三年高考(2017-2019)各地文科数学高考真题分类汇总:推理与证明
(25套)2019高考数学三年高考适合全国真题分项版汇总.docx
(25套)2019高考数学三年高考真题分项版汇总岂专题01集合和常用逻辑用语一三年高考(2015-2017 )数字(文)真题分项版解析(原卷版).doc幽专题02函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc凶专题03导数的几何意义与运算一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc回专题04导数与函数的单调性一三年高考(2016-2018 )数字(文)真题分项版解析(原卷版).doc回专题06导数与函数的零点等综合问题一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc 电专题07三角函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题08三角"三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题09平面向量一三年高考(2016-2018)数学(文)真题分项版解析(原卷版).doc亠专题10 裁数列許比数列一三年高考(2016-2018 )数学(文)頁题分析(原卷版).doc"专题11数列通项公式与求和一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc电专题12不等式一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题13直线与圍一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc场专题14椭圆及冥相关的综合问题一三年高考(2016-2018 )数学(文)頁題分项版解析(原卷版).doc电专题15双曲线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题16抛物线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc3专题17立休几何中线面位置关系一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc 呵专题18立休几何中一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc3专题19立休几何中休积与表面积一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc电专题20概率一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题21统计一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题22算法一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题23复数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题24推理与证明一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc巴]专题25选修部分一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc第一章集合与常用逻辑用语[2018年咼考试题】1. [2018课标1,文1】己知集合A={A|X<2},B二{兄3-2兀>0},则A.A B二{朮<寸》B. A 8=0C. A jx|x<|jD. A B=R2. 【2018 课标II,文1】设集合A = {1,2,3}, B = {2,3,4}则 A B =A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4}3. [2018课标3,文1】已知集合A二{1,2,3,4}, B二{2,4,6,8},则A B中元素的个数为( )A. 1B. 2C. 3D. 44. [2018 天津,文1】设集合A = {1,2,6},B = {2,4},C = {1,2,3,4},则(A B) C(A) {2) (B) {1,2,4} (C) {1,2,4,6} (D) {1,2,3,4,6}5. [2018 北京,文1】已知 = 集合A = {x\x<-2^x>2} f则0A =(A) (-2,2)(B) (―—2) (2,+<x))(C) [-2,2](D) (YO,—2] [2, +co)6. [2018浙江,1】已知P二= {x|-l<x<l}, 2 = {0<x<2},则P\JQ =A. (—1,2)B. (0,1)C. (-1,0)D. (1,2)7. [2018 天津,文2】设xeR ,贝9 “ 2 —兀》0 ” 是x —1 1 ” 的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件8. [2018 111 东,文1】设集合M = {x||x-1| < 1}, AT = {x|x < 2},则M N =A.(-l,l)B. (-1,2)C.(0,2)D. (1,2)9. [2018山东,文5】已知命题p:F-x + lnO;命题q:若a2 </?2 JiJ a<h.下列命题为真命题的是A. /? A <7B. /? A—C.—ip A qD.-i/? A—10. 【2018北京,文13】能够说明“设G, b, c是任意实数.若a>b>c,则xb>c“是假命题的一组整数a,b,c的值依次为_______________________________ .11. (2018江苏,1】已知集合4 = {1,2}, B = {a,/+3},若A 〃 = {?则实数d的值为_________ .12.12018江苏,1】已知集合A = {1,2}, B={Q,/+3},若A B = 则实数a的值为_____________ .第二章函数[2018年高考试题】sin1. [2018课标「文8】函数——的部分图像大致为1 一COSX3. [2018浙江,5】若函数Xx)=/+ ax+b 在区间[0,4.与G 有关,且与方有关 B.与d 有关,但与方无关C.与a 无关,且与b 无关D.与d 无关,但与/?有关4.【2018北京,文5】已知函数/U) = 3r -(|)\则/(兀)(A) 是偶函数,且在R 上是增函数 (B) 是奇函数,且在R 上是增函数2.的部分图像大致为( 1]上的最大值是M,最小值是加,则Mcin Y[2018课标3,文7】函数y = l + x +巴二)(C) 是偶函数,且在R 上是减两数 (D) 是奇函数,且在R 上是增函数5.【2018北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3⑹,而可观测 宇宙屮普通物质的原子总数"约为1O 80.则下列各数中与理■最接近的是N(参考数据:lg3=0.48)(B) IO 53 (D) 10937. 【2018天津,文6 ]已知奇函数/(x)在R 上是增函数•若Cl = -/(log 2 -),/? = /(log 2 4」),c = /(20-8),则 a,b,c 的大小关系为(A) a <h < c (B) h <a <c (C) c <b < a (D) c < a <b 8. [2018课标II,文8】函数/(x) = ln(x 2-2x-8)的单调递增区间是 A. (-co,-2) B. (-oo,-l) C. (1,-boo) D. (4,+oo)9. [2018课标1,文9】己知函数/(x) = lnx + ln(2-x),则C. 3-/U)的图像关于直线戸1对称D. y= f(x)的图像关于点(1, 0)对称10. [2018山东,文10]若函数eV(x)(e=2.71828 ,是自然对数的底数)在/(兀)的定义域上单调递增,则称函数/(X )具有M 性质,下列函数屮具有M 性质的是A. /(x) = 2~vB. /(x) = x 2C. /(x) = 3"vD. /(x) = cosx| x\ + 2^c< 111. [2018天津,文8]已知函数f(x) = \2设owR ,若关于X 的不等式X H --- , X 1 •. 兀Xf(x)>\-+a\^R 上恒成立,则d 的取值范围是(A) 1033 (C) IO 736. [2018山东,文9】设/(x) =y[x,O<X<\2(x-l),x> 1 ,若于⑷= /(a+l),则/卫丿A. 2B. 4C. 6D.A. /⑴在((),2)单调递增B. /(兀)在(0, 2)单调递减(A) [-2,21 (B) [-2A/3,2] (C) [-2,2^3] (D) [-273,2^3]12. [2018课标II,文14]已知函数/(x)是定义在R上的奇函数,当xe(-oo,0)时,/(x) = 2x3 + x2,则,/'(2) = _________ •13. 【2018北京,文门】已知兀\(), y>0f且兀+)=1,则_? +),2的取值范围是 ___________ .兀 + ] Y v 0 114. [2018课标3,文16】设函数f(x) = 9~ '则满足f(x) + f(x——)>1的兀的取值2 爲x>0, 2范围是 _________ •15 [2018山东,文14】己知人兀)是定义在R上的偶函数,且几汁4)=心・2).若当"[-3,0]时,/'(兀)=6:则./(9⑼二_.16. [2018江苏,11】已知函数f(x) = x3-2x + e x-丄,其中e是自然对数的底数.若e A/(Q -1) + /(2/)w o,则实数a的取值范围是________ .2 门1712018江苏,14】设/(兀)是定义在R且周期为1的函数,在区间[0,1)上,/(兀)=厂英中集合D = «x\x = -~ ,n G N* »,则方程f(x)-\gx = O的解的个数是_______ .n[2017, 2016, 2014 高考题】1. 【2017高考新课标1文数】若d>b>0,0vcvl,则()(A) log a c<log/?c (B) log^vlogrb (C) d<b c (D) c a>c b2. [2014高考北京文第2题】下列函数中,定义域是尺且为增函数的是( )A.y = e~xB. y = x3C. y = \nxD.y= x3. [2014高考北京文第8题】加工爆米花时,爆开月.不糊的粒数占加工总粒数的百分比称为“可食用率” •在特定条件下,可食用率卩与加工吋间/(单位:分钟)满足的函数关系p = at2^bt + c (。
三年高考(2017-2019)各地文科数学高考真题分类汇总:数列的综合应用
数列的综合应用1.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .3.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 4*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.*根据亲所在地区选用,新课标地区(文科)不考. 5.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.答案1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1x e x +≥,1234123ln()a a a a a a a +++=++, 所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .2.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.3.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当时,d 满足. 因为,则,从而,,对均成立. 因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). ①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当0x >时,,2,3,,1n m =+L 1111211n n q q b d b n n ---≤≤--q ∈112n m qq -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+L 2,3,,1n m =+L 12{}1n q n ---1{}1n q n --2,3,,1n m =+L 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<所以单调递减,从而()(0)1f x f <=.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.4.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++> 因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由1122n n n n x x x x ++-≥得111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .5.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.。
2017-2018-2019年三年高考数学文科真题分类汇编(解析版) 专题12 推理与证明
专题十二 推理与证明(2019·全国Ⅱ文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D. 甲、丙、乙【答案】A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. (2019·全国Ⅲ文科)记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是( ) A. ①③ B. ①②C. ②③D. ③④【答案】A【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由得即A (2,4),直线与直线均过区域D ,则p 真q 假,有假真,所以①③真②④假.故选A .620x y x y +⎧⎨-≥⎩…D :(,),29p x y D x y ∃∈+…:(,),212q x y D x y ∀∈+…p q ∨p q ⌝∨p q ∧⌝p q ⌝∧⌝2,6y x x y =⎧⎨+=⎩2,4x y =⎧⎨=⎩29x y +=212x y +=p ⌝q ⌝【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.(2019·北京文科)已知l ,m 是平面外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥;③l ⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力. (2017山东)已知命题p :;命题q :若,则.下列命题为真命题的是A .B .C .D .【答案】B【解析】取,知成立;若,得,为假,所以为真,选B .ααα,x ∃∈R 210x x -+≥22a b <a b <p q ∧p q ⌝∧p q ⌝∧p q ⌝⌝∧0x =1p 22a b <||||a b =q p q ⌝∧(2018浙江)已知,,,成等比数列,且.若,则A .,B .,C .,D .,【答案】B【解析】解法一 因为(),所以,所以,又,所以等比数列的公比.若,则, 而,所以, 与矛盾,所以,所以,, 所以,,故选B .解法二 因为,, 所以,则,又,所以等比数列的公比.若,则, 而,所以 与矛盾,所以,所以,, 所以,,故选B .(2018北京)设集合则 A .对任意实数,B .对任意实数,1a 2a 3a 4a 1234123ln()a a a a a a a +++=++11a >13a a <24a a <13a a >24a a <13a a <24a a >13a a >24a a >ln 1x x -≤0x >1234123ln()a a a a a a a +++=++1231a a a ++-≤41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <1xe x +≥1234123ln()a a a a a a a +++=++123412312341a a a a ea a a a a a a +++=++++++≥41a -≤11a >0q <1q -≤212341(1)(10a a a a a q q +++=++)≤12311a a a a ++>≥123ln()0a a a ++>1231234ln()0a a a a a a a ++=+++≤10q -<<2131(1)0a a a q -=->2241(1)0a a a q q -=-<13a a >24a a <{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤a (2,1)A ∈a (2,1)A ∉C .当且仅当时,D .当且仅当时, 【答案】D【解析】解法一 点在直线上,表示过定点,斜率为的直线,当时,表示过定点,斜率为的直线,不等式表示的区域包含原点,不等式表示的区域不包含原点.直线与直线互相垂直,显然当直线的斜率时,不等式表示的区域不包含点,故排除A ;点与点连线的斜率为,当,即时,表示的区域包含点,此时表示的区域也包含点,故排除B ;当直线的斜率,即时,表示的区域不包含点,故排除C ,故选D .解法二 若,则,解得,所以当且仅当时,.故选D .(2018江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前项和,则使得成立的的最小值为 . 【答案】27【解析】所有的正奇数和()按照从小到大的顺序排列构成,在数列 中,前面有16个正奇数,即,.当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,0a <(2,1)A ∉32a ≤(2,1)A ∉(2,1)1x y -=4ax y +=(0,4)a -0a ≠2x ay -=(2,0)1a2x ay -≤4ax y +>4ax y +=2x ay -=4ax y +=0a ->4ax y +>(2,1)(2,1)(0,4)32-32a -<-32a >4ax y +>(2,1)2x ay -<(2,1)4ax y +=32a -=-32a =4ax y +>(2,1)(2,1)A ∈21422a a +>⎧⎨-⎩≤32a >32a ≤(2,1)A ∉*{|21,}A x x n n ==-∈N *{|2,}n B x x n ==∈N A B {}n a n S {}n a n 112n n S a +>n 2n*n ∈N {}n a {}n a 525212a =6382a =1n =1211224S a =<=2n =2331236S a =<=3n =3461248S a =<=4n =45101260S a =<=26n == 441 +62= 503<,不符合题意;当时,=484 +62=546>=540,符合题意.故使得成立的的最小值为27.(2018江苏)设,对1,2,···,n 的一个排列,如果当时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n 的所有排列中逆序数为的全部排列的个数. (1)求的值;(2)求的表达式(用表示).【解析】(1)记为排列的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,.(2)对一般的的情形,逆序数为0的排列只有一个:,所以. 逆序数为1的排列只能是将排列中的任意相邻两个数字调换位置得到的排列,所以.为计算,当1,2,…,n 的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置. 因此,. 当时,52621(141)2(12)212S ⨯+⨯-=+-2712516a =27n =52722(143)2(12)212S ⨯+⨯-=+-2812a 112n n S a +>n *n ∈N 12n i i i s t <s t i i >(,)s t i i 12n i i i 12n i i i ()n f k k 34(2),(2)f f (2)(5)n f n ≥n ()abc τabc (123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,333(0)1(1)(2)2f f f ===,4333(2)(2)(1)(0)5f f f f =++=n (4)n ≥12n ⋅⋅⋅(0)1n f =12n ⋅⋅⋅(1)1n f n =-1(2)n f +1n +1n +1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+5n ≥112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…, 因此,时,.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6 12【解析】设男生数,女生数,教师数为,则 ①,所以,②当时,,,,,不存在,不符合题意; 当时,,,,,不存在,不符合题意; 当时,,此时,,满足题意. 所以.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D (2017江苏)对于给定的正整数,若数列满足对任意正整数总成立,则称数列是“数列”.242(1)(2)4(2)2n n n n f --=-+-+⋯++=5n ≥(2)n f =222n n --,,a b c 2,,,c a b c a b c >>>∈N 84a b >>>max 6b =min 1c =21a b >>>a b ∈N a b min 2c =42a b >>>a b ∈N a b min 3c =63a b >>>5a =4b =12a b c ++=k {}n a 11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=n ()n k >{}n a ()P k(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列. 【解析】证明:(1)因为是等差数列,设其公差为,则, 从而,当时,,所以, 因此等差数列是“数列”.(2)数列既是“数列”,又是“数列”,因此, 当时,,①当时,.② 由①知,,③,④将③④代入②,得,其中, 所以是等差数列,设其公差为.在①中,取,则,所以, 在①中,取,则,所以, 所以数列是等差数列.(2017浙江)已知数列满足:,. 证明:当时 (Ⅰ); (Ⅱ); {}n a (3)P {}n a (2)P (3)P {}n a {}n a d 1(1)n a a n d =+-n 4≥n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=1,2,3,k =n n n n n n n a a a a a a a ---+++++=321123+++6{}n a (3)P {}n a (2)P (3)P 3n ≥n n n n n a a a a a --+++++=211244n ≥n n n n n n n a a a a a a a ---++++++++=3211236n n n a a a ---+=-32141()n n a a ++n n n a a a ++++=-23141()n n a a -+n n n a a a -++=1124n ≥345,,,a a a d'4n =235644a a a a a +++=23a a d'=-3n =124534a a a a a +++=122a a d'=-{}n a {}n x 11x =11ln(1)n n n x x x ++=++()n ∈*N n ∈*N 10n n x x +<<1122n n n n x x x x ++-≤(Ⅲ). *根据亲们所在地区选作,新课标地区(文科)不要求. 【解析】(Ⅰ)用数学归纳法证明: 当时, 假设时,,那么时,若,则,矛盾,故. 因此所以 因此(Ⅱ)由得记函数函数在上单调递增,所以=0, 因此 故 (Ⅲ)因为所以得 由得 121122n n n x --≤≤0n x >1n =110x =>n k =0k x >1n k =+10k x +≤110ln(1)0k k k x x x ++<=++≤10k x +>0n x >()n ∈*N 111ln(1)n n n n x x x x +++=++>10n n x x +<<()n ∈*N 111ln(1)n n n n x x x x +++=++>2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++2()2(2)ln(1)(0)f x x x x x x =-+++≥()f x [0,)+∞()(0)f x f ≥2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-∈≤11111ln(1)2n n n n n n x x x x x x +++++=+++=≤112n n x -≥1122n n n n x x x x ++-≥111112()022n n x x +-->≥所以故综上, .12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥212n n x -≤1211(N )22n n n x n *--∈≤≤。
三年高考(2017-2019)各地文科数学高考真题分类汇总:统计初步
统计初步1.(2019全国1文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生2.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.3.(2019全国II文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)≈.8.6024.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .7.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.8.(2019天津文15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.72,108,12025,,,,,A B C D E F享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.9.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为1x,2x,…,nx,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是○M MA .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数11.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 12.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为 A .3,5 B .5,5 C .3,7 D .5,713.(2018全国卷Ⅲ)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.14.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .15.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.16.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 3m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)110999817.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 2()0.0500.0100.0013.841 6.63510.828P K k k ≥18.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:新养殖法旧养殖法箱产量/kg箱产量/kg(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。
(2017-2019)高考理数真题分类汇编专题13 不等式、推理与证明(学生版)
专题13 不等式、推理与证明1.【2019年高考全国I 卷理数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm2.【2019年高考全国II 卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD3.【2019年高考全国II 卷理数】若a >b ,则 A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │4.【2019年高考北京卷理数】若,y 满足|1|x y ≤-,且y ≥−1,则3+y 的最大值为 A .−7 B .1C .5D .75.【2019年高考北京卷理数】在天文学中,天体的明暗程度可以用星等或亮度描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m 的星的亮度为E (=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A . 1010.1B . 10.1C . lg10.1D . 10–10.16.【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .67.【2019年高考天津卷理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件8.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 129.【2019年高考浙江卷】若0,0ab >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件10.【2018年高考全国I 卷理数】已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U11.【2018年高考全国III 卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+12.【2018年高考天津卷理数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .4513.【2018年高考天津卷理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件14.【2018年高考北京卷理数】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 15.【2017年高考全国I 卷理数】设、y 、为正数,且235x y z ==,则A .2<3y <5B .5<2<3yC .3y <5<2D .3y <2<516.【2017年高考全国II 卷理数】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .1D .917.【2017年高考全国II 卷理数】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩18.【2017年高考北京卷理数】若,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则 + 2y 的最大值为A .1B .3C .5D .919.【2017年高考天津卷理数】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为 A .23 B .1C .32D .320.【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞21.【2017年高考山东卷理数】若,且,则下列不等式成立的是A .B .C .D . 22.【2017年高考天津卷理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<0a b >>1ab =()21log 2a ba ab b +<<+()21log 2a b a b a b<+<+()21log 2a ba ab b +<+<()21log 2aba b a b +<+<C .b a c <<D .b c a <<23.【2019年高考全国II 卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)24.【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则的最大值为__________.25.【2019年高考天津卷理数】设0,0,25x y x y >>+=__________.26.【2018年高考全国I 卷理数】若,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.27.【2018年高考全国II 卷理数】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.28.【2018年高考浙江卷】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________.29.【2018年高考北京卷理数】若x ,y 满足12x y x +≤≤,则2y−x 的最小值是_________. 30.【2018年高考天津卷理数】已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 31.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________.32.【2017年高考全国I 卷理数】设,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .33.【2017年高考全国III 卷理数】若x ,y 满足约束条件0200x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则34z x y =-的最小值为__________.34.【2017年高考天津卷理数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.35.【2017年高考北京卷理数】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是___________. ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是___________.36.【2017年高考北京卷理数】能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为___________.37.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是___________.38.【2017年高考上海卷】不等式11xx->的解集为________39.【2017年高考山东卷理数】已知,x y满足3035030x yx yx-+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y=+的最大值是__________.。
2017-2019三年高考真题文科数学试题分类汇编:专题13 不等式、推理与证明
专题13 不等式、推理与证明1.【2019年高考全国I 卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm【答案】B方法一:如下图所示. 依题意可知:11,22AC AB CD BC ==, ① 腿长为105 cm 得,即>105CD ,164.892AC CD =>, 64.89105169.89AD AC CD =+>+=,所以AD >169.89.②头顶至脖子下端长度为26 cm , 即AB <26,42.07BC =<,=+<68.07 AC AB BC,110.15CD=<,+<68.07+110.15=178.22AC CD,所以<178.22AD.综上,169.89<<178.22AD.故选B.方法二:设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则2626105xx y+==+42.07cm, 5.15cmx y≈≈.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.【名师点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.2.【2019年高考全国III卷文数】记不等式组6,20x yx y+≥⎧⎨-≥⎩表示的平面区域为D.命题:(,),29p x y D x y∃∈+≥;命题:(,),212q x y D x y∀∈+≤.下面给出了四个命题①p q∨②p q⌝∨③p q∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④【答案】A根据题中的不等式组可作出可行域,如图中阴影部分所示, 记直线1: 2+9,l y x =-2: =2+12l y x -,由图可知,(,),29,(,),212x y D x y x y D x y ∃∈+∃∈+>, 所以p 为真命题,q 为假命题, 所以p ⌝为假命题,q ⌝为真命题,所以p q ∨为真命题,p q ⌝∨为假命题,p q ∧⌝为真命题,p q ⌝∧⌝为假命题, 所以所有真命题的编号是①③.故选A.【名师点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.3.【2019年高考北京卷文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4.【2019年高考天津卷文数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.5.【2019年高考天津卷文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<,故“05x <<”是“|1|1x -<”的必要不充分条件. 故选B .【名师点睛】充要条件的三种判断方法: (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.6.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C画出满足约束条件的可行域如图中阴影部分所示. 因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值. 联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩.即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.【名师点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 7.【2019年高考浙江卷】若0,0ab >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A当0, 0a >b >时,a b +≥当且仅当a b =时取等号,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.8.【2018年高考北京卷文数】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉【答案】D点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠ 时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直.显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D.【名师点睛】本题主要考查线性规划问题,考查考生的数形结合思想、化归与转化思想以及逻辑推理能力和运算求解能力,考查的核心素养是直观想象、数学运算. 9.【2018年高考天津卷文数】设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A求解不等式x 3>8可得x >2,求解绝对值不等式|x |>2可得x >2或x <−2,据此可知:“x 3>8”是“|x|>2” 的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考天津卷文数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.【2017年高考天津卷文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤,因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件,故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断. 12.【2017年高考天津卷文数】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<,所以0.822log 5log 4.12>>,结合函数的单调性,可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<.故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.13.【2017年高考全国I 卷文数】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .a bc【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.14.【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15.【2017年高考全国II 卷文数】设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A绘制不等式组表示的可行域如图中阴影部分所示,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.【2017年高考全国II卷文数】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D.【名师点睛】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).17.【2017年高考北京卷文数】若,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩则2x y+的最大值为A.1 B.3 C.5 D.9 【答案】D如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【名师点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by =+.求这类目标函数的最值时常将函数z ax by =+转化为直线的斜截式:a z y xb b=-+,通过求直线的截距的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-;(3)斜率型:形如y bz x a-=-,而本题属于截距形式. 18.【2017年高考山东卷文数】已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是A .-3B .-1C .1D .3 【答案】D画出约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线250x y -+=与2y =的交点(1,2)-时,2z x y =+取得最大值,为max 1223z =-+⨯=,故选D.z b【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.19.【2017年高考山东卷文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.20.【2019年高考全国II 卷文数】若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是____________.【答案】9画出不等式组表示的可行域,如图中阴影部分所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【名师点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.21.【2019年高考全国II 卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261 【答案】261由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.22.【2019年高考北京卷文数】若x ,y 满足2,1,4310,x y x y ≤⎧⎪≥-⎨⎪-+≥⎩则y x -的最小值为__________,最大值为__________. 【答案】3-;1根据题中所给约束条件作出可行域,如图中阴影部分所示.设z y x -=,则=+y x z ,求出满足在可行域范围内z 的最大值、最小值即可,即在可行域内,当直线=+y x z 的纵截距最大时,z 有最大值,当直线=+y x z 的纵截距最小时,z 有最小值.由图可知,当直线=+y x z 过点A 时,z 有最大值, 联立24310x x y =⎧⎨-+=⎩,可得23x y =⎧⎨=⎩ ,即(2,3)A ,所以max 321z =-=;当直线=+y x z 过点(2,1)B -时,z 有最小值, 所以min 123z =--=-.【名师点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大,注重了基础知识、基本技能的考查.23.【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+.因为0,0,24x y x y >>+=,所以24x y +=≥2,02xy ≤<≤,当且仅当22x y ==时取等号成立. 又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.24.【2019年高考北京卷文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.①10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【名师点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.25.【2018年高考浙江卷】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________. 【答案】−2 8作0,26,2x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩表示的可行域,如图中阴影部分所示,则直线3z x y =+过点A (2,2)时z 取最大值8,过点B (4,−2)时z 取最小值−2.【名师点睛】线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是: 一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得. 26.【2018年高考北京卷文数】若x ,y 满足12x y x +≤≤,则2y−x 的最小值是_________.【答案】3作出可行域,如图,则直线2z y x =-过点A (1,2)时,z 取最小值3.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 解本题时,先作出可行域,再根据目标函数与可行域关系,确定最小值取法.27.【2018年高考全国I 卷文数】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________. 【答案】6根据题中所给的约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,画出其对应的可行域,如图所示:由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值,由2200x y y --=⎧⎨=⎩,解得()2,0B ,此时max 3206z =⨯+=,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.28.【2018年高考全国III 卷文数】(2018新课标Ⅲ文科)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________. 【答案】3作出约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域如下图所示.由图可知目标函数在直线240x y -+=与2x =的交点(2,3)处取得最大值3. 故答案为3.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.29.【2018年高考全国II 卷文数】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域是以()()()5,4,1,2,5,0A B C 为顶点的三角形区域,如下图所示,目标函数z x y =+的最大值必在顶点处取得,易知当5,4x y ==时,max 9z =.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.30.【2018年高考天津卷文数】(2018天津文科)已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 【答案】14由a −3b +6=0可知a −3b =−6,且2a +18b =2a +2−3b ,因为对于任意x ,2x >0恒成立,结合基本不等式的结论可得:2a +2−3b ≥2×√2a ×2−3b =2×√2−6=14.当且仅当{2a =2−3ba −3b =6,即{a =3b =−1 时等号成立. 综上可得2a +18b 的最小值为14.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式: ①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.31.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9由题意可知,S △ABC =S △ABD +S △BCD ,由角平分线性质和三角形面积公式得12acsin120°=12a ×1×sin60°+12c ×1×sin60°,化简得ac =a +c,1a+1c=1,因此4a +c =(4a +c )(1a +1c )=5+c a +4a c≥5+2√c a ⋅4a c=9,当且仅当c =2a =3时取等号,则4a +c 的最小值为9.【名师点睛】线性规划问题是高考中常考考点,主要以选择或填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等. 32.【2017年高考上海卷】不等式11x x->的解集为________ 【答案】(),0-∞ 由题意,不等式11x x ->,得111100x x x->⇒<⇒<, 所以不等式的解集为(),0-∞.【名师点睛】本题考查解不等式,能正确化简不等式是解决该题的关键.33.【2017年高考北京卷文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________. 【答案】−1,−2,−3(答案不唯一)()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.34.【2017年高考北京卷文数】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________. ②该小组人数的最小值为_________. 【答案】6 12设男生人数、女生人数、教师人数分别为a b c 、、, 则*2,,,c a b c a b c >>>∈N . ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++=【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.35.【2017年高考天津卷文数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】444224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当22,24a b ==时取等号). 【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”. 36.【2017年高考山东卷文数】若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为___________. 【答案】8 由直线1(00)x ya b a b+=>,> 过点(1,2)可得121a b +=,所以1242(2)()448b a a b a b aba b +=++=++≥+=.当且仅当4b a a b=,即4,2b a ==时等号成立.【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 37.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________. 【答案】30总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立. 【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.38.【2017年高考天津卷文数】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(Ⅲ)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (Ⅱ)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多? 【答案】(I )见解+析;(II )见解+析.(Ⅰ)由已知,,x y 满足的数学关系式为706060055302x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪∈⎪∈⎪⎩N N ,即7660620x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪∈⎪∈⎪⎩N N.该二元一次不等式组所表示的平面区域为图1中阴影部分内的整点(包括边界):。
近三年全国卷文科数学高考题最新整理(2017-2019)含答案
所以 .故选A.
【答案】A
12.(2019全国卷Ⅰ·文)已知椭圆 的焦点为 , ,过 的直线与 交于 , 两点.若 , ,则 的方程为()
A. B. C. D.
【解析】设椭圆的标准方程为 ,
由椭圆定义可得 .
因为 ,
所以 .
又 ,
所以 ,所以 .
又因为 ,所以 .
所以A为椭圆的短轴端点.
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
【答案】
16.(2019全国卷Ⅰ·文)已知 , 为平面 外一点, ,点 到 两边 , 的距离均为 ,那么 到平面 的距离为.
【解析】
如图,过点P作PO⊥平面ABC于点O,则PO的长度为P到平面ABC的距离.再过点O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.
又 ,所以 ,
14.(2019全国卷Ⅰ·文)记 为等比数列 的前 项和.若 , ,则 .
【解析】设等比数列的公比为 ,则 .
因为 ,
所以 ,
即 ,解得 ,
所以 .
【答案】
15.(2019全国卷Ⅰ·文)函数 的最小值为.
【解析】因为 ,
令 ,则 ,
所以 .
又函数 的图象的对称轴 ,且开口向下,
所以当 时, 有最小值 .
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
6.设f(x)为奇函数,且当x≥0时,f(x)= ,则当x<0时,f(x)=
(2017-2019)最新高考文科数学真题总结归类专题(含解析)
(2017-2019)最新高考文科数学真题总结归类专题(含解析)专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U B A =I ð{6,7}. 故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解. 2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-I . 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)A B =-+∞U . 故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-I ð. 故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I UA .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件; 由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得U ∩U ={0,2}. 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】∵U ={1,3,5,7},U ={2,3,4,5},∴U ∩U ={3,5}. 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I . 故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A=,{1,0,2,3}=∈-≤<R,B=-,{|12}C x x则()A B C=U IA.{1,1}-B.{0,1}C.{1,0,1}-D.{2,3,4}【答案】C【解析】由并集的定义可得:U∪U={−1,0,1,2,3,4},结合交集的定义可知:(U∪U)∩U={−1,0,1}.故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.(2)等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件.18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式U 3>8可得U >2, 求解绝对值不等式|U |>2可得U >2或U <−2,据此可知:“U 3>8”是“|U |>2” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当U =4,U =1,U =1,U =14时,U ,U ,U ,U 不成等比数列,所以不是充分条件; 当U ,U ,U ,U 成等比数列时,则UU =UU ,所以是必要条件.综上所述,“UU =UU ”是“U ,U ,U ,U 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“U ⇒U ”以及“U ⇒U ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<I I .故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U . 故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I , 故A B I 中元素的个数为2. 所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =U , 所以{}()1,2,4A B C =U I . 故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =U (1,2)-. 故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I . 故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =I .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.【答案】1,−1(答案不唯一)【解析】使“若U >U ,则1U <1U ”为假命题,则使“若U >U ,则1U ≥1U ”为真命题即可,只需取U =1,U =−1即可满足,所以满足条件的一组U ,U 的值为1,−1(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
2017年-2019年高考文科数学全国卷三真题试卷及答案新课标
绝密★启用前2017年普通高等学校招生全国统一考试〔新课标Ⅲ〕文科数学考前须知:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={1,2,3,4},B={2,4,6,8},那么A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游效劳质量,收集并整理了2014年1月至2016年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.根据该折线图,以下结论错误的选项是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比拟平稳4.4sin cos3αα-=,那么sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,那么z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx 的局部图像大致为 A . B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,那么输入的正整数N 的最小值为A .5B .4C .3D .29.圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.椭圆C :22221x y a b+=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为AB C D .1312.函数211()2()x x f x x x a ee --+=-++有唯一零点,那么a =A .12-B .13C .12D .1二、填空题:此题共4小题,每题5分,共20分。
(完整版)2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x |x <2},B={x |3﹣2x >0},则( )A .A ∩B={x |x <32}B .A ∩B=∅C .A ∪B={x |x <32} D .A ∪B=R2.(5分)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别是x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 3.(5分)下列各式的运算结果为纯虚数的是( ) A .i (1+i )2B .i 2(1﹣i )C .(1+i )2D .i (1+i )4.(5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π45.(5分)已知F 是双曲线C :x 2﹣y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .326.(5分)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .7.(5分)设x ,y 满足约束条件{x +3y ≤3x −y ≥1y ≥0,则z=x +y 的最大值为( )A .0B .1C .2D .38.(5分)函数y=sin2x1−cosx的部分图象大致为( )A .B .C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC )=0,a=2,c=√2,则C=( ) A .π12 B .π6C .π4D .π312.(5分)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,√3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,√3]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年-2019年高考文科数学全国卷三真题考试卷及问题详解(新课标)
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的、号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部分图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为AB C D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
近三年全国卷文科数学高考题最新整理(2017-2019)含答案
16.(2019全国卷Ⅰ·文)已知 , 为平面 外一点, ,点 到 两边 , 的距离均为 ,那么 到平面 的距离为.
【解析】
如图,过点P作PO⊥平面ABC于点O,则PO的长度为P到平面ABC的距离.再过点O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.
又 ,所以 ,
【解析】由对数函数的单调性可得 ,
由指数函数的单调性可得 , ,所以 .故选B.
【答案】B
4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ( ,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为 ,头顶至脖子下端的长度为 ,则其身高可能是()
14.(2019全国卷Ⅰ·文)记 为等比数列 的前 项和.若 , ,则 .
【解析】设等比数列的公比为 ,则 .
因为 ,
所以 ,
即 ,解得 ,
所以 .
【答案】
15.(2019全国卷Ⅰ·文)函数 的最小值为.
【解析】因为 ,
令 ,则 ,
所以 .
又函数 的图象的对称轴 ,且开口向下,
所以当 时, 有最小值 .
【答案】B
5.(2019全国卷Ⅰ·文)函数 在 的图象大致为()
A. B.
C. D.
【解析】因为 ,所以 为奇函数,排除选项A.
令 ,则 ,排除选项B,C.故选D.
【答案】D
6.(2019全国卷Ⅰ·文)某学校为了解 名新生的身体素质,将这些学生编号为 ,从这些新生中用系统抽样方法等距抽取 名学生进行体质测验.若 号学生被抽到,则下面 名学生中被抽到的是()
[精品]三年高考(2019)高考数学试题分项版解析 专题30 推理与证明 理(含解析)
专题30 推理与证明考纲解读明方向考纲解读分析解读 1.能利用已知结论类比未知结论或归纳猜想结论并加以证明.2.了解直接证明与间接证明的基本方法,体会数学证明的思想方法.3.掌握“归纳—猜想—证明”的推理方法及数学归纳法的证明步骤.4.归纳推理与类比推理是高考的热点.本章在高考中的推理问题一般以填空题形式出现,分值约为5分,属中档题;证明问题一般以解答题形式出现,分值约为12分,属中高档题.2017年高考全景展示1. 【2017课标II,理7】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。
看后甲对大家说:我还是不知道我的成绩。
根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【考点】合情推理【名师点睛】合情推理主要包括归纳推理和类比推理。
数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。
合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。
而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。
2.(2017北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.答案①Q1②p23.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.4.(2017北京,20,13分)设{a n}和{b n}是两个等差数列,记c n=max{b1-a1n,b2-a2n,…,b n-a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n-1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.解析本题考查等差数列,不等式,合情推理等知识,考查综合分析,归纳抽象,推理论证能力.(1)c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2.当n≥3时,(b k+1-na k+1)-(b k-na k)=(b k+1-b k)-n(a k+1-a k)=2-n<0,所以b k-na k关于k∈N*单调递减.所以c n=max{b1-a1n,b2-a2n,…,b n-a n n}=b1-a1n=1-n.所以对任意n≥1,c n=1-n,于是c n+1-c n=-1,所以{c n}是等差数列.(2)设数列{a n}和{b n}的公差分别为d1,d2,则b k-na k=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以c n=①当d1>0时,取正整数m>,则当n≥m时,nd1>d2,因此c n=b1-a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>时,有nd1<d2.所以==n(-d1)+d1-a1+d2+≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>max,故当n≥m时,>M.2016年高考全景展示1.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.【答案】1和3考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i) C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017-2019高考文数真题分类解析---不等式、推理与证明
2017-2019高考文数真题分类解析---不等式、推理与证明1.【2019年高考全国I 卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm【答案】B【解析】方法一:如下图所示. 依题意可知:11,22AC AB CD BC ==, ① 腿长为105 cm 得,即>105CD ,164.892AC CD =>, 64.89105169.89AD AC CD =+>+=,所以AD >169.89.②头顶至脖子下端长度为26 cm , 即AB <26,42.07BC=<,=+<68.07AC AB BC,110.15CD=<,+<68.07+110.15=178.22AC CD,所以<178.22AD.综上,169.89<<178.22AD.故选B.方法二:设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则262611052xx y+==+,得42.07cm, 5.15cmx y≈≈.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.【名师点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.2.【2019年高考全国III卷文数】记不等式组6,20x yx y+≥⎧⎨-≥⎩表示的平面区域为D.命题:(,),29p x y D x y∃∈+≥;命题:(,),212q x y D x y∀∈+≤.下面给出了四个命题①p q∨②p q⌝∨③p q∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④【答案】A【解析】根据题中的不等式组可作出可行域,如图中阴影部分所示, 记直线1: 2+9,l y x =-2: =2+12l y x -,由图可知,(,),29,(,),212x y D x y x y D x y ∃∈+∃∈+>…, 所以p 为真命题,q 为假命题, 所以p ⌝为假命题,q ⌝为真命题,所以p q ∨为真命题,p q ⌝∨为假命题,p q ∧⌝为真命题,p q ⌝∧⌝为假命题, 所以所有真命题的编号是①③.故选A.【名师点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.3.【2019年高考北京卷文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-,()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4.【2019年高考天津卷文数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值.由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求. 5.【2019年高考天津卷文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<,故“05x <<”是“|1|1x -<”的必要不充分条件. 故选B .【名师点睛】充要条件的三种判断方法: (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.6.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示. 因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值.联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩. 即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.【名师点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 7.【2019年高考浙江卷】若0,0ab >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥当且仅当a b =时取等号,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.8.【2018年高考北京卷文数】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D【解析】点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠ 时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直.显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D.【名师点睛】本题主要考查线性规划问题,考查考生的数形结合思想、化归与转化思想以及逻辑推理能力和运算求解能力,考查的核心素养是直观想象、数学运算. 9.【2018年高考天津卷文数】设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式x 3>8可得x >2,求解绝对值不等式|x |>2可得x >2或x <−2,据此可知:“x 3>8”是“|x|>2” 的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考天津卷文数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C【解析】绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.【2017年高考天津卷文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤,因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件,故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断. 12.【2017年高考天津卷文数】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C【解析】由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<,所以0.822log 5log 4.12>>,结合函数的单调性,可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<.故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.13.【2017年高考全国I 卷文数】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .a b c【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.14.【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15.【2017年高考全国II 卷文数】设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A【解析】绘制不等式组表示的可行域如图中阴影部分所示,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.【2017年高考全国II 卷文数】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D . 【名师点睛】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).17.【2017年高考北京卷文数】若,x y 满足3,2,,x x y y x ≤⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为A .1B .3C .5D .9【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【名师点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by =+.求这类目标函数的最值时常将函数z ax by =+转化为直线的斜截式:a z y xb b=-+,通过求直线的截距的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-;(3)斜率型:形如y bz x a-=-,而本题属于截距形式. 18.【2017年高考山东卷文数】已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是z bA .-3B .-1C .1D .3 【答案】D【解析】画出约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线250x y -+=与2y =的交点(1,2)-时,2z x y =+取得最大值,为max 1223z =-+⨯=,故选D.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.19.【2017年高考山东卷文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B【解析】由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.20.【2019年高考全国II 卷文数】若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是____________.【答案】9【解析】画出不等式组表示的可行域,如图中阴影部分所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【名师点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.21.【2019年高考全国II 卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.22.【2019年高考北京卷文数】若x ,y 满足2,1,4310,x y x y ≤⎧⎪≥-⎨⎪-+≥⎩则y x -的最小值为__________,最大值为__________. 【答案】3-;1【解析】根据题中所给约束条件作出可行域,如图中阴影部分所示.设z y x -=,则=+y x z ,求出满足在可行域范围内z 的最大值、最小值即可,即在可行域内,当直线=+y x z 的纵截距最大时,z 有最大值,当直线=+y x z 的纵截距最小时,z 有最小值.由图可知,当直线=+y x z 过点A 时,z 有最大值,联立24310x x y =⎧⎨-+=⎩,可得23x y =⎧⎨=⎩ ,即(2,3)A ,所以max 321z =-=;当直线=+y x z 过点(2,1)B -时,z 有最小值, 所以min 123z =--=-.【名师点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大,注重了基础知识、基本技能的考查.23.【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92【解析】(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+. 因为0,0,24x y x y >>+=,所以24x y +=≥,2,02xy ≤<≤,当且仅当22x y ==时取等号成立. 又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.24.【2019年高考北京卷文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】①10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【名师点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.25.【2018年高考浙江卷】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________. 【答案】−2 8【解析】作0,26,2x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩表示的可行域,如图中阴影部分所示,则直线3z x y =+过点A (2,2)时z 取最大值8,过点B (4,−2)时z 取最小值−2.【名师点睛】线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是: 一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得. 26.【2018年高考北京卷文数】若x ,y 满足12x y x +≤≤,则2y −x 的最小值是_________.【答案】3【解析】作出可行域,如图,则直线2z y x =-过点A (1,2)时,z 取最小值3.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.解本题时,先作出可行域,再根据目标函数与可行域关系,确定最小值取法.27.【2018年高考全国I卷文数】若x,y满足约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,则32z x y=+的最大值为_____________.【答案】6【解析】根据题中所给的约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,画出其对应的可行域,如图所示:由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得()2,0B ,此时max 3206z =⨯+=,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.28.【2018年高考全国III 卷文数】(2018新课标Ⅲ文科)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.【答案】3【解析】作出约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域如下图所示.由图可知目标函数在直线240x y -+=与2x =的交点(2,3)处取得最大值3. 故答案为3.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.29.【2018年高考全国II 卷文数】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9【解析】不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域是以()()()5,4,1,2,5,0A B C 为顶点的三角形区域,如下图所示,目标函数z x y =+的最大值必在顶点处取得,易知当5,4x y ==时,max 9z =.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.30.【2018年高考天津卷文数】(2018天津文科)已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 【答案】14【解析】由a −3b +6=0可知a −3b =−6,且2a +18b =2a +2−3b ,因为对于任意x ,2x >0恒成立,结合基本不等式的结论可得:2a +2−3b ≥2×√2a ×2−3b =2×√2−6=14.当且仅当{2a =2−3ba −3b =6,即{a =3b =−1 时等号成立. 综上可得2a +18b 的最小值为14.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式: ①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.31.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9【解析】由题意可知,S △ABC =S △ABD +S △BCD ,由角平分线性质和三角形面积公式得12acsin120°=12a ×1×sin60°+12c ×1×sin60°,化简得ac =a +c,1a+1c=1,因此4a +c =(4a +c )(1a +1c )=5+ca+4a c≥5+2√c a⋅4a c=9,当且仅当c =2a =3时取等号,则4a +c 的最小值为9.【名师点睛】线性规划问题是高考中常考考点,主要以选择或填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等. 32.【2017年高考上海卷】不等式11x x->的解集为________ 【答案】(),0-∞ 【解析】 由题意,不等式11x x ->,得111100x x x->⇒<⇒<, 所以不等式的解集为(),0-∞.【名师点睛】本题考查解不等式,能正确化简不等式是解决该题的关键.33.【2017年高考北京卷文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________. 【答案】−1,−2,−3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.34.【2017年高考北京卷文数】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________. ②该小组人数的最小值为_________. 【答案】6 12【解析】设男生人数、女生人数、教师人数分别为a b c 、、, 则*2,,,c a b c a b c >>>∈N . ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++=【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.35.【2017年高考天津卷文数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当22,24a b ==时取等号). 【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”. 36.【2017年高考山东卷文数】若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为___________. 【答案】8 【解析】由直线1(00)x ya b a b+=>,> 过点(1,2)可得121a b +=,所以1242(2)()448b a a b a b aba b +=++=++≥+=.当且仅当4b a a b=,即4,2b a ==时等号成立.【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 37.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________. 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.38.【2017年高考天津卷文数】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.。
三年高考(2017-2019)各地文科数学高考真题分类汇总:椭圆
椭圆1.(2019 全国 1 文 12)已知椭圆 C 的焦点为F 1( 1,0), F 2(1,0),过 F 2的直线与 C交于 A ,B两点.若| AF 2| 2|F 2B|,|AB | |BF 1 |,则p= A .2B . 3C .4D .Ⅰ)求椭圆 C 的方程;2 x 2A . y 1 2 22xyB .1322C .x42xD .5 2y 2142.(2019 全国 II 文 9)若抛物线 y 2=2px p>0)的焦点是椭圆 2x3p1的一个焦点,则C 的方程为3.(2019 北京文 19)已知椭圆 2C:a x22a2yb 21 的右焦点为 (1,0) ,且经过点 A (0,1) .Ⅱ)设 O 为原点,直线 l : y kx t(t1) 与椭圆 C 交于两个不同点P ,Q ,直线 AP 与 x 轴交于点 M ,直线 AQ 与 x 轴交于点 N , | OM| ·| ON|=2 ,求证:直线 l 经过定点.4.( 2019 江苏 16)如图,在平面直角坐标系22xy xOy 中,椭圆 C: 2 2ab1(a b 0) 的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线 l ,在x 轴的上方, l 与圆 F 2:(x 1)2 y 24a 2交于点 A ,与椭圆 C 交于点 D.连结 AF 1 并延长交圆 F 2于点 B ,连结 BF 2 交椭圆 C 于点 E ,连5结 DF 1.已知 DF 1= .2(1)求椭圆 C 的标准方程;225.(2019 浙江 15)已知椭圆 x y 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方, 若95线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上, 则直线 PF 的斜率是 _____ .12.942 x 6.( 2019 全国 II 文 20)已知 F 1, F 2是椭圆 C :2a一点, O 为坐标原点.1)若 △POF 2 为等边三角形,求 C 的离心率;2b y2 1(a b 0)的两个焦点, P为 C 上2)如果存在点 P ,使得 PF 1 PF 2,且 △ F 1PF 2的面积等于 16, 求 b 的值和 a 的取值范围.7.(2019 天津文 22xy19)设椭圆 2 21(a b 0) 的左焦点为 F ab ,左顶点为 A ,顶点为B .已知 3|OA|2 | OB | ( O 为原点) .Ⅰ)求椭圆的离心率;3Ⅱ)设经过点 F 且斜率为 的直线 l 与椭圆在 x 轴上方的交点为4P ,圆 C 同时与 x 轴和直线 l 相切,圆心 C 在直线 x 4上,且 OC ∥ AP ,求椭圆的方程8.(2019 全国 III 文 15)设 F 1,F 2 为椭圆22C: x + y1 的两个焦点, 36 20M 为 C 上一点且在第象限 .若△ MF 1F 2为等腰三角形,则的坐标为2 x 9. (2018 全国卷Ⅰ )已知椭圆C : 2 a 21 的一个焦点为 (2 ,0) ,则 C 的离心率为10. 1 1 2A .B .C .3 2 2(2018全国卷Ⅱ )已知 F 1, F 2是椭圆 C 的两个D .2 2 3P 是C 上的一点,若 PF 1 PF 2,且PF 2F 1 60 ,则 C 的离心率为 11.A .132B .2C . 3 122 x (2018上海)设 P 是椭圆51上的动点,则 P 到该椭圆的两个焦点的距离之和为A . 2 2B . 2 3C . 2 5D . 4 222xy2017 浙江)椭圆1 的离心率是则当 m =___时,点 B 横坐标的绝对值最大.116 .( 2018 江苏)如图,在平面直角坐标系 xOy 中,椭圆 C 过点 ( 3, ),焦点 2F 1( 3,0), F 2( 3,0) ,圆 O 的直径为 F 1F 2 .(1)求椭圆 C 及圆 O 的方程;(2)设直线 l 与圆 O 相切于第一象限内的点 P .①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标;②直线 l 与椭圆 C 交于 A,B 两点.若 △OAB 的面积为 2 6 ,求直线 l 的方程. 713. A . 133 B . 35C .D .592017 新课标Ⅲ)已知椭圆 C : 2x 2 a2yb 21(a b 0) 的左、右顶点分别为 A 1 , A 2 , A . 6 B . 33314.( 2017 新课标Ⅰ) x 2设 A 、 B 是椭圆 C :3A . (0,1] U [9, ) C . (0,1] U [4, )2 x 2 15. (2018 浙江)已知点 P(0,1) ,椭圆 y 2421CD .332y1长轴的两个端点,若 C 上存在点mB . (0, 3] U[9, )D.(0, 3] U[4, )uuur uuur且以线段A 1 A 2 为直径的圆与直线 bx ay满足 AMB =120°,则 m 的取值范围是2ab 0相切,则 C 的离心率为m (m 1)上两点 A , B 满足 AP 2PB ,(1) 求椭圆 M 的方程;(2)若k 1,求 |AB |的最大值;(3)设P( 2,0) ,直线 PA 与椭圆 M 的另一个交点为 C ,直线 PB 与椭圆 M 的另一个交71点为 D .若 C , D 和点 Q( , ) 共线,求 k .4222xy19.(2018 天津)设椭圆 2 2 1(a b 0) 的右顶点为 A ,上顶点为 B .已知椭圆的离 ab心率为 5,| AB| 13.3(1)求椭圆的方程;(2)设直线 l:y kx(k 0)与椭圆交于 P,Q 两点,l 与直线 AB 交于点 M ,且点 P ,M均在第四象限.若 △BPM 的面积是 △ BPQ 面积的 2 倍,求 k 的值.2 x220.( 2017 新课标Ⅱ)设 O 为坐标原点,动点 M 在椭圆 C : y 2 1上,过 M 做 x 轴 2uuur uuuur的垂线,垂足为 N ,点 P 满足 NP 2NM .(1)求点 P 的轨迹方程;uuur uuur(2)设点 Q 在直线 x 3上,且OP PQ 1.证明:过点P 且垂直于 OQ 的直线 l 过C 的左焦点 F .43AB 的中点为 M (1,m)( m0).1(1)证明: k ;2(2)设 F 为 C 的右焦点, P 为 C 上一点,且uuu r FPuuur FA uuur FB 0 .证明: uuur uuur uuur 2|FP | |FA||FB |.18.( 2018 北京)已知椭圆 M2x :2a 2b y21(a bb 0) 的离心率为 6 ,焦距为 2 2 .斜3率为 k 的直线 l 与椭圆 M 有两个不同的交点A ,B .22xy17.(2018全国卷Ⅲ)已知斜率为 k 的直线 l 与椭圆 C :1交于 A , B 两点.线段22xy21.( 2017天津)已知椭圆 2 2 1(a b 0)的左焦点为 F( c,0),右顶点为 A ,点 E ab(Ⅰ)求椭圆的离心率;3(Ⅱ)设点 Q 在线段 AE 上, | FQ | c ,延长线段 FQ 与椭圆交于点 P ,点M ,N 2在 x 轴上, PM ∥ QN ,且直线 PM 与直线 QN 间的距离为 c ,四边形 PQNM 的面积为 3c .( i )求直线 FP 的斜率; (ii )求椭圆的方程.x2 y 222.(2017山东)在平面直角坐标系 xOy 中,已知椭圆 C: 2 2 1(a b 0) 的离心率 ab2 为 2,椭圆 C 截直线 y 1所得线段的长度为 2 2 .2(Ⅰ)求椭圆 C 的方程;(Ⅱ)动直线 l :y kx m(m 0)交椭圆 C 于 A ,B 两点,交y 轴于点 M .点N 是M关于O 的对称点, e N 的半径为 |NO|. 设D 为 AB 的中点, DE ,DF 与eN 分 别相切于点 E ,F ,求 EDF 的最小值.23.( 2017北京)已知椭圆 C 的两个顶点分别为 A( 2,0) , B(2,0) ,焦点在 x 轴上,离心的坐标为 (0,c) , b 2△EFA 的面积为 b .x率为3.2 (Ⅰ)求椭圆C 的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M ,N ,过D作AM 的垂线交BN 于点E .求证:BDE 与BDN 的面积之比为4:5.22 24.(2017江苏)如图,在平面直角坐标系xOy中,椭圆E:x2y2 1(a b 0)的左、a2b21 右焦点分别为F1 ,F2 ,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1 的垂线l1,过点F2 作直线PF2 的垂线l2 .(1)求椭圆E 的标准方程;(2)若直线l1,l2的交点Q在椭圆E 上,求点P的坐标.答案由椭圆定义BF1 BF2 2a ,即4x 2a.又AF1AF22a 4x ,AF22x ,所以AF12x.因此点 A 为椭圆的上顶点,设其坐标为0,b .由AF2 2 BF2 可得点B的坐标为32,1. 如图所示,设BF2x ,则AF2 2x ,所以BF2AB 3x.223p pp,解得 p 8 .故选 D .23.解析 ( I )由题意得, b 2=1,c=1. 所以 a 2=b 2+c 2=2.2所以椭圆 C 的方程为 x y 21.2(Ⅱ)设 P ( x 1, y 1), Q ( x 2, y 2),y 1 1 则直线 AP 的方程为 y 1x 1 .x1令y=0,得点M 的横坐标 x My1 1同理, |ON | |kx2 2t 1|.y kx t,|ON | |kx1 x1t 1|| kx2 x2t 1| x 1x2 ||22 |k 2x 1x 2 k(t 1) x 1 x 2 (t 1)2因为点 B 在椭圆y b 20 上,所以 94a 21.解得 a 2 3.又 c 1,所以 b 2x 22 .所以椭圆方程为31.故选 B.2.解析:由题意可得:又 y 1 kx 1 t ,从而 |OM | x M|kx 1 t 1|则x 1 x21得(1222k 2)x 224ktx 2t 2 2 0 .4kt 2 1 2k 2x 1x 22t 2 2 1 2k 2所以 |OM |k 2 12t 2k 22 k(t 1) (1 2k 22t 2 21 2k 24kt2 ) (t 1 2k 2|1)22|11 t t|. 又 |OM | |ON | 2 , 所以 2|1 t| 2 . 1t 解得t=0,所以直线 l 为 y kx ,所以直线l 恒过定点( 0,0). 4.解析 ( 1)设椭圆 C 的焦距为 2c. 因为 F 1(- 1,0), F 2(1, 0),所以 F 1F 2=2,c=1. 5 又因为 DF 1=25,AF 2⊥x 轴,所以 DF 2= DF 12F 1F 2 2(52)2 22 32 ,因此 2a=DF 1+DF 2=4,从而 a=2. 由 b 2=a 2- c 2 ,得 b 2=3. 2 因此,椭圆 C 的标准方程为 x 4 2 y 2 1.3 2) 解法一 :由( 1)知,椭圆 2C : x 24 2y 21,3a=2,因为 AF 2⊥ x 轴,所以点 A 的横坐标为1. 将 x=1 代入圆 F 2 的方程 (x-1) 2+y 2=16 , 解得 y=±4.因为点 A 在 x 轴上方,所以 A (1,4). y 2x 1)22 2 y,得 5x 216 6x 11 由 (x 解得 x 1或 x 115. 将x11 代入 y 2x 2 ,得 y 12 55 11 12 因B( ) .又 F 2(1, 所以直线 又 F 1(- 1, 0),所以直线 AF 1: y=2x+2. 0,BF 2: y 334(x1).1),得 7x 26x 13 0,解得 x 1或 x1又因为 E 是线段BF 2与椭圆的交点,所以 x 1 .将x 3 1代入 y (x 1) ,得 y 4因此 E( 1,32).2 x 解法二: 由( 1)知,椭圆 C : 4 1.如图所示,因为 BF 2=2a , EF 1+EF 2=2a ,所以 EF 1=EB , 从而∠ BF 1E=∠ B.因为 F 2A=F 2B ,所以∠ A=∠ B , 所以∠ A=∠BF 1E ,从而 EF 1∥ F 2A. 联结因为 AF 2⊥ x 轴,所以 EF 1⊥x 轴. x1 因为 F 1(- 1, 0),由 x 2 y 2,得 1 43又因为 E 是线段 BF 2与椭圆的交点,所以 3因此 E( 1, 3) .25.解析:设椭圆的右焦点为 F ,连接 PF , 线段PF 的中点A 在以原点 O 为圆心, 2为半径的圆, 连接 AO ,可得 PF 2 AO 4 , 2 设P 的坐标为( m,n ),可得 3 m 3 4 ,可得 m 15,2由 F ( 2,0) ,可得直线 PF 的斜率为 15 215 . 3223 y ( x 由x 2 4y 2 xy 413 76.解:(1)连结PF1,由△POF2为等边三角形可知在△F1PF2 中,F1PF2 90 ,PF2c,PF1是2a PF1PF2 ( 3 1)c,故C 的离心率是e2)1由题意可知,满足条件的点P(x, y)存在当且仅当| y | 2c16,2c 3 1.ayyx c x c1,2 x 2 ay2b21,即c|y|16 ,c2,②2 x 2 a 2yb21,由②③及b2c2得y2b42 ,又由①知yc162,故4.由②③得2a2c2 2 2 2c2 b2,所以c2 b2,从而b22b232,故a 4 2.所以b 4 ,4 2 时,存在满足条件的点P.a 的取值范围为[4 2, ).7.解析(Ⅰ)设椭圆的半焦距为 c ,由已知有3a22b ,又由a222b2 c2,消去b 得3 22,a c ,2解得ca所以,椭圆的离心率为由(Ⅰ)知,a 2c ,2b 3c ,故椭圆方程为x24c22y3c21.3 由题意,F c,0 ,则直线l的方程为y (x c) .422x2y21,22点P 的坐标满足4c 3c3,y (x c) ,43 因为点P 在x 轴上方,所以P c,c2c 2.x2所以,椭圆的方程为162即有6 m 8 ,即326 m 8 ,即m3n 15 ;舍去.可得M(3, 15) .4 4 8,所以C的离心率为e c 2.故选C.a2因为OC∥ AP ,且由(Ⅰ)知A 2c,0,故t43c2,解得t 2.c 2c因为圆C与x轴相切,所以圆的半径为2,又由圆C与l 相切,得2 ,可得8.解析设M (m,n),m,n 0,椭圆2C:C:x362y 1的a206,b 2 5 ,c 2,32,由于M 为C上一点且在第一象限,可得|MF1| |MF2 |,△MF1F2 为等腰三角形,可能|MF1 | 2c或|MF2|2c,9.C【解析】不妨设a0 ,因为椭圆C的一个焦点为(2 ,0) ,所以c 2,,消去y 并化简,得到7x2 6cx 13c2 0 ,解得x1 c ,x 213c,代入到l 的方程,解得y13c,2y29c.14. 由圆心C 在直线x 4上,可设C 4,t .2y21.12所以a2b2c210.D【解析】由题设知F1PF2 90o,PF2F160 ,| F1F2 | 2c ,11.12.13.14.15.所以| PF2 |c ,所以( 3 1)cC【解析】离之和为B【解析】A【解析】由题意| PF1 | 3c .由椭圆的定义得2a ,故椭圆C 的离心率ea25,2a 2 5 ,故选2由题意可知a 2|PF1| |PF2 | 2a,即3c c 2a,c2 a 3 13 1.故选 D .a 5 .由椭圆的定义可知,P 到该椭圆的两个焦点的距C.9,b2 4 ,∴c2a2b2 5 ,∴离心率c5ea 3,以线段A1A2 为直径的圆是所以圆心到直线的距离2 2 2 即a23 a2c2A 【解析】当0则a tan 60o b要使C 上存在点2a23,M 满足x2a2直线bx ay 2ab0与圆相切,2aba2b2,整理为3b2,23c ,即c 2a焦点在36,故选A.3x 轴上,要使C 上存在点3 ,得0 m 1 ;当mAMB 120 o,则abtan 60oM 满足AMB 120 o,3 ,焦点在y 轴上,3 ,即m3,得m 9 ,故m 的取值范围为(0,1] U[9,),uuur5【解析】设A(x1, y1),B(x2,y2),由APuuur2PB ,得x1y12x22(y21)即x12x2,y1 3 2 y2 .因为点A ,B在椭圆上,所以4x2242x224(32y2x2)2m,得1y2 m4所以当m32 ,所以x2245时,点B 横坐标的绝对值最大,最大值为2m (3 2 y2)212m42.1(m45)222(x 02 1)2所以 AB 2(x 1x 2)2( y 1y 2)2(12x0 ) 2)y22 48y 0 ( x 02)(4x 02 22y02)2因为 2x 02y 03,所以AB2216( x 02 2)3429,即 2x 0445x 02 1000,16.【解析】 (1)因为椭圆 C 的焦点为 F 1( 3,0),F 2( 3,0) ,22可设椭圆 C 的方程为 x 2 y 2 a2 b 21(a b0).又点 ( 3, 12)在椭圆 C 上, 3 所以 a 2 2 a12 1, a 24b 2 ,解得 22 b 2 b 3,4, 1,2因此,椭圆 C 的方程为 x y 2 4 1.因为圆 O 的直径为 F 1F 2 ,所以其方程为3. (2)①设直线 l 与圆 O 相切于 P(x 0,y 0)( x 0 0,y 00) ,则 22 x 0 y3,所以直线 l 的方程为 y(x x 0 ) y 0 ,即yxxyy2x由4y 2 1,消去x 0 3 x, y 0 y 0y ,得2 (4x22 y 0 ) x224x 0x 36 4y 0 0 .(* )因为直线 l 与椭圆 C 有且只有一个公共点, 所以2 2 2 2 2 2( 24x 0)2 4(4x 02 y 02)(36 4y 02) 48y 02 (x 02 2) 0.因为 x 0,y 0 0,所以 x 0 2, y 0 1. 因此,点 P 的坐标为 ( 2,1) .②因为三角形 OAB 的面积为 2 6 ,所以 71 AB OP22 6,从而AB 4 27设 A(x 1, y 1),B(x 2, y 2),由(* )得x 1,22224x 048y 0 ( x 0 2) 22y 0 )2(4x 0解得 x 02 2(x 0 20舍去),则 y 0 2,因此 P 的坐标为 ( 120, 22).综上,直线 l 的方程为 y 5x 3 2 .17.【解析】 (1)设 A(x 1,y 1), B(x 2,y 2),则x 41 y 31 1, x 42 y 32 1. 434 3两式相减,并由y1 y2k 得x1 x2 y1 y2 k 0 .x 1 x 24 3由题设知 x 1 x2 1,y 1 y2 m ,22 3于是 k 3.①4m 31 由题设得 0 m 3 ,故 k 1 .22(2)由题意得 F (1,0) ,设 P(x 3,y 3),则(x 3 1, y 3) (x 1 1,y 1) (x 2 1,y 2) (0,0) .由(1)及题设得x 33 (x 1 x 2) 1, y 3 (y 1 y 2) 2m 0 .于是uuu r |FA|(x 1 221)2 y 12(x 1 1)2 23(1 x 41 ) 2 x 21同理 uuur|FB| 2 x 22uuur uuur 1 所以 |FA| |FB| 4 12 (x 1x 2) 3.uuur uuur uuur故2 |FP| | FA | | FB |18.【解析】 (1) 由题意得 2c 2 2 ,所以 c 2,yBP F 1 O F OF 2 x2A又点 P 在 C 上,所以 m43,从而 P(1, 32) , | u F u P ur| 422 2 2 27466,所以 a 33 ,所以 b 21,所以椭圆 M 的标准方程为 y 21. (2) 设直线 AB 的方程为 y m , y x m 由x 2y 23y 2 消去 y 可得 4 x 2 6mx 1 23m 0,则 36m 24 4(3m 2 3) 48 12m 2 0 ,即m2 4 ,设A(x 1,y 1) , B(x 2, y 2) ,则 x 1 x 2 3m 2 , x 1x 2 3m 23 4 则|AB| 1 k 2 |x 1 x 2 | 1 k 2 ( x 2x 1 x 2)24 x 1x 2 6 4 m 2,2,易得当 m 20时, | AB |max 6,故 | AB |的最大值为 6 (3)设 A(x 1,y 1),B(x 2,y 2),C(x 3,y 3), D(x 4,y 4), 则 x 12 3y 12 3 ①, 2x 2 3y 22 3 ②, 又 P( 2,0) ,所以可设k1y1x 1 2 ,直线 PA 的方程为y k 1(x 2) ,y由 x 23 k 1(x 2) 消去 1 y 可得 (1 3k 12)x 2 12k 12x 12k 120,则 x 1 x 3 12k 122 ,即 x 31 3k 12 312k 123k 12 x 1 ,又 k 1 y 1 x 1 2 ,代入①式可得 x3 7x 14 x 1 712,所以 y 3y1, 4x 1 7所以 C (7x 1 12 4x 1y1) ,同理可得 4x 1 7D(7x 2 12 y 24x 2 7 4x 2 7) .uuur 故QC ( x 31 uuur , y 3 ) ,QD ( x 4 44714,y 4 4) ,2 2 1 .因为 Q,C,D 三点共线,所以 (x 3 7)(y 4 1)3 4 4471 (x 4 74)( y 3 41) 0, 将点 C,D 的坐标代入化简可得 y1 y21,即 1.x 1 x 219.【解析】 (1)设椭圆的焦距为 2c ,由已知得 2c 2 a5, 9又由 a 2 b 2 c 2 ,可得 2a 3b.由| AB| a 2 b 213,从而 a 3,b 2.22所以,椭圆的方程为 x y 1 .94(2)设点 P 的坐标为 (x 1, y 1) ,点 M 的坐标为 (x 2,y 2),由题意, x 2 x 1 0,点Q 的坐标为 ( x 1, y 1). 由△BPM 的面积是 △ BPQ 面积的 2 倍,可得|PM |=2|PQ| ,从而x 2 x 12[x 1 ( x 1)] ,即 x 2 5x 1 .易知直线 AB 的方程为 2x 3y 6 ,由方程组2x 3y y kx,6,消去 y ,可得x 26 3k 2由x 2 5x 1,可得 解得 k 8, 9 或 当k 8 时,9 x 2当k 1 时, 2 x 2 所以, k 的值为20.【解析】 k 由方程组9k 24 uuur 由 NP 0, 12, x 1 2x9 y2y4 1,消去 y ,可得 kx, x169k25(3k 2) ,两边平方,整理得不合题意,舍去; 12,符合题意. 5 uuur 1)设 P(x,y),M(x 0,y 0),则 N(x 0,0) ,NP (x uuuur 2 NM 得2 x 0 x , y 0 2 y .22因为 M(x 0,y 0)在 C 上,所以 x y18k 2x 0, y) ,25k 8 0 ,uuuurNM (0.y 0 ) .2 2 1, 4c 2 3c 2因此点 P 的轨迹方程为 x 2 y 22 .(2) 由题意知 F( 1,0) .设 Q( 3,t ),P(m,n) ,则uuuruuuruuur uuurOQ ( 3,t ) , PF (1 m, n) , OQ PF 3 3m tn , uuuruuurOP (m, n) , PQ ( 3 m, t n),uu u r uuurm 2 tn 2 n 221,又由( 1)知 m 2 n 22 ,由O PQ 1 得3m 故3 3m tn 0.uuur uuur uuur uuur所以 OQ PF 0,即OQ PF .又过点 P 存在唯一直线垂直与 OQ ,所以过点 P 且 垂直于OQ 的直线 l 过C 的左焦点 F .又由 b 2a 2c 2,可得 2c 2ac a 20 ,即 2e 2e 1 0.1又因为 0 e 1,解得 e 1.21 所以,椭圆的离心率为 1.21 (Ⅱ)(ⅰ)依题意,设直线 FP 的方程为 x my c(m 0) ,则直线 FP 的斜率为 1 .m 由(Ⅰ)知 a 2c ,可得直线 AE 的方程为 x y 1 ,即x 2 y 2c 0,与直线2 c c FP 的方程联立,可解得 x(2m 2)c ,y3c,m 2 m 2即点 Q 的坐标为((2m 2)c, 3c) .m 2 m 2由已知 |FQ |= 3c,有 [(2m 2)c c]2 ( 3c )2 ( 3c )2 ,整理得 3m 24m 0,2 m 2 m 2 2 43 所以 m ,即直线 FP 的斜率为 .3422ii )由 a 2c ,可得 b 3c ,故椭圆方程可以表示为 4x c 2 3yc 2 1.3x 4 y 3c 0,由( i )得直线 FP 的方程为 3x 4y 3c 0,与椭圆方程联立 x 2y 2消21.【解析】 Ⅰ)设椭圆的离心率为e .由已知,可得 1(c a)c2b 22去 y ,整理得 7 x 26cx 13c 213c 0,解得 x7舍去),或 x c .3c 因此可得点 P(c, ) ,进而可得2| FP | 2 3c 2 5c (c c)2 (32c )2 52c , 所以 |PQ| |FP| |FQ | 5c3c c .由已知,线段 PQ 的长即为 PM 与QN 这 2两条平行直线间的距离,故直线PM 和 QN 都垂直于直线 FP .因为 QN FP ,所以 |QN | |FQ | tanQFN3c2 3 9c34 98c ,所以 △FQN 的面1积为 |FQ ||QN |227c2,同理 △FPM32的面积等于75c,由四边形 PQNM 的 32面积为 3c ,得 75c 32 27c 232 3c ,整理得2c 22c ,又由 c 0,得 c 2.所以, x 22 椭圆的方程为 y16 12 1.22.【解析】 Ⅰ)由椭圆的离心率为 2,得 a 2 22(a 2b 2),又当 y1 时, x 22a ab 2 ,得 a 22a b 22,所以 a 24,b 22,22因此椭圆方程为 x y1 .42Ⅱ)设 A(x 1,y 1),B(x 2,y 2) ,联立方程y kxx22 y 2得 (2k 2 1)x 2 4kmx 2m 240,0 得 m 2 4k 2 2*)且x1因此 所以4km2,2k 2 1 2m y 1 y 22,2k 2 1 2km m D ( 2 , 2 ) ,x22当 t ≥ 3 时,由( * )得ND NF设 EDF 2NF 1≥ND 2所以 得最小值为 .6从而 EDF 的最小值为 ,此时直线 l 的斜率时 0 .又 N (0, m) 所以 ND2km 2 m ) 2 ( 222k 2 1 2k 2 1m)2整理得: ND4m 2(1 3k 2 k 4)22(2k 21)2因为 NF 所以 ND 4(k 3k 21)NF 令 t 8k 23, 故 2k 2 1 所以 ND NF (2k 2 1)2 t ≥316t(1t)2 8k 23 (2k 2 1)216t 1t 2所以 y1t 2从而 y t1 因此 t 1≥t 1t 在 [3, 10)上单调递增,等号当且仅当 t 3 时成立,此时 k 0,所以NDNF2≤1则sin231因为椭圆E的离心率为1,两准线之间的距离为2 8,c所以a2a28 ,c综上所述:当k 0,m ( 2,0)(0, 2)时,2223.【解析】(Ⅰ)设椭圆C 的方程为x2y2 aba 2,由题意得 c 3解得c 3 .a 2,所以b2a2c21.2所以椭圆C 的方程为x y2 1.44 y E n .51又S△BDE | BD | | y E|21S△BDN | BD | | n |,2所以△BDE与△BDN的面积之比为4:5 .24.【解析】(1)设椭圆的半焦距为c EDF 取得最小值为.31(a 0, b 0) .Ⅱ)设M (m,n) ,且2m 2,D(m,0), N (m, n).直线AM 的斜率k AM 故直线DE 的斜率k DEn,m2m2由AM DE ,k AM k DE 1,所以直线DE 的方程为直线BN 的方程为yn2(x n n(x 2) .2mm) .联立y m n2 (xn m),,解得点E 的纵坐标由点ny 2n m(x 2),y En(44m2).2.n M 在椭圆C 上,得4m24n2.所以2 | BD | |n |,5解得a 2,c 1,于是 b a2c23,1322因此椭圆 E 的标准方程是 x y1.43(2)由( 1)知, F 1( 1,0) , F 2(1,0) .设 P(x 0,y 0) ,因为点 P 为第一象限的点,故 x 0 0,y 0 0. 当 x 0 1时, l 2与 l 1 相交于 F 1,与题设不符 .y当 x 0 1时,直线 PF 1的斜率为,直线 PF 2 的斜率为 x 0 12又 P 在椭圆 E 上,故 x0447 因此点 P 的坐标为 (4 77因为 l 1⊥ PF 1 ,l 2⊥PF 2,所以直线 l 1 的斜率为x 0 1 y0 ,直线 l2的斜率为x 0 1y0 ,从而直线 l 1 的方程: x1(x 1) , y 0直线 l 2 的方程: y xy 0 1(x 1). ②由①②,解得 x 1 x 0,yy2 x,所以 Q(x 0,1y0x 02).因为点 Q 在椭圆上,由对称性,得1 x 02yy 0,即2 x2 y1 或x 02y 02 1.由 x 024 2y 022 y1,解得 x 0 1 477 ,y 0 3772x4y 022 y3,无解 .yx 0 12y 021.3 377).。
2017-2019高考数学(文科)试卷及答案[2]
2017-2019高考数学(文科)试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2019高考数学(文科)试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2019高考数学(文科)试卷及答案(word版可编辑修改)的全部内容。
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A. B.C.D.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,12.则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .14.(5分)曲线y=x2+在点(1,2)处的切线方程为.15.(5分)已知α∈(0,),tanα=2,则cos(α﹣)= .16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.三、解答题:共70分。
2017年-2019年高考文科数学全国卷三真题试卷及答案(新课标)
4.已知 sin cos43,则 sin22017 年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月D .各年 1月至 6月的月接待游客量相对于 7月至 12月,波动性更小,变化比较平稳绝密 ★ 启用前注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
并交回。
3.考试结束后,将本试卷和答题卡 一、选择题:本大题共 目要求的。
1.已知集合 A={1,2,3,4} , B={2,4,6,8} ,则 A 12小题,每小题 5分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题 A .1 B .2 2.复平面内表示复数 z=i ( – 2+的i )点位于A .第一象限B .第二象限 B 中元素的个数为C .3D .4 C .第三象限D .第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至 2016 年 12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图7 2 2 7A.B.C.D.9 9 9 93x 2y 6 05.设 x,y 满足约束条x0 ,则 z=x-y 的取值范围是y0A.[ –3,0] B.[ –3,2] C.[0,2] D. [0,3] 16.函数 f(x)= sin(x+ )+cos( x- )的最大值为5 3 66 3 1A.B.1 C.D.5 5 5S 的值小于 91,则输入的正整数 N 的最小值为7.函数 y=1+x+ 2的部分图像大致为A.5 B.4 C.3 D.28.执行下面的程序框图,为使输出9.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为2 y 21 ,( a>b>0)的左、右顶点分别为 b A 1, A 2,且以线段 A 1A 2为直径的圆与直线22xy14.双曲线 21( a>0)的一条渐近线方程为a 29x 1, x 0, 1 2x x ,1x x 0,0则满足 f(x) f(x 12) 1的x 的取值范围是三、解答题:共 70 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推理与证明1.(2019全国II 文5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >3.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 4.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩5.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .6.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________.7.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s t <时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).8*.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 9*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.答案1.解析:由题意,可把三人的预测简写如下:甲:甲>乙. 乙:丙>乙且丙>甲. 丙:丙>乙.因为只有一个人预测正确,如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙>乙,乙>甲,因为乙预测不正确,而丙>乙正确,所以只有丙>甲不正确, 所以甲>丙,这与丙>乙,乙>甲矛盾.不符合题意. 所以只有甲预测正确,乙、丙预测不正确, 甲>乙,乙>丙. 故选A .2.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .3.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a-的直线,当0a ≠时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D .解法二 若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .4.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 5.27【解析】所有的正奇数和2n(*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.6.6 12【解析】设男生数,女生数,教师数为,则①84a b >>>,所以max 6b =,②当min 1c =时,21a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 2c =时,42a b >>>,a ,b ∈N ,a ,b 不存在,不符合题意; 当min 3c =时,63a b >>>,此时5a =,4b =,满足题意. 所以12a b c ++=.7.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (4)n ≥的情形,逆序数为0的排列只有一个:12n ⋅⋅⋅,所以(0)1n f =. 逆序数为1的排列只能是将排列12n ⋅⋅⋅中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当5n ≥时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, ,,a b c 2,,,c a b c a b c >>>∈N因此,5n ≥时,(2)n f =222n n --.8.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.9.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .。