2018高考文科数学推理与证明专项100题(WORD版含答案)
2018届高考数学二轮复习 推理与证明专题
推理与证明专题[基础达标](35分钟75分)一、选择题(每小题5分,共30分)1.下列叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法,分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的A【解析】根据相关定义可知A项正确.2.用反证法证明命题时,对结论“自然数a,b,c中恰有一个偶数”的反设是()A.自然数a,b,c中至少有两个偶数B.自然数a,b,c中至少有两个偶数或都是奇数C.自然数a,b,c都是奇数D.自然数a,b,c都是偶数B【解析】“自然数a,b,c中恰有一个偶数”的反设是“自然数a,b,c中至少有两个偶数或都是奇数”.3.用数学归纳法证明不等式1+12+14+…+12n-1>509256时,起始值至少取()A.7B.8C.9D.10B【解析】1+12+14+…+12n-1=1-12n1-12=21-12n.当n=7时,21-127=12764=508 256<509256;当n=8时,21-128=255128=510256>509256,故起始值至少取8.4.[2016·西安八校联考]观察一列算式:11,12,21,13,22,31,14,23,32,41,…,则式子35是第() A.22项B.23项C.24项D.25项C【解析】两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,35为和为8的第3项,所以为第24项.5.已知a>b>c>0,则下列不等式成立的是()A.1a-b +1b-c>4a-cB.1a-b +1b-c<4a-cC.1a-b +1b-c≥4a-cD.1a-b +1b-c≤4a-cC【解析】由题意可得(a-c)1a-b +1b-c=[(a-b)+(b-c)]1a-b+1b-c=2+b-ca-b+a-b b-c ≥2+2b-ca-b·a-bb-c=4,当且仅当b-ca-b=a-bb-c,即2b=a+c时取等号,所以1a-b+1b-c≥4a-c.6.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是() A.甲B.乙C.丙D.丁A【解析】若甲说的是真话,则乙、丙、丁都是说假话,所以丁偷了珠宝,所以丙说的也是真话,与只有一个人说真话相矛盾,所以甲说的是假话,偷珠宝的人是甲.二、填空题(每小题5分,共15分)7利用数学归纳法证明不等式1n+1+1n+2+…+1n+n>12(n>1,n∈N*)的过程中,用n=k+1时左边的代数式减去n=k时左边的代数式的结果为.1 2k+1−12k+2【解析】当n=k时,左边=1k+1+1k+2+…+1k+k①,当n=k+1时,左边=1k+2+1k+3+…+1k+k+12k+1+12k+2②,由②-①得,12k+1+12k+2−1k+1=1 2k+1−12k+2.8.已知如图1所示的图形有面积关系S△P A1B1S△PAB =PA1·PB1PA·PB,用类比的思想写出如图2所示的图形的体积关系V P-A1B1C1V P-ABC=.PA1·PB1·PC1PA·PB·PC【解析】在图2中过点A作AO⊥平面PBC于点O,连接PO,则A1在平面PBC内的射影O1落在PO上,则V P-A1B1C1V P-ABC=V A1-P B1C1V A-PBC=13S△PB1C1·A1O113S△PBC·AO=PB1·PC1·A1O1 PB·PC·AO ,又∵A1O1AO=PA1PA,∴V P-A1B1C1V P-ABC=PA1·PB1·PC1PA·PB·PC.9P1P2P3P4-Q1Q2Q3Q4的棱长为1,集合M={x|x=P1Q1·S i T j,S,T∈{P,Q},i,j∈{1,2,3,4}},则对于下列命题:①当S i T j=P i Q j时,x=1;②当S i T j=P i Q j时,x=-1;③当x=1时,(i,j)有8种不同取值;④当x=1时,(i,j)有16种不同取值;⑤M={-1,0,1}.其中正确的结论序号为.(填上所有正确结论的序号)①④⑤【解析】因为P1Q1=P i Q i,所以当S i T j=P i Q j时,x=P1Q1·S i T j=P i Q i·P i Q j=|P i Q i|2=1,①正确,②错误;当x=1时,i=1,2,3,4,j=1,2,3,4,所以(i,j)有16种不同取值,③错误,④正确;当S i T j=P i P j或S i T j=Q i Q j时,x=0,当S i T j=Q i P j时,x=-1,所以M={-1,0,1},⑤正确.三、解答题(共30分)10.(10分)设f(x)=a x+a-x2,g(x)=ax-a-x2(其中a>0,且a≠1).(1)请将g(5)用f(2),f(3),g(2),g(3)来表示;(2)如果(1)中获得了一个结论,能否将其推广,用“三段论”进行证明.【解析】(1)由g(5)=a 5-a-52包括a5,易知表示式中必有f(2)g(3)或f(3)g(2),又f(3)g(2)+g(3)f(2)=a 3+a-32·a2-a-22+a3-a-32·a2+a-22=a5-a-52,因此g(5)=f(3)g(2)+g(3)f(2).(2)由g(5)=f(3)g(2)+g(3)f(2),即g(3+2)=f(3)g(2)+g(3)f(2),于是推测g(x+y)=f(x)g(y)+g(x)f(y).证明:因为f(x)=a x+a-x2,g(x)=ax-a-x2,(大前提)所以g(x+y)=a x+y-a-(x+y)2,g(y)=ay-a-y2,f(y)=ay+a-y2,(小前提)所以f(x)g(y)+g(x)f(y)=a x+a-x2·a y-a-y2+a x-a-x2·a y+a-y2=a x+y-a-(x+y)2=g(x+y).(结论)11.(10分)用数学归纳法证明:1-12+13−14+…+12n-1−12n=1n+1+1n+2+…+12n(n∈N*).【解析】①当n=1时,左边=右边=12,命题成立.②假设n=k(k∈N*)时,命题成立,即1-1 2+13−14+…+12k-1−12k=1k+1+1k+2+…+12k,则当n=k+1时,左边=1-12+13−14+…+12k-1−12k+12k+1−12k+2=1k+1+1k+2+…+1 2k +12k+1−12k+2=1k+2+1k+3+…+12k+1+12k+2=右边,于是当n=k+1时,命题也成立.由①②可知,原命题对所有正整数都成立.12.(10分)已知点P n(a n,b n)满足a n+1=a n·b n+1,b n+1=b n1-4a n2(n∈N*),且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点P n都在(1)中的直线l上.【解析】(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2 13,13 . ∴直线l 的方程为y +113+1=x -113-1,即2x+y=1.(2)①当n=1时, 2a 1+b 1=2×1+(-1)=1成立.②假设n=k (k ∈N *)时,2a k +b k =1成立.则当n=k+1时,2a k+1+b k+1=2a k ·b k+1+b k+1=b k 1-4a k2·(2a k +1)=b k 1-2a k=1-2ak1-2ak=1, ∴当n=k+1时,2a k+1+b k+1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 都在直线l 上.[高考冲关] (20分钟 30分)1.(5分“已知a ,b ∈N *,如果ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为 ( )A.a ,b 都能被5整除B.a ,b 都不能被5整除C.a ,b 不都能被5整除D.a 不能被5整除B 【解析】“a ,b 中至少有一个能被5整除”的反面情况是“a ,b 都不能被5整除”.2.(5分)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形D 【解析】由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由sin A 2=cos A 1=sin π2-A 1 ,sin B 2=cos B 1=sin π2-B 1 ,sin C 2=cos C 1=sin π2-C 1 ,得 A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾,所以假设不成立,又显然△A 2B 2C 2不是直角三角形,所以△A 2B 2C 2是钝角三角形.3.(5分)古希腊人常用小石子在沙滩上摆成各种形状来研究数. 比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( )A .289B .1024C .1225D .1378C 【解析】观察三角形数:1,3,6,10,…,记该数列为{a n },则a n =1+2+3+…+n=n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字分别代入上述两个通项公式,可知使得n 都为正整数的只有1225.4.(5分x ,[x ]表示不超过x 的最大整数,观察下列等式: [ 1]+[ 2]+[ 3]=3;[ +[ +[ +[ +[ =10;[ 9]+[ 10]+[ 11]+[ 12]+[ 13]+[14]+[ =21; ……按照此规律第n 个等式的等号右边的结果为 .2n2+n【解析】由题意可得3=1×3,10=2×5,21=3×7,则第n个等式的等号右边的结果是n×(2n+1)=2n2+n.5.(10分)若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.(1)设g(x)=12x2-x+32是[1,b]上的“四维光军”函数,求常数b的值;(2)是否存在常数a,b(a>-2),使函数h(x)=1x+2是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由.【解析】(1)由已知得g(x)=12(x-1)2+1,其图象的对称轴为x=1,区间[1,b]在对称轴的右边,所以函数在区间[1,b]上单调递增.由“四维光军”函数的定义可知,g(1)=1,g(b)=b,即12b2-b+32=b,解得b=1或b=3.因为b>1,所以b=3.(2)假设函数h(x)=1x+2在区间[a,b](a>-2)上是“四维光军”函数,因为h(x)=1x+2在区间(-2,+∞)上单调递减,所以有ℎ(a)=b,ℎ(b)=a,即1a+2=b,1b+2=a,解得a=b,这与已知矛盾,故不存在常数a,b,使函数h(x)是[a,b]上的“四维光军”函数.。
2018届高考数学一轮复习精选试题推理与证明(选择与填空) Word版含答案
推理与证明一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).用反证法证明命题:“三角形的内角中至少有一个不大于度”时,反设正确的是( ) .假设三内角都不大于度.假设三内角都大于度.假设三内角至多有一个大于度.假设三内角至多有两个大于度【答案】.下列不等式不成立的是( ).. (>>). ().<【答案】.四个小动物换座位,开始是鼠、猴、兔、猫分别坐,,,号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第次互换座位后,小兔的座位对应的是( ).编号.编号.编号.编号【答案】.德国数学家洛萨·科拉茨年提出了一个猜想:任给一个正整数,如果它是偶数,就将它减半;如果它是奇数,则将它乘再加,不断重复这样的运算,经过有限步后,一定可以得到。
如初始正整数为,按照上述变换规则,得到一个数列:,,,,,,,,。
现在请你研究:如果对正整数(首项),按照上述规则实施变换(可以多次出现)后的第八项为,则的所有可能的对值为( ).,,,,,.,,,.,,,.,,,,【答案】.用反证法证明“如果,那么”时,反证假设的内容应是( )...或.且【答案】.观察式子:,,,,则可归纳出式子为( ) ....【答案】.用反证法证明“如果>,那么”假设的内容应是( )...且.或【答案】.已知数列{}的前项和=(≥),而=,通过计算,,,猜想等于( )....【答案】.用反证法证明命题:“若整数系数一元二次方程有有理根,那么中至少有一个是偶数”时,应假设( ).中至多一个是偶数.中至少一个是奇数.中全是奇数.中恰有一个偶数【答案】.用反证法证明命题“三角形的内角中至少有一个不大于”时,反设正确的是( )。
2018年高考数学(文科)复习专题测试(命题规律探究 题组分层精练):第十三章 推理与证明 (共42张PPT)
4.(2017北京,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数. ①若教师人数为4,则女学生人数的最大值为 ②该小组人数的最小值为 . ;
答案 ①6 ②12 解析
高考文数
ห้องสมุดไป่ตู้
(课标Ⅱ专用)
第十三章 推理与证明
五年高考
A组 统一命题·课标卷题组
1.(2017课标全国Ⅱ,9,5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说: 你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩. 看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 ( A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 答案 D 本题主要考查逻辑推理能力. )
由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好, 则乙看了丙的成绩,可以知道自己的成绩,丁看了甲的成绩,也可以知道自己的成绩.故选D.
2.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片, 甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的 卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 答案 1和3 解析 丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡 片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的 卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛 盾,故情况②不符合,所以甲的卡片上的数字为1和3. 疑难突破 先对丙分类讨论,确定出丙卡片上的数字情况再确定乙、甲是解决问题的关键. 评析 本题主要考查推理,考查学生分析、解决问题的能力,先确定丙卡片上的数字情况再确定 乙、甲是问题的突破口,注意对丙的分类讨论.
2018届高中数学人教A版 推理与证明单元测试(Word版,含答案)1
2017-2018学年度xx学校xx月考卷一、选择题(共15小题,每小题5.0分,共75分)1.已知{an}为等差数列,a1 006=3,a1+a2+a3+…+a2 011=3×2 011,若{bn}为等比数列,b1 006=3,则{bn}的类似结论是()A.b1+b2+…+b2 011=3×2 011B.b1b2…b2 011=3×2 011C.b1+b2+…+b2 011=32 011D.b1b2…b2 011=32 0112.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数3.已知数列的前几项为1,,,…,它的第n项(n∈N*)是()A.B.C.D.4.某西方国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5.下面几个类比中正确的有()(1)l1∥l2,l1∥l3⇒l2∥l3类比为a1∥a2,a1∥a3⇒a2∥a3;(2)a≠0,ab=ac⇒b=c类比为a1·a2=a1·a3⇒a2=a3;(3)平面α⊥l1,平面α⊥l2⇒l1∥l2类比为平面α1⊥平面α,平面α2⊥平面α⇒平面α1⊥平面α2;(4)|a+b|≤|a|+|b|类比为|z1+z2|≤|z1|+|z2|(其中z1,z2为复数).A. 0个B. 1个C. 2个D. 3个6.数列4,7,10,13,…,(3n+1)按照如下方式排列413107161922 2528……第i行第j列的记作ai-j,例如a3-3=22,a3-4=25,则a20-4的值是()A. 1 192B. 1 310C. 1 201D. 707.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为08.要证:a2+b2-1-a2b2≤0,只要证明()A. 2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D. (a2-1)(b2-1)≥09.用数学归纳法证明+++…+≥(n∈N*),由n=k到n=k+1时,不等式左边应添加的项是()A.B.+C.+-D.+--10.观察下列的图形中小正方形的个数,则第6个图中和第n个图中有小正方形的个数分别为()A. 28,B. 14,C. 28,D. 12,11.在平面上,若两个正三角形的边长之比为1∶2,则它们的面积之比为1∶4;类似地,在空间中,若两个正四面体的棱长之比为1∶2,则它的体积比为()A. 1∶4B. 1∶6C. 1∶8D. 1∶912.下面使用类比推理正确的是()A.由“a(b+c)=ab+ac”类比推出“cos(α+β)=cosα+cosβ”B.由“若3a<3b,则a<b”类比推出“若ac<bc,则a<b”C.由“平面中垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”D.由“等差数列{an}中,若a10=0,则a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”类比推出“在等比数列{bn}中,若b9=1,则有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”13.在△ABC中,若AC⊥BC,AC=b,BC=a,则△ABC的外接圆半径r=,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA,SB,SC两两互相垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R等于()A.B.C.D.14.①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理,作为大前提的是()A.①B.②C.③D.其他15.已知函数f(x)=|sin x|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,令A=,B=.则()A.A>BB.A<BC.A=BD.A与B的大小不确定二、填空题(共5小题,每小题5.0分,共25分)16.在平面几何中,若DE是△ABC中平行于BC的中位线,则有S△ADE∶S△ABC=1∶4.把这个结论类比到空间:若三棱锥A-BCD有中截面EFG∥平面BCD,则VA-EFG∶VA-BCD=________.17.用符号“⇒”或“⇏”填空.(1)a≠0或b≠0________ab≠0;(2)a≠0或b≠0________a2+b2>0;(3)a>-b________(a+b)(a2+b2)>0;(4)a>|b|________a+|b|>0.18.在平面上有如下命题:“O为直线AB外的一点,则点P在直线AB上的充要条件是:存在实数x,y满足=x+y,且x+y=1”,我们把它称为平面中三点共线定理,请尝试类比此命题,给出空间中四点共面定理,应描述为:____________.19.将全体正整数排成如图的一个三角形数阵,按照此排列规律,第10行从左向右的第5个数为________.20.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性。
2018高考数学考点突破——不等式、推理与证明:合情推理与演绎推理 Word版 含答案
合情推理与演绎推理【考点梳理】1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. 【考点突破】考点一、归纳推理【例1】(1)数列12,13,23,14,24,34,…,1m +1,2m +1,…,mm +1,…的第20项是( )A.58 B.34 C.57D.67(2)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5;…… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.[答案] (1)C (2)43n (n +1)[解析] (1)数列mm +1在数列中是第1+2+3+…+m =m (m +1)2项,当m =5时,即56是数列中第15项,则第20项是57,故选C.(2)通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1). 【类题通法】1.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质; (2)从相同性质中推出一个明确表述的一般性命题. 【对点训练】1.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a xn ≥n +1(n ∈N *),则a =__________. [答案] n n (n ∈N *)[解析]第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .2.下面图形由小正方形组成,请观察图(1)至图(4)的规律,并依此规律,写出第n 个图形中小正方形的个数是__________.[答案]n (n +1)2(n ∈N *)[解析]由题图知第n 个图形的小正方形个数为1+2+3+…+n .所以总个数为n (n +1)2(n ∈N *).考点二、类比推理【例2】(1)若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也是等差数列,类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nn C .d n =n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n(2)在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AEBE.把这个结论类比到空间:在三棱锥A -BCD 中(如图),DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到类比的结论是________________.。
2018届高三数学一轮复习专项检测试题 推理与证明 Word版含答案
推理与证明一、选择题(每小题分,共分)、下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理..①②③;.②③④;.②④⑤;.①③⑤.、下面使用类比推理正确的是(). .“若,则”类推出“若,则”.“若”类推出“”.“若”类推出“(≠)”.“”类推出“”、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为().大前提错误 .小前提错误 .推理形式错误 .非以上错误、用反证法证明命题:“三角形的内角中至少有一个不大于度”时,反设正确的是()。
()假设三内角都不大于度; () 假设三内角都大于度;() 假设三内角至多有一个大于度; () 假设三内角至多有两个大于度。
、在十进制中,那么在进制中数码折合成十进制为(). . ..设()=++++…+,则().()共有项,当=时,()=+.()共有+项,当=时,()=++.()共有-项,当=时,()=++.()共有-+项,当=时,()=++.在上定义运算⊙:⊙=,若关于的不等式(-)⊙(+-)>的解集是集合{|-≤≤,∈}的子集,则实数的取值范围是().-≤≤.-≤≤.-≤≤.≤≤.已知()为偶函数,且(+)=(-),当-≤≤时,()=,若∈*,=(),则=()....-.函数()在[-,]上满足(-)=-()是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是().(α)>(β).(α)>(β).(α)<(β).(α)<(β).有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。
四位歌手的话只有两名是对的,则奖的歌手是().甲.乙.丙.丁二、填空题(每小题分,共分.把答案填在题中的横线上).“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给出一组数:,,,它的第个数可以是。
2018年高考考点完全题数学(文)考点通关练习题第五章不等式、推理与证明、算法初步与复数34Word版含答案
考点测试34 二元一次不等式组与简单的线性规划一、基础小题1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43 D .34答案 C解析 不等式组表示的平面区域如图阴影部分所示,即△ABC .由⎩⎪⎨⎪⎧x +3y =4,3x +y =4,得交点A 的坐标为(1,1).又B 、C 两点的坐标分别为(0,4),⎝ ⎛⎭⎪⎫0,43,故S △ABC =12·|BC |·|x A |=12×⎝ ⎛⎭⎪⎫4-43×1=43,故选C.2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x ≤2,x -y ≥0,则x +3y 的最大值是( )A .2B .3C .4D .5答案 D解析 作出不等式组表示的可行域,如图(阴影部分),易知z =x +3y 过点B (2,1)时取得最大值,z max =2+3×1=5.故选D.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -7≤0,x ≥1,y ≥1,则|y -x |的最大值是( )A .2 2B .322C .4D .3答案 D解析 画出不等式组表示的平面区域(如图),计算得A (1,2),B (4,1),当直线z =x -y 过点A 时z min =-1,过点B 时z max =3,则-1≤x -y ≤3,则|y -x |≤3.4.若点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,y ≤-x +4,则x 2+y 2的最大值为( )A .10B .8C .16D .10答案 D解析 画出不等式组对应的可行域如图所示,易得A (1,1),|OA |=2,B (2,2),|OB |=22,C (1,3),|OC |=10,故|OP |的最大值为10,即x 2+y 2的最大值等于10.故选D.5.若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的取值范围是( )A .(0,2)B .(0,2]C .(2,+∞)D . B .(22,32] C .(32,25] D .(0,22)∪(25,+∞)答案 D解析 圆C 不经过区域D 有两种情况:①区域D 在圆外;②区域D 在圆内.由于不等式组中的一个不等式对应的直线y =x 正好经过圆的圆心,故利用圆的性质即可求解出r 的取值范围.作出不等式组⎩⎪⎨⎪⎧x +y ≤4,y -x ≥0,x -1≥0表示的平面区域,得到如图所示的△MNP 及其内部,其中M (1,1),N (2,2),P (1,3),且MN ⊥PN .∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C (-1,-1)为圆心,r 为半径的圆.∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点.又∵CM =+2++2=22,CP =+2++2=25,∴当0<r <22或r >25时,圆C 不经过区域D 上的点.12.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.答案 92解析 目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.二、高考小题13.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案 C解析 作出不等式组所表示的平面区域,如图(阴影部分)所示,x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大,所以x 2+y 2的最大值是10,故选C.14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 作出可行域如图.由⎩⎪⎨⎪⎧ 2x -y -3=0,x +y -3=0,得A (2,1),由⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0,得B (1,2).斜率为1的平行直线l 1,l 2分别过A ,B 两点时它们之间的距离最小,且最小值为A 、B 两点之间的距离|AB |= 2.故选B.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________. 答案 -10解析 可行域如图所示(包括边界),直线2x -y +1=0与x -2y -1=0相交于点(-1,-1),当目标函数线过(-1,-1)时,z 取最小值,z min =-10.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.答案 4解析 由线性约束条件画出可行域,如图.解方程组⎩⎪⎨⎪⎧x +y -2=0,x -2y +1=0,得⎩⎪⎨⎪⎧x =1,y =1,即A 点坐标为(1,1).当动直线3x +y -z =0经过点A (1,1)时,z 取得最大值,z max =3×1+1=4.17.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.答案 216000解析 设生产产品A x 件,产品B y 件,依题意,得⎩⎪⎨⎪⎧x ≥0,y ≥0,1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,设生产产品A ,产品B 的利润之和为E 元,则E =2100x+900y .画出可行域(图略),易知最优解为⎩⎪⎨⎪⎧x =60,y =100,此时E max =216000.18.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,32解析 作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32处取得.故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.三、模拟小题19.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1C .32D .2答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x得A 点坐标为(1,2),∴m 的最大值是1,故选B.20.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0.则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .C .⎣⎢⎡⎭⎪⎫53,5 D .⎣⎢⎡⎭⎪⎫-53,5 答案 D解析 画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.21.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43答案D解析 作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1、l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).故选D.22.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为( )A .(0,2)B .⎝ ⎛⎭⎪⎫0,12C .⎝ ⎛⎭⎪⎫0,13 D .⎝ ⎛⎭⎪⎫13,12 答案 B解析 约束条件表示的可行域如图中阴影部分所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.故选B.23.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x +3y -12≤0,y -2≥0,则z =2x -y +1x +1的最大值为( )A .54 B .45 C .916 D .12答案 B解析 因为z =2x -y +1x +1=2x +2-y -1x +1=2-y +1x +1,所以要求z 的最大值,只需求u =y +1x +1的最小值,画出可行域(图略)可知,使u =y +1x +1取得最小值的最优解为⎝ ⎛⎭⎪⎫32,2,代入z=2x -y +1x +1,可求得z 的最大值为45,故选B.24.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是( )A .16B .18C .20D .36答案 C解析 平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为⎝⎛⎭⎪⎫32,0,也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20,故选C.一、高考大题1.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.所以生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元. 二、模拟大题2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).3.为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知:甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP 260万元;乙项目每投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP 200万元.已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP 最大?解 设甲项目投资x (单位:百万元), 乙项目投资y (单位:百万元), 两项目增加的GDP 为z =260x +200y ,依题意,x 、y 满足⎩⎪⎨⎪⎧x +y ≤30,2x +4y ≤100,24x +32y ≥800,x ≥0,y ≥0,所确定的平面区域如图中阴影部分.解⎩⎪⎨⎪⎧x +y =30,2x +4y =100,得⎩⎪⎨⎪⎧x =10,y =20,即A (10,20);解⎩⎪⎨⎪⎧x +y =30,24x +32y =800,得⎩⎪⎨⎪⎧x =20,y =10,即B (20,10).设z =0,得y =-1.3x ,将直线y =-1.3x 平移至经过点B (20,10),即甲项目投资2000万元,乙项目投资1000万元,两项目增加的GDP最大.。
2018年高考数学 专题10 推理与证明、算法、复数分项试题(含解析)理
专题 推理与证明、算法、复数一、选择题1.【2018河南洛阳尖子生联考】已知复数满足(为虚数单位),则为( )A. B. C. D.【答案】B点睛:复数代数形式运算问题的常见类型及解题策略:(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.(3)利用复数相等求参数..2.【2018天津市滨海新区八校联考】复数21ii=+( ) A. 1i - B. 1i -- C. 1i + D. 1i -+ 【答案】C 【解析】21ii=+()2i 1i 1i 2-=+ ,选C.3.【2018广西三校九月联考】其中i 为虚数单位,则a b -=( )A. -1B. 1C. 2D. -3 【答案】D所以213b a a b ==--=-,, 故选D4.【2018河南中原名校质检二】若,,其中为虚数单位,则复数( )A.B.C.D.【答案】B5.【2018吉林百校联盟九月联考】已知实数m 、n 满足()()4235m ni i i +-=+(i 为虚数单位),则在复平面内,复数z m ni =+对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】A【解析】由题意可得: ()()()()424242m ni i m n n m i +-=++-,结合题意有: 423{ 425m n n m +=-=,解得:则z 对应的点位于第一象限. 本题选择A 选项.6.【2018湖南省两市九月调研】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C【解析】复数z 满足()()5z i i --=,所以,所以命题p 为真;,所以命题q 为假. A.()()p q ⌝⌝∧为假;B. ()p q ⌝∧为假;C. ()p q ⌝∧为真;D. p q ∧为假.故选C.7.【2018江西省红色七校一模】(i 为虚数单位),则z 的虚部( )A. 1B. -1C. iD. -i 【答案】A8.【2018(i 为虚数单位),则复数z =( ) A. 1i + B. 1i -- C. 1i -+ D. 1i - 【答案】B【解析】试题分析:,故选B.考点:复数9.【2018衡水金卷高三大联考】执行如图的程序框图,若输出的的值为-10,则①中应填( )A.B.C.D.【答案】C 【解析】由图,可知.故①中应填.故选C.10.【2018吉林百校联盟九月联考】运行如图所示的程序框图,若输入的i a (1,2,i =…,10)分别为1.5、2.6、3.7、4.8、7.2、8.6、9.1、5.3、6.9、7.0,则输出的值为( )【答案】C点睛:(1)解决程序框图问题要注意的三个常用变量①计数变量:用来记录某个事件发生的次数,如i=i+1.②累加变量:用来计算数据之和,如S=S+i;③累乘变量:用来计算数据之积,如p=p×i.(2)使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.【2018湖南两市九月调研】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入,n x的值分别为3,3.则输出v的值为()A. 15B. 16C. 47D. 48【答案】D12.【2018广东省海珠区一模】执行如图所示的程序框图,则输入的n=()A. 3B. 4C. 5D. 6【答案】B13.【2018江西省红色七校一模】《九章算术》是我国古代内容极为丰富的数学典籍,其中第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A. 5B. 4C. 3D. 2【答案】B【解析】模拟执行程序可得,a=1,A=1,S=0,n=1≥,执行循环体,S=2 不满足条件S10≥,执行循环体,不满足条件S10≥,执行循环体不满足条件S10≥,退出循环,输出n=4满足条件S10故选B14.【2018广西柳州市一模】执行如图所示的程序框图,若输出K的值为8,则判断框图可填入的条件是()【答案】C考点:程序框图及循环结构.x=-,则输出的y= 15.【2018海南省八校联考】执行如图所示的程序框图,若输入的5( )A. 2B. 4C. 10D. 28【答案】Bx=-,【解析】5,不符合题意,y=+=,∴1314故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【2018湖南永州市一模】执行如图所示程序框图,若输入的[]0,1x ∈,则输出的x 的取值范围为( )A. []0,1B. []1,1-C. []3,1-D. []7,1- 【答案】C【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 17.【2018广东珠海六校联考】执行如图所示的程序框图,输出的S 值为( )A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:程序执行中的数据变化如下:s= ==<==<==<==<不成立,输出8 0,1,03,1,1,13,2,2,23,8,3,33k s s k s k s k考点:程序框图18.【2018陕西西工大附中一模】执行如图所示的程序框图,则输出的结果为()【答案】D点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.19.【2018陕西西工大附中一模】执行下面的程序框图,如果输入1x =, 0y =, 1n =,则输出的坐标对应的点在以下幂函数图象上的是( )B. y x =C. 2y x =D. 3y x =【答案】D【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.20.【2018山东德州晏婴中学二模】执行如图所示的程序框图,则输出的结果是( )A. 7B. 8C. 9D. 10【答案】B,输出n=8,选B。
2018届高考数学(文)大一轮复习检测:第六章 不等式、推理与证明 课时作业39 Word版含答案
课时作业39 基本不等式一、选择题1.已知a ,b ∈R +且a ≠b ,x =a +b2,y =a +b ,则x ,y 的大小关系是( )A .x <yB .x >yC .x =yD .视a ,b 的值而定解析:由不等式a 2+b 22≥⎝⎛⎭⎪⎫a +b 22,可得a +b2≥a +b2,又因为a +b2<a +b ,所以可得a +b2<a +b ,即x <y .答案:A2.设函数f (x )=x +1x -1,当x >1时,不等式f (x )≥a 恒成立,则实数a 的取值范围是( )A .(-∞,3]B .[3,+∞) C.⎣⎢⎡⎭⎪⎫72,+∞ D.⎝⎛⎦⎥⎤-∞,72 解析:当x >1时,x -1>0,则f (x )=x +1x -1=x -1+1x -1+1≥2x -1x -1+1=3,当且仅当x -1=1x -1,即x =2时等号成立,函数f (x )有最小值3.由不等式f (x )≥a 恒成立,得实数a 的取值范围是(-∞,3].答案:A3.点(a ,b )在直线x +2y =3上移动,则2a+4b的最小值是( ) A .8 B .6 C .4 2D .3 2解析:由题可得a +2b =3,因为2a+4b=2a +22b≥22a +2b=223=42,当且仅当a =2b ,即a =32,b =34时等号成立.答案:C4.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:∵2xy =x ·2y ≤⎝⎛⎭⎪⎫x +2y 22,∴8=x +2y +2xy ≤(x +2y )+⎝ ⎛⎭⎪⎫x +2y 22,令x +2y =t ,则t 2+4t -32≥0,解得t ≥4或t ≤-8(舍去),∴x +2y 的最小值为4.答案:B5.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63 B.23 3 C.236 D.433 解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2,又a >0,∴Δ>0,∴x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a=433,当且仅当a =36时取等号.故x 1+x 2+a x 1x 2的最小值是433.答案:D6.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .1B .6C .9D .16解析:∵正数a ,b 满足1a +1b =1,∴b =aa -1>0,解得a >1,同理b >1,∴1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1a -=6,当且仅当1a -1=9(a -1),即a =43时等号成立,∴最小值为6. 答案:B 二、填空题 7.y =-aa +(-6≤a ≤3)的最大值为________.解析:由-6≤a ≤3,得3-a ≥0,a +6≥0.由基本不等式, 得-aa +≤-a +a +2=92,当且仅当3-a =a +6,即a =-32时,等号成立,故y 的最大值为92.答案:928.已知直线ax +by =1经过点(1,2),则2a+4b的取值范围是________. 解析:由直线ax +by =1经过点(1,2),得a +2b =1,则2a+4b≥22a×4b=22a +2b=22,当且仅当2a =4b,即a =12,b =14时,等号成立,所以2a+4b的取值范围是[22,+∞). 答案:[22,+∞)9.(2017·湖北襄阳一调)已知x >-1,y >0且满足x +2y =1,则1x +1+2y的最小值为________.解析:∵x >-1,y >0且满足x +2y =1, ∴x +1>0,且(x +1)+2y =2, ∴1x +1+2y =12[(x +1)+2y ]⎝ ⎛⎭⎪⎫1x +1+2y=52+12⎣⎢⎡⎦⎥⎤2yx +1+x +y≥52+12×22y x +1·x +y=92, 当且仅当⎩⎪⎨⎪⎧2y x +1=x +y ,x +2y =1,即⎩⎪⎨⎪⎧x =-13,y =23时取等号,故1x +1+2y 的最小值为92,所以答案应填92. 答案:92三、解答题10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.11.已知a >0,b >0,1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)∵a >0,b >0, ∴1a +1b ≥21ab,即ab ≥21ab,由此得ab ≥2,当且仅当a =b =2时取等号,又a 3+b 3≥2a 3b 3≥223=42, 当且仅当a =b =2时取等号, ∴a 3+b 3的最小值是4 2.(2)由(1)得ab ≥2(a =b =2时取等号), ∴2a +3b ≥22a ·3b =26ab , 当且仅当2a =3b 时等号成立, 故2a +3b ≥26ab >43>6,故不存在a ,b ,使得2a +3b =6成立.1.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值是( )A .0B .1 C.94 D .3解析:xy z =xy x 2-3xy +4y 2=1x y +4yx-3 ≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x +1y -2z =-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.答案:B2.(2017·银川模拟)若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0,则2a +1b的最小值是( )A .2- 2 B.2-1 C .3+2 2D .3-2 2解析:∵圆心为(1,2)在直线2ax +by -2=0上,∴a +b =1,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b·(a +b )=3+2b a +a b ≥3+2 2.当且仅当2b a =ab,即a =2-2,b =2-1时等号成立.答案:C3.若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)(b +2)的最小值为________. 解析:因为ab -4a -b +1=0,所以b =4a -1a -1.又a >1,所以b >0,所以(a +1)(b +2)=ab +2a +b +2=6a +2b +1=6a +8+6a -1+1=6(a -1)+6a -1+15.因为a -1>0,所以6(a -1)+6a -1+15≥2a -6a -1+15=27,当且仅当6(a -1)=6a -1(a >1),即a =2时等号成立,故(a +1)·(b +2)的最小值为27.答案:274.某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为x 2+x 万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?解:(1)设需要修建k 个增压站,则(k +1)x =240,即k =240x-1.所以y =400k +(k +1)(x 2+x )=400⎝⎛⎭⎪⎫240x -1+240x(x 2+x )=96 000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x <240.故y 与x 的函数关系是y =96 000x+240x -160(0<x <240).(2)y =96 000x+240x -160≥296 000x·240x -160=2×4 800-160=9 440,当且仅当96 000x =240x ,即x =20时等号成立.此时k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9 440万元.。
【高考专题】2018年高考数学几何证明专题复习100题(含答案详解)
【高考专题】2018年高考数学几何证明专题复习100题1.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点.(1)求证:面;(2)求二面角的大小的正弦值;(3)求点到面的距离.2.如图,在四棱锥中,为正三角形,,,,,平面平面。
(1)点在棱上,试确定点的位置,使得平面;(2)求二面角的余弦值。
3.如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是60°.(I)证明平面ABEF EFDC;(II)求二面角E-BC-A的余弦值.4.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面ABB1A1,且AA1=AB=2.(I)求证:AB⊥BC;(Ⅱ)若直线AC与平面A1BC所成角的大小为30°,求锐二面角A-A1C-B的大小.5.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求四面体N-BCM的体积.6.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(I)求证:EG∥平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.7.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.8.如图所示的几何体中,△ABC是任意三角形,AE//CD,且AE=AB=2a,CD=a,F为BE的中点.求证:DF//平面ABC.9.如图,四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.10.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.(Ⅰ)求证:CE∥平面PAD;(Ⅱ)求PD与平面PCE所成角的正弦值;(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求的值;如果不存在,说明理由.11.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1) 证明:PB∥平面AEC;(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.12.如图,三棱锥P-ABC中,PA平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC BM,并求PM:MC的值.13.在如图所示的几何体中,四边形是正方形,平面,,分别为的中点,且.(1)求证:平面平面;(2)求三棱锥与四棱锥的体积之比.14.如图,在斜三棱柱中,侧面与侧面都是菱形,,.(1)求证:;(2)若,求二面角的余弦值.15.如图, 已知四边形ABC D是平行四边形, 点P是平面ABCD外一点, M是PC的中点, 在DM上取一点G, 过G和AP作平面交平面BDM于GH.(Ⅰ)求证: AP∥平面BDM;(Ⅱ)若G为DM中点,求证: PA=4GH.16.如图,已知ABCD是矩形,SA⊥平面ABCD,E是SC上一点.求证:BE不可能垂直于平面SCD.C17.如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD,(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E=ACD的体积为,求该三棱锥的侧面积.18.如图,已知正三棱柱的底面积为,侧面积为;(1)求正三棱柱的体积;(2)求异面直线与所成的角的余弦值。
2018年高考数学专题12.2推理与证明试题文
推理与证明【三年高考】1. 【2017课标II ,文9】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D.2. 【2017北京,文14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________.②该小组人数的最小值为__________.【答案】6,12【解析】设男生数,女生数,教师数为,,a b c ,则2,,,c a b c a b c >>>∈N ,第一小问:max 846a b b >>>⇒=,第二小问:min 3,635,412.c a b a b a b c =>>>⇒==⇒++= 3. 【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.4.【2016高考山东文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯; 2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯; 2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯; 2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯; …… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 【答案】()413n n ⨯⨯+ 【解析】通过类比,可以发现,最前面的数字是43,接下来是和项数有关的两项的乘积,即()1n n +,故答案为()413n n ⨯⨯+5.【2015高考陕西,文16】观察下列等式: 1-1122= 1-1111123434+-=+ 1-1111111123456456+-+-=++ …………据此规律,第n 个等式可为______________________. 【答案】111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++【2017考试大纲】1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.【三年高考命题回顾】纵观前三年各地高考试题, 高考对本部分知识的考查主要在合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及到,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小.【2018年高考复习建议与高考命题预测】推理与证明是数学的基础思维过程,也是人们学习和生活中经常使用的思维方式,推理一般包括合情推理与演绎推理,在解决问题的过程中,合情推理具有猜测结论和发现结论、探索和提供思路的作用,有利于创新意识的培养.证明包括直接证明与间接证明,其中数学归纳法是将无穷的归纳过程,根据归纳原理转化为有限的特殊(直接验证和演绎推理相结合)的过程,要很好地掌握其原理并灵活运用.推理与证明问题综合了函数、方程、不等式、解析几何与立体几何等多个知识点,需要采用多种数学方法才能解决问题,如:函数与方程思想、化归思想、分类讨论思想等,对学生的知识与能力要求较高,是对学生思维品质和逻辑推理能力,表述能力的全面考查,可以弥补选择题与填空题等客观题的不足,是提高区分度,增强选拔功能的重要题型,因此在最近几年的高考试题中,推理与证明问题正在成为一个热点题型,并且经常作为压轴题出现. 预测2018年高考可能会有题目用到推理证明的方法.复习建议:推理证明题主要和其它知识结合到一块,属于知识综合题,解决此类题目时要建立合理的解题思路.【2018年高考考点定位】高考的考查:合情推理和演绎推理、直接证明与间接证明等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及到,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小;【考点1】合情推理与演绎推理【备考知识梳理】1.合情推理(1)定义:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理叫做合情推理.(2)合情推理可分为归纳推理和类比推理两类:①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、由个别到一般的推理;归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类a.数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;b.形的归纳主要包括图形数目归纳和图形变化规律归纳.②类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.类比推理的分类:类比推理的应用一般为类比定义、类比性质和类比方法a.类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;b.类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;c.类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论的推理叫做演绎推理.演绎推理的特征是:当前提为真时,结论必然为真.(2)模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(3)特点:演绎推理是由一般到特殊的推理.【规律方法技巧】1. 归纳推理与类比推理之区别:(1)归纳推理是由部分到整体,由个别到一般的推理.在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质.在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.2.演绎推理问题的处理方法从思维过程的指向来看,演绎推理是以某一类事物的一般判断为前提,而作出关于该类事物的判断的思维形式,因此是从一般到特殊的推理.数学中的演绎法一般是以三段论的格式进行的.三段论由大前提、小前提和结论三个命题组成,大前提是一个一般性原理,小前提给出了适合于这个原理的一个特殊情形,结论则是大前提和小前提的逻辑结果.3.应用合情推理应注意的问题:(1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.注意:归纳推理关键是找规律,类比推理关键是看共性.4.归纳推理与类比推理的步骤(1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想);③检验猜想.实验、观察→概括、推广→猜测一般性结论(2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);③检验猜想.观察、比较→联想、类推→猜想新结论5.演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.6.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论,归纳推理所得的结论不一定可靠,但它是由特殊到一般,由具体到抽象的认知过程,是发现一般规律的重要方法. 类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质.在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则会犯机械类比的错误.演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性.【考点针对训练】1. 【湖北省荆州中学2018届高三第二次月考】如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,.若 EF AB , EF 到CD 与AB 的距离之比为:m n ,则可推算出:形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB , OCD 的面积分别为12S S ,,EF AB 且EF 到CD 与AB 的距离之比为:m n ,则OEF 的面积0S 与12S S ,的关系是( )【答案】C2. 【江西省南昌市2017届高三第三次模拟】已知,,若33333+++++=,则n=n12343025A. 8B. 9C. 10D. 11【答案】C【解析】观察所提供的式子可知,等号左边最后一个数是3n时,因此,令n=10.本题选择C选项.【考点2】直接证明与间接证明【备考知识梳理】1.直接证明(1)综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(2)分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法的思维特点是:执果索因;P为真,分析法的书写格式:要证明命题Q为真,只需要证明命题1从而有……,这只需要证明命题为真,从而又有……这只需要证明命题P为真,而已知P为真,故命题Q必为真框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.2.间接证明反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的,即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.【规律方法技巧】1. 明晰三种证题的一般规律(1)综合法证题的一般规律:用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.(2)分析法证题的一般规律:分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.(3)反证法证题的一般规律:反证法证题的实质是证明它的逆否命题成立.反证法的主要依据是逻辑中的排中律,排中律的一般形式是:或者是A,或者是非A.即在同一讨论过程中,A和非A有且仅有一个是正确的,不能有第三种情况出现.2.综合法证题的思路:3.分析法证题的技巧:(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证.4.反证法证明问题的一般步骤:(1)反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论.5.反证法是一种重要的间接证明方法,适用反证法证明的题型有:(1)易导出与已知矛盾的命题;(2)否定性命题;(3)唯一性命题;(4)至少至多型命题;(5)一些基本定理;(6)必然性命题等.【考点针对训练】1. 【宁夏石嘴山市2017届高三第三次模拟】高三(1)班某一学习小组的A 、B 、C 、D 四位同学周五下午参加学校的课外活动,在课外活动时间中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步. ①A 不在散步,也不在打篮球; ②B 不在跳舞,也不在跑步; ③“C 在散步”是“A 在跳舞”的充分条件; ④D 不在打篮球,也不在跑步; ⑤C 不在跳舞,也不在打篮球. 以上命题都是真命题,那么D 在 .【答案】画画【解析】由①②④,可知,A 、B 、D 都不散步,必有C 在散步,由③可知必有A 在跳舞,由⑤可知D 不在打篮球,因此D 在画画,故答案为画画.2. 【山东莱芜市第一中学2017年高三数学模拟】用反证法证明命题“设,a b 为实数,则方程20x ax b ++=没有实数根”时,要做的假设是A. 方程20x ax b ++=至多有一个实根B. 方程20x ax b ++=至少有一个实根C. 方程20x ax b ++=至多有两个实根D. 方程20x ax b ++=恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.【应试技巧点拨】1.逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.2.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论,归纳推理所得的结论不一定可靠,但它是由特殊到一般,由具体到抽象的认知过程,是发现一般规律的重要方法.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).3.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质.在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质.类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则会犯机械类比的错误.4.反证法是一种重要的间接证明方法,适用反证法证明的题型有:(1)易导出与已知矛盾的命题;(2)否定性命题;(3)唯一性命题;(4)至少至多型命题;(5)一些基本定理;(6)必然性命题等.证明问题的一般步骤:(1)反设; (2)归谬; (3)立论.注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论.1.【西藏自治区拉萨中学2017届高三第八次月考】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下: 甲是中国人,还会说英语.乙是法国人,还会说日语. 丙是英国人,还会说法语.丁是日本人,还会说汉语. 戊是法国人,还会说德语.则这五位代表的座位顺序应为( ) A. 甲丙丁戊乙 B. 甲丁丙乙戊 C. 甲乙丙丁戊 D. 甲丙戊乙丁 【答案】D2.【2017届山西省高三3月一模】已知P 是圆222x y R +=上的一个动点,过点P 作曲线C 的两条互相垂直的切线,切点分别为,M N , MN 的中点为E .若曲线,且222R a b =+,则点E 的轨迹方程为若,且222R a b =-,则点E 的轨迹方程是( )【答案】B【解析】由于椭圆与双曲线定义中的运算互为逆运算,所以猜想与双曲线对应的点E 的轨迹3. 【江西省新余市2017届高三高考全真模拟】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.+类似上述过程,则=( )【答案】A【解析】由题意结合所给的例子类比推理可得:()()130x x +-=,则3x =,3=.本题选择A 选项.4. 【北京市朝阳区2017届高三二模】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为,,(且),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是A. 甲B. 乙C. 丙D. 乙和丙都有可能 【答案】B 【解析】总分为,所以,只有两种可能或。
[精品]2018高考数学(文科)习题第十三章推理与证明提分训练132和答案
………………………………………………………………………………………………时间:50分钟基础组1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y2b2=1的面积S=πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 由A 可知其为椭圆的定义;B.由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式,属于归纳推理;C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y2b2=1的面积S =πab ,是类比推理;D.科学家利用鱼的沉浮原理制造潜艇,也属于类比推理,故选B.2.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a⇔b 2-ac <3a 2 ⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0 ⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0. 3.“因为指数函数y =ax是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错 答案 A解析 “指数函数y =a x 是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的.4.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2015=( ) A .3 B .-3 C .6 D .-6答案 D解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2015=6×335+5,∴a 2015=a 5=-6.选D.5.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92答案 B解析 个数按顺序构成首项为4,公差为4的等差数列,因此|x |+|y |=20的不同整数解(x ,y )的个数为4+4(20-1)=80,故选B.6.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 答案 B解析 因为结论“自然数a ,b ,c 中恰有一个偶数”可得题设为:“a ,b ,c 中恰有一个偶数”,所以反设为a ,b ,c 中至少有两个偶数或都是奇数.7.当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于( )A .n nB .n 2C .nD .n +1答案 A解析 ∵x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x2+⎝ ⎛⎭⎪⎫2x 2≥3,∴在p 位置出现的数恰好是不等式左边分母x n 的指数n 的n次方,即p =n n .8.观察下列等式13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+…+n 3=n 2n +24解析 观察表达式的底数可知,1=1,1+2=3,1+2+3=6,1+2+3+4=10,故第n 个等式的底数为1+2+3+…+n =n+n2,故第n 个等式为13+23+…+n 3=n 2n +24.9.已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2014(x )的表达式为________.答案x1+2014x解析 依题意,f 1(x )=f (x )=x1+x ,f 2(x )=f (f 1(x ))=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x1+x=x1+2x,f 3(x )=f (f 2(x ))=f ⎝ ⎛⎭⎪⎫x 1+2x =x1+2x 1+x 1+2x=x 1+3x ,…,由此可猜测f n (x )=x1+nx,故f 2014(x )=x1+2014x.10.请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 21+a 22+…+a 2n =1时,你能得到的结论为________.答案 a 1+a 2+…+a n ≤n解析 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2+…+a n )2-4n ≤0, 所以a 1+a 2+…+a n ≤n .11.已知a >0,1b -1a>1,求证:1+a >11-b. 证明 由已知1b -1a>1及a >0可知0<b <1,要证1+a >11-b, 只需证1+a ·1-b >1, 只需证1+a -b -ab >1,只需证a -b -ab >0即a -bab>1,即1b -1a>1,这是已知条件,所以原不等式得证.12.已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数根.证明 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a2--4a +,a -2-4a 2<0,a2--2a⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.能力组13.若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q2 B .q 2C.qD.nq答案 C 解析由题设有,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1qn -1=b n 1q1+2+…+(n -1)=b n1qn -n2,∴nT n =b 1q n -12,∴等比数列{n T n }的公比为q ,故选C.14. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3.观察上述结果,按照上面规律,可推测f (128)>_______.点击观看解答视频答案 92解析 观察f (2)=32,f (4)>2,f (8)>52,f (16)>3可知,等式及不等式右边的数构成首项为32,公差为12的等差数列,故f (128)=f (27)>32+6×12=92.15.已知函数f (x )=ln x -a x -x +1.(1)若函数f (x )在(0,+∞)上为单调递增函数,求a 的取值范围;(2)设m ,n ∈R +,且m >n ,求证:m -n ln m -ln n <m +n2.解 (1)f ′(x )=1x-a x +-a x -x +2=x +2-2ax x x +2=x 2+-2a x +1x x +2.因为f (x )在(0,+∞)上为单调递增函数, 所以f ′(x )≥0在(0,+∞)上恒成立. 即x 2+(2-2a )x +1≥0在(0,+∞)上恒成立. 当x ∈(0,+∞)时,由x 2+(2-2a )x +1≥0, 得2a -2≤x +1x.设g (x )=x +1x,x ∈(0,+∞).g (x )=x +1x≥2x ·1x=2, 当且仅当x =1x,即x =1时取等号,即g (x )的最小值为2,则2a -2≤2,即a ≤2. 故a 的取值范围是(-∞,2].(2)证明:要证m -n ln m -ln n <m +n2,只需证m n -1ln m n <m n +12,即证ln m n >2⎝ ⎛⎭⎪⎫m n -1m n +1,则只需证ln mn -2⎝ ⎛⎭⎪⎫m n -1mn+1>0.设h (x )=ln x -x -x +1.由(1)知,h (x )在(1,+∞)上是单调递增函数,又mn>1,所以h ⎝ ⎛⎭⎪⎫m n >h (1)=0.即ln m n -2⎝ ⎛⎭⎪⎫m n -1mn +1>0成立.所以m -n ln m -ln n <m +n2.16.已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ;(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .解 (1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}.可得,A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=q --q n -11-q-q n -1=-1<0.所以,s <t .。
2018版高考数学(浙江专用文理通用)大一轮复习讲义第七章数列、推理与证明第3讲Word版含答案
基础巩固题组 (建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A.{a n +b n },{a n ·b n }都一定是等比数列B.{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C.{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D.{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为( ) A.2B.12C.2或12D.-2或12解析 设数列{a n }的公比为q ,由a 1+a 4a 2+a 3=a 1(1+q 3)a 1(q +q 2)=1+q 3q +q 2=(1+q )(1-q +q 2)q (1+q )=1-q +q2q=1812,得q =2或q =12.故选C. 答案 C3.(必修5P67A1(2)改编)一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂( ) A.55 986B.46 656C.216D.36解析 设第n 天蜂巢中的蜜蜂数量为a n ,根据题意得数列{a n }成等比数列,a 1=6,q =6,所以{a n }的通项公式a n =6×6n -1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a 6=6×65=66=46 656只蜜蜂,故选B. 答案 B4.(2015·全国Ⅱ卷)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.84解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 答案 B5.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150 B.-200 C.150或-200D.400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30,又S 20>0, 因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80.S 40=150.故选A.答案 A 二、填空题6.(2017·乐清市模拟)在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.解析 两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3.即q =3. 答案 37.(2017·宁波调研)已知数列{a n }满足a 1=1,a n +1=a n +2n (n ∈N *),则a 3=________;通项公式a n =________.解析 ∵a 1=1,a n +1=a n +2n(n ∈N *),∴a 2=a 1+2=3,a 3=a 2+22=3+4=7.n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n-12-1=2n-1(n =1时也成立),∴a n =2n-1. 答案 7 2n-18.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________. 解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8.答案 8 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1, 所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.10.(2017·宁波十校联考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.能力提升题组 (建议用时:25分钟)11.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A.12B.13C.14D.15解析 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以n =14,故选C. 答案 C12.(2016·临沂模拟)数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n-1) C.9n-1D.14(3n-1) 解析 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).答案 B13.(2017·沈阳模拟)在等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是________. 解析 当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3,当且仅当a 1=a 3=1时等号成立.当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1,当且仅当a 1=a 3=-1时等号成立.所以,S 3的取值范围是(-∞,-1]∪∪[3,+∞)14.(2015·四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以q =2. 从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列, 故a n =2n.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n>1 000,因为29=512<1 000<1 024=210,所以n ≥10,于是,使|T n -1|<11 000成立的n 的最小值为10.15.(2017·绍兴模拟)已知正项数列{a n }的奇数项a 1,a 3,a 5,…a 2k -1,…构成首项a 1=1的等差数列,偶数项构成公比q =2的等比数列,且a 1,a 2,a 3成等比数列,a 4,a 5,a 7成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a 2n +1a 2n,T n =b 1b 2…b n ,求正整数k ,使得对任意n ∈N *,均有T k ≥T n . 解 (1)由题意:⎩⎪⎨⎪⎧a 22=a 1a 3,2a 5=a 4+a 7,设a 1,a 3,a 5,…,a 2k -1,…的公差为d ,则a 3=1+d ,a 5=1+2d ,a 7=1+3d ,a 4=2a 2,代入⎩⎪⎨⎪⎧a 22=1(1+d ),1+d =2a 2,又a 2>0,故解得⎩⎪⎨⎪⎧a 2=2,d =3.故数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧3n -12,n 为奇数,2n 2,n 为偶数,(2)b n =3n +12n ,显然b n >0,∵b n +1b n =3n +42n +13n +12n =3n +46n +2<1, ∴{b n }单调递减,又b 1=2,b 2=74,b 3=108,b 4=136,∴b 1>b 2>b 3>1>b 4>b 5>…,∴k =3时,对任意n ∈N *,均有T 3≥T n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考文科数学推理与证明专项100题(WORD版含答案)1.下列说法中正确的是()A.当a>1时,函数y=a x是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理C.命题的否定是¬P:∀x∈R,e x>xD.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小2.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×220143.用反证法证明命题:“若a,b∈R,则函数f(x)=x3+ax﹣b至少有一个零点”时,假设应为()A.函数没有零点B.函数有一个零点C.函数有两个零点D.函数至多有一个零点4.分析法又叫执果索因法,若使用分析法证明:设a<b<c,且a+b+c=0,求证:b2﹣ac<3c2,则证明的依据应是()A.c﹣b>0 B.c﹣a>0 C.(c﹣b)(c﹣a)>0 D.(c﹣b)(c﹣a)<0 5.有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值,此定值为()A.B.C.D.a7.定义:“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等.在数学中也有这样一类数字有这样的特征,称为回文数.设n是一任意自然数.若将n的各位数字反向排列所得自然数n1与n相等,则称n 为一回文数.例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数.则下列数中不是回文数的是()A.187×16 B.1112C.45×42 D.2304×218.学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演9.小赵、小钱、小孙、小李四位同学被问到谁去过长城时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是()A.小赵B.小李C.小孙D.小钱10.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为R,四面体S﹣ABC的体积为V,则R=()A.B.C.D.11.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为])2bca(ca[41S222222-+-=.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A.3B.2 C.3 D.612.平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形的对角线条数为()A.42 B.65 C.143 D.16913.下面结论正确的是()①一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).②由平面三角形的性质推测空间四面体的性质,这是一种合情推理.③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④14.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+3z+3=0的距离为()A.3 B.5 C.D.315.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A. B.2 C.3 D.16.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③17.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙18.已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段l 的距离,记作d(P,l).设l是长为2的线段,点集D={P|d(P,l)≤1}所表示图形的面积为()A.πB.2π C.2+πD.4+π19.下面使用类比推理恰当的是()A.“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”B.“若(a+b)c=ac+bc”类推出“(a•b)c=ac•bc”C.“(a+b)c=ac+bc”类推出“=+(c≠0)”D.“(ab)n=a n b n”类推出“(a+b)n=a n+b n”20.下面四个推理,不属于演绎推理的是()A.因为函数y=sinx(x∈R)的值域为[﹣1,1],2x﹣1∈R,所以y=sin(2x﹣1)(x∈R)的值域也为[﹣1,1]B.昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论21.“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是()A.甲B.乙C.丙D.乙和丙都有可能22.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可能知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩23.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为( )A .B .C .D .24.已知x >0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n ∈N *),则a=( )A .2nB .3nC .n 2D .n n25.对于100个黑球和99个白球的任意排列(从左到右排成一行),则一定( ) A .存在一个白球,它右侧的白球和黑球一样多 B .存在一个黑球,它右侧的白球和黑球一样多 C .存在一个白球,它右侧的白球比黑球少一个 D .存在一个黑球,它右侧的白球比黑球少一个 26.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc(a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .1093527.《庄子·天下篇》中记述了一个著名命题:“一尺之棰,日取其半,万世不竭.”反映这个命题本质的式子是( ) A .21111122222n n +++⋅⋅⋅+=-B .211112222n +++⋅⋅⋅++⋅⋅⋅<C .21111222n ++⋅⋅⋅+= D .21111222n ++⋅⋅⋅++⋅⋅⋅< 28.对于各数互不相等的正数数组(i 1,i 2,…,i n )(n 是不小于2的正整数),如果在p <q 时有i p <i q ,则称“i p 与i q ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组(a 1,a 2,a 3,a 4,a 5)的“顺序数”是4,则(a 5,a 4,a 3,a 2,a 1)的“顺序数”是( ) A .7 B .6 C .5 D .4 29..两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8530.将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A 和B 所示的两个柱体,则柱体A 和B 的表面(不含地面)数字之和分别是( )A .4748,B .4749,C .4950,D .5049, 31.数0,1,2,3,4,5,…按以下规律排列:…,则从2013到2016四数之间的位置图形为( )A B12436655523136A.B.C.D.32.某人在x天观察天气,共测得下列数据:①上午或下午共下雨7次;②有5个下午晴;③有6个上午晴;④当下午下雨时上午晴.则观察的x天数为()A.11 B.9 C.7 D.不能确定33.定义区间(a,b),,的长度均为d=b﹣a.用表示不超过x的最大整数,记{x}=x﹣,其中x∈R.设f(x)={x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间的长度,则当0≤x≤3时,有( )A.d=1 B.d=2 C.d=3 D.d=434.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊊平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误35.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sinαsinβ;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a•b+b2.其中结论正确的个数是()A.0 B.1 C.2 D.336.如图,自然数列按正三角形图顺序排列,如数9排在第4行第3个位置;设数2015排在第m行第n个位置,则m+n= .37.观察下列等式,按此规律,第n个等式的右边等于.38.在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定出来x=2,类似地不难得到= .39.观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2= .40.有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n 日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙提听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是.41.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是.42.观察下列各式:13=1,13+23=32,13+23+33=62,13+23+33+43=102,…,由此推得:13+23+33…+n3= .43.自然数列按如图规律排列,若2017在第m行第n个数,则log2= .44.观察下列式子:1+<,1++<,1+++<,…据以上式子可以猜想:1++++…+<.45.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则以此规律A(8,2)为.46.已知x>0时有不等式x+≥2,x+=++≥3,…成立,由此启发我们可以推广为x+≥n+1(n∈N*),则a的值为.47.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.48.设n为正整数,,计算得,f(4)>2,,f (16)>3,观察上述结果,可推测一般的结论为.49.从1=12,2+3+4=32,3+4+5+6+7=52中,可得到一般规律为.(用数学表达式表示)50.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n﹣1)+F(n ﹣2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n},b2017= .51.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆1by a x 2222=+(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于 .52.有一个游戏,将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为 、 、 、 . 53.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是 . 54.已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠 公里. 55.大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式:a n=如果把这个数列{a n}排成右侧形状,并记A(m,n)表示第m行中从左向右第n个数,则A (10,4)的值为.56.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.57.古代数学家杨辉在沈括的隙积数的基础上想到:若由大小相等的圆球剁成类似于正四棱台的方垛,上底由a×a个球组成,杨辉给出求方垛中圆球总数的公式如下:S=3n(a2+b2+ab+2ab),根据以上材料,我们可得12+22+…+n2=.58.如图,根据图中的数构成的规律,a所表示的数是.59.观察下列式子:,,,…,根据以上规律,第n个不等式是.60.将一些正整数按如下规律排列,则10行第3个数为第1行 1 2第2行 2 4 6 8第3行 4 7 10 13第4行 8 12 16 20 24…61.某运动队对A,B,C,D四位运动员进行选拔,只选一人参加比赛,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是C或D参加比赛”;乙说:“是B参加比赛”;丙说:“是A,D都未参加比赛”;丁说:“是C参加比赛”.若这四位教练中只有两位说的话是对的,则获得参赛的运动员是.62.已知[x]表示不超过x的最大整数,例如[π]=3S1=S2=S3=,…依此规律,那么S10= .63.2016年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为.64.观察下列等式l+2+3+…+n=n(n+l);l+3+6+…+n(n+1)=n(n+1)(n+2);1+4+10+…n(n+1)(n+2)=n(n+1)(n+2)(n+3);可以推测,1+5+15+…+n(n+1)(n+2)(n+3)= .65.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数是.66.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.67.我国的《洛书》中记载着世界上最古老的幻方:将1,2,…,9填入方格内,使三行、三列,两条对角线的三个数之和都等于15,如图所示.一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行,每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的对角线上数的和为N n,例如N3=15,N4=34,N5=65…那么N n= .68.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.69.甲乙丙三人一起参加机动车驾驶证科目考三试后,与丁相聚,丁询问甲乙丙的考试结果,甲说:“我通过了.”,乙说:“我和甲都通过了.”,丙说:“我和乙都通过了.”甲乙丙三人有且只有一个人说的内容与考试结果不完全相同,甲乙丙中没有通过的是.70.德国数学家莱布尼兹发现了右面的单位分数三角形,单位分数是分子为1,分母为正整数的分数称为莱布尼兹三角形:根据前6行的规律,写出第7行的第3个数是.71.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.72.“开心辞典”中有这样的问题,给出一组数,要你根据规律填出后面的几个数,现给出一组数:它的第8个数可以是.73.某公司在进行人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是.74.某比赛现场放着甲、乙、丙三个空盒,主持人从一副不含大小王的52张扑克牌中,每次任取两张牌,将一张放入甲盒,若这张牌是红色的(红桃或方片),就将另一张放入乙盒;若这张牌是黑色的(黑桃或梅花),就将另一张放入丙盒;重复上述过程,直到所有扑克牌都放入三个盒子内,给出下列结论:①乙盒中黑牌不多于丙盒中黑牌②乙盒中红牌与丙盒中黑牌一样多③乙盒中红牌不多于丙盒中红牌④乙盒中黑牌与丙盒中红牌一样多其中正确结论的序号为.75.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.76.观察下列等式:1=++;1=+++;1=++++;…,以此类推,1=++++++,其中m<n,m,n∈N*,则m﹣n= .77.设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=;f3(x)=f(f2(x))=.f4(x)=f(f3(x))=…根据以上事实,当n∈N*时,由归纳推理可得:f n(1)= .78.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖。