j2002年昆明理工大学概率论与数理统计期末考试试卷答案
概率论与数理统计》期末考试试题及解答
概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率论与数理统计》期末考试试题及解答
1
2
r2 2
e 8 rdrd
D2 4
8
0
1
x
01
2
2
r2
e 8d(
r2 )
r2 2
1
1
e8
e 8 e 2;
1
8
1
( 2) EZ E ( X 2 Y 2 )
12
r2
re 8 rdrd
8
0
0
x 2 y2
x2 y2 1 e 8 dxdy 8
1
r2
e 8 r 2dr
40
7
r2
re 8
0
r2
e 8 dr
2
0
z z=x
z
z
0
z 1 时 fZ ( z)
2 dx 0
2x 0
2z
6
x
故 Z 的概率密度为
Z 的分布函数为
f Z (z)
z
fZ ( y)dy
或利用分布函数法
f Z ( z)
2z, 0 z 1, 0 , 其它.
0,
z0
z
2ydy, 0 z 1
0
1,
z1
0 , z 0, z2, 0 z 1, 1 , z 1.
n
( 1)xi ( 1)n( x1 , , xn )
i1
n
ln L n ln( 1)
ln xi
i1
d ln L d
n
n
ln xi 0
1 i1
解似然方程得 的极大似然估计为
2
二、单项选择题(每小题 3 分,共 15 分)
1
1n
1.
ln xi
ni1
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、AB2、设A ,B ,C 表示三个事件,则ABC 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P AB =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0。
8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15B 、14 C 、4 D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX ==D 、1,93EX DX == 10、设X 服从二项分布B (n,p ),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N (1,4),Y~N (3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、—1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、3615、当X 服从( )分布时,EX DX =.A 、指数B 、泊松C 、正态D 、均匀 16、下列结论中,()不是随机变量X 与Y 不相关的充要条件.A 、()()()E XY E X E Y =B 、()D X Y DX DY +=+C 、(),0Cov X Y =D 、X 与Y 相互独立17、设X ~),(p n b 且6 3.6EX DX ==,,则有()A 、100.6n p ==,B 、200.3n p ==,C 、150.4n p ==,D 、120.5n p ==, 18、设()()(),,,p x y p x p y ξη分别是二维随机变量(),ξη的联合密度函数及边缘密度函数,则()是ξ与η独立的充要条件。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、AB2、设A ,B ,C 表示三个事件,则ABC 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P AB =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0。
8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15B 、14 C 、4 D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX ==D 、1,93EX DX == 10、设X 服从二项分布B (n,p ),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、3615、当X 服从( )分布时,EX DX =。
概率论和数理统计期末考试试题及答案
一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有 (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0.06 (C) 0.07 (D ) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A)对任意实数21,p p =μ (B )对任意实数21,p p <μ(C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C)22EY EX = (D) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0.1(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f ,则使)()(a X P a X P <=>的常数a = 421(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35(4) 设两个相互独立的随机变量X 和Y 均服从)51,1(N ,如果随机变量X -aY +2满足条件 ])2[()2(2+-=+-aY X E aY X D ,则a = 20 _.(5) 已知X ~),(p n B ,且8)(=X E ,8.4)(=X D , 则n = 3三、解答题 (共65分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?解:A 为事件“生产的产品是次品”,B 1为事件“产品是甲厂生产的”,B 2为事件“产品是乙厂生产的”,B 3为事件“产品是丙厂生产的”易见的一个划分是Ω321,,B B B(1) 由全概率公式,得.0345.0%2%40%4%35%5%25)()()()(3131=⨯+⨯+⨯===∑∑==i i i i i B A P B P AB P A P(2) 由Bayes 公式有:2、(10分)设二维随机变量(X,Y)的联合概率密度为⎩⎨⎧<<<<--= , 其它040,20),6(),(y x y x k y x f 求:(1)常数k (2))4(≤+Y X P2380345.0%4%35)()()()()(31222=⨯==∑=i ii B P B A P B P B A P A B P解:(1)由于1),(=⎰⎰∞∞-∞∞-dxdy y x f ,所以1)6(4020=--⎰⎰dy y x k dx ,可得241=k (2)98)16621(241)6(2412204020=+-=--⎰⎰⎰-dx x x dy y x dx x3、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求:随机变量Y X Z +=的概率密度函数.解: ⎰∞-=xdt t f x F )()( 当t x t e dt e x F x 2121)(,0==<⎰∞-------------------------------------------------------------------------------------3分 当t x t t e dt e dt e x F x --∞--=+=≥⎰⎰211][21)(,0004、(8分)设随机变量X 具有概率密度函数⎩⎨⎧<<=其他,,0;40,8)(x x x f X求:随机变量1-=X e Y 的概率密度函数.解:1-=X e Y 的分布函数).(y F Y⎰+∞-=+≤=≤-=≤=)1ln()())1ln(()1()()(y X X Y dx x f y X P y e P y Y P y F=⎪⎩⎪⎨⎧≤--<≤+<.1,1;10),1(ln 161;0,0442y e e y y y 于是Y 的概率密度函数⎪⎩⎪⎨⎧-<<++==.,0;10,)1(8)1ln()()(4其他e y y y y F dy d y f Y Y5、(8分)设随机变量X 的概率密度为:∞<<∞-=-x e x f x 21)(,求:X 的分布函数.解:由卷积公式得⎰+∞∞--=dx x z x f z f Z ),()( , 又因为X 与Y 相互独立,所以⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当10<<z 时,;1)()()(0)(z z x z Y X Z e dx e dx x z f x f z f ---+∞∞--==-=⎰⎰ 当0≤z 时,;0)()()(=-=⎰+∞∞-dx x z f x f z f Y X Z 当1≥z 时,);1()()()(10)(-==-=---+∞∞-⎰⎰e e dx e dx x z f x f z f z x z Y X Z 所以 ;1)1(10100)()()(⎪⎩⎪⎨⎧≥-<<-≤=-=--∞+∞-⎰z e e z e z dx x z f x f z f z z Y X Z6、(9分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解:(1)因为)1,0(~),1,0(~N Y N X ,且相互独立,所以1,1++=+-=Y X V Y X U 都服从正态分布,11)1(=+-=+-=E EY EX Y X E EU2)1(=+=+-=DY DX Y X D DU所以 )2,1(~N U ,所以 4241)(u U e u f -=π同理 11)1(=++=++=E EY EX Y X E EV 2)1(=+=++=DY DX Y X D DU所以 )2,1(~N V ,所以 4241)(u V e u f -=π(2))12()1)(1(22++-=+++-=X Y X E Y X Y X E EUV12))(()(122222+++-+=++-=EX EY DY EX DX EX EY EX 1=7、 所以0=-=DV DU EUEV EUV UV ρ7、(10分)设)1,0(~),1,0(~N Y N X ,且相互独立1,1+-=++=Y X V Y X U ,求:(1)分别求U,V 的概率密度函数;(2)U,V 的相关系数UV ρ; 、(3)解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P k k⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y)(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(50万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k。
《概率论与数理统计》期末考试试题及答案
专业、班级:姓名:学号:
题号
一
二
三
四
五
六
七
八
九
十
十一
十二
总成绩
得分
一、单项选择题(每题3分共18分)
1.D 2.A 3.B 4.A5.A6.B
(1)
(2)设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
则 ( )。
(A)0.6(B)1(C)0 (D)
(3)
设事件 与 同时发生必导致事件 发生,则下列结论正确的是()
(A) (B)
(C) (D)
(4)
(5)设 为正态总体 的一个简单随机样本,其中
未知,则()是一个统计量。
(A) (B)
(C) (D)
(6)设样本 来自总体 未知。统计假设
为 则所用统计量为()
(A) (B)
(C) (D)
2、填空题(每空3分共15分)
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 0 1
0
1
0
0
0
………….4分
(2)因为
所以与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分
第2学期《概率论与数理统计》期末考试试题A卷(公共课)参考答案及评分标准
中南财经政法大学2006–2007学年第二学期期末考试试卷《概率论与数理统计》参考答案(A 卷)一 选择题 (每题2分,共10分)1.D2.C3.B4.D5.C二 填空题 (每题2分,共12分)1.272.()!1!!k n k n -+3.354.05.25126.()0.49,0.49X X σσ-+三 判断说明题(每题5分,共20分,判断2分,说明理由3分) 1.错。
()()A B A B AB BA ++=+≠Φ2.对。
()()()()()()0,00P A P A B P A P AB P AB P AB =≤-=-=-=则,所以3.对。
()(),D X Y D X Y +=-得()cov ,0,0XY X Y ρ==即,所以R E =(单位矩阵)4.错。
2212123125122933955525D X X D X X X σσ⎛⎫⎛⎫+=>++= ⎪ ⎪⎝⎭⎝⎭四 简答题1.不能。
()()2223221,441,,4a axdx a a a a f x +=+-=+==-⎰若即得则不能非负。
--(4分) 2. 不能成为分布函数。
12()()2F F +∞++∞= -----------------------------------------(4分)3. (,)X Y 的联合分布律为(2分) 588551,(),cov(,)333339EX EY E XY X Y ====-⨯=- ---------------------(5分)4.()22,(),(),x X f x x h y y h y σμσ-'===+=------------------------- (3分)则,()()22y Y f y σμ+-=-------------------------------------------(5分) 五 解答题(共34分) 1. (8分)解 用12,A A 分别表示事件“产品是由甲厂生产”,“产品是乙厂生产”,B 表示取到的产品是次品。
概率论与数理统计期末考试试题(答案)
概率论与数理统计期末考试试题(答案)概率论与数理统计开/闭卷闭卷A/B 卷 A2219002801-课程编号 2219002811课程名称概率论与数理统计 ________________ 学分 J ________第⼀部分基本题⼀、选择题(共6⼩题,每⼩题5分,满分30分。
在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错0分)2?假设事件A 与事件B 互为对⽴,则事件A B( )(A)是不可能事件 (B)是可能事件(C) 发⽣的概率为1 (D)是必然事件答:选A ,这是因为对⽴事件的积事件是不可能事件。
3. 已知随机变量X,Y 相互独⽴,且都服从标准正态分布,则 X 2 3 + Y 2服从( ) (A)⾃由度为1的2分布 (B)⾃由度为2的2分布2(C) X ;是2的⽆偏估计(D) 刍⼀⽣⼀⽣是2的⽆偏估计3答:选B ,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。
6.随机变量X服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。
⼆、填空题(共6⼩题,每⼩题5分,满分30分。
把答案填在题中横线上)线1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发⽣ (C)事件B 发⽣但事件A 不发⽣答:选D ,根据A B 的定义可知。
(B) 事件A 发⽣但事件B 不发⽣ (D)事件A 与事件B ⾄少有⼀件发⽣ )封题… 答… 不…内…线…封…密…) (D) X+Y~N(0,3) ⽽ E(X+Y)=E(X)+E(Y)=2-2=0,(C)⾃由度为1的F分布(D)⾃由度为2的F分布答:选B,因为n个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为2分布。
4. 已知随机变量X,Y相互独⽴,X~N(2,4),Y~N( 2,1),则((A) X+Y~P ⑷(B) X+Y~U(2,4) (C) X+Y~N(0,5)答:选C,因为相互独⽴的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
《概率论与数理统计》期末考试试题及答案
(1)根据边缘概率与联合概率之间的关系得出-1 0 10 Nhomakorabea1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量
服从分布(要求给出自由度)。
三、(6分)设 相互独立, , ,求 .
解:0.88=
= (因为 相互独立)……..2分
求随机变量Y=2X+1的概率密度。
解:因为 是单调可导的,故可用公式法计算………….1分
当 时, ………….2分
由 ,得 …………4分
从而 的密度函数为 …………..5分
= …………..6分
六、(8分)已知随机变量 和 的概率分布为
而且 .
(1)求随机变量 和 的联合分布;
(2)判断 与 是否相互独立?
…………4分
即为[4.801,5.199]…………5分
令 ………..5分
于是 的最大似然估计:
。……….7分
十二、(5分)某商店每天每百元投资的利润率 服从正态分布,均值为 ,长期以来方差 稳定为1,现随机抽取的100天的利润,样本均值为 ,试求 的置信水平为95%的置信区间。( )
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试题及参考答案(最终)
概率论与数理统计复习题〔一〕一. 选择题:1、假设两个事件 A 和B 同时呈现的概率P(AB)= 0, 那么以下结论正确的选项是( ).(A) A 和B 互不相容.(C) AB 未必是不成能事件. 解此题答案应选(C).2x, x [0, c], (B) AB 是不成能事件.(D) P(A )=0 或P(B)=0.2、设f ( x) 如果c=( ), 那么f (x) 是某一随机变量的概率0, x [0, c].密度函数.1 1 3(A) . (B) . (C) 1. (D) .3 2 2c解由概率密度函数的性质 f ( x)dx 1可得 2 xdx 1, 于是c 1,故本题应选(C ).3、设X ~ N (0,1), 又常数c 满足P{ X≥c} P{ X c} , 那么c 等于( ).1(A) 1. (B) 0. (C) . (D) - 1.2解因为P{ X≥c} P{ X c} , 所以1 P{ X c} P{ X c} ,即2P{ X c} 1 , 从而P{ X c} ,即(c) , 得c=0. 因此此题应选(B).4、设X 与Y 彼此独立,且都从命N(, 2 ) , 那么有( ).(A) E( X Y) E(X ) E(Y) .(C) D( X Y)D(X) D (Y) .(B) E( X Y) 2 .(D) D(X Y) 2 2 .解注意到E(X Y) E(X)E(Y ) 0.由于X 与Y 彼此独立,所以D( X Y)D(X) D(Y) 2 2 . 选(D).25、设总体X 的均值μ与方差σ都存在但未知, 而X , X ,L , X 为来自X 的样1 2 n本, 那么均值μ与方差σ2 的矩估计量别离是() . 1nn(A) X 和S2. (B) X 和(D) X 和2(X ) .ii 1n1(C) μ和σ2. 解选(D).2( X i X ) . n i 1二、在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3 个白球; 第三箱装有 3 个黑球, 5 个白球. 现任取一箱, 再从该箱中任取一球。
《概率论与数理统计》期末考试试题及解答
( C) D ( X Y ) DX DY .
( D) D ( XY ) DXDY .
()
3
答案:( B)
解答:由不相关的等价条件知,
xy 0
D ( X Y ) DX DY +2cov( x, y)
应选( B ) .
cov( x, y) 0
4.设离散型随机变量 X 和 Y 的联合概率分布为
( X ,Y ) (1,1) (1,2) (1,3) (2,1)
解答: X ~ N (0,1) 所以 P(| X | 2) 1 P(| X | 2) 1 P( 2 X 2)
1 ( 2 ) ( 2 ) 1 [ 2 ( 2 ) 1] 2 [1
应选( A) .
3.设随机变量 X 和 Y 不相关,则下列结论中正确的是
( A ) X 与 Y 独立 .
( B) D ( X Y ) DX DY .
0, 其它 .
x f X ( x)
f ( x, y)dy
2 2x, 0 x 1 0 , 其它
( 2)利用公式 fZ (z)
f (x, z x) dx
2, 0 x 1,0 z x 1 x 2, 0 x 1, x z 1.
其中 f (x, z x) 0, 其它
0, 其它.
当 z 0 或 z 1时 fZ (z) 0
一、填空题(每小题 3 分,共 15 分)
1. 设事件 A, B 仅发生一个的概率为 0.3,且 P ( A) P(B ) 0.5 ,则 A, B 至少有一个不发
生的概率为 __________.
答案: 0.3 解:
P( AB AB) 0.3
即
0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.5 2P( AB)
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
概率论与数理统计期末考试试卷答案
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学概率统计A期末试题
A卷参考答案
(2002/2003学年第1学期)
一.填空
1.(4分)
S={10,11,…}
2.(4分)
4/9 .
3.(4分)
2/3
4.(4分)
1
5.(4分)
0.9876
6.(4分)
c=21/4
7.(4分)
1/(b-a).
8(4分)
E(X2)=8
9.(4分) σ2/n
10(4分)
1/6 二.(10)
设A,B,C分别表示{第一、二、三人独立译出密码},D表示{密码被译出},则
分
分
分
10
5
3
4
3
3
2
5
4
1
8
)
(
)
(
)
(
1
)
(
1
)
(
1
4
)
(
)
(
=
⋅
⋅
-
=
⋅
⋅
-
=
-
=
-
=
=
C
P
B
P
A
P
C
B
A
P
C
B
A
P
C
B
A
P
D
P
三.(9分)
(1);
3
1
1
1
)
(
)
2
1
2
1
(
2
2
1
2
1
2
1
2
1
=
-
⋅
=
=
<
<
-⎰
⎰
-
-x
dx
dx
x
f
X
P
π
4分(3)dx
x
f
x
F
x
)
(
)
(⎰
∞
-
=
当,
arcsin
1
2
1
1
)
(
,
1
1
2
1
x
x
dx
x
F
x
x
π
π
+
=
-
=
<
≤
-⎰
-
时 6分
当,1
1
)
(
,
1
2
1
1
=
-
=
≥⎰
-x
dx
x
F
x
π
时 8分故得X的分布函数为:
⎪
⎩
⎪
⎨
⎧
≥
<
≤
-
+
-
<
=
1
,1
1
1
,
arcsin
1
2
1
1
,0
)
(
x
x
x
x
x
F
π
9分
四(.9分)
由题意得(X,Y)的分布律和边缘分布律为
(X,Y3分五.(9分)
由⎰⎰+∞
∞
-
+∞
∞
-
=有
,1
)
,
(dxdy
y
x
f K=2。
5分
⎰⎰+∞
∞
-
+∞
∞
-
=dxdy
y
x
xyf
XY
E)
,
(
)
( 8分=⎰⎰=
⋅
1
00
.
4
1
2
x
dy
xy
dx 10分
六.(9分)
设滚珠直径为随机变量X,由题设有X~N(μ,0.05),下求平均直径μ的置信区间,由题设得到
x=(14.6+15.1+14.9+15.2+15.1)/5=14.98
由μ≈x= 14.98 (毫米),又置信度为1-α=1-0.05=0.95.
由Φ(uα/2)=1-α/2 =0.975 ,得uα/2=1.96. 3分
又σ2=0.05, n=5,得置信区间为 5分
]2.
15
,8.
14
[
]
5
05
.0
96
.1
98
.
14
,
5
05
.0
96
.1
98
.
14
[=
+
- 9分
即滚珠平均直径在14.8毫米至15.2毫米之间的可能性为95%.
七.(8分)
令
n
Z
Y
X= , 其中()()n
Z
N
Y2
~
1,0
~χ 3分
∴
n
Z
Y
X
2
2= , 而()()n
Z
Y2
2
2~
,
1
~χ
χ 6分∴)
,1(
~
/
1/2
2n
F
n
Z
Y
X= 8 分
八(5分)
球的总数为
(2分)
标号为k的球共k个,故分布律为:
(k=1,2,3。
n),(5分)
2
)1
(
2
1
+
=
+
+
+
n
n
n
)1
(
2
2
)1
(
)
(
+
=
+
=
=
n
n
k
n
n
k
k
X
P。