎩⎪⎨⎪⎧y =kx +1,y 2=x +1(x ≥0),消去y 并整理,得k 2x 2+(2k -1)x =0, 所以x B =1-2k k 2,y B =1-k k ,即B ⎝ ⎛⎭⎪⎫1-2k k 2,1-k k ,由x B>0知k <12,所以直线BQ 的斜率为k BQ =k1-2k.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 2=1(x ≤0),消去y 并整理,得(k 2+1)x 2+2kx =0, 所以x A =-2k k 2+1,y A =1-k 2k 2+1,即A ⎝ ⎛⎭⎪⎫-2k k 2+1,1-k 2k 2+1,由x A <0知k >0,所以直线AQ 的斜率为k AQ =-1k.因为QP 平分∠AQB ,且直线QP 的斜率不存在,所以k AQ +k BQ =0, 即-1k +k 1-2k =0,由0<k <12,可得k =2-1.所以存在直线l :y =(2-1)x +1,使得QP 平分∠AQB . [专题过关检测]大题专攻强化练1.(2019·全国卷Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由.解:(1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|. 连接MA ,由已知得|AO |=2.又MO ―→⊥AO ―→,故可得2a 2+4=(a +2)2, 解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值. 理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2.由于MO ⊥AO ,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x .因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP |=x +1.因为|MA |-|MP |=r -|MP |=x +2-(x +1)=1, 所以存在满足条件的定点P .2.(2019·武汉部分学校调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆C 上异于A ,B 的点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (8,0)的动直线与椭圆C 交于P ,Q 两点,求△OPQ 面积的最大值.解:(1)设T (x ,y )(x ≠±4),则直线TA 的斜率为k 1=y x +4,直线TB 的斜率为k 2=yx -4. 于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y212=1(x ≠±4),故椭圆C 的方程为x 216+y 212=1.(2)由题意设直线PQ 的方程为x =my +8,由⎩⎪⎨⎪⎧x =my +8,x 216+y 212=1得(3m 2+4)y 2+48my +144=0, Δ=(48m )2-4×144×(3m 2+4)=12×48(m 2-4)>0,即m 2>4,y P +y Q =-48m 3m 2+4,y P y Q =1443m 2+4. |PQ |=m 2+13m 2+4·Δ=24(m 2+1)(m 2-4)3m 2+4, 点O 到直线PQ 的距离d =8m 2+1.故S△OPQ=12×|PQ |×d =96m 2-43m 2+4=963m 2-4+16m 2-4≤43⎝ ⎛⎭⎪⎫当且仅当m 2=283时等号成立,且满足m 2>4,故△OPQ 面积的最大值为4 3.3.(2019·湖南省湘东六校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,点A (b ,0),B ,F 分别为椭圆的上顶点和左焦点,且|BF |·|BA |=2 6.(1)求椭圆C 的方程.(2)若过定点M (0,2)的直线l 与椭圆C 交于G ,H 两点(G 在M ,H 之间),设直线l 的斜率k >0,在x 轴上是否存在点P (m ,0),使得以PG ,PH 为邻边的平行四边形为菱形?如果存在,求出m 的取值范围;如果不存在,请说明理由.解:(1)设椭圆的焦距为2c ,由离心率e =12得a =2c .①由|BF |·|BA |=26,得a ·b 2+b 2=26,∴ab =2 3.②a 2-b 2=c 2,③由①②③可得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2(k >0),由⎩⎪⎨⎪⎧y =kx +2(k >0),x 24+y 23=1得(3+4k 2)x 2+16kx +4=0,可知Δ>0,∴k >12.设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=-16k 4k 2+3,PG ―→+PH ―→=(x 1+x 2-2m ,k (x 1+x 2)+4),GH ―→=(x 2-x 1,y 2-y 1)=(x 2-x 1,k (x 2-x 1)).∵菱形的对角线互相垂直,∴(PG ―→+PH ―→)·GH ―→=0,∴(1+k 2)(x 1+x 2)+4k -2m =0,得m =-2k 4k 2+3,即m =-24k +3k,∵k >12,∴-36≤m <0⎝ ⎛⎭⎪⎫当且仅当3k =4k 时,等号成立. ∴存在满足条件的实数m ,m 的取值范围为⎣⎢⎡⎭⎪⎫-36,0. 4.(2019·郑州市第二次质量预测)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,A 为椭圆上一动点(异于左、右顶点),△AF 1F 2的周长为4+23,且面积的最大值为 3.(1)求椭圆C 的方程;(2)设B 是椭圆上一动点,线段AB 的中点为P ,OA ,OB (O 为坐标原点)的斜率分别为k 1,k 2,且k 1k 2=-14,求|OP |的取值范围.解:(1)由椭圆的定义及△AF 1F 2的周长为4+23,可得2(a +c )=4+23, ∴a +c =2+ 3.①当A 在上(或下)顶点时,△AF 1F 2的面积取得最大值,即bc =3,② 由①②及a 2=c 2+b 2,得a =2,b =1,c =3, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线AB 的斜率不存在时,k 1=-k 2,∵k 1k 2=-14,∴k 1=±12,不妨取k 1=12,则直线OA 的方程为y =12x ,不妨取点A ⎝ ⎛⎭⎪⎫2,22,则B ⎝⎛⎭⎪⎫2,-22,P (2,0),∴|OP |= 2. 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4可得(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=64k 2m 2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,③∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.∵k 1k 2=-14,∴4y 1y 2+x 1x 2=0,∴4(kx 1+m )(kx 2+m )+x 1x 2=(4k 2+1)x 1x 2+4km (x 1+x 2)+4m 2=4m 2-4-32k 2m 21+4k2+4m 2=0,化简得2m 2=1+4k 2(满足③式),∴m 2≥12.设P (x 0,y 0),则x 0=x 1+x 22=-4km 1+4k 2=-2k m ,y 0=kx 0+m =12m. ∴|OP |2=x 20+y 20=4k 2m 2+14m 2=2-34m 2∈⎣⎢⎡⎭⎪⎫12,2,∴|OP |∈⎣⎢⎡⎭⎪⎫22,2. 综上,|OP |的取值范围为⎣⎢⎡⎦⎥⎤22,2.[思维流程——找突破口][典例] 已知圆(x +3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (3,0),点G 在线段MP 上,且满足(GN ―→+GP ―→)⊥(GN ―→-GP ―→).(1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.[快审题][稳解题](1)因为(GN ―→+GP ―→)⊥(GN ―→-GP ―→),所以(GN ―→+GP ―→)·(GN ―→-GP ―→)=0,即GN ―→2-GP ―→2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>23=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,2c =23,即a =2,c =3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1.(2)法一:依题意可设直线l :x =my +4.由⎩⎪⎨⎪⎧x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0. 设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ① 且y 1+y 2=-8mm 2+4, y 1y 2=12m 2+4. ② 因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0), 所以k BD =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y 2-y 1)(x -my 2-4).令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m -32m -8m =1,所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |= 12|QT ||y 2-y 1|= 32(y 1+y 2)2-4y 1y 2=6m 2-12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6t -16t=6-16t 2+1t=6-16⎝ ⎛⎭⎪⎫1t -1322+164.当且仅当t =32,即m =±27时,(S △ABQ )max =34.所以△ABQ 面积的最大值为34.法二:依题意知直线l 的斜率存在,设其方程为y =k (x -4),A (x 1,y 1),B (x 2,y 2),Q (x 0,0).由对称性知D (x 1,-y 1),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 2=1消去y , 得(4k 2+1)x 2-32k 2x +64k 2-4=0. 由Δ=(-32k 2)2-4(4k 2+1)(64k 2-4)>0,得k 2<112, ①且x 1+x 2=32k 24k 2+1,x 1x 2=64k 2-44k 2+1. ②BQ ―→=(x 0-x 2,-y 2),DQ ―→=(x 0-x 1,y 1)由B ,D ,Q 三点共线知BQ ―→∥DQ ―→, 故(x 0-x 2)y 1+y 2(x 0-x 1)=0,即(x 0-x 2)·k (x 1-4)+k (x 2-4)(x 0-x 1)=0. 整理得x 0=2x 1x 2-4(x 1+x 2)x 1+x 2-8. ③将②代入③,得x 0=1,所以点Q 的坐标为(1,0). 因为点Q (1,0)到直线l 的距离为d =3|k |k 2+1,|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·1-12k 24k 2+1, 所以S △ABQ =12|AB |·d =6k 2-12k44k 2+1.令t =4k 2+1,则k 2=t -14,结合①得1<t <43,所以S △ABQ =6-34t 2+74t -1t=3-4t 2+7t-3=3-4⎝ ⎛⎭⎪⎫1t -782+116.当且仅当1t =78,即k =±714时,(S △ABQ )max =34.所以△ABQ 面积的最大值为34.[题后悟道]解决直线与圆锥曲线位置关系问题的步骤[针对训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎪⎫1,22,且离心率为22.(1)求椭圆C 的方程;(2)设F 1,F 2分别为椭圆C 的左、右焦点,不经过F 1的直线l 与椭圆C 交于两个不同的点A ,B .如果直线AF 1,l ,BF 1的斜率依次成等差数列,求焦点F 2到直线l 的距离d 的取值范围.解:(1)由题意,知⎩⎪⎨⎪⎧1a 2+24b2=1,c a =22,结合a 2=b 2+c 2得a 2=2,b 2=1,c 2=1.所以椭圆C 的方程为x 22+y 2=1. (2)易知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m (k ≠0).由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1消去y 并整理,得(1+2k 2)x 2+4kmx +2(m 2-1)=0. 则Δ=(4km )2-8(1+2k 2)(m 2-1)>0,即2k 2>m 2-1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-1)1+2k 2. 因为F 1(-1,0),所以k AF 1=y 1x 1+1,k BF 1=y 2x 2+1.由题意可得2k =y 1x 1+1+y 2x 2+1,且y 1=kx 1+m ,y 2=kx 2+m ,所以(m -k )(x 1+x 2+2)=0.因为直线l :y =kx +m 不过焦点F 1(-1,0),所以m -k ≠0, 所以x 1+x 2+2=0,从而-4km 1+2k 2+2=0,即m =k +12k .② 由①②得2k 2>⎝ ⎛⎭⎪⎫k +12k 2-1,化简得|k |>22.焦点F 2(1,0)到直线l :y =kx +m 的距离d =|k +m |1+k2=⎪⎪⎪⎪⎪⎪2k +12k 1+k2=2+12k21k2+1. 令t =1k2+1,由|k |>22知t ∈(1,3),所以d =t 2+32t =12⎝ ⎛⎭⎪⎫t +3t , 由函数f (t )=12⎝ ⎛⎭⎪⎫t +3t 在(1,3)上单调递减知,f (3)<d <f (1),解得3<d <2,于是焦点F 2到直线l 的距离d 的取值范围为(3,2).。

高考数学二轮专题突破 专题五 第3讲 圆锥曲线中的热点问题 文

高考数学二轮专题突破 专题五 第3讲 圆锥曲线中的热点问题 文

第3讲圆锥曲线中的热点问题【高考考情解读】纵观近几年高考,解析几何是重要内容之一,所占分值在30分以上,大题小题同时有,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.1.填空题主要考查圆锥曲线的几何性质,三种圆锥曲线都有可能涉及.2.在解答题中主要考查圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定点、定值及最值、范围问题.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长P1P2=1+k2|x2-x1|或P1P2=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.考点一圆锥曲线的弦长及中点问题例1已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的离心率为63,右焦点(22,0),斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△PAB 的面积. 解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4. 所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1.得4x 2+6mx +3m 2-12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4;因为AB 是等腰△PAB 的底边,所以PE ⊥AB . 所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0. 解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2. 所以AB =3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△PAB 的面积S =12AB ·d =92.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.椭圆x 22+y 2=1的弦被点⎝ ⎛⎭⎪⎫12,12平分,则这条弦所在的直线方程是________.答案 2x +4y -3=0解析 设弦的两个端点为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=1,y 1+y 2=1.∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 22=1.x 1+x 2x 1-x 22+(y 1+y 2)(y 1-y 2)=0,即y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12, 即直线AB 的斜率为-12.∴直线AB 的方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即2x +4y -3=0.考点二 圆锥曲线中的定值、定点问题例2已知椭圆C :x 2a 2+y 2b2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连结AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为y =k (x -1),求得l 与y 轴交于M (0,-k ),又F 坐标为(1,0),设l 交椭圆于A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k x -1,x 24+y23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2, ∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-x 1+x 2+x 1x 2=8k 23+4k 2-24k 2-123+4k 21-8k 23+4k 2+4k 2-123+4k2=-83. 所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83.(3)当直线l 斜率不存在时,直线l ⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 的中点N ⎝ ⎛⎭⎪⎫52,0, 猜想,当直线l 的倾斜角变化时,AE 与BD 相交于定点N ⎝ ⎛⎭⎪⎫52,0,证明:由(2)知A (x 1,y 1),B (x 2,y 2),∴D (4,y 1),E (4,y 2),当直线l 的倾斜角变化时,首先证直线AE 过定点⎝⎛⎭⎪⎫52,0,∵l AE :y -y 2=y 2-y 14-x 1(x -4), 当x =52时,y =y 2+y 2-y 14-x 1·⎝ ⎛⎭⎪⎫-32=24-x 1·y 2-3y 2-y 124-x 1=24-x 1·k x 2-1-3k x 2-x 124-x 1=-8k -2kx 1x 2+5kx 1+x 224-x 1=-8k 3+4k 2-2k 4k 2-12+5k ·8k 224-x 1·3+4k2=0. ∴点N ⎝ ⎛⎭⎪⎫52,0在直线l AE 上. 同理可证,点N ⎝ ⎛⎭⎪⎫52,0也在直线l BD 上. ∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点⎝ ⎛⎭⎪⎫52,0.(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).(2013·陕西)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.(1)解如图,设动圆圆心为O1(x,y),由题意,得O1A=O1M,当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点,∴O 1M =x 2+42, 又O 1A =x -42+y 2,∴x -42+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk2, ① x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 考点三 圆锥曲线中的最值范围问题例3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离d =1k 2+1,所以AB =24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4.消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k4+k 2.所以PD =8k 2+14+k2.设△ABD 的面积为S ,则S =12·AB ·PD=84k 2+34+k 2, 所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 1与抛物线C 2的焦点均在x轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:x 1 -6 4 3 y-3-61(1)求C 1,C 2(2)过点A (m,0)作倾斜角为π6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以线段CD 为直径的圆的外部,求m 的取值范围.解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 22=1,抛物线C 2的方程为y 2=9x .(2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =33(x -m ), 由⎩⎪⎨⎪⎧y =33x -m x 26+y 22=1,消去y 整理得2x 2-2mx +m 2-6=0, 由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23<m <23,①而x 1x 2=m 2-62,x 1+x 2=m ,故y 1y 2=33(x 1-m )·33(x 2-m )=13[x 1x 2-m (x 1+x 2)+m 2] =m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,又F (-2,0),即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0.②由①②可得m 的取值范围是(-23,-3)∪(0,23).1. 求轨迹与轨迹方程的注意事项(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变.(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形. 2. 定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.3. 圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.设直线l :y =k (x +1)与椭圆x 2+3y 2=a 2(a >0)相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点. (1)证明:a 2>3k21+3k2;(2)若AC →=2CB →,求△OAB 的面积取得最大值时的椭圆方程.(1)证明 依题意,直线l 显然不平行于坐标轴,故y =k (x +1)可化为x =1ky -1.将x =1ky -1代入x 2+3y 2=a 2,消去x ,得⎝ ⎛⎭⎪⎫3+1k 2y 2-2y k+1-a 2=0,①由直线l 与椭圆相交于两个不同的点,得Δ=4k 2-4⎝ ⎛⎭⎪⎫1k 2+3(1-a 2)>0,整理得⎝ ⎛⎭⎪⎫1k 2+3a 2>3,即a 2>3k 21+3k2.(2)解 设A (x 1,y 1),B (x 2,y 2),由①,得y 1+y 2=2k1+3k 2,因为AC →=2CB →,得y 1=-2y 2,代入上式,得y 2=-2k 1+3k 2.于是,△OAB 的面积S =12OC ·|y 1-y 2|=32|y 2|=3|k |1+3k 2<3|k |23|k |=32. 其中,上式取等号的条件是3k 2=1,即k =±33. 由y 2=-2k 1+3k 2,可得y 2=±33. 将k =33,y 2=-33及k =-33, y 2=33这两组值分别代入①, 均可解出a 2=5.所以,△OAB 的面积取得最大值时的椭圆方程是x 2+3y 2=5.(推荐时间:70分钟)一、填空题 1. 已知方程x 2k +1+y 23-k=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是________.答案 1<k <3解析 若椭圆焦点在x 轴上,则⎩⎪⎨⎪⎧k +1>03-k >0k +1>3-k,解得1<k <3.2. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,FM 为半径的圆和抛物线的准线相交,则y 0的取值范围是________. 答案 (2,+∞)解析 依题意得:F (0,2),准线方程为y =-2,又∵以F 为圆心,FM 为半径的圆和抛物线的准线相交,且FM =|y 0+2|, ∴FM >4,即|y 0+2|>4, 又y 0≥0,∴y 0>2.3. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 设P (x 0,y 0),则x 204+y 203=1,即y 2=3-3x 24, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.4. 直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________.答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m=1表示椭圆,∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点, ∴要使直线与椭圆总有公共点,应有: 025+12m≤1,m ≥1, ∴m 的取值范围是m ≥1且m ≠5.5. 设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF →1·PF →2的值等于________. 答案 -2解析 易知当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-3,0),F 2(3,0),不妨设P (0,1), ∴PF →1=(-3,-1),PF →2=(3,-1), ∴PF →1·PF →2=-2.6. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A ,B ,C ,D ,则ABCD的值为________.答案116解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,y A =14,x D =4,y D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1), 且该圆圆心为F (0,1),∴AF =y A +1=54,DF =y D +1=5,∴AB CD =AF -1DF -1=116.7. 已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1, ①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3, ∵M ,N 关于直线y =x +m 对称, ∴k MN =-1,∴y 0=-3x 0,又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合.8. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是________. 答案 (13,+∞)解析 设椭圆与双曲线的半焦距为c ,PF 1=r 1,PF 2=r 2.由题意知r 1=10,r 2=2c , 且r 1>r 2,2r 2>r 1, ∴2c <10,2c +2c >10, ∴52<c <5⇒1<25c 2<4, ∴e 2=2c 2a 双=2c r 1-r 2=2c 10-2c =c5-c; e 1=2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c.∴e 1·e 2=c 225-c 2=125c2-1>13. 9. 已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________. 答案522-1 解析 过点P 作抛物线的准线的垂线,垂足为A ,交y 轴于B ,由抛物线方程为y 2=4x 得焦点F 的坐标为(1,0),准线为x =-1,则由抛物线的定义可得d 1+d 2=PA -AB +d 2=PF -1+d 2, PF +d 2大于或等于焦点F 点P 到直线l ,即PF +d 2的最小值为|1-0+4|2=522,所以d 1+d 2的最小值为522-1.二、解答题10.已知直线x -2y +2=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =103分别交于M ,N 两点. (1)求椭圆C 的方程;(2)求线段MN 的长度的最小值.解 (1)如图,由题意得椭圆C 的左顶点为A (-2,0),上顶点为D (0,1),即a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)直线AS 的斜率显然存在且不为0,设直线AS 的方程为y =k (x +2)(k >0),解得M (103,16k3),且将直线方程代入椭圆C 的方程,得(1+4k 2)x 2+16k 2x +16k 2-4=0.设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-41+4k 2.由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S (2-8k 21+4k 2,4k1+4k2).又B (2,0),则直线BS 的方程为y =-14k (x -2),联立直线BS 与l 的方程解得N (103,-13k ).∴MN =⎪⎪⎪⎪⎪⎪16k 3+13k =16k 3+13k≥216k 3·13k =83. 当且仅当16k 3=13k ,即k =14时等号成立,故当k =14时,线段MN 的长度的最小值为83.11.在平面直角坐标系中,点P (x ,y )为动点,已知点A (2,0),B (-2,0),直线PA 与PB 的斜率之积为-12.(1)求动点P 的轨迹E 的方程;(2)过点F (1,0)的直线l 交曲线E 于M ,N 两点,设点N 关于x 轴的对称点为Q (M 、Q 不重合),求证:直线MQ 过x 轴上一定点. (1)解 由题意知:yx +2·yx -2=-12.化简得x 22+y 2=1(y ≠0).(2)证明 方法一 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2),l :x =my +1,代入x 22+y 2=1(y ≠0)整理得(m 2+2)y 2+2my -1=0. y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,MQ 的方程为y -y 1=y 1+y 2x 1-x 2(x -x 1),令y =0, 得x =x 1+y 1x 2-x 1y 1+y 2=my 1+1+my 1y 2-y 1y 1+y 2=2my 1y 2y 1+y 2+1=2. ∴直线MQ 过定点(2,0).方法二 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2),l :y =k (x -1),代入x 22+y 2=1(y ≠0)整理得(1+2k 2)x 2-4k 2x +2k 2-2=0, x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k2,MQ 的方程为y -y 1=y 1+y 2x 1-x 2(x -x 1), 令y =0,得x =x 1+y 1x 2-x 1y 1+y 2=x 1+k x 1-1x 2-x 1k x 1+x 2-2=2x 1x 2-x 1+x 2x 1+x 2-2=2. ∴直线MQ 过定点(2,0).12.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O 为坐标原点.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;(3)在(2)的条件下,试求△AOB 的面积S 的最小值.(1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b=1,即bx +ay -ab =0的距离d =455, 得|b -a -ab |a 2+b 2=455,即2ab a 2+b 2=455, 把a =2b 代入上式,得4b 25b =455,解得b =1. 所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. (2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255.此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m ,与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0.所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0.所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k 2+m 2=0.整理得5m 2=4(k 2+1),所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.(3)解 设直线OA 的斜率为k 0.当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧ y =k 0x ,x 24+y 2=1,得⎩⎪⎨⎪⎧ x 21=41+4k 20,y 21=4k 21+4k 20.同理可求得⎩⎪⎨⎪⎧ x 22=4k 2k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=21+k 2021+4k 20k 20+4.令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t +4, 令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1), 所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1, 故45≤S ≤1,故S 的最小值为45.。

2019高考数学二轮复习第二部分专题五解析几何专题强化练十五圆锥曲线中的热点问题理

2019高考数学二轮复习第二部分专题五解析几何专题强化练十五圆锥曲线中的热点问题理

专题强化练十五圆锥曲线中的热点问题一、选择题1.若双曲线x2λ-y21-λ=1(0<λ<1)的离心率e ∈(1,2),则实数λ的取值范围为()A.⎝ ⎛⎭⎪⎫12,1 B .(1,2) C .(1,4) D.⎝ ⎛⎭⎪⎫14,1解析:易知c =1,a =λ,且e ∈(1,2),所以1<1λ<2,得14<λ<1.答案:D2.椭圆C :x23+y2m=1的焦点在x 轴上,点A ,B 是长轴的两端点,若曲线C 上存在点M 满足∠AMB =120°,则实数m 的取值范围是()A .(3,+∞)B .[1,3)C .(0,3)D .(0,1]解析:依题意,当0<m <3时,焦点在x 轴上, 要在曲线C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°,即3m≥3,解得0<m ≤1. 答案:D3.如图所示,点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆(x -2)2+y 2=16的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值范围是()A .(2,6)B .(6,8)C .(8,12)D .(10,14)解析:抛物线的准线l :x =-2,焦点F (2,0).由抛物线定义可得|AF |=x A +2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,所以三角形FAB 的周长为|AF |+|AB |+|BF |=(x A +2)+(x B -x A )+4=6+x B .由抛物线y 2=8x 及圆(x -2)2+y 2=16可得交点的横坐标为2.所以x B ∈(2,6),因此,8<6+x B <12. 答案:C4.(2018·山东德州一模)已知双曲线x2a2-y2b2=1(a >0,b >0)的一个焦点在抛物线y 2=16x 的准线上,且双曲线的一条渐近线过点(3,3),则双曲线的方程为()A.x24-y220=1B.x212-y24=1C.x24-y212=1 D.x220-y24=1解析:双曲线x2a2-y2b2=1(a >0,b >0)的渐近线方程为y =±bax ,由双曲线的一条渐近线过点(3,3),可得ba=3,①双曲线的一个焦点(-c ,0)在抛物线y 2=16x 的准线x =-4上,可得c =4,即有a 2+b 2=16,②由①②解得a =2,b =23, 则双曲线的方程为x24-y212=1.答案:C二、填空题5.(2018·山西太原一模)过双曲线x2a2-y2b2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为________.解析:由过双曲线x2a2-y2b2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得b a<2,所以e =c a =a2+b2a2<1+4=5,因为e >1,所以1<e <5,所以此双曲线离心率的取值范围为(1,5).答案:(1,5)6.(2018·济南模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2),(y 2<0).则|AC |+|BD |=x 2+y 1=y224+y 1.又y 1y 2=-p 2=-4.又y 1y 2=-p 2=-4.所以|AC |+|BD |=y224-4y2(y 2<0).设g (x )=x24-4x ,g ′(x )=x3+82x2,设g (x )=x24-4x ,g ′(x )=x3+82x2,令g ′(x )<0,得x <-2,令g ′(x )>0得-2<x <0.所以g (x )在(-∞,-2)递减,在(-2,0)递增.所以当x =-2,即y 2=-2时,|AC |+|BD |取最小值为3.答案:3三、解答题7.已知动圆M 恒过点(0,1),且与直线y =-1相切.(1)求动圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.(1)解:由题意得点M 与点(0,1)的距离等于点M 与直线y =-1的距离.由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p 2=1,所以p =2.所以圆心M 的轨迹方程为x 2=4y .(2)证明:由题意知直线l 的斜率存在,设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),由⎩⎪⎨⎪⎧x2=4y ,y =kx -2,得x 2-4kx +8=0,所以x 1+x 2=4k ,x 1x 2=8.k AC =y1-y2x1+x2=x214-x 24x 1+x 2=x1-x24,直线AC 的方程为y -y 1=x1-x24(x -x 1).即y =y 1+x1-x24(x -x 1)=x1-x24x -x1(x1-x2)4+x214=x1-x24x +x1x24,因为x 1x 2=8,所以y =x1-x24x +2,直线AC 的方程为y -y 1=x1-x24(x -x 1).即y =y 1+x1-x24(x -x 1)=x1-x24x -x1(x1-x2)4+x214=x1-x24x +x1x24,因为x 1x 2=8,所以y =x1-x24x +2,因为x 1x 2=8,所以y =x1-x24x +2,则直线AC 恒过点(0,2).8.(2018·西安质检)已知椭圆C :x2a2+y2b2=1(a >b >0)的离心率e =32,直线x +3y -1=0被以椭圆C 的短轴为直径的圆截得的弦长为3.(1)求椭圆C 的方程;(2)过点M (4,0)的直线l 交椭圆于A ,B 两个不同的点,且λ=|MA |·|MB |,求λ的取值范围.解:(1)原点到直线x +3y -1=0的距离为12,由题得⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=b 2(b >0), 解得b =1.又e 2=c2a2=1-b2a2=34,得a =2. 所以椭圆C 的方程为x24+y 2=1.(2)当直线l 的斜率为0时,λ=|MA |·|MB |=12.当直线l 的斜率不为0时,设直线l :x =my +4,点A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧x =my +4,x24+y2=1. 化简得(m 2+4)y 2+8my +12=0.由Δ=64m 2-48(m 2+4)>0,得m 2>12,所以y 1y 2=12m2+4.λ=|MA |·|MB |=m2+1|y 1|·m2+1|y 2|=(m 2+1)|y 1y 2|=12(m2+1)m2+4=12⎝⎛⎭⎪⎫1-3m2+4.由m 2>12,得0<3m2+4<316,所以394<λ<12.综上可得,394<λ≤12,即λ∈⎝ ⎛⎦⎥⎤394,12.9.(2018·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.(1)证明:法一 当直线AB 垂直于x 轴时,不妨取y 1=22,y 2=-22,所以y 1y 2=-8(定值).当直线AB 不垂直于x 轴时,设直线AB 的方程为y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y2=4x ,得ky 2-4y -8k =0,所以y 1y 2=-8.综上可得,y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2.由⎩⎪⎨⎪⎧my =x -2,y2=4x ,得y 2-4my -8=0,所以y 1y 2=-8.因此有y 1y 2=-8为定值.(2)解:存在.理由如下:设存在直线l :x =a 满足条件,则AC 的中点E ⎝ ⎛⎭⎪⎫x1+22,y12,|AC |=(x -2)2+y21,因此以AC 为直径的圆的半径r =12|AC |=12(x1-2)2+y21=12x21+4,点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x1+22-a ,所以所截弦长为因此以AC 为直径的圆的半径r =12|AC |=12(x1-2)2+y21=12x21+4,点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x1+22-a ,所以所截弦长为 点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x1+22-a ,所以所截弦长为2r2-d2=214(x21+4)-⎝⎛⎭⎪⎫x 1+22-a 2=x21+4-(x 1+2-2a )2=-4(1-a )x1+8a -4a2,=x21+4-(x 1+2-2a )2=-4(1-a )x1+8a -4a2,=-4(1-a )x1+8a -4a2,当1-a =0,即a =1时,弦长为定值2,这时的直线的方程为x =1.10.(2018·河南郑州二模)已知动圆E 经过点F (1,0),且和直线l :x =-1相切.(1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,所以动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x .(2)设直线l ′的方程为y =x +m ,其中-3<m <0.联立方程组⎩⎪⎨⎪⎧y =x +m ,y2=4x ,消去y ,得x 2+(2m -4)x +m 2=0,Δ=(2m -4)2-4m 2=16(1-m )恒大于零.设C (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,所以|CB |=42(1-m ),点A 到直线l ′的距离d =3+m2,所以S △ABC =12×42(1-m )×3+m2=21-m ×(3+m ),令1-m =t ,t ∈(1,2),则m =1-t 2,所以S △ABC =2t (4-t 2)=8t -2t 3,令f (t )=8t -2t 3,所以f ′(t )=8-6t 2,易知y =f (t )在⎝ ⎛⎭⎪⎫1,23上递增,在⎝ ⎛⎭⎪⎫23,2上递减.所以y =f (t )在t =23,即m =-13时取得最大值.所以△ABC 面积的最大值为3239.。

2020届高考数学二轮复习第二部分专题五解析几何第3讲圆锥曲线中的热点问题专题强化练理

2020届高考数学二轮复习第二部分专题五解析几何第3讲圆锥曲线中的热点问题专题强化练理

第3讲 圆锥曲线中的热点问题A 级 基础通关一、选择题1.(2017·全国卷Ⅰ改编)椭圆C :x 23+y 2m=1的焦点在x 轴上,点A ,B 是长轴的两端点,若曲线C 上存在点M 满足∠AMB =120°,则实数m 的取值范围是( )A .(3,+∞)B .[1,3)C .(0,3)D .(0,1]解析:依题意,当0<m <3时,焦点在x 轴上, 要在曲线C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°,即3m≥3,解得0<m ≤1.答案:D2.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3C.3-12D.3-1解析:在△F 1PF 2中,PF 1⊥PF 2,∠PF 2F 1=60°. 由|F 1F 2|=2c ,得|PF 2|=c ,|PF 1|=3c .由椭圆定义知|PF 1|+|PF 2|=2a ,即(3+1)c =2a . 故椭圆的离心率e =c a=3-1. 答案:D3.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2B.12C.14D.18解析:根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,所以当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18. 答案:D4.(2019·天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a>0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2B. 3C .2 D. 5解析:由已知易得,抛物线y 2=4x 的焦点为F (1,0),准线l :x =-1,所以|OF |=1. 又双曲线的两条渐近线的方程为y =±b ax ,不妨设点A ⎝⎛⎭⎪⎫-1,b a ,B ⎝⎛⎭⎪⎫-1,-b a ,所以|AB |=2b a =4|OF |=4,所以b a=2,即b =2a ,所以b 2=4a 2.又因为c 2=a 2+b 2,所以c 2=5a 2,所以e =c a= 5. 答案:D5.(2019·安徽六安一中模拟)点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F 2,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF 2|的最小值为( )A .42-4B .4-4 2C .6-2 5D .25-6解析:设椭圆的左焦点为F 1(-1,0).则|PQ |-|PF 2|=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF 2|的最小值. 即求|PQ |+|PF 1|的最小值.又圆C 2的半径r =2,圆心C 2(-3,4),所以(|PQ |+|PF 1|)min =|C 2F 1|-r =22+(-4)2-2= 25-2.故|PQ |-|PF 2|的最小值为25-6. 答案:D 二、填空题6.(2019·广东六校联考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1、F 2,在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则此双曲线的离心率e 的取值范围是________.解析:由于O 是F 1F 2的中点,得PO →=12(PF 1→+PF 2→).因为双曲线上的存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则4|PO →|≤2c .由于|PO →|≥a ,知4a ≤2c ,所以e ≥2.答案:[2,+∞)7.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4,所以|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x ,g ′(x )=x 3+82x2,令g ′(x )<0,得x <-2, 令g ′(x )>0,得-2<x <0.所以g (x )在(-∞,-2)上递减,在(-2,0)上递增. 所以当x =-2,即y 2=-2时,|AC |+|BD |取最小值为3. 答案:38.(2019·浙江卷)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.解析:如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,故直线PF 的斜率是15. 答案:15 三、解答题9.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB →=-4,求证:直线l 恒过定点;(2)若直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. (1)证明:设l :x =my +n ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0. 所以y 1+y 2=4m ,y 1y 2=-4n . 所以x 1+x 2=4m 2+2n ,x 1x 2=n 2. 由OA →·OB →=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. 所以直线l 方程为x =my +2, 所以直线l 恒过定点(2,0).(2)解:因为直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, 所以|1-n |1+m2=2,且n ≥3,整理得4m 2=n 2-2n -3(n ≥3).①又点P 坐标为(1,0),所以由已知及①,得 PA →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,所以当n =3时,y =4-4n 取得最大值-8. 故PA →·PB →的最大值为-8.10.(2019·惠州调研)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为12,短轴长为2 3.(1)求椭圆C 的方程;(2)设过点A (0,4)的直线l 与椭圆C 交于M 、N 两点,F 是椭圆C 的上焦点.问:是否存在直线l ,使得S △MAF =S △MNF ?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由题意知c a =12,b =3,且a 2=b 2+c 2,解之得a 2=4,b 2=3.所以椭圆C 的方程为y 24+x 23=1.(2)存在.理由如下:由题意可知l 的斜率一定存在,设l 为y =kx +4,M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +4,y 24+x 23=1,⇒(3k 2+4)x 2+24kx +36=0,所以⎩⎪⎨⎪⎧Δ=(24k )2-144(3k 2+4)>0, ①x 1+x 2=-24k 3k 2+4, ②x 1x 2=363k 2+4, ③由S MAF =S △MNF ,知M 为线段AN 的中点, 所以x 2=2x 1,④ 将④代入②得x 1=-8k 3k 2+4;④代入③得x 21=183k 2+4. 从而可得k 2=365,且满足①式,所以k =±655.因此存在直线l 为6x -5y +45=0或6x +5y -45=0满足题意.B 级 能力提升11.(2019·华南师大检测)已知椭圆D 的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆D 的标准方程;(2)设P (2,0),过椭圆D 左焦点F 的直线l 交D 于A 、B 两点,若对满足条件的任意直线,不等式PA →·PB →=λ(λ∈R)恒成立,求λ的最小值.解:(1)依题意,c =1,a =2b , 又a 2=b 2+c 2,得2b 2=b 2+1, 所以b 2=1,a 2=2.所以椭圆D 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),则PA →·PB →=(x 1-2,y 1)·(x 2-2,y 2)=(x 1-2)(x 2-2)+y 1y 2,当直线l 垂直于x 轴时,x 1=x 2=-1,y 1=-y 2且y 21=12,此时PA →=(-3,y 1),PB →=(-3,y 2)=(-3,-y 1),所以PA →·PB →=(-3)2-y 21=172.当直线l 不垂直于x 轴时,设直线l :y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2,所以PA →·PB →=x 1x 2-2(x 1+x 2)+4+k 2(x 1+1)(x 2+1)=(1+k 2)x 1x 2+(k 2-2)(x 1+x 2)+4+k 2=(1+k 2)2k 2-21+2k 2-(k 2-2)·4k 21+2k 2+4+k 2=17k 2+22k 2+1=172-132(2k 2+1)<172. 要使不等式PA →·PB →≤λ(λ∈R)恒成立,只需λ≥(PA →·PB →)max ,故λ的最小值为172.12.设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解:(1)在△ABC 中,由余弦定理得AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB=4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,所以CA ·CB =43,代入上式得CA +CB =22,所以椭圆长轴2a =22,焦距2c =AB =2,所以b =1. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k2.假设x 轴上存在定点D (x 0,0)使得DE →·DF →为定值. 所以DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=(2x 20-4x 0+1)k 2+(x 20-2)1+2k2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, 所以2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.。

高三复习数学53_圆锥曲线中的热点问题(1)(有答案) (2)

高三复习数学53_圆锥曲线中的热点问题(1)(有答案) (2)

5.3 圆锥曲线中的热点问题(1)一、解答题。

1. 已知椭圆C:x 24+y 2=1,点M (0,−1),若直线l:y =kx +b 与椭圆C 交于两个不同的点P 、Q ,且|MP →|=|MQ →|,求k 的取值范围.2. (2014⋅江西卷)过点M (1,1)作斜率为−12的直线与椭圆C:x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.3. 在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线l:y =kx +1对称,求k 的范围.4. (2014新课标全国II )设F 1,F 2分别是椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . 若直线MN 的斜率为34,求C 的离心率;若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .5. (2019全国高考II ,文科)已知F 1,F 2是椭圆C:x 2a2+y 2b 2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.若△POF 2为等边三角形,求C 的离心率;如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.参考答案与试题解析 5.3 圆锥曲线中的热点问题(1)一、解答题。

1.【答案】(−√2,√2) 【考点】圆锥曲线的综合问题 椭圆的定义和性质【解析】 此题暂无解析 【解答】解法一(判别式法):设P (x 1,y 1),Q (x 2,y 2), PQ 的中点E (x 0,y 0),联立{y =kx +b x 2+4y 2=4得(4k 2+1)x 2+8kbx +4(b 2−1)=0, 由Δ=(8kb )2−4×4(4k 2+1)(b 2−1)>0⋯⋯①, 而x 0=x 1+x 22=−4kb4k 2+1,y 0=y 1+y 22=(kx 1+b )+(kx 2+b )2=b4k 2+1,由题意点E (x 0,y 0)在PQ 的垂直平分线y =−1kx −1上,有b 4k 2+1=−1k⋅−4kb 4k 2+1−1⇒3b =4k 2+1,代入①中,消去k ,得:b 2−3b <0⇔0<b <3∴ 4k 2+1<9⇔−√2<k <√2, ∴ k 的取值范围是(−√2,√2); 解法二(点差法):设M (x 1,y 1),N (x 2,y 2),MN 的中点E (x 0,y 0),由{x 12+4y 12=4x 22+4y 22=4,两式相减得 (x 2−x 1)(x 2+x 1)+4(y 2−y 1)(y 2+y 1)=0,又x 0=x 1+x 22,y 0=y 1+y 22,∴y 2−y 1x 2−x 1=−x 04y 0=k ,即x 0=−4ky 0,点E (x 0,y 0)在直线y =−1k x −1上, 有y 0=−1k x 0−1,由{x 0=−4ky 0y 0=−1k x 0−1 解得x 0=−43k ,y 0=13, 而点E (−43k,13)在椭圆C 内部,有(−43k)24+(13)2<1,解得−√2<k <√2,∴ k 的取值范围是(−√2,√2) 2. 【答案】 √22【考点】椭圆的定义和性质 【解析】 此题暂无解析 【解答】设点A (x 1,y 1),点B (x 2,y 2),点M 是线段AB 的中点,所以x 1+x 2=2,y 1+y 2=2,且{x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1,两式作差可得x 12−x 22a 2=−(y 12−y 2)b2, 即(x 1+x 2)(x 1−x 2)a 2=−(y 1+y 2)(y 1−y 2)b 2,所以y 1−y2x 1−x 2=−b 2a 2,即k AB =−b 2a2.由题意可知,直线AB 的斜率为−12,所以b 2a 2=12=1−e 2, 所以e =√22. 3. 【答案】(−∞,−√22)∪(√22,+∞) 【考点】圆锥曲线的综合问题 函数的图象与图象变化 【解析】 此题暂无解析 【解答】(差分法):设M (x 1,y 1),N (x 2,y 2),MN 的中点D (x 0,y 0),由{y 1=x 12y 2=x 22,两式相减得(y 2−y 1)=(x 2−x 1)(x 2+x 1),又x 0=x 1+x 22, ∴ y 2−y 1x 2−x 1=2x 0=−1k ,即x 0=−12k ,则y 0=kx 0+1=k (−12k )+1=12,点D (−12k ,12)与点(0,1)在同一个区域,且1>02, 由12>(−12k )2得k <−√22或k >√22,∴ k 的取值范围是(−∞,−√22)∪(√22,+∞). 4. 【答案】 12a =7,b =2√7【考点】直线与椭圆结合的最值问题 椭圆的定义和性质 【解析】 此题暂无解析 【解答】 根据c =√a 2−b 2及题设知M (c,b2a),2b 2=3ac .将b 2=a 2−c 2代入2b 2=3ac , 解得ca=12,ca=−2(舍去).故C 的离心率为12.由题意知,原点O 为F 1F 2的中点,MF 2//y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .① 由|MN|=5|F 1N|得|DF 1|=2|F 1N|.设N (x 1,y 1),由题意知y 1<0,则{2(−c −x 1)=c −2y 1=2即{x 1=−32y 1=−1代入C 的方程, 得9c 24a 2+1b 2=1.② 将①及c =√a 2−b 2代入②得9(a 2−4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =2√7. 5.【答案】e =ca=√3−1b =4a 的取值范围为[4√2,+∞) 【考点】椭圆的定义和性质 【解析】 此题暂无解析 【解答】连接PF 1.由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90∘,|PF 2|=c ,|PF 1|=√3c ,于是2a =|PF 1|+|PF 2|=(√3+1)c ,故C 的离心率e =ca =√3−1.由题意可知,满足条件的点P(x,y)存在当且仅当1 2|y|⋅2c=16,yx+c⋅yx−c=−1,x2a2+y2b2=1,即c|y|=16,①x2+y2=c2,②x2 a2+y2b2=1.③由②③及a2=b2+c2得y2=b4c2,又由①知y2=162c2,故b=4.由②③得x2=a2c2(c2−b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4√2,当b=4,a≥4√2时,存在满足条件的点P.所以b=4,a的取值范围为[4√2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 圆锥曲线中的热点问题高考定位1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真题感悟1.(2018·浙江卷)已知点P (0,1),椭圆x24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x1=2x2,1-y1=2(y2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x224+(3-2y 2)2=m ,x 24+y 2=m ,得y 2=14m +34,所以x 2=m -(3-2y 2)2=-14m 2+52m -94=-14(m-5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2. 答案52.(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2.故抛物线C 的方程为y 2=4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <1,又因为k ≠0,故k <0或0<k <1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k2,x 1x 2=1k2. 直线PA 的方程为y -2=y1-2x1-1(x -1).令x =0, 得点M 的纵坐标为y M =-y1+2x1-1+2=-kx1+1x1-1+2. 同理得点N 的纵坐标为y N =-kx2+1x2-1+2.由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-yM +11-yN =x1-1(k -1)x1+x2-1(k -1)x2=1k -1·2x1x2-(x1+x2)x1x2=1k -1·2k2+2k -4k21k2=2. 所以1λ+1μ=2为定值.3.(2017·全国Ⅰ卷)已知椭圆C :x2a2+y2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a2+1b2>1a2+34b2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b2=1,1a2+34b2=1,解得⎩⎪⎨⎪⎧a2=4,b2=1.故C 的方程为x24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=yA -1m +-yA -1m =-2m=-1,得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k2+1,x 1x 2=4m2-44k2+1. 则k 1+k 2=y1-1x1+y2-1x2=kx1+m -1x1+kx2+m -1x2=2kx1x2+(m -1)(x1+x2)x1x2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m2-44k2+1+(m -1)·-8km4k2+1=0. 解之得m =-2k -1,此时Δ=32(m +1)>0,方程有解, ∴当且仅当m >-1时,Δ>0,∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 所以l 过定点(2,-1).考点整合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响. 2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题. 3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组). (2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.热点一 圆锥曲线中的最值、范围【例1】 (2018·西安质检)已知椭圆C :x2a2+y2b2=1(a >b >0)的离心率e =32,直线x +3y -1=0被以椭圆C 的短轴为直径的圆截得的弦长为3. (1)求椭圆C 的方程;(2)过点M (4,0)的直线l 交椭圆于A ,B 两个不同的点,且λ=|MA |·|MB |,求λ的取值范围. 解(1)原点到直线x +3y -1=0的距离为12,由题得⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=b 2(b >0),解得b =1.又e 2=c2a2=1-b2a2=34,得a =2. 所以椭圆C 的方程为x24+y 2=1.(2)当直线l 的斜率为0时,λ=|MA |·|MB |=12.当直线l 的斜率不为0时,设直线l :x =my +4,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +4,x24+y2=1,消去x 得(m 2+4)y 2+8my +12=0.由Δ=64m 2-48(m 2+4)>0,得m 2>12, 所以y 1y 2=12m2+4. λ=|MA |·|MB |=m2+1|y 1|·m2+1|y 2| =(m 2+1)|y 1y 2|=12(m2+1)m2+4=12⎝ ⎛⎭⎪⎫1-3m2+4.由m 2>12,得0<3m2+4<316,所以394<λ<12. 综上可得:394<λ≤12,即λ∈⎝⎛⎦⎥⎤394,12.探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【训练1】 (2018·浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y21,y 1,B ⎝ ⎛⎭⎪⎫14y22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y022=4·14y2+x02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y1+y2=2y0,y1y2=8x0-y20,所以|PM |=18(y 21+y 2)-x 0=34y 20-3x 0, |y 1-y 2|=22(y20-4x 0).因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2| =324(y 20-4x 0)32. 因为x 20+y204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 热点二 定点、定值问题 考法1 圆锥曲线中的定值【例2-1】 (2018·烟台二模)已知椭圆C :x2a2+y2b2=1(a >b >0)的焦距为23,斜率为12的直线与椭圆交于A ,B 两点,若线段AB 的中点为D ,且直线OD 的斜率为-12.(1)求椭圆C 的方程;(2)若过左焦点F 斜率为k 的直线l 与椭圆交于M ,N 两点,P 为椭圆上一点,且满足OP ⊥MN ,问:1|MN|+1|OP|2是否为定值?若是,求出此定值;若不是,说明理由. 解(1)由题意可知c =3,设A (x 1,y 1),B (x 2,y 2), 则x21a 2+y21b 2=1,x22a 2+y22b2=1,两式相减并整理得,y1-y2x1-x2·y1+y2x1+x2=-b2a2, 即k AB ·k OD =-b2a2.又因为k AB =12,k OD =-12,代入上式得,a 2=4b 2.又a 2=b 2+c 2,c 2=3,所以a 2=4,b 2=1, 故椭圆的方程为x24+y 2=1. (2)由题意可知,F (-3,0), 当MN 为长轴时,OP 为短半轴, 则1|MN|+1|OP|2=14+1=54, 否则,可设直线l 的方程为y =k (x +3),联立⎩⎪⎨⎪⎧x24+y2=1,y =k (x +3),消y 得,(1+4k 2)x 2+83k 2x +12k 2-4=0, 则有x 1+x 2=-83k21+4k2,x 1x 2=12k2-41+4k2,所以|MN |=1+k2|x 1-x 1| =1+k2⎝ ⎛⎭⎪⎫-83k21+4k22-4⎝ ⎛⎭⎪⎫12k2-41+4k2=4+4k21+4k2, 设直线OP 方程为y =-1kx ,联立⎩⎪⎨⎪⎧x24+y2=1,y =-1k x ,根据对称性不妨令P ⎝⎛⎭⎪⎫-2k k2+4,2k2+4, 所以|OP |=⎝ ⎛⎭⎪⎫-2k k2+42+⎝ ⎛⎭⎪⎫2k2+42=4+4k2k2+4. 故1|MN|+1|OP|2=1+4k24+4k2+1⎝⎛⎭⎪⎫4+4k2k2+42=1+4k24+4k2+k2+44+4k2=54,综上所述,1|MN|+1|OP|2为定值54. 探究提高1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】已知椭圆C :x2a2+y2b2=1过点A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(1)解 由题意知a =2,b =1.所以椭圆方程为x24+y 2=1, 又c =a2-b2=3.所以椭圆离心率e =c a =32. (2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0), 则x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y0-1x0(x -0), 令y =0,得x N =x01-y0, 从而|AN |=2-x N =2+x0y0-1, 由A 点坐标(2,0)得直线PA 方程为y -0=y0x0-2(x -2), 令x =0,得y M =2y02-x0,从而|BM |=1-y M =1+2y0x0-2, 所以S 四边形ABNM =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x0y0-1⎝ ⎛⎭⎪⎫1+2y0x0-2=x20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x0y0-2x0-4y0+4x0y0-x0-2y0+2=2.即四边形ABNM 的面积为定值2. 考法2 圆锥曲线中的定点问题【例2-2】 (2018·衡水中学质检)已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2PA →·PB →=|PQ →|2.(1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.(1)解 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ). ∵2PA →·PB →=|PQ →|2,∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x24+y22=1. (2)证明 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k(x -1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x24+y22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立. ∴x 1+x 2=4k22k2+1,且x 1x 2=2k2-42k2+1. ∴GH 中点E 1坐标为⎝ ⎛⎭⎪⎫2k22k2+1,-k 2k2+1,同理,MN 中点E 2坐标为⎝ ⎛⎭⎪⎫2k2+2,k k2+2, ∴kE 1E 2=-3k2(k2-1),∴lE 1E 2的方程为y =-3k 2(k2-1)⎝ ⎛⎭⎪⎫x -23,∴过点⎝ ⎛⎭⎪⎫23,0, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0.探究提高1.动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0)2.动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB →=-4,求证:直线l 恒过定点;(2)若直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. 解 设l :x =my +n ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧x =my +n ,y2=4x ,得y 2-4my -4n =0.∴y 1+y 2=4m ,y 1y 2=-4n . ∴x 1+x 2=4m 2+2n ,x 1x 2=n 2.(1)证明 由OA →·OB →=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. ∴直线l 方程为x =my +2, ∴直线l 恒过定点(2,0).(2)∵直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, ∴|1-n|1+m2=2,且n ≥3, 整理得4m 2=n 2-2n -3(n ≥3).① 又点P 坐标为(1,0),∴由已知及①,得PA →·PB →=(x 1-1,y 1)·(x 2-1,y 2)=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,∴当n =3时,y =4-4n 取得最大值-8. 故PA →·PB →的最大值为-8. 热点三 圆锥曲线中的存在性问题【例3】 (2018·江南名校联考)设椭圆M :x2a2+y2b2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33.(1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解(1)在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4. 又S △ABC =12CA ·CB ·sin C =34CA ·CB =33, ∴CA ·CB =43,代入上式得CA +CB =22. 椭圆长轴2a =22,焦距2c =AB =2. 所以椭圆M 的标准方程为x22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x22+y2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, ∴x 1+x 2=4k21+2k2,x 1x 2=2k2-21+2k2. 假设x 轴上存在定点D (x 0,0),使得DE →·DF →为定值. ∴DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=(2x20-4x 0+1)k 2+(x 20-2)1+2k2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, ∴2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.探究提高1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练4】已知椭圆C :x2a2+y2b2=1(a >b >0)的离心率为12,且过点P ⎝⎛⎭⎪⎫1,32,F 为其右焦点. (1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由. 解(1)因为c a =12,所以a =2c ,b =3c , 设椭圆方程x24c2+y23c2=1, 又点P ⎝⎛⎭⎪⎫1,32在椭圆上,所以14c2+34c2=1,解得c 2=1,a 2=4,b 2=3,所以椭圆方程为x24+y23=1. (2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k (x -4),x24+y23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k <12.设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=32k23+4k2,① x 1x 2=64k2-123+4k2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k23+4k2.④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k2-123+4k2⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设 故直线l 的方程为y =56(x -4)或y =-56(x -4).1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在. (2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.一、选择题1.若双曲线x2λ-y21-λ=1(0<λ<1)的离心率e ∈(1,2),则实数λ的取值范围为()A.⎝ ⎛⎭⎪⎫12,1B.(1,2) C.(1,4) D.⎝ ⎛⎭⎪⎫14,1解析 易c =1,a =λ,且e ∈(1,2),∴1<1λ<2,得14<λ<1.答案D2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为() A.2 B.12C.14D.18解析 根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案D3.(2018·北京东城区调研)已知圆M :(x -2)2+y 2=1经过椭圆C :x2m +y23=1的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为() A.210-5 B.210-4 C.410-11 D.410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.∴m =4.联立⎩⎪⎨⎪⎧(x -2)2+y2=1,x24+y23=1,得x 2-16x +24=0.∵x ≤2,∴x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5. 答案A4.(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x2a2-y2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为() A.5B.2 C.3D.2解析 不妨设一条渐近线的方程为y =b a x ,则F 2到y =b ax 的距离d =|bc|a2+b2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a2+c2-(6a )22ac=-cos ∠POF 2=-a c,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =c a=3. 答案C 二、填空题 5.设双曲线C :x2a2-y2b2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是________. 解析 双曲线C :x2a2-y2b2=1的一条渐近线为y =b ax ,联立⎩⎪⎨⎪⎧y2=x ,y =b a x 消去y ,得b2a2x 2=x .由x 0>1,知b2a2<1,b 2<a 2. ∴e 2=c2a2=a2+b2a2<2,因此1<e <2.答案(1,2)6.(2018·武汉模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y224+y 1.又y 1y 2=-p 2=-4.∴|AC |+|BD |=y224-4y2(y 2<0).设g (x )=x24-4x,在(-∞,-2)递减,在(-2,0)递增. ∴当x =-2,即y 2=-2时,|AC |+|BD |的最小值为3. 答案3 三、解答题7.已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求动圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.(1)解 由题意得点M 与点(0,1)的距离等于点M 与直线y =-1的距离.由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p 2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明 由题意知直线l 的斜率存在,设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),由⎩⎪⎨⎪⎧x2=4y ,y =kx -2得x 2-4kx +8=0, Δ=16k 2-32>0得k 2>2, ∴x 1+x 2=4k ,x 1x 2=8. k AC =y1-y2x1+x2=x214-x 24x 1+x 2=x1-x24,直线AC 的方程为y -y 1=x1-x24(x -x 1). 即y =y 1+x1-x24(x -x 1)=x1-x24x -x1(x1-x2)4+x214=x1-x24x +x1x24, ∵x 1x 2=8,∴y =x1-x24x +2, 则直线AC 恒过点(0,2).8.在平面直角坐标系xOy 中,已知椭圆C :x2a2+y2b2=1(a >b ≥1)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 面积的最大值. 解(1)∵e 2=c2a2=a2-b2a2=34,∴a 2=4b 2.又4a2+1b2=1,∴a 2=8,b 2=2. 故所求椭圆C 的方程为x28+y22=1. (2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x28+y22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14×(x1+x2)2-4x1x2 =5(4-m2), 点P 到直线l 的距离d =|m|1+14=2|m|5.因此S △PAB =12d |AB |=12×2|m|5×5(4-m2)=m2(4-m2)≤m2+(4-m2)2=2,当且仅当m 2=2即m =±2时上式等号成立,故△PAB 面积的最大值为2.9.已知椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由. 解(1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1. 故椭圆C 的方程为x22+y 2=1.(2)不存在满足条件的直线,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x22+y2=1,消去x 得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y1+y22=t9,且-3<t <3. 由PM →=NQ →得⎝⎛⎭⎪⎫x1-x3,y1-53=(x 4-x 2,y 4-y 2),所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.10.(2018·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.(1)证明 法一 当直线AB 垂直于x 轴时,不妨取y 1=22,y 2=-22, 所以y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2), 由⎩⎪⎨⎪⎧y =k (x -2),y2=4x得ky 2-4y -8k =0,所以y 1y 2=-8.综上可得,y 1y 2=-8为定值. 法二 设直线AB 的方程为my =x -2. 由⎩⎪⎨⎪⎧my =x -2,y2=4x得y 2-4my -8=0,所以y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 存在.理由如下: 设存在直线l :x =a 满足条件,则AC 的中点E ⎝⎛⎭⎪⎫x1+22,y12,|AC |=(x1-2)2+y21,因此以AC 为直径的圆的半径r =12|AC |=12(x1-2)2+y21=12x21+4, 点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x1+22-a , 所以所截弦长为2r2-d2=214(x21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x21+4-(x 1+2-2a )2=-4(1-a )x1+8a -4a2, 当1-a =0,即a =1时,弦长为定值2,这时直线的方程为x =1.11.(2018·西安模拟)如图,椭圆C :x2a2+y2b2=1(a >b >0)的左右焦点分别为F 1,F 2,左右顶点分别为A ,B ,P 为椭圆C 上任一点(不与A ,B 重合).已知△PF 1F 2的内切圆半径的最大值为2-2,椭圆C 的离心率为22. (1)求椭圆C 的方程;(2)直线l 过点B 且垂直于x 轴,延长AP 交l 于点N ,以BN 为直径的圆交BP 于点M ,求证:O ,M ,N 三点共线.解(1)由题意知,c a =22,∴c =22a .又b 2=a 2-c 2, ∴b =22a . 设△PF 1F 2的内切圆半径为r ,则S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·r , =12(2a +2c )·r =(a +c )r , 故当△PF 1F 2面积最大时,r 最大, 即P 点位于椭圆短轴顶点时,r =2-2, ∴(a +c )(2-2)=bc ,把c =22a ,b =22a 代入,解得a =2,b =2, ∴椭圆方程为x24+y22=1.(2)由题意知,直线AP 的斜率存在,设为k , 则AP 所在直线方程为y =k (x +2),联立⎩⎪⎨⎪⎧y =k (x +2),x24+y22=1,消去y ,得(2k 2+1)x 2+8k 2x +8k 2-4=0, 则有x P ·(-2)=8k2-42k2+1, ∴x P =2-4k22k2+1,y P =k (x P +2)=4k2k2+1, 得BP →=⎝⎛⎭⎪⎫-8k22k2+1,4k 2k2+1,又N (2,4k ),∴ON →=(2,4k ). 则ON →·BP →=-16k22k2+1+16k22k2+1=0, ∴ON ⊥BP ,而M 在以BN 为直径的圆上, ∴MN ⊥BP ,∴O ,M ,N 三点共线.。

相关文档
最新文档