冲击钻机施工桩基施工方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津干渠是南水北调中线工程的重要组成部分,西起河北省徐水县西黑山村,至天津外环河,全长约154Km。

南水北调中线工程是一项特大型跨流域调水工程,以丹江口水库为水源,从陶岔渠首引水,向华北平原的豫、冀、京、津等省市供水,建成后将有效缓解华北地区日趋严重的水资源危机,促进华北地区的经济发展,并对我国社会经济的发展产生深远影响。

为满足天津干渠初步设计阶段的要求,需对渠线进行物探工作,以了解地表至设计渠底板以下20m范围内岩性分层(平原段注重砂性土与粘性土大层划分);遇基岩时,了解基岩面高程和岩性。

1 地质概况及地球物理特征

区内由西向东跨越地貌单元有:山前丘陵、山前冲洪积倾斜平原、冲洪积平原和冲积海积平原。下面分述其岩性:

(1) 山前丘陵:下部为蓟县系浅灰色硅质条带白云岩和青白口系页岩、千枚岩、板岩等。上部为第四系红棕色碎石粘土、棕黄色粘土、壤土等。主要分布在西黑山村附近及其西侧。

(2) 山前冲洪积倾斜平原:主要由冲积、湖积、洪积壤土、砂土、粉细砂等组成,有的地段粘性土夹有钙结核或钙、锰质须状物等。分布在西黑山村~京广铁路西侧。

(3) 冲洪积平原:为古河道和河间地块分布,有河流相、湖相、湖沼相,颗粒组成以细粒为主,有粘土、壤土、粉细砂、细砂、中细砂等,一些地段为薄层细砂与壤土互层,且砂层具微型交错层理。分布在京广铁路~霸州。

(4) 冲积海积平原:为海、陆交互地层,以粘土、壤土为主,局部为砂、粘性土互层。分布在霸州以东~天津。

渠线穿越汇水面积较大的河流共8条,这些河流均属海河水系,且多为季节性河流,雨季行洪,旱季多断流。

由西至东,地下水位埋深逐渐减小(渠首20~30m,渠尾1~2m)。其水质由淡水型变为高矿化度的微咸水,矿化度由京广铁路附近的370mg/L,到外环河附近则高达2670mg/L。

综上所述,由于线路较长,各岩层的沉积环境及其空间变化较大,加之地下水矿化度的巨大变化,致使测区岩层的地球物理特征复杂。经综合分析物探试验、实测成果及地勘资料,得各岩层物性参数(见表1)。

表1 岩层物性参数表

岩性

电阻率

(Ω·m)

纵波速度

(m/s)

(g/cm3)

波阻抗

(105g/cm2.·S) 雷达波速

(m/μS)

相对介电

常数

壤土

(砂壤土)

15~60

300~800

1.55~1.80 0.46~1.44 50~150

4~40

粘土

5~30

600~1300 1.60~1.77 0.96~2.30 70~170

2.6~16

40~600 500~1000 1.24~1.37 0.62~1.37 55~80

15~30

白云岩

350~2000 2800~4000 2.60~2.90 7.28~11.60 80~120

7~16

页岩

300~1800

2700~4000

2.60~2.85

7.02~11.40

80~115

7~16

由表1知,基岩(白云岩、页岩)与第四系地层间具有较大的电性和弹性差异,具备综合物探的物理前提;粘土、壤土(砂壤土)、砂的电阻率、波阻抗、介电常数等具有一定的差异,可用电阻率法、地震法和地质雷达探测。但第四系地层中有些岩层(如砂层)厚度太薄,且多为中间层展布,在电法或地震曲线上反映不明显,难于准确地划分;同时,由于沿线地下水位埋深较浅,尤其是牛亡牛河以东至天津外环河段地下水位埋深只有2~3m,矿化度较高,使得地下水位以下岩层的物性差异变小,物探分辨率相对降低。

2 物探方法与技术

2.1 电测深法

采用对称四极等比装置(AB/MN=5),且(AB/2)min=1.5m,(AB/2)max=2 00m,当地质物探条件变化时,最大极距适当调整。

2.2 地震反射波法

采用单边激发三次覆盖观测系统。工作参数按展开排列确定,选用检波器间距1 m,偏移距15m或28m。

2.3 地质雷达

采用剖面法。使用瑞典RAMAC/GPR地质雷达系统。天线中心频率50MHz,收发天线间距2m。

3 资料解释与成果分析

3.1 电测深法

3.1.1定性分析

(1) 曲线类型

该渠线电测深曲线类型可划分为:H、K、QH、HK等主要类型。

H型曲线:主要分布在桩号0+000~8+700、40+000~48+300、65+300~7 8+900等渠段。其中第一段:曲线首支为表层较干燥或较密实的壤土(砂壤土),中部低阻为粘土或壤土,尾支呈45°角上升,为高阻的基岩(白云岩、页岩)反映。第二和第三段:曲线为第四系地层的反映,首支为较干燥或较密实的表层砂壤土(壤土),中部低阻为粘土或饱水壤土等,尾支一般为壤土类地层,多以15°~30°角上升。

K型曲线:主要分布在桩号48+500~49+400、51+300~52+000、55+500~56+300、57+580~64+330等渠段,均为第四系地层,其曲线首支为表层壤土(砂壤土),中部为地下水位以上的砂(粉、细、中砂),尾支为壤土。

QH型曲线:主要分布在桩号119+700~123+800、128+000~154+000等渠段,首支为表层砂壤土(壤土),中部为粘土,其后为饱水壤土,因其地下水矿化度很高,导致电阻

率降低,尾支虽有上升趋势,但变化不明显,同样为壤土的电性反映。需要说明的是该曲线类型除受岩性影响外,受地下水(高矿化度)的影响尤甚。

HK型曲线:主要分布在桩号13+000~35+800等渠段,曲线首支为表层砂壤土(壤土),中部低阻为粘土或壤土,其后较高阻为地下水位以下砂层(粉、细、中砂),因其含水(矿化度低)及埋深相对较大,故在曲线上只反映出升高趋势,尾支为壤土。

另外,还有少量的HKH型、KH型、D型和G型曲线,以及在均一结构和电性差异甚小的地层中还有一些平直型曲线。

(2) 等视电阻率断面图

通过分析等视电阻率断面图,了解等值线形态起伏变化及地电特征,判断地质体的分布位置及其空间变化规律。

在渠首地段,等值线表现为:表层为较稀疏的等值线,且视电阻率多为40~70·m,中部为水平层状的等值线,其视电阻率值较低,多为20~30·m,下部为高阻标志层的白云岩或页岩,等值线密集,其值较高。同时可从等断面图中判别出下伏基岩(白云岩、页岩)顶板随渠线桩号增大而变深。

在第四系地层中,除局部地段的表层电阻率变化较大外,一般渠线表层电阻率幅值变化较小,其等值线分布稀疏,反映了一定厚度的壤土(砂壤土)。若中部有砂分布,等值线幅值变化较大(含水时降低),等值线密集,并出现高阻闭合圈或半闭合圈,依此特征可定性判断砂的空间展布特征及分布范围。

(3) 中间层电阻率的确定

①由孔旁电测深曲线反求;②用二层量板从较厚层曲线上求取;③由等值原理范围很窄的曲线上直接确定;④从均一结构地层中的曲线中求取。

3.1.2 定量解释方法

量板法结合孔旁测深曲线对比法。

3.2 地震反射波法

采用美国EAVESDROPPER浅反处理软件进行室内资料的分析解释,其处理步骤为:数据输入→格式转换→剔除坏道→动平衡→带通滤波→初至切除→条带切除→抽道集→常速度扫描→正常时差校正→迭加→时间剖面。解释所用速度参数是由速度分析、速度扫描和正演拟合等方法求取。

如桩号134+543~134+609段地震时间剖面,其中T1同相轴为上部粘土、下部壤土分界面的反射同相轴,其双程反射时为28~34ms,以迭加速度700m/s计算,下伏壤土顶板埋深为9.8~11.9m。结果与电测深、地质雷达解释成果吻合。

3.3 地质雷达

相关文档
最新文档