高三数学一轮复习——椭 圆

合集下载

全国高考数学一轮复习-椭圆知识点总结

全国高考数学一轮复习-椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 22焦点弦:椭圆过焦点的弦。

3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

椭圆及其几何性质课件-高三数学一轮复习

椭圆及其几何性质课件-高三数学一轮复习

B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2

2023年高考数学(理科)一轮复习课件——椭圆 第二课时 直线与椭圆

2023年高考数学(理科)一轮复习课件——椭圆 第二课时 直线与椭圆
第九章 平面解析几何
索引
内容 索引
考点突破 题型剖析
分层训练 巩固提升
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 直线与椭圆的位置关系
1.若直线 y=kx+1 与椭圆x52+my2=1 总有公共点,则 m 的取值范围是( D )
A.m>1
B.m>0
C.0<m<5且m≠1
2,且过点1, 22.
(1)求椭圆C的方程;
解 由题意得2c=2,即c=1,所以a2=b2+c2=b2+1. 将1, 22代入b2x+2 1+by22=1,可得b2+1 1+21b2=1, 即2b2+b2+1=2b2(b2+1),整理得(2b2+1)(b2-1)=0, 解所得以椭b2=圆-C12的(舍方)或程为b2x=22+1,y2则=1a.2=2,
索引
训练 1 (1)已知椭圆xa22+by22=1(a>b>0),点 F 为左焦点,点 P 为下顶点,平行于 FP 的直线 l 交椭圆于 A,B 两点,且 AB 的中点为 M1,12,则椭圆的离心率
为( A )
2
1
A. 2
B.2
1
3
C.4
D. 2
解析 设A(x1,y1),B(x2,y2), ∵AB 的中点为 M1,12,∴x1+x2=2,y1+y2=1. ∵∵xaP212F+∥by212l=,1∴,kxaP222F+=byk222l==-1. bc=xy11- -yx22.
索引
(2)过椭圆 C 左焦点 F1 的直线 l(不与坐标轴垂直)与椭圆 C 交于 A,B 两点, 若点 H-31,0满足|HA|=|HB|,求|AB|.
解 由题意得F1(-1,0). 设直线l的方程为y=k(x+1)(k≠0),A(x1,y1),B(x2,y2), 联立椭圆C与直线l的方程, 可得x2+2k2(x+1)2=2, 整理得(2k2+1)x2+4k2x+2k2-2=0, Δ=16k4-4(2k2+1)(2k2-2)=8(k2+1)>0, 则 x1+x2=-2k42k+2 1,x1x2=22kk22+ -12.

2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质

2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质
2.若点P在椭圆上,F为椭圆的一个焦点,则 (1)b≤|OP|≤a; (2)a-c≤|PF|≤a+c.
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,

2020高考人教数学(理)大一轮复习检测:第八章_第四节_椭_圆

2020高考人教数学(理)大一轮复习检测:第八章_第四节_椭_圆

限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.(2018·太原一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)解析:选D.∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).2.(2018·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.x 216+y 27=1 B .x 216+y 27=1或x 27+y 216=1C.x 216+y 225=1 D .x 216+y 225=1或x 225+y 216=1解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2018·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B .513C.49D .59解析:选 B.由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,因为OM ⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.4.(2018·湖南百校联盟联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( )A.35 B .12C.23D .34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bca,因为四边形FAMN 是平行四边形,所以点M 的坐标为⎝⎛⎭⎪⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.5.(2018·四川凉山州模拟)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13 B .33C.34D .223解析:选D.不妨令椭圆方程为x 2a 2+y 2b 2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,所以2b =2a3,即a =3b ,则c =a 2-b 2=22b ,则该椭圆的离心率e =c a =223.故选D.6.(2018·贵阳模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.解析:由题意可知e =ca =32,2b =4,得b =2,所以⎩⎨⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎪⎨⎪⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=17.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.解析:因为|PF 1|+|PF 2|=14,又|PF 1|∶|PF 2|=4∶3,所以|PF 1|=8,|PF 2|=6.因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.答案:248.(2018·海南海口模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),右顶点为A ,上顶点为B ,现过A 点作直线F 1B 的垂线,垂足为T ,若直线O T(O 为坐标原点)的斜率为-3bc,则该椭圆的离心率为________. 解析:因为椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 和F 1点坐标分别为(a ,0),(0,b ),(-c ,0),所以直线BF 1的方程是y =bc x +b ,O T 的方程是y =-3b cx .联立解得T 点坐标为⎝ ⎛⎭⎪⎫-c 4,3b 4,直线A T 的斜率为-3b 4a +c .由A T ⊥BF 1得,-3b 4a +c ×bc=-1,∴3b 2=4ac +c 2,∴3(a 2-c 2)=4ac +c 2,∴4e 2+4e -3=0,又0<e <1,所以e =12.答案:129.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.10.(2018·兰州市诊断考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2,因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.B 级 能力提升练11.(2018·湖北八校第一次联考)如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为( )A.x 236+y 216=1 B .x 240+y 215=1C.x 249+y 224=1 D .x 245+y 220=1解析:选C.由题意可得c =5,设右焦点为F ′,连接PF ′,由|OP |=|OF |=|OF ′|知,∠PFF ′=∠FPO ,∠OF ′P =∠OPF ′,∴∠PFF ′+∠OF ′P =∠FPO +∠OPF ′,∴∠FPO +∠OPF ′=90°,即PF ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=102-62=8,由椭圆定义,得|PF |+|PF ′|=2a =6+8=14,从而a =7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y 224=1,故选C. 12.(2018·河南郑州质量预测)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55 B .655C.855D .455解析:选C.设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|M E|)+(25-|N E|).因为|M E|+|N E|≥|MN |,所以|MN |-|M E|-|N E|≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|M E|-|N E|≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|E F |=12×2×45×2=855,故选C. 13.(2018·陕西部分学校一检)已知P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2 取最大值时,co s ∠F 1PF 2=13,则椭圆的离心率为________.解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y 2b2=1与y 轴的交点,由余弦定理及椭圆的定义得2a 2-2a 23=4c 2,即a =3c ,所以椭圆的离心率e =ca =33.答案:3314.(2018·河南师大附中模拟)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为________.解析:设F ′为椭圆的右焦点,则AF ⊥AF ′,∠AF ′F =π3, ∴|AF |=3|AF ′|,|FF ′|=2|AF ′|,因此椭圆C 的离心率为2c2a =|FF ′||AF |+|AF ′|=23+1=3-1.答案:3-115.已知A (x 0,0),B (0,y 0)两点分别在x 轴和y 轴上运动,且|AB |=1,若动点P (x ,y )满足OP →=2OA →+3OB →.(1)求动点P 的轨迹C 的标准方程;(2)直线l :x =t y +1与曲线C 交于A ,B 两点,E(-1,0),试问:当t 变化时,是否存在一条直线l ,使△AB E 的面积为23?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)因为OP →=2OA →+3OB →,即(x ,y )=2(x 0,0)+3(0,y 0)=(2x 0,3y 0),所以x =2x 0,y =3y 0,所以x 0=12x ,y 0=33y ,又|AB |=1,所以x 20+y 20=1,即⎝ ⎛⎭⎪⎫12x 2+⎝ ⎛⎭⎪⎫33y 2=1,即x 24+y 23=1,所以动点P 的轨迹C 的标准方程为x 24+y 23=1.(2)由方程组⎩⎨⎧x =t y +1,x 24+y 23=1,得(3t 2+4)y 2+6t y -9=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4<0, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =⎝ ⎛⎭⎪⎫-6t 3t 2+42-4⎝ ⎛⎭⎪⎫-93t 2+4=12t 2+13t 2+4.因为直线x =t y +1过点F (1,0),所以S △AB E =12|E F ||y 1-y 2|=12×2×12t 2+13t 2+4=12t 2+13t 2+4,令12t 2+13t 2+4=23,则t 2=-23,不成立,故不存在满足题意的直线l.16.(2018·湖北部分重点中学起点考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,左焦点为F (-1,0),过点D (0,2)且斜率为k 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使A E →·B E →恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.解:(1)由已知可得⎩⎪⎨⎪⎧ca =22,a 2=b 2+c 2,c =1,可得a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(2)设过点D (0,2)且斜率为k 的直线l 的方程为y =kx +2,由⎩⎨⎧x 22+y 2=1,y =kx +2,消去y 整理得(1+2k 2)x 2+8kx +6=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 1+2k 2,x 1x 2=61+2k2. 又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=-2k 2-42k 2+1,y 1+y 2=(kx 1+2)+(kx 2+2)=k (x 1+x 2)+4=42k 2+1.设存在点E(0,m ),则A E →=(-x 1,m -y 1),B E →=(-x 2,m -y 2), 所以A E →·B E →=x 1x 2+m 2-m (y 1+y 2)+y 1y 2=62k 2+1+m 2-m ×42k 2+1-2k 2-42k 2+1=(2m 2-2)k 2+m 2-4m +102k 2+1.要使A E →·B E →=t(t 为常数),只需(2m 2-2)k 2+m 2-4m +102k 2+1=t ,从而(2m 2-2-2t)k 2+m 2-4m +10-t =0,即⎩⎪⎨⎪⎧2m 2-2-2t =0,m 2-4m +10-t =0,解得m =114,从而t =10516,故存在定点E ⎝ ⎛⎭⎪⎫0,114,使A E →·B E →恒为定值10516.C 级 素养加强练17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦MN 的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解:(1)由已知得b =4,且ca =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409, ∴所求弦长|MN |=1+12|x 2-x 1|=4029.(2)设椭圆右焦点F 的坐标为(2,0),线段MN 的中点为Q(x 0,y 0), 由三角形重心的性质知BF →=2F Q →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2,即得Q 的坐标为(3,-2).设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.。

数学一轮复习第八章解析几何第五讲椭圆学案含解析

数学一轮复习第八章解析几何第五讲椭圆学案含解析

第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误![解析](1)椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误![解析](1)由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。

高考数学一轮复习第9章第5节椭圆课件理2

高考数学一轮复习第9章第5节椭圆课件理2

3.(2019 年全国卷Ⅰ)已知椭圆 C 的焦点为 F1(-1,0),F2(1,0),过 F2 的直线与椭
圆 C 交于 A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则椭圆 C 的方程为( )
A.x22+y2=1
B.x32+y22=1
C.x42+y32=1
D.x52+y42=1
解析:选 B 设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x, |BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定 义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.
(4)方程 mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )
(5)ay22+bx22=1(a≠b)表示焦点在 y 轴上的椭圆.(
)
(6)ax22+by22=1(a>b>0)与ay22+bx22=1(a>b>0)的焦距相等.(
)
答案:(1)× (2)√ (3)× (4)√ (5)× (6)√
解析:不妨设 F1,F2 分别是椭圆 C 的左、右焦点,由 M 点在第一象限,△MF1F2 是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程3x62 +2y02 =1,知|F1F2|=8,|F1M|+|F2M|= 2×6=12,所以|F1M|=|F1F2|=8,|F2M|=4.
2
课 堂 ·考 点 突 破
考点一 椭圆的定义及标准方程
|题组突破|
1.设椭圆 C:x42+y2=1 的左焦点为 F,直线 l:y=kx(k≠0)与椭圆 C 交于 A,B 两
点,则|AF|+|BF|的值是( )
A.2
B.2 3

椭圆及其性质课件-2025届高三数学一轮复习

椭圆及其性质课件-2025届高三数学一轮复习

,


=
+
向量的数量积求解;

= ,再由 =


+ ,借助
思路二:先利用椭圆定义以及在焦点三角形中用余弦定理先求出

,

=
+
和等于四条边的平方和求解.

思路三:利用等面积,即

点的坐标.ຫໍສະໝຸດ = ,再利用平行四边形对角线的平方
2025届高考数学一轮复习讲义
平面解析几何之椭圆及其性质
1.椭圆的定义
条件
结论1

①________为椭
平面内与两个定点 , 的距离的和等
于常数(大于 )的点
+ =
>
结论2
点的轨
迹为椭圆
圆的焦点;

②_______为椭圆
求 ⋅ 的值,通过整体代入可求其面积等.

1.(2023·全国甲卷)设 , 为椭圆:

+ = 的两个焦点,点在上,
若 ⋅ = ,则 ⋅ =(
A.1
B.2

)
C.4
D.5
解析:选B.方法一:因为 ⋅ = ,所以 ⊥ ,则
的焦距
若= ,则动点的轨迹是线段 ;若< ,
则动点 的轨迹不存在.
2.椭圆的标准方程及几何性质
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
顶点


+


= >>


+

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习——椭圆
知识梳理
1.椭圆的定义
在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
2.椭圆的标准方程和几何性质
标准方程x2
a2+
y2
b2=1(a>b>0)
y2
a2+
x2
b2=1(a>b>0)
图形
性质范围-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
对称性对称轴:坐标轴;对称中心:原点
顶点A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c
离心率e=c
a∈(0,1) a,b,c的关系c2=a2-b2 [微点提醒]
点P(x0,y0)和椭圆的位置关系
(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20
b 2<1;
(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20
b 2=1;
(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20
b 2>1.
基 础 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )
(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2
b 2=1(a >b >0)的焦距相同.( )
解析 (1)由椭圆的定义知,当该常数大于|F 1F 2|时,其轨迹才是椭圆,而常数等于|F 1F 2|时,其轨迹为线段F 1F 2,常数小于|F 1F 2|时,不存在这样的图形. (2)因为e =c
a =
a 2-
b 2
a
=1-⎝ ⎛⎭
⎪⎫
b a 2
,所以e 越大,则b a 越小,椭圆就越扁. 答案 (1)× (2)× (3)√ (4)√
2.(选修2-1P49T1改编)若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是________.
解析 因为|PF 1|+|PF 2|=10>|F 1F 2|=6,所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中a =5,c =3,b =a 2
-c 2
=4,故点P 的轨迹方程为x 225+y 2
16=1.
答案 x 225+y 2
16=1
3.(选修2-1P49A6改编)已知点P 是椭圆x 25+y 2
4=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________. 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1, 所以c =1,则F 1(-1,0),F 2(1,0),
由题意可得点P到x轴的距离为1,所以y=±1,
把y=±1代入x2
5+y2
4
=1,得x=±15
2

又x>0,所以x=15
2

∴P点坐标为(15
2
,1)或(15
2
,-1).
答案(15
2,1)或(
15
2,-1)
4.(2018·张家口调研)椭圆x2
16+
y2
25=1的焦点坐标为()
A.(±3,0)
B.(0,±3)
C.(±9,0)
D.(0,±9)
解析根据椭圆方程可得焦点在y轴上,且c2=a2-b2=25-16=9,∴c=3,故焦点坐标为(0,±3).
答案 B
5.(2018·全国Ⅰ卷)已知椭圆C:x2
a2+
y2
4=1的一个焦点为(2,0),则C的离心率为
()
A.1
3 B.
1
2 C.
2
2 D.
22
3
解析不妨设a>0.因为椭圆C的一个焦点为(2,0),所以焦点在x轴上,且c=2,
所以a2=4+4=8,所以a=22,所以椭圆C的离心率e=c
a =2
2.
答案 C
6.(2018·武汉模拟)曲线x2
25+
y2
9=1与曲线
x2
25-k

y2
9-k
=1(k<9)的()
A.长轴长相等
B.短轴长相等
C.离心率相等
D.焦距相等
解析曲线x2
25
+y2
9
=1表示焦点在x轴上的椭圆,其长轴长为10,短轴长为6,焦
距为8,离心率为4
5.曲线
x2
25-k
+y2
9-k
=1(k<9)表示焦点在x轴上的椭圆,其长轴
长为225-k,短轴长为29-k,焦距为8,离心率为4
25-k
.对照选项,知D。

相关文档
最新文档