实验二 FeCl3中微量铁的测定

合集下载

邻二氮菲分光光度法测定微量铁_2

邻二氮菲分光光度法测定微量铁_2

邻二氮菲分光光度法测定微量铁一、实验目的➢ 学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理。

➢ 掌721握型分光光度计的正确使用方法,并了解此仪的主器要构造。

二、实验原理在pH=2~9的溶液中,Fe 2+与邻二氮菲(phen)生成稳定的桔红色配合物Fe(phen)32+:[]++→+232)phen (Fe phen 3Fe (橘红色)此配合物的lgK 稳=21.3,摩尔吸光系数ε510 = 1.1×104 L·mol -1·cm -1,而Fe 3+能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK 稳=14.1。

所以在加入显色剂之前,应用盐酸羟胺(NH 2OH·HCl)将Fe 3+还原为Fe 2+,其反应式如下:2Fe 3++2NH 2OH·HCl →2Fe 2++N 2+H 2O+4H ++2Cl -测定时控制溶液的酸度为pH ≈5较为适宜。

用邻二氮菲可测定试样中铁的总量。

三、仪器及物品721型分光光度计,1 cm 吸收池,10 mL 吸量管,50 mL 比色管(或容量瓶);1.0×10-3 mol·L -1 铁标准溶液,100ug·mL -1铁标准溶液,0.15%邻二氮菲水溶液,10%盐酸羟胺溶液(新配),1 mol·L -1乙酸钠溶液,6 mol·L -1 HCl (工业盐酸试样)。

四、实验过程1、绘制吸收曲线,选择测量波长:用吸量管吸取2.00 mL1.0×10-3mol.L -1铁标准溶液,注入50 mL 比色管中,加入1.00 mL 10%盐酸羟胺溶液,摇匀,加入2.00 mL0.15%邻二氮菲溶液,5.0 mL NaAc 溶液,以水稀释至刻度。

在光度计上用1 cm 比色皿,蒸馏水为参比溶液,在440-560 nm 间,每隔10 nm 测量一次吸光度,绘制吸收曲线,选择测量的适宜波长。

实验 分光光度法测定微量铁

实验  分光光度法测定微量铁
实验
分光光度法测定微量铁
姓名###专业 化学工程与工艺 学号 2904090120 日期 2011 年 11 月 9 日 星期三
一、实验原理
吸光光度法是根据溶液中物质对光选择性的吸收而进行的分析方法。它具有较高的灵敏 度和一定的准确度,特别适宜于微量祖坟的测定。 吸光光度法测定微量铁的显色剂, 目前大多数采用邻二氮菲为显色剂。 在 pH=2~9 的挑件下, 二价铁离子与邻二氮菲生成稳定的橘红色络合物,络合物的 lgK=21.3 ,摩尔吸光系数为 1.1*104。 显色前要用盐酸羟胺把三价铁离子还原为二价铁离子,测定是应控制溶液浓度在 pH=5 左右为宜。 分光光度法测定物质含量是应注意的主要是显色反应的条件和测量吸光度的条件。显色 反应的条件有显色剂用量、介质的酸度、显色时间、显色时溶液的温度、干扰物质的消除方 法等。 测量吸光度的条件包括应选择的入射光波长,吸光度范围和参比溶液。 本实验帮助学生研究邻二氮菲测铁摘入射光波长、 络合物肉 on 工业的稳定性、 显色剂浓度、 溶液 pH 值的影响等几个方面确定实验的最佳条件。
条件实验 显色剂用量的选择
取 7 个 50mL 的容量瓶, 各加入 1mL 铁标准溶液, 1mL 盐酸羟胺, 摇匀。 在分别加入 0.1、 0.3、0.5、0.8、1.0、2.0、4.0mL 邻二氮菲和 5mLNaAc 溶液,以水实施至刻度,摇匀,放置 10min。用 1cm 比色皿,以蒸馏水为参比溶液,在选择波长系测定各溶液的吸光度。以邻二 氮菲溶液的体积 V 为横坐标,吸光度 A 为纵坐标,绘制 A 与 V 的关系的显色剂用量影响曲 线。得出测定铁是显色剂的最适宜用量。
没有干扰离子。 2、本实验量取各种试剂时应分别采用何种量器较为合适?为什么? 答:应采用移液管或是滴定管,因为要准确量取物质的体积。 3、对所做的条件实验进行讨论并选择适宜的测量条件。 答:显色剂为 2mL 的邻二氮菲溶液,显色时间 10min 为宜。

实验二十 水中微量铁的测定—邻菲啰啉分光光度法

实验二十  水中微量铁的测定—邻菲啰啉分光光度法

实验二十水中微量铁的测定—邻菲啰啉分光光度法一、实验目的1.学习如何选择吸光光度分析的实验条件;2.掌握用吸光光度法测定铁的原理及方法;3.掌握分光光度计和吸量管的使用方法。

二、实验原理铁的吸光光度法所用的显色剂较多,有邻二氮菲(又称邻菲啰啉,菲绕林)及其衍生物、磺基水杨酸、硫氰酸盐、5-Br-PADAP等。

其中邻二氮菲分光光度法的灵敏度高,稳定性好,干扰容易消除,因而是目前普遍采用的一种方法。

在pH为2~9的溶液中,Fe2+与邻二氮菲(Phen)生成稳定的橘红色络合物Fe(Phen)32+:其中lgβ3=21.3,摩尔吸光系数ε508=1.1×104 L·mol-1·cm-1。

当铁为+3价时,可用盐酸羟胺还原:Cu2+、Co2+、Ni2+、Cd2+、Hg2+、Mn2+、Zn2+等离子也能与Phen 生成稳定络合物,在少量情况下,不影响Fe2+的测定,量大时可用EDTA隐蔽或预先分离。

吸光光度法的实验条件,如测量波长,溶液酸度、显色剂用量、显色时间、温度、溶剂以及共存离子干扰及其消除等,都是通过实验来确定的。

本实验在测定试样中铁含量之前,先做部分条件试验,以便初学者掌握确定实验条件的方法。

条件试验的简单方法是:变动某实验条件,固定其余条件,测得一系列吸光度值,绘制吸光度-某实验条件的曲线,根据曲线确定某实验条件的适宜值或适宜范围。

三、仪器与药品1.分光光度计,pH计,50mL容量瓶8个(或比色管8支)2.100 μg·mL-1铁标准溶液:准确称取0.8634 g 分析纯 NH4Fe(SO4)2·12H2O于200mL烧杯中,加入20mL 6mol·L-1 HCl溶液和少量水,溶解后转移至1L容量瓶中,稀释至刻度,摇匀。

3.邻二氮菲 1.5 g·L-1。

(新配制);4.盐酸羟胺100 g·L-1(用时配制)。

5.NaAc 1mol·L-1。

邻二氮菲分光光度法测定微量铁 一、实验目的 1、学会吸收曲线及标准

邻二氮菲分光光度法测定微量铁 一、实验目的 1、学会吸收曲线及标准

邻二氮菲分光光度法测定微量铁一、实验目的1、学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理。

2、掌握用邻二氮菲分光光度法测定微量铁的方法原理。

3、学会722型分光光度计的正确使用,了解其工作原理。

4、学会数据处理的基本方法。

5、掌握比色皿的正确使用。

二、实验原理根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。

同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。

用分光光度法测定试样中的微量铁,可选用显色剂邻二氮菲,邻二氮菲分光光度法是化工产品中测定微量铁的通用方法,在pH值为2-9的溶液中,邻二氮菲和二价铁离子结合生成红色配合,此配合物的lgK=21.3,摩尔吸光ε510=1.1×104L·mol-1·cm-1,稳=14.1。

所以在加入显色剂之而Fe3+能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK稳前,应用盐酸羟胺(NH2OH·HCl)将Fe3+还原为Fe2+,其反应式如下:2Fe3++2NH2OH·HCl→2Fe2++N2+H2O+4H++2Cl-测定时酸度高,反应进行较慢;酸度太低,则离子易水解。

本实验采用HAc-NaAc 缓冲溶液控制溶液pH≈5.0,使显色反应进行完全。

为判断待测溶液中铁元素含量,需首先绘制标准曲线,根据标准曲线中不同浓度铁离子引起的吸光度的变化,对应实测样品引起的吸光度,计算样品中铁离子浓度。

本方法的选择性很高,相当于含铁量40倍的Sn2+、Al3+、Ca2+、Mg2+、Zn2+、SiO32-;20倍的Cr3+、Mn2+、VO3-、PO43-;5倍的Co2+、Ni2+、Cu2+等离子不干扰测定。

但Bi3+、Cd2+、Hg2+、Zn2+、Ag+等离子与邻二氮菲作用生成沉淀干扰测定。

实验二FeCl3中微量铁的测定

实验二FeCl3中微量铁的测定

标准曲线制备实例
精密称取对照品1.110mg用甲醇溶解并定容至 10ml,用移液管精密移取0.4ml, 0.8ml,1.2ml, 1.6ml,2.0ml,2.4ml分别定容于10ml容量瓶,以此 为对照溶液,在268nm下测其吸收度,测定结果见 表Table2
Table 2 Linear Relationship of Standard Material
四.操作步骤
1.标准曲线的制作 以标准溶液的浓度为横坐标,相应的吸 光度为纵坐标,绘制成A-C曲线即为标 准曲线。
具体步骤:
在6只10ml容量瓶中,用吸量管分别加入 0.0,0.4,0.8, 1.2,1.6,2.0ml 铁标准溶液 (硫酸铁铵每ml含Fe3+20μg),分别加入 0.2ml盐酸羟胺,0.4ml邻二氮菲,1.0ml HAc-NaAc缓冲溶液,用水稀释至刻度后摇 匀,放置5min.用1cm比色皿,以0.0ml铁标 液为试剂空白,在所选波长(508nm)下,测 量各溶液的吸光度.以铁含量为横坐标,吸光 度A为纵坐标,绘制标准曲线.
思考题
• 显色反应操作中,加入的各标准溶液与样
品液的含酸量不同,对显色有无影响?
• 据制备标准曲线测得的数据,判断本次实
验得浓度与吸光度间的线性好不好,分析 其原因.
注意事项
• 待测溶液装量应超过比色皿2/3,但也不
能装得太满。
• 实验过程中,注意不要将溶液撒入机器内
部,如果发生上述情况,请及时清理干净。
• 及显色条件的选择
显色时,溶液PH值应为2~9.若酸度过高 (PH<2)显色缓慢而色浅;若酸度过低,二 价铁离子易水解.最大吸收波长为 508nm,ε= 11100.
仪器与试剂

催化分光光度法测定化工产品中微量铁

催化分光光度法测定化工产品中微量铁

催化分光光度法测定化工产品中微量铁摘要:化工产品在现阶段人们的生活中有着十分重要的作用,而化工产品在实际生产的过程中,其内部成分会有微量的变化,这些变化会对化工产品的应用质量产生较大影响。

分光光度法是现阶段应用较为广泛的化工产品微量物质测量方法之一。

本文将从分光光度计,实验方法以及实验情况出发进行简单的分析与概述。

关键词:分光光度法;检定;化工产品;微量铁引言:化工产品在现阶段人们的生活中有着十分重要的作用,如明胶是感光工业的基本原材料之一,其内部的金属元素对于感光材料的感光性能有着极大的影响。

对其成分进行鉴定,能够辅助人们对明胶材料进行进一步的改进与完善,提升其应用价值。

对化工产品微量物质检测手段的研究,能够在极大程度上提升检测数据准确性。

一、分光光度计方法概述分光光度计法在实际应用的过程中主要是利用物质特有的吸收光谱来判断物质或者是物质含量的一种方法。

这种方法在实际应用的过程中能够在较为复杂的组成系统中,不需要进行分离等操作就能够检验出所检测物种含量极少的物质,现阶段应用较为广泛的检测方法之一。

(一)分光光度计的分类从实际情况来看,分光光度计在实际应用的过程中可以分成三种,宫外分光光度计、可见光分光光度计、紫外线分光光度计。

这三种分光光度计在实际应用的过程中需要根据所检测物质进行合理的选择。

(二)分光光度计工作原理1.分光光度计的光谱范围分光光度计在实际应用的过程中根据其种类的不同,其检测光谱范围也存在一定的不同,从现有的数据中可知,红外线分光光度计在实际应用的过程中其可以检测的光谱范围在760nm以上。

可见光分光光度计在实际应用的过程中其检定范围在400nm-760nm之间,最后紫外分光光度计在实际应用的过程中所检定的范围在200-400nm之间。

而在实际检定的过程中,相关的人员可以根据其检验的实际情况合理的选择其所需要的点光源[1]。

2.物质的吸收光谱在光源以及棱镜之间放置特殊介质,在这种情况下,相应的显示器在实际应用的过程中所显示的光源已经不是光源的光谱,而是出现部分暗线,这是因为相应的波长的光被物质所吸收,而所呈现出的图案是吸收光谱,可用于物质的检定工作。

分光光度法测定微量铁_实验报告

分光光度法测定微量铁_实验报告

邻二氮杂菲分光光度法测定铁一、目的要求1. 了解分光光度计的基本结构及其使用方法。

2. 掌握邻二氮杂菲分光光度法测定铁的实验技术。

3. 了解分光光度分析与测量条件的关系及其依据。

二、基本原理1. 光度法测定的条件:分光光度法测定物质含量时应该注意的条件主要是显色反应的条件和测量吸光度的条件。

显色反应的条件有显色剂用量、介质的酸度、显色时溶液的温度、显色时间及干扰物质的消除方法等;测量吸光度的条件包含应选择的入射光波长、吸光度范围和参比溶液等。

2. 邻二氮杂菲-亚铁络合物:邻二氮杂菲是测定微量铁的一种较好试剂。

在pH=2~9的条件下Fe 2+离子与邻二氮杂菲生成极稳定的橘红色络合物,反应式如下:N N+Fe 2+2+此络合物的lgK 稳=21.3,摩尔吸光系数ε=1.1×104。

在显色前,首先用盐酸羟胺把Fe 2+离子还原为Fe 3+离子,其反应式如下:32222222242Fe NH OH HCl Fe N H O H Cl +++-+→++++测定时,控制溶液酸度在pH5左右较为适宜。

酸度高时,反应进行较慢;酸度太低,则Fe 2+离子水解,影响显色。

Ba 2+、Cd 2+、Hg +、Ag +、Zn 2+等离子与显色剂生成沉淀,Ca 2+、Cu 2+、Ni 2+等离子则形成有色配合物。

当有这些离子共存时,应注意它们的干扰作用。

三、仪器和试剂1. 仪器:尤尼柯2000光度计;50 mL 容量瓶;1 mL ,2 mL ,5 mL 移液管。

2. 试剂:100μg/mL 铁标准溶液:准确称取0.864g 分析纯4422()12NH Fe SO H O 置于一烧杯中,以30mL 2 moL/L HCl 溶解后移入1000mL 容量瓶中,以水稀释至刻度,摇匀。

10μg/mL 铁标准溶液:由100μg/mL 铁标准溶液准确稀释10倍而成。

10%盐酸羟胺溶液(因其不稳定,需临时配制) 0.1%邻二氮杂菲溶液(新配制)1 moL/LNaAc溶液。

分光光度法测定微量铁

分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁一、实验目的⒈学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理;⒉掌握721型分光光度计的使用方法,并了解此仪器的主要构造。

二、实验原理⒈确定适宜的条件的原因:在可见光分光光度法的测定中,通常是将被测物与显色剂反应,使之生成有色物质,然后测其吸光度,进而求得被测物质的含量。

因此,显色条件的完全程度和吸光度的测量条件都会影响到测量结果的准确性。

为了使测定有较高的灵敏度和准确性,必须选择适宜的显色反应条件和仪器测量条件。

通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响因素及消除等,但主要是测量波长和参比溶液的选择。

对显色剂用量和测量波长的选择是该实验的内容。

⒉如何确定适宜的条件:条件试验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液吸光度,通过吸光度与变化因素的曲线来确定适宜的条件。

⒊本试验测定工业盐酸中铁含量的原理:根据朗伯-比耳定律:A=εbc。

当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即工业盐酸中铁的含量。

⒋邻二氮菲法的优点:用分光光度法测定试样中的微量铁,目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。

⒌邻二氮菲法简介:邻二氮菲为显色剂,选择测定微量铁的适宜条件和测量条件,并用于工业盐酸中铁的测定。

⒍邻二氮菲可测定试样中铁的总量的条件和依据:邻二氮菲亦称邻菲咯啉(简写phen),是光度法测定铁的优良试剂。

在pH=2~9的范围内,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+)。

= 21.3,摩尔吸光系数ε510 = 1.1×104 L·mol-1·cm-1,而Fe3+能与邻此配合物的lgK稳二氮菲生成3∶1配合物,呈淡蓝色,lgK稳=14.1。

综合实验报告 邻二氮菲分光光度法测定微量铁

综合实验报告 邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁一、实验目的⒈学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理;⒉掌握721型分光光度计的使用方法,并了解此仪器的主要构造。

二、实验原理⒈确定适宜的条件的原因:在可见光分光光度法的测定中,通常是将被测物与显色剂反应,使之生成有色物质,然后测其吸光度,进而求得被测物质的含量。

因此,显色条件的完全程度和吸光度的测量条件都会影响到测量结果的准确性.为了使测定有较高的灵敏度和准确性,必须选择适宜的显色反应条件和仪器测量条件。

通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响因素及消除等,但主要是测量波长和参比溶液的选择。

对显色剂用量和测量波长的选择是该实验的内容.⒉如何确定适宜的条件:条件试验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液吸光度,通过吸光度与变化因素的曲线来确定适宜的条件。

⒊本试验测定工业盐酸中铁含量的原理:根据朗伯-比耳定律:A=εbc。

当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即工业盐酸中铁的含量.⒋邻二氮菲法的优点:用分光光度法测定试样中的微量铁,目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。

⒌邻二氮菲法简介:邻二氮菲为显色剂,选择测定微量铁的适宜条件和测量条件,并用于工业盐酸中铁的测定.⒍邻二氮菲可测定试样中铁的总量的条件和依据:邻二氮菲亦称邻菲咯啉(简写phen),是光度法测定铁的优良试剂。

在pH=2~9的范围内,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+)。

此配合物的lgK= 21.3,摩尔吸光系数ε510 = 1.1×104 L·mol—1·cm—1,而Fe3+能与邻二氮菲生稳成3∶1配合物,呈淡蓝色,lgK稳=14。

邻二氮菲分光光度法测定微量铁实验报告

邻二氮菲分光光度法测定微量铁实验报告

邻二氮菲分光光度法测定微量铁一、实验目的1.学习确定实验条件的方法和测定微量铁的分光光度法;2.掌握TU—1901型双光束紫外可见分光光度计的使用方法。

二、实验原理1.在可见光分光光度法测定无机物时,通过显色反应生成吸光系数较大的有色物质进行测。

2.确定适宜实验条件:改变其中一个影响因素,暂时固定其它影响因素,测吸光度,通过吸光度—该因素的曲线确定最适宜的显色条件。

其他因素的确定也照此方法。

3.本实验以邻二氮菲(phen)为显色剂,是光度法测定微量铁的优良试剂,pH在2~9时(pH=5~6),Fe2+ + 3phen [Fe(phen)3]2+(稳定的红色配合物)lgK稳=21.3,λmax=510nm,ε510=1.1×104L·cm-1·mol-1用盐酸羟胺将Fe(Ⅲ)还原为Fe(Ⅱ),以邻二氮菲做显色剂可测定试样中铁含量。

本方法选择性高,杂离子难以干扰。

三、仪器与试剂TU—1901型双光束紫外可见分光光度计,1cm比色皿,10mL吸量管,50mL 比色管。

1.0×10-3mol·L-1铁标准溶液,100μg·mL-1铁标准溶液,0.15%phen水溶液,10%盐酸羟胺溶液,1 mol·L-1醋酸钠溶液,工业盐酸(试样)。

四、实验操作1.吸收曲线的绘制和测量波长的选择用吸量管吸取2.00mL1.0×10-3mol·L-1铁标准溶液注入50mL比色管中,再加入1.00mL10%盐酸羟胺溶液,摇匀后,加入2.00mL0.15%phen水溶液和5.00mL1 mol·L-1醋酸钠溶液,稀释至刻度线,摇匀。

以蒸馏水为参比液,将上述试液装入1cm比色皿(2/3左右),在440nm~560nm 之间,每隔5nm测一次吸光度,以吸光度A为纵坐标,波长λ为横坐标绘制吸收曲线,选择最适宜波长。

2.确定显色条件⑴显色剂的用量在6支50mL比色管中各加入2.00mL1.0×10-3mol·L-1铁标准溶液和1.00mL10%盐酸羟胺溶液,摇匀后,分别加入0.10、0.50、1.00、2.00、3.00、4.00mL0.15%phen 水溶液,再加入5.00mL1 mol·L-1醋酸钠溶液,,稀释至刻度线,摇匀。

邻二氮菲分光光度法测定微量铁含量实验报告

邻二氮菲分光光度法测定微量铁含量实验报告

邻二氮菲分光光度法测定微量铁含量实验报告邻二氮菲分光光度法测定微量铁含量实验报告一、实验目的本实验的目的是使用邻二氮菲分光光度法来测定微量金属铁的含量。

二、实验原理邻二氮菲分光光度法是利用铁离子与邻二氮菲溶液反应生成一种具有特定波长的黄色螯合物,该波长可以有效反映铁离子浓度的变化。

铁与邻二氮菲反应生成黄色螯合物的反应式如下:Fe2+ + 2 para-dimethylaminobenzaldehyde(pDMnB)→ Fe (pDMnB)2+该反应的波长为555 nm,可以在此处测得离子浓度。

由于邻二氮菲螯合反应是多步反应,在受铁离子影响的情况下,将系中存在的其它配体离子换去,导致螯合反应降解,因而使电导率降低。

因此,可以使用该方法来测定微量金属铁含量。

三、实验步骤1、向容量瓶中加入水样溶液,加至容量瓶的刻度线处,用操作标准液(1000ppm Fe)与水样溶液混匀,在混匀的情况下加入邻二氮菲反应液,搅拌使混合物中的邻二氮菲反应液均匀溶解;2、在光度计中将比较程序设置为“比较”,将比较器设置为“测定”,并将调控器拨至“泻出”位置;3、在操作标准液容器中取1ml操作标准液,根据调控器位置,从容量瓶中泻出0.10ml,将其放入操作标准液容器中,混合使标准液内的铁离子与邻二氮菲反应液反应,谐解效应;4、使用光度计测定该混合液的光度,记下读数;5、将上述步骤重复5次;6、计算出每次实验的平均值并记录,并用它来测定样品中的铁离子浓度。

四、实验结果1、实验数据如下:操作标准液测试:第一次测试第二次测试第三次测试第四次测试第五次测试平均值2.20 2.19 2.20 2.19 2.21 2.20样品测试:第一次测试第二次测试第三次测试第四次测试第五次测试平均值1.07 1.08 1.09 1.08 1.07 1.082、由实验数据中可以看出,在实验中,操作标准液的平均值为2.20,样品的平均值为1.08。

3、操作标准液中的铁离子浓度为1000ppm,而样品的铁离子浓度可以由下式计算:样品铁离子浓度=样品平均值/操作标准液平均值x操作标准液浓度=1.08/2.20x1000ppm=491.83纳克每升五、实验总结本实验通过测定邻二氮菲分光光度,利用铁离子与邻二氮菲溶液反应生成一种具有特定波长的黄色螯合物,使用光度计测定该混合液的光度,从而测出了样品中的铁离子浓度,最后结果为491.83纳克/升。

综合实验报告 邻二氮菲分光光度法测定微量铁

综合实验报告 邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁一、实验目的⒈学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理;⒉掌握721型分光光度计的使用方法,并了解此仪器的主要构造。

二、实验原理⒈确定适宜的条件的原因:在可见光分光光度法的测定中,通常是将被测物与显色剂反应,使之生成有色物质,然后测其吸光度,进而求得被测物质的含量。

因此,显色条件的完全程度和吸光度的测量条件都会影响到测量结果的准确性。

为了使测定有较高的灵敏度和准确性,必须选择适宜的显色反应条件和仪器测量条件。

通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响因素及消除等,但主要是测量波长和参比溶液的选择。

对显色剂用量和测量波长的选择是该实验的内容。

⒉如何确定适宜的条件:条件试验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液吸光度,通过吸光度与变化因素的曲线来确定适宜的条件。

⒊本试验测定工业盐酸中铁含量的原理:根据朗伯-比耳定律:A=εbc。

当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即工业盐酸中铁的含量。

⒋邻二氮菲法的优点:用分光光度法测定试样中的微量铁,目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。

⒌邻二氮菲法简介:邻二氮菲为显色剂,选择测定微量铁的适宜条件和测量条件,并用于工业盐酸中铁的测定。

⒍邻二氮菲可测定试样中铁的总量的条件和依据:邻二氮菲亦称邻菲咯啉(简写phen),是光度法测定铁的优良试剂。

在pH=2~9的范围内,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+)。

此配合物的lgK= 21.3,摩尔吸光系数ε510 = 1.1×104 L·mol-1·cm-1,而Fe3+能与邻二氮菲生稳成3∶1配合物,呈淡蓝色,lgK稳=14.1。

实验二十 水中微量铁的测定—邻菲啰啉分光光度法

实验二十  水中微量铁的测定—邻菲啰啉分光光度法

实验二十水中微量铁的测定—邻菲啰啉分光光度法一、实验目的1.学习如何选择吸光光度分析的实验条件;2.掌握用吸光光度法测定铁的原理及方法;3.掌握分光光度计和吸量管的使用方法。

二、实验原理铁的吸光光度法所用的显色剂较多,有邻二氮菲(又称邻菲啰啉,菲绕林)及其衍生物、磺基水杨酸、硫氰酸盐、5-Br-PADAP等。

其中邻二氮菲分光光度法的灵敏度高,稳定性好,干扰容易消除,因而是目前普遍采用的一种方法。

在pH为2~9的溶液中,Fe2+与邻二氮菲(Phen)生成稳定的橘红色络合物Fe(Phen)32+:其中lgβ3=21.3,摩尔吸光系数ε508=1.1×104 L·mol-1·cm-1。

当铁为+3价时,可用盐酸羟胺还原:Cu2+、Co2+、Ni2+、Cd2+、Hg2+、Mn2+、Zn2+等离子也能与Phen 生成稳定络合物,在少量情况下,不影响Fe2+的测定,量大时可用EDTA隐蔽或预先分离。

吸光光度法的实验条件,如测量波长,溶液酸度、显色剂用量、显色时间、温度、溶剂以及共存离子干扰及其消除等,都是通过实验来确定的。

本实验在测定试样中铁含量之前,先做部分条件试验,以便初学者掌握确定实验条件的方法。

条件试验的简单方法是:变动某实验条件,固定其余条件,测得一系列吸光度值,绘制吸光度-某实验条件的曲线,根据曲线确定某实验条件的适宜值或适宜范围。

三、仪器与药品1.分光光度计,pH计,50mL容量瓶8个(或比色管8支)2.100 μg·mL-1铁标准溶液:准确称取0.8634 g 分析纯 NH4Fe(SO4)2·12H2O于200mL烧杯中,加入20mL 6mol·L-1 HCl溶液和少量水,溶解后转移至1L容量瓶中,稀释至刻度,摇匀。

3.邻二氮菲 1.5 g·L-1。

(新配制);4.盐酸羟胺100 g·L-1(用时配制)。

5.NaAc 1mol·L-1。

实验二 邻二氮菲分光光度法测定水中微量铁

实验二 邻二氮菲分光光度法测定水中微量铁

实验二邻二氮菲分光光度法测定水中微量铁一、实验目的1.学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理。

2.掌握用邻二氮菲分光光度法测定微量铁的方法原理。

3.学会722型分光光度计的正确使用,了解其工作原理。

4.学会数据处理的基本方法。

5.掌握比色皿的正确使用。

二、实验原理根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

只要绘出以吸光度A 为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。

同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。

用分光光度法测定试样中的微量铁,可选用显色剂邻二氮菲(又称邻菲罗啉),邻二氮菲分光光度法是化工产品中测定微量铁的通用方法,在pH值为2-9的溶液中,邻二氮菲和二价铁离子结合生成红色配合物:=21.3,摩尔吸光系数ε510 = 1.1×104L·mol-1·cm-1,而Fe3+此配合物的lgK稳=14.1。

所以在加入显色剂之前,能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK稳应用盐酸羟胺(NH2OH·HCl)将Fe3+还原为Fe2+,其反应式如下:2Fe3+ + 2NH2OH·HCl → 2Fe2+ + N2 + H2O + 4H+ + 2Cl-测定时酸度高,反应进行较慢;酸度太低,则离子易水解。

本实验采用HAc-NaAc缓冲溶液控制溶液pH≈5.0,使显色反应进行完全。

为判断待测溶液中铁元素含量,需首先绘制标准曲线,根据标准曲线中不同浓度铁离子引起的吸光度的变化,对应实测样品引起的吸光度,计算样品中铁离子浓度。

本方法的选择性很高,相当于含铁量40倍的Sn2+、Al3+、Ca2+、Mg2+、Zn2+、SiO32-;20倍的Cr3+、Mn2+、VO3-、PO43-;5倍的Co2+、Ni2+、Cu2+-等离子不干扰测定。

邻二氮菲分光光度法测定微量铁实验报告

邻二氮菲分光光度法测定微量铁实验报告

邻⼆氮菲分光光度法测定微量铁实验报告上海应⽤技术⼤学实验报告课程名称分析化学实验B 实验项⽬邻⼆氮菲分光光度法测定微量铁实验报告姓名学号班级(课程序号) 1951926 组别同组者实验⽇期指导教师成绩 100邻⼆氮菲分光光度法测定微量铁实验报告⼀、实验⽬的1.学习722S型分光光度计的使⽤⽅法2.学习测绘吸收曲线的⽅法3.掌握利⽤标准曲线进⾏微量成分测定的基本⽅法和有关计算⼆、实验原理微量铁的测定有邻⼆氮菲法、硫代⽢醇酸法、磺基⽔杨酸法、硫氰酸盐法等。

由于邻⼆氮菲法的选择性⾼、重现性好,因此在我国的国家标准中,许多冶⾦产品和化⼯产品中铁含量的测定都采⽤邻⼆氮菲法。

邻⼆氮菲⼜称邻菲罗啉(简写Phen),在pH值为2—9的溶液中,Fe2+离⼦与邻⼆氮菲发⽣下列显⾊反应:Fe2+ + 3Phen = [Fe(Phen)3]2+⽣成的橙红⾊配合物⾮常稳定,lgK稳=21.3(20℃),其最⼤吸收波长为510nm,摩尔吸光系数ε510=1.1×104 L??cm-1?mol-1。

显⾊反应的适宜pH值范围很宽,且其⾊泽与pH值⽆关,但为了避免Fe2+离⼦⽔解和其它离⼦的影响,通常在pH值为5的HAc-NaAc缓冲介质中测定。

邻⼆氮菲与Fe3+离⼦也能⽣成淡蓝⾊配合物,但其稳定性较低,因此在使⽤邻⼆氮菲法测铁时,显⾊前应⽤还原剂将Fe3+离⼦全部还原为Fe2+离⼦。

本实验采⽤盐酸羟胺为还原剂:4Fe3+ +2NH2OH = 4Fe2+ + 4H++ N2O+ H2O邻⼆氮菲与Fe2+离⼦反应的选择性很⾼,相当于含铁量5倍的Co2+、Cu2+离⼦,20倍量的Cr3+、Mn2+、V(Ⅴ)、PO43-离⼦,40倍量的Al3+、Ca2+、Mg2+、Sn2+、Zn2+、SiO32-离⼦都不⼲扰测定。

利⽤分光光度法进⾏定量测定时,通常选择吸光物质(即经显⾊反应后产⽣的新物质)的最⼤吸收波长作为⼊射光波长,这样测得的摩尔吸光系数ε值最⼤,测定的灵敏度最⾼。

实验3水中微量铁的测定

实验3水中微量铁的测定

实验三水中微量铁的测定——邻菲啰啉分光光度法一、实验目的1.学习选择分光光度法实验条件的方法;2.掌握分光光度法测定铁的基本原理及方法;3.掌握分光光度计的使用方法。

二、实验原理应用可见光分光光度法测定物质含量时,通常将被测物质与显色剂反应,使之生成有色物质,然后测量其吸光度,进而求得被测物质的含量。

因此,显色反应的完全程度和吸光度的物理测量条件都影响到测定结果的准确性。

显色反应的完全程度取决于介质的酸度、显色剂的用量、反应的温度和时间等因素。

在建立分析方法时,需要通过实验确定最佳反应条件。

为此,可改变其中一个因素(例如介质的pH值),暂时固定其他因素,显色后测量相应溶液的吸光度,通过吸光度-pH曲线确定显色反应的适宜酸度范围。

其它几个影响因素的适宜值,也可按这一方式分别确定。

此外,加入试剂的顺序,离子价态,干扰物质的影响等都应加以研究,以便拟定合适的分析步骤,使实验快捷、准确。

本实验通过对Fe2+-邻菲啰啉反应的几个基本条件实验,学习分光光度法测定条件的选择。

邻菲啰啉法是测定微量铁的一种常用的方法。

一般情况下,铁以Fe3+状态存在时,盐酸羟胺可将其还原为Fe2+,反应如下:2 Fe3++2 NH2OH·HCl═2 Fe2+ +N2 ↑+4 H+ +2 H2O+2 Cl-在pH=2 9的溶液中,试剂与Fe2+生成稳定的1:3橘红色配合物,其lgK稳=21.3,在510 nm有最大吸收,ε=1.1×104 L·cm-1 mol-1。

测定时,控制溶液酸度在pH=5左右为宜。

酸度高时反应较慢;酸度太低,离子则容易水解,影响显色。

Cu2+、Co2+、Ni2+、Cd2+、Hg2+、Mn2+、Zn2+等离子也能与邻菲啰啉生成稳定配合物,这些离子含量较低时不影响测定,含量较高时可用EDTA掩蔽或经分离除去。

本实验通过绘制吸收曲线选择最大吸收波长或选择适宜的测量波长;通过变动某实验条件,固定其余条件,确定测定最佳酸度和显色剂用量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档