2.4 渐开线与摆线 课件(人教A选修4-4)(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[研一题] [例2] 求半径为2的圆的摆线的
参数方程.(如图所示,开始时定
点M在原点O处,取圆滚动时转过 的角度α,(以弧度为单位)为参数) [精讲详析] 本题考查圆的摆线的参数方程的求法.解答
本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数 据代入即可. 当圆滚过α角时,圆心为点B,圆与x轴的切点为A,定点
M的位置如图所示,∠ABM=α.
由于圆在滚动时不滑动,因此线段 OA 的长和圆弧 的长 AM 相等,它们的长都等于 2α,从而 B 点坐标为(2α,2).
向量 OB =(2α,2),
向量 MB =(2sin α,2cos α),
BM =(-2sin α,-2cos α),
π π π π π 得 x=cos 2+2· 2=0+2=2, sin π π π y=sin 2-2· 2=1. cos
π ∴A(2,1). 将
x=cos φ+φsin φ, φ=π,代入 y=sin φ-φcos φ,
得 x=cos π+π·sin π=-1,y=sin π-πcos π=π. ∴B(-1,π). ∴|AB|= = π 2+12+1-π2
=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)).
又 OM =(x,y),
x=4cos θ+θsin θ, 因此有 y=4sin θ-θcos θ,
Байду номын сангаас
这就是所求圆的渐开线的参数方程.
[研一题] [例 1] 求半径为 4 的圆的渐开线的参数方程.
本题考查圆的渐开线的参数方程的求法,解答
[精讲详析]
本题需要搞清圆的渐开线的参数方程的一般形式,然后将相关字 母的取值代入即可.
以圆心为原点 O,绳端点的初始位置为 M0,向量 OM 0 的方
向为 x 轴正方向,建立坐标系,设渐开线上的任意点 M(x,y), 绳拉直时和圆的切点为 A,故 OA⊥AM,按渐开线定义,弧 0 AM 的长和线段 AM 的长相等,记 OA 和 x 轴正向所夹的角为 θ(以弧 度为单位),则
5 2 4π -π+2.
本课时考点是圆的渐开线或摆线的参数方程的应用,近几 年的高考题中还未出现过.2012 年惠州模拟以填空题的形式对 圆的摆线的参数方程的应用进行了考查,属低档题. [考题印证]
x=t-sin t (2012· 惠州模拟)摆线 y=1-cos t
(0≤t≤2π)与直线 y=1 的交点的直角坐标为________.
[命题立意]
本题主要考查摆线方程及其参数的几何意义.
[解析]
由题设得 1=1-cos t,
π 3 解得 t1=2,t2=2π. π x1= -1, 2 对应交点的坐标为 y1=1, 3 x2= π+1, 2 y2=1, π 3 交点为(2-1,1),(2π+1,1). π 3 [答案] (2-1,1),(2π+1,1)
点击进入 创新演练大冲关
|AM|= 0 =4θ AM 作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角和向量知
识,得 OA =(4cos θ,4sin θ),
由几何知识知∠MAB=θ,
AM =(4θsin θ,-4θcos θ),
得 OM = OA + AM
[通一类] 1.基圆直径为 10,求其渐开线的参数方程.
解: φ 为参数, 为基圆上点与原点的连线与 x 轴正方向的 取 φ 夹角. ∵直径为 10,∴半径 r=5. 代入圆的渐开线的参数方程得:
x=5cos φ+φsin φ, y=5sin φ-φcos φ,
这就是所求的圆的渐开线的参数方程.
3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ y=rsin φ-φcos φ
(φ 为参数)
(1)圆的渐开线方程:

(2)摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)

[小问题·大思维]
1.渐开线方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指基圆的半径,参数φ是指绳子外端运动时 绳子上的定点M相对于圆心的张角. 2.摆线的参数方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开的角度大小.
[悟一法]
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚
动时,圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点M的位置也可以由圆心角φ
唯一确定.
[通一类]
2.圆的半径为r,沿x轴正向滚动,圆与x轴相切于原点O.圆上 点M起始处沿顺时针已偏转φ角.试求点M的轨迹方程.
π 解:xM=r· θ-r· [(φ+θ)-2] cos =r[θ-sin (φ+θ)], π yM=r+r· (φ+θ-2) sin =r[1-cos (φ+θ)].
[读教材·填要点] 1.渐开线的概念及产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一 支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出 的曲线叫做圆的 渐开线 ,相应的定圆叫做渐开线的 基圆 . 2.摆线的概念及产生过程 圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个 定点 的轨迹,圆的摆线又叫 旋轮线 .
x=r[θ-sin φ+θ] 的参数方程为 y=r[1-cos φ+θ]
∴点 M
(θ 为参数)
[研一题] [例3] 设圆的半径为8,沿x轴正向滚动,开始时圆与x轴
相切于原点O,记圆上动点为M,它随圆的滚动而改变位置, 写出圆滚动一周时M点的轨迹方程,画出相应曲线,求此曲线
上点的纵坐标y的最大值,说明该曲线的对称轴.
[悟一法] 摆线的参数方程是三角函数的形式,可考虑其性质与三角
函数的性质有类似的地方.
[通一类]
x=cos φ+φsin φ π 3. φ=2、 时, 当 π 求出渐开线 上对应的点 A、 y=sin φ-φcos φ
B,并求出 A、B 间的距离.
x=cos φ+φsin φ, π 解:将 φ=2代入 y=sin φ-φcos φ,
[悟一法] 解决此类问题的关键是根据渐开线的形成过程,将问题归
结到用向量知识和三角的有关知识建立等式关系上.
用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为M(x,y). (2)取定运动中产生的某一角度为参数. (3)用三角、几何知识写出相关向量的坐标表达式. (4)用向量运算得到 OM 的坐标表达式,由此得到轨迹曲线 的参数方程.
[精讲详析] 本题考查摆线的参数方程的求法及应用.解
答本题需要先分析题意,搞清M点的轨迹的形状,然后借助图 象求得最值.
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16. 曲线的对称轴为 x=8π.
因此 OM = OB + BM
=(2α-2sin α,2-2cos α) =(2(α-sin α),2(1-cos α)).
动点 M 的坐标为(x,y),向量 OM =(x,y).
x=2α-sin 所以 y=21-cos
α, α.
这就是所求摆线的参数方程.
相关文档
最新文档