周建方版材料力学习题解答[第四章]
《材料力学》第四篇课后习题参考答案

反思与改进
不足之处
在解题过程中,我发现自己在 某些知识点上还存在理解不够 深入的问题,需要进一步加强 学习。
改进方向
在未来的学习中,我将更加注 重理论与实践的结合,通过更 多的实际案例来加深对知识点 的理解。
学习计划调整
针对自己的不足之处,我将制 定更为详细的学习计划,加强 针对性的练习和复习,以提高 自己的学习效果。
总结词
考虑非线性效应
详细描述
本题目需要考虑非线性效应对结构性能的影响,如大变形 、塑性变形等,需要运用材料力学的基本理论,对这些非 线性效应进行分析和计算。
总结词
结合实际工程背景
详细描述
本题目需要结合实际工程背景,对结构进行详细的分析和 设计。需要考虑实际工程中的各种因素,如施工条件、环 境因素等,以确保结构的可靠性和安全性。
这种方法需要熟练掌握 材料力学的基本概念和 公式,对问题的理解要 深入,能够准确判断和 选择适用的公式。
解析方法二
01
图解法
02
图解法
03
图解法
04
图解法
解析方法三
数学解析法
数学解析法是通过建立数学模型,将实际问题转 化为数学问题,利用数学工具进行求解。
•·
这种方法需要具备较高的数学水平,能够建立准 确的数学模型,并选择适当的数学方法进行求解 。
05
总结与反思
学习总结
80%
知识掌握情况
通过完成课后习题,我深入理解 了材料力学中的基本概念和原理 ,掌握了解决实际问题的基本方 法。
100%
解题能力提升
通过不断练习和反思,我提高了 自己的解题能力和思维逻辑性, 能够更加熟练地运用所学知识解 决复杂问题。
工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
材料力学习题解答周建方

� � � � � AB �
MM 0 dx � EI
FN FN 0 dx � 2
l
(
2 F)x �
2 xdx �
2
l 2 F � 2 dx
EA
EI 0 2
2
EA 0 2
2
Fl 3 =
�
Fl
(移开)
3EI EA
当不考虑轴力的影响时� � AB �
Fl 3 3 EI
(移开)
1
9-10 题 9-10 图所示简单桁架�两杆截面积为 A�材料应力~应变关系为�� � C� 2 。试求 结点 B 的垂直位移△V。 解�由节点 B 的平衡条件求出 BD 杆的轴力和应力�再由应力-应变关系求出应变。结果为�
l 2GI p
l1 2GI p1
M x 2 ( x)dx
�
M
2 x
�
l
(
1
�
1)
l2 2GI p 2
2G 2 I p1 I p2
�
M
2 x
l
4G
32 (�d14
�
512
81� d
4 1
)
�
776
M
2 x
l
81�
d
4 1
G
9-4 试用互等定理求题 9-4 图所示结构跨度中点 C 的挠度�设 EI=常数。 题 9-4a 解�设力 F 为第一组力�设想在 C 处作用一单位
EI
x1 )
dx 1
�
l l 2
F (x2
� l)� 2
EI
1 4
x2
dx 2
�
5l 4 l
�
Fl
(x3 � 2 EI
材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
材料力学第四章习题选及其解答.docx

4-1. 试求图示各梁中截面1、2、3上的剪力和弯矩,这些截面无限接近于截面C或D 。
设p 、q 、a 均为已知。
解:(c )(1)截开1截面,取右段,加内力(22112322qaa qa a P M qaqa P Q -=⨯-⨯-==+=(3)截开2截面,取右段,加内力(4)求内力2222122qaM a qa a P M qaqa P Q -=+⨯-⨯-==+=(d )(1)求约束反力N R N R D A 300 100==(2)截开1截面,取左段,加内力(d)B(f)B(c)M=qa 2M M M=qa 2B(3)求1截面内力NmR M N R Q A A 202.010011-=⨯-=-=-=(4)截开2截面,取左段,加内力(5)求2截面内力NmR M N R Q A A 404.010022-=⨯-=-=-=(6)截开3截面,取右段,加内力(7)求3截面内力NmP M N P Q 402.020023-=⨯-===(f )(1)求约束反力qa R qa R D C 25 21==(2)截开1截面,取左段,加内力Q 1M 12BMB(3)求1截面内力2112121 qa a qa M qa Q -=⨯-=-=(4)截开2截面,取右段,加内力(5)求2截面内力222223qa M a P M qaR P Q D -=-⨯=-=-= 4-3. 已知图示各梁的载荷P 、q 、M0和尺寸a 。
(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)确定∣Q ∣max 和∣M ∣max 。
q(c)M 0=qa 2 (d)(f)(e) (g)q(h)1BM (a)(b) Bq解:(a )(1)求约束反力Pa M P R A A == 2(2)列剪力方程和弯矩方程⎪⎩⎪⎨⎧∈=-⨯-+⨯=∈-=+⨯=⎩⎨⎧∈=-=∈==),0[ )(2)(],0( 2)(]2,( 02)(),0( 2)(2222211111222111a x Pa a x P M x R x M a x Pa Px M x R x M a a x P R x Q a x P R x Q A A A A A A (3)画Q 图和M 图(4)最大剪力和最大弯矩值(i)q(j)BP=20kN(l)q(k)qM xxPa M P Q ==max max 2(b )(1)求约束反力223 qa M qa R B B ==(2)列剪力方程和弯矩方程⎪⎪⎩⎪⎪⎨⎧∈-⨯-=∈-=⎩⎨⎧∈-=∈-=)2,[ )2()(],0[ 21)()2,[ )(],0[ )(2222121112221111a a x a x qa x M a x qx x M a a x qa x Q a x qx x Q (3)画Q 图和M 图(4)最大剪力和最大弯矩值2maxmax 23 qa M qa Q == (c )(1)求约束反力qBxxqM 0=qa 2M2 2qa M qa R A A ==(2)直接画Q 图和M 图(3)最大剪力和最大弯矩值2max max 2qa M qa Q ==(d )(1)求约束反力P R R B A == 0(2)直接画Q 图和M 图(3)最大剪力和最大弯矩值Pa M P Q ==max maxxxxx。
材料力学-北京交通大学-4章答案

第四章弯曲内力4.4 设已知题4.4图(a)~(p)所示各梁的载荷 F 、q 、e M 和尺寸a ,(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)确定maxSF 及max M 。
解:(a)如题4.4图(a)所示。
剪立如题4.4图(a 1)所示坐标系。
(1)列剪力方程和弯矩方程。
应用题4.1(a)解法二提供的列剪力方程和弯矩方程的方法。
AC 段 ()()20S F x F x a =<<()()()20M x F x a x a =-<≤CB 段 ()()02S F x a x a =≤≤()()2M x Fa a x a =≤<(2)作剪力图、弯矩图,如题4.4图(a 2)所示。
(3)梁的最大剪力和弯矩为max2SF F =, max M Fa =(b) 如题4.4图(b)所示。
解法同4.4(a)。
剪立题4.4图(b 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤≤CB 段 ()()2S F x qa a x a =-≤<()()22a M x qa x a x a ⎛⎫=--≤< ⎪⎝⎭(2) 作剪力图、弯矩图,如题4.4图(b 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max32Mqa =(c) 如题4.4图(c)所示。
解法同4.4(a)。
剪立题4.4图(c 1)所示坐标系。
(1)列剪力方程和弯矩方程。
CB 段 ()()023S F x a x a =≤≤()()223M x qa a x a =≤<AC 段 ()()()202S F x q a x x a =-<≤()()()2212022M x q a x qa x a =--+<≤(2) 作剪力图、弯矩图,如题4.4图(c 2)所示。
材料力学课后习题答案4章

第四章 扭 转题号 页码 4-5.........................................................................................................................................................1 4-7.........................................................................................................................................................2 4-8.........................................................................................................................................................3 4-9.........................................................................................................................................................4 4-11.......................................................................................................................................................6 4-13.......................................................................................................................................................7 4-14.......................................................................................................................................................8 4-19.......................................................................................................................................................8 4-20.......................................................................................................................................................9 4-21.....................................................................................................................................................10 4-22.....................................................................................................................................................12 4-23.....................................................................................................................................................13 4-24.....................................................................................................................................................15 4-26.....................................................................................................................................................16 4-27.....................................................................................................................................................18 4-28.....................................................................................................................................................19 4-29.....................................................................................................................................................20 4-33.....................................................................................................................................................21 4-34.....................................................................................................................................................22 4-35.....................................................................................................................................................23 4-36.. (24)(也可通过左侧的题号书签直接查找题目与解)4-5 一受扭薄壁圆管,外径D = 42mm ,内径d = 40mm ,扭力偶矩M = 500N ·m ,切变模量G =75GPa 。
建筑力学第4章习题解答

[习题4-2] 试求图示拉杆1-1、2-2、3-3截面上的轴力,并作出轴力图。
[解题要点]1、分段计算轴力(1)计算CD 段轴力a 、用3-3截面截开CD 段杆件,取右段分析,右段截面上內力用N 3代替,受力图如图(a )。
b 、根据静力平衡条件计算N 1值 ∑F x =0 N 3+2F =0 N 3=-2F(2)计算BC 段轴力a 、用2-2截面截开BC 段杆件,取右段分析,右段截面上內力用N 2代替,受力图如图(b)。
b 、根据静力平衡条件计算N 2值 ∑F x =0 N 2+2F -3F =0 N 2=F (3)计算AB 段轴力a 、用1-1截面截开AB 段杆件,取右段分析,右段截面上內力用N 1代替,受力图如图(c)。
b 、根据静力平衡条件计算N 3值∑F x =0 N 3+2F +3F -3F =0 N 3=-2F 2、 绘制轴力图(图(d ))[习题4-3] 杆件的受力情况如图所示,试绘出轴力图。
[解题要点]1、分段计算轴力 (1)计算DE 段轴力a 、用3-3截面截开DE 段杆件,取右段分析,右段截面上內力用N 3代替,受力图如图(a )。
b 、根据静力平衡条件计算N 1值 ∑F x =0 N 3-40KN =0 N 3=40KN(2)计算CD 段轴力a 、用2-2截面截开CD 段杆件,取右段分析,右段截面上內力用N 2代替,受力图如图(b)。
b 、根据静力平衡条件计算N 2值∑F x =0 N 2+60KN -40KN =0 N 2=-20KN(3)计算AC 段轴力(AB 、BC 段尽管截面不同,但轴力相同) a 、用1-1截面截开AC 段杆件,取右段分析,右段截面上內力用N 1代替,受力图如图(c)。
b 、根据静力平衡条件计算N 3值∑F x =0 N 3+60KN -40KN -80KN =0D C B A 轴力图(a )(b )(c )(d )2F2F F(d )(c )(b )(a )轴力图 (单位:KN )A B C D406020EN 3=60KN2、 绘制轴力图(图(d ))[例4-2]:计算图示杆1-1、2-2截面上的正应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mx
9550 P n
M1
9550
30 200
1.432103
N
m
M2
9550
17 200
8.118 10 2
N
m
M3
9550
13 200
6.208 10 2
N
m
12
M1 GI P
1.432103 32 90 109 3.14 0.074
0.755103 rad / m(0.3870 / m)
F
+
+
+
题 4-1 图
4-2 拉杆如图 4-14 所示,求该杆的总伸长量。杆材料的弹性模量 E 150GPa 。
解:
题 4-2 图
l FNili 15103 150 15103 250 EAi 150103 20 20 150103 20 10 3.75102 1.25101 1.625101 mm 0.1625mm
EIZ
M (x)dx C
q (xl 2
x2 )dx C
q x2l 1 x3q C 1 qlx2 1 qx3 C
46
4
6
q/2
EIZ
w
1 12
qlx3
1 24
qx 4
Cx
D
当x 0时,w 0, D 0
当x l 时, 0,从而,C ql 3
2
24
则, wmax
wl
2
5ql 4 384EIZ
1
dx
0 GI P
G
0
[d1
1 l
x(d 2
d1
)]4
G
0
[d1
1 l
x(d 2
d1 )]4
令K
d1
1 l
x(d 2
d1 )
则 : x (K d1 )l (d2 d1 )
上面积分转换为:
32T d2 K 4 d (K d1 )l 32T
l
K 3 d2 ( )
32Tl
( 1 1 )
max
A
B
ql 3 24EI
4-15 用叠加法求图 4-23 所示梁的C 及 wB 。设 EI 均为已知常数。
(a)解:
求:C , wB . (一)求 C
C C1 C2 C3 C4
C1(B')
C 2( B')
C 3( B')
C 4(C ')
ql 3 0.5ql 2l ( ql 3 ) ql 3
(a)
q
A FDC
D
D' C C'
求反力: M A 0
B
FDC
2 l q 2l l 0 2
故:FDC
4 ql 2
B'
CD'
4 ql 2
2l 4ql 2
EA
EA
CC' 4 2ql 2 则B点的位移:BB' 2CC' 8 2ql 2
EA
EA
4-5(b)
计算CD杆反力: M A 0
4-12 全长为 l ,两端面直径分别为 d1 和 d 2 的圆锥形杆,两端各受力偶 T 作用而扭转(图
4-21),求两端面间相对扭转角。 解:
d1 x L
d2
1
1
dx l (xd 2 ld1 xd1 ) d1 l x(d 2 d1 )
lM (x) dx M x l
32
dx 32T l
1 8
ql 4 EI
5ql 4 24EI
4-15(b)解
(一) C C C1 C2 Fl2 Fl2l 3Fl2 2EI EI 2EI
(二)求 wB
wB
wB1
wB2
Fl3 3EI
Ml2 2EI
Fl3 Fl3 Fl3 3EI 2EI 6EI
ql (2)
(B') 1 ql 2 2
x
当x 0, A 0,故C 0
故: Mx EIZ
max
B
Ml EIZ
EIw 1 Mx2 Cx D 1 Mx2 D
2
2
当x 0时,wA 0,所以D 0
Mx2 w
2EI
Ml2 wmax wB 2EI
(b)解:
q
q/2 1 ql 2 8
M (x) q (xl x2 ) 2
M C 0 FO1A F
F
M D 0 F 2l FO1C 2l 0
B (二)求变形
因此:FO1C 2F
1
FO1Al EA
Fl EA
2
FO1C 2l EA
2 2
2F 2l EA
2 2 2 Fl EA
δ3 3 1 2( 2 1 )
3
2 2
1
4
2Fl EA
Fl EA
(4
即:FA AA rA2 1 l x
FC AC rC2 4
x
则:x 4 l 5
4-4 图 4-16 所示一均质杆,长为 l ,横截面面积为 A ,杆重W ,材料的弹性模量为 E ,求 杆端 B 及中间截面 C 在自重作用下的位移。
解,如图
lB
N(x)dx l EA(x)
l (l x)qdx q
D
FDC 2l
3 F 3l 0 2
故:FDC 3 F
A
C E
B
则:EC' FDC 2l 2 3Fl EA EA
C'
B' 根据图的关系:
CC' 3 EC' CC' 4Fl B点位移:BB' 3 CC' 6Fl
2
EA
2
EA
4-5(c)
D
A
C
FO1A
FO1C
FO2C
δ1 δ2
(一)受力分析,反力计算
G d1
(d 2 d1 ) G (d 2 d1 )
3
d1
G (d 2 d1 ) d13
d
3 2
32Tl (d 2 3G (d 2 d1 )
d
1
)(d
2 1
d1d 2
d
3 1
d
3 2
d
2 2
)
32Tl
3Gd13
d
3 2
(d
2 1
d1d2
d
2 2
)
4-13 求例 3-5 中的单位长度扭转角。已知 G=80Gpa。 解:
1.157 102 rad / m 0.660 / m
80 109 0.237 0.1 0.0453
4-14 用积分法求图 4-22 所示各梁的挠曲线方程和转角方程,并求最大挠度和转角。各梁 EI
均为常数。 (a)解: 由挠曲线方程:
A
M -
M (x) M
M
B
EIZ M (x)dx C Mdx C Mx C
F (二)最大挠度
C
B
wB
w1FC
w1FCl
F 1C
l
Fl 1C
l w2B
Fl3 Fl l 2 Fl2 l (Fl)l l Fl3 3(2EI) 2(2EI) 2(2EI) 2EI 3EI
1 1 1 1 1 Fl3 3 Fl3 ( )
6 4 4 2 3 EI 2 EI
解:
E FN l 200 60103 2.16105 MPa 216GPa l A 0.113 3.14 252 4
IP
D 4 32
3.833108
G M xl
0.2103 0.2
8.1721010 Pa 81.72GPa
I P 3.833108 1.277102
E 1 216 1 0.32 2G 281.72
Fl EA
By 2BE
2 HF 2 2
2 Fl Fl (1 2 EA EA
2) Fl EA
4-7 在图 4-19 所示结构中, AB 为水平放置的刚性杆,1、2、3 杆材料相同,其弹性模量
E 210GPa,已知 l 1m , A1 A2 100 mm 2 , A3 150 mm 2 , F 20kN 。试求 C
4-1 图 4-13 所示钢杆横截面面积为 A 100mm2 ,如果 F 20kN ,钢杆的弹性模量 E 200GPa,求端面 A 的水平位移。
解:(一)绘制轴力图 (二)计算:
2F
F
F
l
FNi li EA
F EA
(2l1
l2
2l3 )
2F
2F
20 103 (2 1000 1000 2 1000) 200103 100 5mm(伸长)
IP
D 4 32
Mx
2.15103 32
3.9 102 rad / m(2.240 / m)
GIP 90109 3.1416 0.054
4-9 求习题 3-7 中的最大单位长度扭转角和齿轮 1 和齿轮 3 的相对扭转角。已知齿轮 1 和 齿轮 2 的间距为 0.2m,齿轮 2 和齿轮 3 的间距为 0.3m,G=90Gpa。 解:
(3) (B')
q
(4) w'
Fl
B F
C
(1)
Fl
(2)
C
4-16 用叠加法求图 4-24 所示梁的最大挠度和最大转角。 4-16(a) 解
(一)最大转角
2EI
EI F
B
max
F 1B
Fl 1B
2B
A
CF
B
Fl2 Fl l Fl2
1 1 1 Fl2 5 Fl2