贝叶斯网络, 条件概率、全概率公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率、 §1.5 条件概率、全概率公 式和贝叶斯公式
一、条件概率 简单地说, 简单地说,条件概率就是在一定附加条件之 下的事件概率. 下的事件概率. 从广义上看,任何概率都是条件概率, 从广义上看,任何概率都是条件概率,因为 任何事件都产生于一定条件下的试验或观察, 任何事件都产生于一定条件下的试验或观察, 但我们这里所说的“附加条件” 但我们这里所说的“附加条件”是指除试验条 件之外的附加信息,这种附加信息通常表现为 件之外的附加信息, 已知某某事件发生了” “已知某某事件发生了”
从这个意义上讲, 它是一个“ 执果索因” 从这个意义上讲 , 它是一个 “ 执果索因 ” 的条件概率计算公式. 的条件概率计算公式. 相对于事件B 而言 , 概 率 论 中 把 称 为 先 验 概 率 PriorProbability) (PriorProbability),而把称为后验概 Probability) 率 ( Posterior Probability), 这 是 在已有附加信息( 已发生) 在已有附加信息 ( 即事件 B 已发生 ) 之后 对事件发生的可能性做出的重新认识, 对事件发生的可能性做出的重新认识,体 现了已有信息带来的知识更新. 现了已有信息带来的知识更新.
Leabharlann Baidu
这一公式最早发表于1763年 这一公式最早发表于1763年,当时贝 1763 叶斯已经去世, 叶斯已经去世,其结果没有受到应有 的重视. 后来, 的重视. 后来,人们才逐渐认识到了 这个著名概率公式的重要性. 现在, 这个著名概率公式的重要性. 现在, 贝叶斯公式以及根据它发展起来的贝 叶斯统计已成为机器学习、人工智能、 叶斯统计已成为机器学习、人工智能、 知识发现等领域的重要工具. 知识发现等领域的重要工具. 贝叶斯公式给出了‘结果’ 贝叶斯公式给出了‘结果’事件B 已发生的条件下, 原因’ 已发生的条件下,‘原因’事件的条 件概率. 件概率.
相关文档
最新文档