25.3 用频率估计概率讲义 教师版
九年级数学上册253用频率估计概率教案(新版)新人教版.docx
25.3用频率估计概率三维教学目标知识与技能:理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.过程与方法:经历利用频率估计概率的学习,使学生明白在.同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率…情感态度价值观:通过研究如何用统计频率求一些现实生活屮的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.教学重点对利用频率估计概率的理解和应用.教学难点利用频率估计概率的理解.解决方法教学过程设计教学内容(教什么)落实方式(方法或手段)设计意图(为什么这样教)一、情境导入,初步认识(3')问题1400个同学屮,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗?有人说:“50个同学中,就很可能有2个同学的生日相同.”这话正确吗?调查全班同学,看看有无2个同学的生日相同.问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少•条鱼,该怎么办呢?二、111示目标(2')三、白主探究,获取新知(8')先由学生交流、观察发现对于这类事件的概率该怎样求解呢,引入课题.多媒体出示学习目标学生齐读学习目标在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法•那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,1.利用频率估计概率试验:把全班同学分成10组,每组同学使用计时器,时间3'分组是为了减少劳掷一枚硬币50次,整理同学们获得的试验数填表方法:第1组的数据动强度加快试验速度,当据,并记录在表中:填在第1行;第1, 2组的数然如•果条件允许,组数分如果在抛掷n次硬币时,出现m次“正据之和填在第2行,10得越多,获得的数据就会面向上”,则随机事件“正面向上”出现的频个组的数据Z和填在10.越多,就更容易观察出规率为m/n.行. 律.让学生再次经历数据历史上,有业人曾做过成千上万次抛掷发现随机"事件发生的频的收集,整理描述与分析硬币的试验,展示试验结果。
2020秋九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案 (新版)
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2。
进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力.方法与过程目标:1。
选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系。
2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。
情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1。
体会用频率估计概率的必要性和合理性.2.学会依据问题特点,用频率来估计事件发生的概率.难点:1.理解频率与概率的关系,2。
用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
2023用频率估计概率北师大版数学九年级上册教案
2023用频率估计概率北师大版数学九年级上册教案25.3用频率估计概率:教案一、问题情境:小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。
袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。
同学们能否求出摸出的2只恰好是一双的可能性问:同学们能否通过实验估计它们恰好是一双的可能性如果手边没有袜子应该怎么办问:在摸袜子的实验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做实验吗答:不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。
注意:实验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的。
问:假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。
问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样答:小球的颜色不影响恰好是一双的可能性大小二、问题3:一个学习小组有6名男生3名女生。
老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。
你能设计一种实验来估计“被抽取的3人中有2名男生1名女生”的概率的吗下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗若不合理请说明理由:利用频率估计概率:同步练习一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A.90个B.24个C.70个D.32个25.3利用频率估计概率:知识点1.当试验的所有可能结果不是有限个,•或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A 的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.用频率估计概率北师大版数学九年级上册教案。
新人教版九年级上册初中数学 25-3 用频率估计概率 教学课件
第十六页,共二十九页。
新课讲解
柑橘总质量(n)kg
50 100 150 200 250 300 350 400 450 500
损坏柑橘质量(m)/kg
5.50 10.5 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
柑橘损坏的频率
新人教版九年级上册初中数学 25.3 用频率估计概率 教学课件
科 目:数学 适用版本:新人教版 适用范围:【教师教学】
第二十五章 概率初步
25.3 用频率估计概率
第一页,共二十九页。
学习目标
1.用频率估计概率并解决实际问题. (难点)
2.通过概率计算进一步比较概率与频率之间的关系.
第二页,共二十九页。
这个概率为0.1,则柑橘完好的概率为______0_.9.
第十八页,共二十九页。
新课讲解
解:根据估计的概率可以知道,在10 000千克柑橘中完好
柑橘的质量为10 000×0.9=9 000千克,完好柑橘的
实际成本为
210000 2 2.22(元/千克) 9000 0.9
设每千克柑橘的销价为x元,则应有
m n
0.110
0.105
0.101
0.097
0.097
0.103 0.101 0.098
0.099 0.103
第十七页,共二十九页。
新课讲解
从上表可以看出,柑橘损坏的频率在常数_____左右0.1
摆动,并且随统计量的增加这种规律逐渐______,稳那定 么可以把柑橘损坏的概率估计为这个常数.如果估计
任务2:观察随着重复试验次数的增加,“正面向上”的频 率的变化趋势是什么?
25.3 用频率估计概率课件
成活的频率( ) 0.80
0.94
0.871
0.923 0.883
0.890 0.915
0.905 0.897
9000
14000
8073
12628
0.902
移植总数(n) 10 50 270 400 750 1500
成活率(m) 8 47 235 369 662 1335
成活的频率( ) 0.80
问题2 某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望 这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时, 每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率” 统计,并把获得的数据记录在表中,请你帮忙完成此表.
0.098
0.099 0.103
500
51.54
思
柑橘总质量(n)/千克 50 100 150 200
考
柑橘损坏的频率( ) 0.110 0.105
0.101 0.097
m n
损坏柑橘质量(m)/千克 5.50 10.5 15.15 19.42
250
300 350 400 450 500
24.25
瑞士数学家雅各布· 伯努利(1654 -1705被公认为是概率论的先驱之 一,他最早阐明了随着试验次数的 增加,频率稳定在概率附近。 归纳: 一般地,在大量重复试验中, m 如果事件A发生的频率 会稳定 n 在某个常数p附近,那么事件A 发生的概率P(A)=p。
用频率估计的概率 可能小于0吗?可能 大于1吗?
用列举法求概率的条件是什么? (1)试验的所有结果是有限个(n)
(2)各种结果的可能性相等.
2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率
25.3 利用频率估计概率一、教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度与价值观】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.五、课前准备课件等.六、教学过程(一)导入新课教师问:抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?(出示课件2)学生答:出现“正面朝上”和“反面朝上”两种情况.教师问:它们的概率是多少呢?学生答:都是1.2教师问:在实际掷硬币时,会出现什么情况呢?(出示课件3)在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?用列举法可以求一些事件的概率.实际上,我们还可以利用多次重复试验,通过统计试验结果估计概率.(板书课题)(二)探索新知探究一用频率估计概率出示课件5-9:抛硬币实验(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.学生尝试画图:的直线,你发现了什么?(3)在上图中,用红笔画出表示频率为12的直线,并观察思考.学生画出表示频率为12教师强调:试验次数越多频率越接近0. 5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?学生答:支持.教师问:抛掷硬币试验有什么特点?学生答:1.可能出现的结果数有限;2.每种可能结果的可能性相等.教师问:如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?学生独立思考,交流.出示课件10-13:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表画出统计图表示“顶帽着地”的频率.学生尝试画图:(3)这个试验说明了什么问题?学生答:在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.出示课件14:教师归纳:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.出示课件15:知识拓展:人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.出示课件16:教师强调:一般地,在大量重复试验中,随机事件A发生的(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发频率mn生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即P(A)=P.练一练:判断正误(出示课件17)⑴连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1.(2)小明掷硬币10000次,则正面向上的频率在0.5附近.(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.学生思考后口答:⑴错误;⑵正确;⑶错误.出示课件18:例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);学生计算后并填表:(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?学生独立思考后口答:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.巩固练习:(出示课件19)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是4学生自主思考后口答:D.出示课件20,21:例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1)计算上表中合格品率的各频率(精确到0.001);(2)估计这种瓷砖的合格品率(精确到0.01);(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.学生计算思考后,师生共同解答.(出示课件22)解:(1)逐项计算,填表如下:稳定在0.962⑵观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率mn的附近,所以我们可取P=0.96作为该型号瓷砖的合格品率的估计.(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.出示课件23:教师归纳总结:频率与概率的关系在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与试验无关.巩固练习:(出示课件24)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1)学生自主思考后独立解答:⑴计算如下:⑵稳定在0.8附近;⑶0.8.(三)课堂练习(出示课件25-34)1.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.填表:由上表可知:柑橘损坏率是,完好率是.6.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?7.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案:1.D解析:由图知试验结果在0.33附近波动,因此概率约等于0.33.取到红球概率为0.6,故A错;骰子向上的面点数是偶数的概率为0.5,故B错;两次都出现反面的概率为0.25,故C错,骰子两次向上的面点数之和是7或超过9的概率≈0.33,故D正确.为132.310;2703.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.⑴0.6;⑵0.6.5.解:填表如下:由上表可知:柑橘损坏率是0.10,完好率是0.90.6.分析:根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.22(90009⨯≈元/千克),设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.7.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000×95%=240350(千克).(四)课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?七、课后作业配套练习册内容八、板书设计:九、教学反思:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.。
人教版初中数学课标版九年级上册第二十五章25.3用频率估计概率教案
人教版初中数学课标版九年级上册第二十五章25.3用频率估计概率教案《25.3 用频率估计概率》教学设计一、内容和内容解析:1、内容用频率估计概率2、内容解析“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律,历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律. “频率稳定性”是概率统计定义的核心,相比古典定义“用频率估计概率”更具普遍性,它是求概率达成目标(3)的标志是:了解数学知识的发展史,对试验中的每一个数据的收集能注意要求,严谨认真。
三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关.频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.因此本节课的教学重难点如下:教学重点:通过对事件发生的频率的分析来估计事件发生的概率.教学难点:对大量重复试验得到频率的稳定值的分析。
人教版九年级上册数学第25章25.3《用频率估计概率》教案
2.难点内容的突破
a.采用图表、动态演示等方法,帮助学生形象地理解频率与概率的关系。
b.通过小组讨论、教师引导等方式,让学生深入探讨频率稳定性定理,明确其背后的数学原理。
c.设计具有挑战性的实际问题,指导学生如何将问题抽象为数学模型,运用所学知识进行解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解频率和概率的基本概念。频率是指某一事件在多次实验中发生的次数与实验总次数的比值。概率则是理论上的长期稳定值,表示某一事件发生的可能性。它们在预测和决策中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,观察正面朝上的频率,并与理论概率进行比较,分析频率与概率之间的关系。
b.概率的定义及与频率的关系;
c.用频率估计概率的原理和方法;
d.频率稳定性定理;
e.实例分析:抛硬币、掷骰子、抽卡片等实验。
二、核心素养目标
(1)培养学生的数据分析观念,使其能够运用频率估计概率,解决实际问题;
(2)提高学生的逻辑思维能力,理解频率与概率之间的关系,掌握频率稳定性定理;
(3)通过实验和实例,培养学生观察、分析、归纳和推理的能力;
人教版九年级上册数学第25章25.3《用频率估计概率》教案
一、教学内容
人教版九年级上册数学第25章25.3《用频率估计概率》教案:
(1)理解频率和概率的关系,掌握用频率估计概率的方法;
(2)通过实验和实例,观察和分析频率的稳定性和趋近性;
(3)运用频率估计概率,解决实际问题;
(4)章节内容:
a.频率的定义及计算方法;
5.注重教学反馈,及时了解学生的学习情况,针对学生的薄弱环节进行有针对性的辅导。
用频率作为概率的估计值 (3)
【猜一猜】“尖朝上”的可能性大还是“尖落在 桌面上”的可能性大?“尖朝上”的概率大约是多少?
发展认知
【活动二】抛“图钉”试验
【活动任务】 借助从摸球试验中获得的经验,估计在相同条件下,
抛一枚“图钉”,“尖朝上”的概率是多少?
【活动要求】 1.保证试验条件基本相同; 2.根据活动记录表上的要求记录试验数据; 3.整理试验数据,输入Excel中,并提交.
76.5%
3.判断正误:天气预报显示降水概率为85%说明明天一定下 雨.( )
4.判断正误:抛掷一枚质地均匀的硬币,“正面向上”的概 率 是 0.5 , 说 明 每 抛 掷 硬 币 10 次 , 就 一 定 有 5 次 正 面 向 上 . () 思考:能对你的选择加以解释吗?
100% 82.4%
5.(1)动手试验:请你抛掷一枚一元硬币10次,并填空: (1)100%
试验
形成认知
【活动一】摸球试验 试验条件相同
【活动任务】 每两位同学一组,一次摸一个球,观察颜色,记
录并放回,摇匀后再摸下一次,录表中,并拍照上传到作品库.
形成认知
【问题】各组在相同条件下做的试验,为什么摸出黄球 的频率不同?
【总结】每次试验结果都是不确 定的,即使再做50次试验,试验 结果与前50次试验也不一定相同.
“正面向上”的次数为 ,“正面向上”的频率为 . (2)选A:68.8%
(2)频率与概率之间有联系吗? A.有 B.没有
选B:31.2%
形成认知
【问题】一个不透明的袋中有大小相同、质地均 匀的6个白球和2个黄球,将袋中球摇匀后,摸球 一次,请问:摸出黄球的概率是多少?
【问题】如果是抛一枚图钉,“尖朝上”的概率 是多少呢?
九年级数学上册第二十五章概率初步25.3用频率估计概率同步课件(新版)新人教版
下表记录了一名球员在罚球线上投篮的结果.
投篮次数(n) 50
投中次数(m) 28
投中频率( m )
n
100 150 200 250 300 350 60 78 104 123 152 251
把全班同学分成10组,每组同学掷一枚硬币100次,整理 同学们获得的试验数据,并记录在表中. 第一组的数据填在 第一列,第一、二组的数据之和在第二列,…,10个组的 数据之和填在第10列.
上面我们用随机事件发生的频率逐渐稳定到的常数刻画了 随机事件发生的可能性的大小.
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常 数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p .
因为在n次试验中,事件A发生的频数m满足 0≤m≤n,所以
0
m n
1,进而可知频率
m n
根据上表中的数据,在图中标注出对应的点.
1 “正面向上”的频 m
率
n
0.5
100200 300 400 500 600700 800 900 1000
请同学们根据试验所得数据想一想:“正面向上” 的频率有什么规律?
在抛掷一枚硬币时,结果不是“正面向上”就是“反 面向上”,因此,从上面提到的试验中也能得到相应“反 面向上”的频率. 当“正面向上”的频率逐渐稳定到0.5 时,“反面向上”的频率呈现什么规律吗?容易看出, “反面向上”的频率也相应地稳定到0.5,于是我们也用 0.5这个常数表示“反面向上”发生的可能性的大小,至 此,试验验证了我们的猜想:抛掷一枚质地均匀的硬币时, “正面向上”与“反面向上”的可能性相等(各占一半).
4979
0.4979
皮尔逊
12000
6019
25.3用频率估计概率解决问题(教案)
在学生小组讨论环节,我尽量以引导者的身份参与其中,但在启发学生思考问题时,我发现自己提问的方式有时过于直接,可能限制了学生的思维。在今后的教学中,我应该尝试提出更多开放性的问题,激发学生的创新思维。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了频率与概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对用频率估计概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在完成“25.3用频率估计概率解决问题”这一章节的教学后,我对自己在课堂教学中的表现进行了深刻的反思。首先,我觉得在导入新课环节,通过提问方式引导学生思考日常生活中的概率问题,效果还是不错的,学生的兴趣和好奇心被充分调动起来。但在新课讲授过程中,我发现部分学生对频率与概率的概念理解不够深入,可能是我讲解得不够详细,也可能是我没有给学生提供足够的思考空间。
二、核心素养目标
本节课的核心素养目标主要包括:1.培养学生的数据分析观念,使其能够运用频率估计概率,理解数据背后的随机性,提高数据处理能力;2.培养学生的逻辑推理能力,使其在解决概率问题时,能够运用所学知识进行合理的推理;3.培养学生的数学建模素养,通过构建数学模型来描述和解决现实生活中的概率问题;4.培养学生的数学应用意识,让学生在实际问题中发现、提出、分析并解决概率问题,体会数学与现实生活的紧密联系。通过本节课的学习,使学生能够运用数学知识解决现实问题,提高其数学核心素养。
25.3用频率估计概率(2)
450
44.57
500
51.54
(3)归纳:从上表可以看出,柑橘损坏的频率在某个常数左右摆动,并且随统计量的增加这种规律逐渐明显。因而柑橘损坏的概率为,则柑橘完好的概率为。
(4)请独立写出此题的解答过程。
(5)思考:为简单起见,能否直接把500千克的柑橘的损坏率看作柑橘损坏的概率?为什么?
(3)如果每株树苗9元,则小明买树苗5
9000
14000
12628
0.902
(3)从上表可以发现,幼树移植成活的频率在左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的概率为。
问题2:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(已去掉损坏的柑橘),每千克大约定价为多少元?
(1)计算表中各次比赛进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
2、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?
3、张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:
渤海中学人教版初中数学九年级教学案
课题
25.3用频率估计概率
课时
第2课时
课型
新授
主备人
杜合梅
学习目标
会运用统计频率估计概率的方法解决实际问题。
学习重点
会运用统计频率估计概率的方法解决实际问题。
学习难点
利用频率估计出概率的近似值。
学习过程
一、复习导入
253用频率估计概率课件
估计移植成活率 是实际问题中的一种概率,树件成下活的的移频植率成活,率谈,应谈
采你用的什么看具法体.做法?
移植总数(n) 10 50 270 400 750
成活数(m) 8 47
235 369 662
成活的频率( m ) n
练习: 下表记录了一名球员在罚球线上的投篮结果。
投篮次数(n) 50 100 150 200 250 300 500
投中次数(m) 28 60 78 104 123 152 251
投中频率(m)
n
0.56
0.60 0.52 0.52 0.492 0.507 0.502
(1)计算表中的投中频率(精确到0.01); (2)这个球员投篮一次,投中的概率大约是多少?(精确到0.1)
0.101
2为00简单起见,我们能19.否42 直接把表中的 0.097
502050千克柑橘对应的柑24.橘25 损坏的频率看作0.097
柑3橘00损坏的概率? 30.93
350
35.32
0.103 0.101
400
39.24
0.098
450
44.57
0.099
500
51.54
0.103
大家都来做一做
0.8
0.94 0.870 0.923
0.883
1500
1335
0.890
3500 7000 9000 14000
3203 6335 8073 12628
0.915 0.905 0.897
0.902
估计移植成活率
由下表可以发现,幼树移植成活的频率在__0_.9 _左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
25.3 用频率估计概率
课题:25.3 用频率估计概率课时:2 备课时间:一、教学内容分析教科书这一节从统计试验结果频率的角度去研究一些随机试验中事件的概率.教科书设置了一个投币试验,一方面要求学生亲自动手试验获得数据,从数据中发现规律;另一方面还给出历史上投币试验的数据,为学生发现规律提供帮助。
二、教学目标(一)知识与技能知道通过大量重复试验时的频率可以作为事件发生概率的估计值;在具体情境中了解概率的意义。
(二)、过程与方法让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型。
初步理解频率与概率的关系。
(三)情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣。
通过概率意义教学,渗透辩证思想教育。
三、学情分析通过学生的亲手试验和历史数据,学生能够用自己在统计中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小。
学生应该很感兴趣,又使学生明确,频率与概率是两个不同的概念,频率与试验的次数有关,而频率的稳定性又说明了概率是一个客观存在的数,是随机事件自身的一个属性,它与试验次数无关。
四、教学策略选择与设计教师引导---学生自学---小组互动---当堂检测五、教学重点及难点1.重点:能从频率值角度估计事件发生的概率;2.难点:对频率与概率关系的初步理解。
六、教学流程(一)、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.(二)动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行. (2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.想一想1:观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2:随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小。
【推荐必做】九年级数学上册 第二十五章 25.3 用频率估计概率备课资料教案 (新版)新人教版
第二十五章 25.3用频率估计概率知识点1:利用频率估计概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A发生的概率,记作P(A)=p.频率估计概率的适用对象:当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,可通过统计频率来估计概率.根据大量重复试验,某一事件发生的频率越来越稳定于某个常数,可将这个常数看作该事件发生的概率.关键提醒:概率是事件在大量重复试验中频率逐渐稳定的值,即用大量重复试验中事件发生的频率去估计得到事件发生的概率,但大量试验反映的规律并非在每一次试验中一定存在,如抛硬币10次,并不一定是正面、反面各5次.知识点2:设计模拟试验通过试验预测某事件的概率时,当试验的所有可能不是有限个,或各种可能结果发生的可能性不相等时,要通过频率来估计概率,也就是说,要借助试验法得到相应的概率,如试验遇到找不到相应的实物或用实物进行试验困难较大的情况下,其有效方法是:(1)寻找满足条件的替代物做模拟试验;(2)用计算器产生随机整数的方法进行模拟试验.知识点3:用统计频(概)率解决实际问题实际问题中的试验一般不属于各种结果发生的可能性相等的类型,所以先用频率去估计概率,然后根据估计的概率解决相关问题.归纳整理:(1)在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果不尽相同(具有偶然性),但大量重复试验所得结果却能反映规律.(2)在做大量重复试验时,可以根据概率要达到的精度来确定数据表中频率保留的数位.一般用频率估计出来的概率要比数据表中的频率保留的数位要少.芽种子粒数05苗苗记录了她做这个游戏的情况,并绘制了如下的表格:你能设计一个模拟试验吗?从而估计出任意抽取这些球除颜色外没有其他区点拨:本题涉及用频率估计概率及模拟试验的设计.(1)解答时表格中的频率可以直接求得,估计概率要注意随着试验次数的增多,频率稳定在哪个常数附近;(2)模拟试验的方法很多,关键是注意试验的条件要相同.考点3:利用频率求概率解决实际问题【例2】某工厂封装圆珠笔的箱子,每箱只装2000枝,在一次封装时,误把一些已作标记的不合格的圆珠笔也装入箱里,若随机拿出100枝圆珠笔,共做10次试验,100枝中不合格的圆珠笔的平均数是5,你能估计箱子里混入多少不合格的圆珠笔吗?若每枝合格圆珠笔的利润为0.05元,而发现不合格品要退货并每枝赔偿商店1.00元,你能根据你的估计推算出这箱圆珠笔是亏损还是盈利?亏损,损失多少元?盈利,利润是多少?解:因为每100枝平均有5枝不合格,所以有2000÷100×5=100,故可估计整箱平均有100枝不合格,1900枝合格.赔偿100×1=100(元),利润1900×0.5=950(元),总的盈利950-100=850(元),所以这箱圆珠笔盈利,共盈利850元.点拨:利用平均概率可估计出共有多少枝不合格的商品,即可推算出亏损还是盈利.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章概率初步25.3 用频率估计概率学习要求1、会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.2、当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.知识点一:利用频率估计概率例1.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()试验种子数n(粒)50 200 500 1000 3000发芽频数m 45 188 476 951 28500.9 0.94 0.952 0.951 0.95发芽频率A.0.8 B.0.9 C.0.95 D.1【考点】X8:利用频率估计概率.【分析】根据5批次种子粒数从50粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【解答】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故选C.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.变式1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数100 200 300 500 800 1000 2000频率0.365 0.328 0.330 0.334 0.336 0.332 0.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【考点】X8:利用频率估计概率.【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.变式2.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 18060.75 0.64 0.57 0.604 0.601 0.599 0.602摸到白球的频率A.试验1500次摸到白球的频率比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的概率为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个【考点】X8:利用频率估计概率.【分析】观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,据此求解即可.【解答】解:观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,故选B.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.变式3.某林业部门要查某种幼树在一定条件的移植成活率.在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如下表:移植总数(n)成活数(m)成活的频率()10 8 0.8050 47 0.94270 235 0.870400 369 0.923750 662 0.8831500 1335 0.893500 3203 0.9157000 6335 0.9059000 8073 0.89714000 12628 0.902所以可以估计这种幼树移植成活的概率为()A.0.1 B.0.2 C.0.8 D.0.9【考点】X8:利用频率估计概率.【分析】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【解答】解:=(0.80+0.94+0.870+0.923+0.883+0.89+0.915+0.905+0.897+0.902)÷10≈0.9,∴这种幼树移植成活率的概率约为0.9.故选D.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比变式4.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 63 124 178 302 481 599 18030.63 0.62 0.593 0.604 0.601 0.599 0.601摸到白球的频率(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=0.6;(3)试验估算这个不透明的盒子里黑球有多少只?【考点】X8:利用频率估计概率.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑颜色的球有40×(1﹣0.6)=16.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.变式5.某射击运动员在相同条件下的射击160次,其成绩记录如下:设计次20 40 60 80 100 120 140 160数射中九环以上的次数15 33 63 79 97 111 130 射中九环以上的频率0.750.830.80.790.790.790.81(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.【考点】X8:利用频率估计概率;W7:方差.【专题】32 :分类讨论.【分析】根据频数的计算方法计算即可.【解答】解:(1)48,0.81;(2)P(射中9环以上)=0.8从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.变式6.小明和小亮做游戏,他们利用地上的图案(如图),蒙上眼睛在一定距离处向该图案内掷小石子,掷中阴影区域小明赢,否则小亮赢,掷到圈外不算.下表是游戏中统计的二组数据.掷中圈内的区域次数m 100 150 200 500 800 1000落在”阴影”区域的次数n 73 114 151 374 601 750落在”阴影”区域的频率0.73 0.76 0.755 0.748 0.751 0.75(1)估计石子落在“阴影”区域的概率约为多少;(2)小明、小亮获胜的机会分别约为多大?(3)若圆的半径为1,试估计地上该图案(不包括圆)的面积.【考点】X8:利用频率估计概率.【分析】(1)大量试验时,频率可估计概率;(2)根据概率的大小进行判断;(3)利用概率,求出圆的面积比上总面积的值,计算出阴影部分面积.【解答】解:(1)1000次时,本组实验次数最多,频率可代表概率,石子落在“阴影”区域的概率约为0.75.(2)投到阴影部分的概率大,小明赢的概率大.(3)圆的面积为π,=0.25,解得,s总=4π,s阴影=4π﹣π=3π.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.知识点二:概率与频率的关系例2.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.变式1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率【考点】X8:利用频率估计概率.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为,故此选项错误;C、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.变式2.有两个可以自由转动的质地均匀转盘A、B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示.转动转盘A、B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向下方的扇形).(1)小明同学转动转盘A,小华同学转动转盘B,他们都转了30次,结果如下:指针停靠的扇形内的数字 1 2 3 4 5 6出现的次数x 18 6 5 10 15(i)求出表中x的值.(ii)计算A盘中“指针停靠的扇形内的数字为2”的频率;(2)小明转动A盘一次,指针停靠的扇形内的数字作为十位数字,小华转动B盘一次,指针停靠的扇形内的数字作为个位数字,用列表或画树状图的方法求出“所得的两位数为5的倍数”(记为事件A)的概率.【考点】X8:利用频率估计概率;X6:列表法与树状图法.【分析】(1)(i)根据表所给的数据得用30减去2、3出现的次数,即可求出x;(ii)根据数字为2的扇形与整个圆的面积之比即可求出;(2)根据题意列表即可求出所得的两位数为5的倍数的概率.【解答】解:(1)(i)根据表所给的数据得:x=30﹣18﹣6=6;(ii)∴A盘中“指针停靠的扇形内的数字为2”的频率是:=;(2)列表如下:A1 2 3B4 14 24 345 15 25 356 16 26 36所以所得的两位数为5的倍数”(记为事件A)的概率是:P(A)=;【点评】此题考查了利用频率估计概率;解题的关键是要熟悉列表法;用到的知识点为:概率=所求情况数与总情况数之比.考查利用频率估计概率,大量反复试验下频率稳定值即概率.变式3.某商场设立一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“三等奖”的次数m 68 105 141 345 564 7010.68 0.70 0.71 0.69落在“三等奖”的频率(1)计算并完成表格;(2)画出获得“三等奖”频率的折线统计图;(3)假如你去转动该转盘一次,根据这次实验的结果,我们可以估计出现“三等奖”的概率大约是0.70.【考点】X8:利用频率估计概率;V9:频数(率)分布折线图.【分析】(1)根据频率公式可以计算空格要填的数据;(2)根据(1)中所求,得出获得“三等奖”频率的折线统计图即可;(3)根据计算出的频率求出平均值即为转盘的次数n很大概率的接近值..【解答】解:(1)≈0.71,≈0.70;(2)如图所示:(3)当转动转盘的次数n很大时,概率将会接近(0.68+0.70+0.71+0.69+0.71+0.70)÷6≈0.70.故答案为:0.70.【点评】此题主要考查了利用频率估计概率,用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.频率接近于理论上概率的值.变式4.某射手在同一条件下进行射击,结果如下表所示:射击次数n 20 50 100 200 500 1000击中靶心频数m 19 44 91 179 454 905击中靶心频率m/n(1)计算并填写表中击中靶心的频率;(结果保留三位小数)(2)这个射手射击一次,击中靶心的概率估计值是多少?(结果保留两位小数)【考点】X8:利用频率估计概率.【分析】(1)根据表格中所给的样本容量和频数,求比值算出击中靶心的频率,填入表中.(2)用频率来估计概率,频率一般都在0.90左右摆动,所以估计概率为0.90,这是概率与频率之间的关系,即用频率值来估计概率值.【解答】解:(1)进球的频率分别为=0.950、=0.880、=0.910、=0.895、=0.908、=0.905,(2)由于击中靶心的频率都在0.90左右摆动,故这个射手射击一次,击中靶心的概率约是0.90.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.拓展点一:试验元素个数的确定问题例3.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.变式1.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【解答】解:根据题意得,=,解得,m=20.故选D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.变式2.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是()A.3个B.4个C.10个D.16个【考点】X8:利用频率估计概率.【专题】11 :计算题.【分析】利用频率估计概率,可得到摸到红色、黑色球的概率为5%和15%,则摸到白球的概率为80%,然后根据概率公式可计算出口袋中白色球的个数.【解答】解:根据题意得摸到红色、黑色球的概率为5%和15%,所以摸到白球的概率为80%,因为20×80%=16(个),所以可估计袋中白色球的个数为16个.故选D.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.变式3.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒【考点】X8:利用频率估计概率.【专题】11 :计算题.【分析】黄豆的频率为,利用大量反复试验时,频率接近于概率,可得,即可求出原黄豆的数量.【解答】解:设原黄豆数为x,则染色黄豆的概率为解得x=450.故选C.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.变式4.一个不透明的袋子中装有若干个白球和红球,这些球除颜色外都相同,某课外学习小组做摸球试验,将求搅均匀后从张任意摸出一个球,记下颜色后放回,搅匀,不断重复,获得数据如下摸球次数n 200 300 400 1000 1600 2000摸到白球的频数m 116 192 232 590 968 1202摸到白球的频率(1)计算并填写表中摸到白球的频率;(2)当摸球次数很大时,摸到的白球的频率估计值是多少?(3)若已知袋中有白球24个,试估计袋中红球的个数.【考点】X8:利用频率估计概率.【分析】(1)用摸到白球的次数除以摸球的总次数即可求得摸到白球的频率;(2)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(3)利用估计的概率和概率公式求得袋中红球的个数即可.【解答】解:(1)填表如下:摸球次数n 200 300 400 1000 1600 2000摸到白球的频数m 116 192 232 590 968 1202摸到白球的频率0.58 0.64 0.580.59 0.61 0.60(2)观察表格发现随着摸球次数的增多频率逐渐稳定在0.60附近,故摸到白球的频率估计值为0.60;(3)设袋中有红球x个,根据题意得:=0.6,解得:x=16.答:袋中有红球16个.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.变式5.根据表格完成问题.每批实验粒数n 1 1 40 100 200 1000 2002500 3000发芽粒数m 1 032 90168 961192 024002883发芽的频率1 0 0.80.90.840.9610.96 0.960.961(1)将表格填写完整.(2)估计播种1粒该麦种,其发芽的概率约是多少?(3)若实际需要15000棵麦苗,则需要多少粒麦种?【考点】X8:利用频率估计概率.【分析】(1)根据发芽粒数除以实验总数=发芽频率直接计算即可;(2)看发芽频率逐渐稳定到哪个常数附近,概率就为多少;(3)用实际需要的麦苗数除以发芽的频率即可求得所需麦子数.【解答】解:(1)每批实验粒数n1 1 40 100 200 1000 2000 2500 3000发芽粒数m 1 0 32 90 168 961 1920 2400 2883发芽的频率1 0 0.8 0.9 0.84 0.961 0.96 0.96 0.961(2)发芽的频率逐渐稳定到常数0.96附近,故发芽的概率为0.96;(3)15000÷0.96=15625,答:若实际需要15000棵麦苗,则需要15625粒麦种.【点评】本题考查了用频率估计概率的知识,解题的关键是了解大量重复试验中,事件发生的频率可以估计概率.变式6.一个不透明的袋中放进若干个白球,现在想要知道这些白球的数目,小明用了如下的方法:将20个与袋中白球大小、质量相同均相同的红球放入袋中,将红球与袋中的白球充分搅匀后,再从袋中随机摸球,每次共摸10个球放回,共摸20次,求出红球与10的比值,然后计算出平均值,得到摸到红球的概率是8%,求原来袋中约有多少个白球.【考点】X8:利用频率估计概率.【分析】根据口袋中加入20个白球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:设袋子中有x个白球,根据题意得:=8%,解得:x=230.答:袋子中原来有白球230个.【点评】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.拓展点二:模拟实验例4.盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,从中任意摸一张,猜想摸到方块的概率是多少?请你与同学用实验的方法加以验证.【考点】X9:模拟实验.【分析】根据概率公式计算列式即可得解.【解答】解:∵盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,∴从中任意摸一张,摸到方块的概率是:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.变式1.一枚硬币抛起后落地时,“正面朝上”的机会有多大?(1)写出你的猜测;(2)一位同学在做这个实验时说:“我只做了10次实验,就得到了正面朝上的概率约为30%.”你认为他说的对吗?为什么?(3)还有一位同学在做这个实验中觉得用硬币麻烦,改用可乐瓶盖做这个实验,你认为他的做法科学吗?为什么?【考点】X9:模拟实验;X8:利用频率估计概率.【分析】(1)根据出现正面向上与向下的机会均等,即可得出“正面朝上”的概率;(2)根据模拟实验次数越多越准确,据此回答;(3)根据实验材料必须质地均匀,而且出现机会均等的条件分析得出即可.【解答】解:(1)正面向上的概率为;(2)不对,因为试验次数较小,事件出现的频率与事件出现的机会有比较大的差距,不能据此估计事件发生的机会;(3)不科学,因为实验的条件不同,硬币质地均匀,出现正面与反面的机会是均等的,而可乐瓶盖质地不均匀,实验条件不一样.【点评】此题主要考查了模拟实验的意义,正确理解模拟实验的意义是解题关键.变式2.摸球试验:一个袋子里有8个黑球和若干个白球,从袋中随机摸出1球,记下其颜色,再把它放回袋中,不断重复上述的过程.(1)若共摸球200次,其中有57次摸到黑球,你能估计摸出黑球的概率是多少吗?你能估计袋中大约有多少个白球吗?(2)若从袋中一次摸球20个,其中黑球数占,你能估计袋中大约有多少个白球吗?(3)打开口袋,数数袋中白球的个数,你们的估计值和实际情况一致吗?为什么?(4)将各组的数据汇总,并根据这个数据估计袋中的白球数,看看估计结果又如何?(5)为了使估计结果较为准确,应该注意些什么?【考点】X9:模拟实验.【分析】(1)用概率公式求解概率,求得白球的概率,然后乘以摸球次数就可以求得白球数目;(2)用摸球20个摸得的黑球的概率,求得白球的个数;(3)实际情况可能用计算有出入,因为这是估算;(4)把(1)和(2)的抽查作为一次即可求解;(5)是随机抽样,且样本容量越大,则与实际情况越接近.【解答】解:(1)摸出黑球的概率是:,则球的总个数是8÷≈28,则估计袋中大约有白球28﹣8=20(个);(2)袋子中球的总个数是:8÷=32(个),则白球的个数是:32﹣8=24(个);(3)估计值和实际情况不一定一致,因为抽查具有随机性;(4)摸球20个,其中黑球数占,则有5个黑球.则球的总个数是:8÷≈28,则白球的个数是:28﹣8=20(个);(5)抽取的次数要尽量多,且抽取时是随机抽样.【点评】本题考查了概率的意义,概率描述事件发生的机会的大小,理解样本容量越大,则与实际情况越接近是关键.变式3.某商场进行有奖促销活动,转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖及不获奖,制作转盘时,将获奖扇形区域圆心角分配如下表:奖次特等奖一等奖二等奖三等奖圆心角10°20°30°90°如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和试验规则)【考点】X9:模拟实验.【分析】根据扇形圆心角度数可得出各种奖项所占比例,进而利用抽签方式得出等效试验方案.【解答】解:由题意可得出:可采取“抓阄”或“抽签”等方法替代,如在1个不透明的箱子里放进36个除标号不同外,其他均不一样的乒乓球,其中1个标“特”,2个标“一”,3个标“二”,9个标“三”,其余不标数字,摸出标有哪个奖次的乒乓球,则获相应的等级的奖品.【点评】此题主要考查了模拟实验,替代实验的设计方案很多,但要抓住问题的实质,即各奖项发生的概率要保持不变.变式4.某彩民在上期的体彩中,一次买了100注,结果有一注中了二等奖,三注中了四等奖,该彩民高兴地说:“这期彩票的中奖率真高,竟高达4%”.请对这一事件做简单的评述.【考点】X8:利用频率估计概率.【分析】用频率来估计概率的前提条件是实验的次数要足够大,若实验的次数不够大则不能说明频率值接近概率.【解答】解:该彩民的说法错误.他只购买了1次彩票就断定中奖率为4%,由于实验次数不是足够大,因此频率与机会就可能不完全相符,只有当实验次数足够大(即他买彩票的次数足够多时),才能说明频率值接近概率.【点评】用到的知识点为:在用频率估计概率时实验的次数要足够大.只有在大量的实验下所得到的频率值才能接近概率.变式5.小明与同学想知道每6个人中有两个人生肖相同的概率,他们想设计一个模拟实验来估计6个人中恰有两个人生肖相同的概率,你能帮他们设计这个模拟方案吗?【考点】X9:模拟实验.【分析】一年有生肖有12种可以用12等分的转盘表示,6个人用6张小纸片表示,研究纸盘掷到转盘同一部分的概率即可.【解答】解:方案:有从1到6共6张小卡片表示6个人,这些卡片出数字不同外,其它都相同,12生肖可以用12等分的转盘表示,转动转盘,向转盘上掷卡片,研究纸片掷到同一部分的概率.【点评】本题考查了模拟实验求概率,通过模拟实验可以便于实验,容易实验.变式6.现有3个45°的角,2个90°的角,从中任取3个角一定能构成等腰直角三角形吗?实验一下,看看构成等腰直角三角形的概率有多大.【考点】X9:模拟实验;KW:等腰直角三角形;X6:列表法与树状图法.【分析】设3个45°角的序号为1、2、3,2个直角的序号为4、5,通过列举法找出抽三个角的情况,再根据等腰直角三角形的性质找出符合能构成等腰直角三角形的情况,由此求出概率即可.【解答】解:设3个45°角的序号为1、2、3,2个直角的序号为4、5,则在5个角中任取3个角有:123,124,125,134,135,145,234,235,245,345十种情况,其中能构成等腰直角三角形的有:124,125,134,135,234,235六种情况.故构成等腰直角三角形的概率为:6÷10=0.6.【点评】本题考查了列举法求概率以及等腰直角三角形,解题的关键是熟练掌握列举法求事件的概率的方法.。