2012数学中考试题

合集下载

2012年山西中考数学真题卷含答案解析

2012年山西中考数学真题卷含答案解析

山西省2012年高中阶段教育阶段学校招生统一考试数学10A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算-2-5的结果是( )A.-7B.-3C.3D.72.如图,直线AB ∥CD,AF 交CD 于点E,∠CEF=140°,则∠A 等于( )A.35°B.40°C.45°D.50° 3.下列运算正确的是( )A.√4=±2B.2+√3=2√3C.a 2·a 4=a 8D.(-a 3)2=a 64.为了实现街巷硬化工程高质量“全覆盖”,我省今年1~4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为( ) A.0.927×1010元 B.92.7×108元 C.9.27×1011元 D.9.27×109元5.如图,一次函数y=(m-1)x-3的图象分别与x 轴、y 轴的负半轴相交于点A 、B,则m 的取值范围是( )A.m>1B.m<1C.m<0D.m>06.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )A.14B.13C.12D.237.如图所示的工件的主视图是()8.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,且EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.13B.23C.12D.349.如图,AB是☉O的直径,C、D是☉O上的点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°10.已知直线y=ax(a≠0)与双曲线y=kx(k≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B.(-6,-2)C.(-2,-6)D.(6,2)11.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.5√3cmB.2√5cmC.485cm D.245cm12.如图是某公园的一角,∠AOB=90°,AB⏜的半径OA长是6米,C是OA的中点,点D在AB⏜上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.(12π-92√3)米2B.(π-92√3)米2 C.(6π-92√3)米2 D.(6π-9√3)米2第Ⅱ卷(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.不等式组{3-2x <5,x -2≤1的解集是 .14.化简x 2-1x 2-2x+1·x -1x 2+x +2x的结果是 . 15.某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 10 000 5 000 1 000 500 100 50 数量(个) 1 4 20 40 100 200如果花2元钱购买1张彩票,那么所得奖金不少于1 000元的概率是 .16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).17.图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本题共2个小题,第1小题5分,第2小题7分,共12分) (1)计算:(-5)0+√12cos 30°-(13)-1; (2)先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-√3.20.(本题7分)解方程:23x-1-1=36x-2.10B21.(本题6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形;(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.22.(本题8分)今年太原市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请分别把条形统计图和扇形统计图补充完整;(3)若该校共有3000名学生,请你估计全校对“诚信”最感兴趣的人数.23.(本题9分)如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D处测得端点B的俯角为45°,求岛屿两端A、B的距离.(结果精确到0.1米.参考数据:√3≈1.73,√2≈1.41)24.(本题10分)山西特产专卖店销售核桃,其进价为每千克40元.按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(本题12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC 于点N,试判断线段OM与ON的数量关系,并说明理由.图1探究展示:小宇同学展示出如下正确的解法:解:OM=ON.证明如下:连结CO,则CO是AB边上的中线.∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)你有与小宇不同的思考方法吗?请写出你的证明过程;拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连结OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.图226.(本题14分)综合与探究:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q.试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形.若存在,请直接写出....符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.山西省2012年高中阶段教育阶段学校招生统一考试一、选择题1.A将有理数的减法转化为有理数的加法,-2-5=-2+(-5)=-7,故选A.2.B本题考查平行线的性质.因为∠CEF=140°,所以∠FED=40°,又AB∥CD,所以∠A=40°,故选B.3.D根据运算法则进行判断,√4=2,故A错误;由于有理数与无理数不能合并,故B错误;a2·a4=a6,故C错误;(-a3)2=(-1)2·(a3)2=a6,D正确,故选D.评析熟练掌握运算法则是解决此类问题的关键.4.D92.7亿=92.7×108=9.27×109,故选D.评析本题主要考查用科学记数法表示一个较大数的方法.熟记科学记数法的表示形式即a×10n或a×10-n(其中1≤|a|<10,n为整数)是解题关键,注意数字后带有单位时不可忽略其单位.5.B本题考查一次函数的性质,由图象知一次函数y=(m-1)x-3经过二、三、四象限,得m-1<0,解得m<1,故选B.6.A本题考查概率的计算,将摸球情况列树状图或列表如下:第一次第二次白球黑球白球白球,白球白球,黑球黑球黑球,白球黑球,黑球从树状图或列表法分析可知随机摸出一球,摸两次共有四种情况,其中两次都摸到黑球的情况只有一种,所以两次都摸到黑球的概率是14,故选A.7.B主视图即为从正面看到的图形,主视图看到的是一个梯形与一个三角形,故选B.8.C根据三角形面积公式及矩形的面积公式得矩形ABFE的面积是三角形ABM面积的2倍,矩形EFCD的面积是三角形CDN面积的2倍,故阴影部分的面积等于矩形ABCD的面积的一半,所以飞镖落在阴影部分的概率是12,故选C.9.B连结OC,则∠OCE=90°,由同弧所对的圆周角相等得∠A=∠CDB=20°,所以∠COE=40°,所以∠E=90°-40°=50°,故选B.10.C正比例函数图象与双曲线的图象的交点关于原点中心对称,所以由一个交点坐标为(2,6),可以推得另一个交点坐标是(-2,-6),故选C.11.D由菱形的性质知菱形边长为√32+42=5(cm),所以S菱形=12×6×8=5AE,解得AE=245(cm),故选D.评析菱形面积的两种计算方法:一是对角线乘积的一半,二是底乘以高.12.C因为∠AOB=90°,CD∥OB,所以∠OCD=90°,又因为C为OA的中点,所以OD=OA=2OC,所以∠BOD=∠CDO=30°,所以∠DOC=60°,所以CD=sin60°·OD=sin60°·OA=3√3,S阴影=S扇形AOD -S△DOC=60×π×62360-12×3×3√3=(6π-92√3)米2,故此题选C.二、填空题13.答案-1<x≤3解析解不等式3-2x<5得x>-1,解不等式x-2≤1得x≤3,所以不等式组的解集是-1<x≤3.评析 本题主要考查确定不等式组的解集的两种方法:一是数轴法,即分别将两个不等式的解集表示在数轴上,然后通过观察数轴确定不等式组的解集;二是口诀法,即根据大大取大,小小取小,大小小大中间找,大大小小为空集的原则确定不等式组的解集. 14.答案 3x解析x 2-1x 2-2x+1·x -1x 2+x +2x=(x+1)(x -1)(x -1)2·x -1x(x+1)+2x =1x +2x =3x.15.答案 1 4 000(或0.000 25)解析 观察统计表可以知道所得奖金不少于1 000元的彩票有1+4+20=25张,所以所得奖金不少于1 000元的概率是25100 000=14 000(或0.000 25).16.答案 4n-2(或2+4(n-1))解析 第一个图案有正三角形2个;第二个图案有正三角形6个;第三个图案有正三角形10个;第四个图案有正三角形14个;……,即后面的每一个图案比前面一个图案多4个正三角形,所以第n 个图案中正三角形的个数用含有n 的代数式表示是4n-2(或2+4(n-1)). 17.答案 1 000解析 设长方体的高为x cm,则长方体的宽为2x cm,由题图可知x+2x+x+2x=30,解得x=5,所以长方体的宽为10 cm,故长方体的长为30-2×5=20(cm),故长方体的体积为5×10×20=1 000(cm 3).18.答案 (2,2√3)解析 作BE ⊥y 轴于E,BF ⊥AC 交AC 于F,设BC 交y 轴于点M,AC 交y 轴于点N,由于OA 与x 轴正半轴的夹角为30°,所以∠CON=30°,因为OC=2,所以CN=1,ON=√3,在△CNM 中,因为∠MCN=30°,所以MN=√33,由题意得BF=EN=ON=√3,所以EM=2√33,因为△CNM ∽△BEM,所以EM NM =EBCN ,所以2√33√33=EB1,解得BE=2,所以点B 的坐标是(2,2√3).评析 本题主要考查矩形的性质、相似三角形的判定和性质以及坐标系中点的坐标特征的综合应用,在填空题中,属于较难题.三、解答题19.解析(1)原式=1+2√3×√32-3(4分)=1+3-3=1.(5分)(2)原式=4x2-9-4x2+4x+x2-4x+4(8分)=x2-5.(10分)当x=-√3时,原式=(-√3)2-5=3-5=-2.(12分)20.解析方程两边同时乘以2(3x-1),得4-2(3x-1)=3.(2分)化简,得-6x=-3,解得x=12.(6分)检验:x=12时,2(3x-1)=2×(3×12-1)≠0.所以,x=12是原方程的解.(7分)评分说明:检验时,将x=12代入原方程检验或写“经检验……”,均可给分.21.解析(1)在题图3中设计出符合题目要求的图形.(2分)(2)在题图4中画出符合题目要求的图形.(6分)评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.22.解析(1)500.(2分)(2)补全条形统计图(如图1).图1(4分)补全扇形统计图(如图2).图2(6分)(3)3000×25%=750(人),或3000×125500=750(人).答:该校对“诚信”最感兴趣的学生约750人.(8分)23.解析过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,则四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100,CD=500.(2分)在Rt△AEC中,∠C=60°,AE=100.∴CE=AEtan60°=√3=1003√3.(4分)在Rt△BFD中,∠BDF=45°,BF=100,∴DF=BFtan45°=1001=100.(6分)∴AB=EF=CD+DF-CE=500+100-1003√3≈600-1003×1.73≈600-57.67≈542.3(米).(8分)答:岛屿两端A、B的距离为542.3米.(9分)评分说明:其他解法请参照给分.24.解析(1)设每千克核桃应降价x元.(1分)根据题意,得(60-x-40)(100+x2×20)=2240.(4分)化简,得x2-10x+24=0.解得x1=4,x2=6.(6分)答:每千克核桃应降价4元或6元.(7分)(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.(8分)此时,售价为60-6=54(元),5460×100%=90%.(9分)答:该店应按原售价的九折出售.(10分)25.解析(1)依据1:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合).(1分)依据2:角平分线的性质(或角平分线上的点到角的两边的距离相等).(2分)评分说明:考生答案只要与定理内容意思相同即可给分.(2)证明:∵CA=CB,∴∠A=∠B.∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°.∴△OMA≌△ONB(AAS).(4分)∴OM=ON.(5分)评分说明:此题有多种证法,其他证法可参照给分.(3)OM=ON,OM⊥ON.(6分)(注:两个结论都正确只给1分,若考生此处未写两个结论,但在证明过程中有此结论,且证明正确,可不扣分)证明如下:证法一:如图1.连结CO,则CO是AB边上的中线.图1∵∠ACB=90°,∴OC=12AB=OA.(7分)又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°, ∠AOC=∠BOC=90°. ∴∠2=∠CAB=45°,∴∠OCN=∠OAM=135°.(8分)∵FM ⊥MC,∴∠DMC=90°.∵∠3=∠CAB=45°,∴∠4=45°.∴∠3=∠4.∴DM=AM.(9分)∵∠ACB=90°,∴∠NCM=90°.又∵BN ⊥DE,∴∠DNC=90°.∴ 四边形DMCN 是矩形.∴DM=CN.∴AM=CN.(10分)∴△OAM ≌△OCN(SAS).∴OM=ON,∠5=∠6.(11分)∵∠AOC=90°,即∠5+∠7=90°.∴∠6+∠7=90°,即∠MON=90°.∴OM ⊥ON.(12分) 证法二:如图2.连结CO,则CO 是AB 边上的中线.图2∵∠ACB=90°,∴OC=12AB=OB.(7分) 又∵CA=CB,∴∠CAB=∠B=45°, ∠1=∠2=45°,∠AOC=∠BOC=90°. ∴∠1=∠B.(8分)∵BN ⊥DE,∴∠BND=90°.又∵∠B=45°,∴∠3=45°.∴∠3=∠B.∴DN=NB.同证法一可得,四边形DMCN 是矩形.∴DN=MC.(9分)∴MC=NB.(10分)∴△MOC ≌△NOB(SAS).∴OM=ON.(11分) ∠MOC=∠NOB.∴∠MOC-∠4=∠NOB-∠4. 即∠MON=∠BOC=90°.∴OM ⊥ON.(12分)评分说明:此题还有其他证法(如过点O 作OP ⊥AC 于点P,OQ ⊥BC 于点Q,通过证明Rt △OPM ≌Rt △OQN 得证),可参照给分.26.解析 (1)当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3.∵点A 在点B 的左侧,∴A 、B 的坐标分别为(-1,0)、(3,0).当x=0时,y=3.∴C 点的坐标为(0,3).设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则{b 1=3,-k 1+b 1=0,解得{k 1=3,b 1=3,∴直线AC 的解析式为y=3x+3.∵y=-x 2+2x+3=-(x-1)2+4.∴顶点D 的坐标为(1,4).(4分)评分说明:求出直线AC 的解析式给2分,求出B 、D 两点的坐标各1分,共4分.(2)抛物线上有三个这样的点Q,分别为Q 1(2,3),Q 2(1+√7,-3),Q 3(1-√7,-3).(7分)(3)过点B 作BB'⊥AC 于点F,使B'F=BF,则B'为点B 关于直线AC 的对称点.连结B'D 交直线AC 于点M,则点M 为所求.(8分)过点B'作B'E ⊥x 轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2. ∴Rt △AOC ∽Rt △AFB.∴CO BF =CA AB , 由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3.∴AC=√10,AB=4. ∴3BF =√104.∴BF=√.∴BB'=2BF=√.(10分)由∠1=∠2可得Rt △AOC ∽Rt △B'EB, ∴AO B'E =CO BE =CA BB',∴1B'E =3BE =√1024√10,即1B'E =3BE =512. ∴B'E=125,BE=365.∴OE=BE-OB=365-3=215. ∴B'点的坐标为(-215,125).(12分) 设直线B'D 的解析式为y=k 2x+b 2(k 2≠0). ∴{k 2+b 2=4,-215k 2+b 2=125,解得{k 2=413,b 2=4813,∴y=413x+4813.(13分) 由{y =3x +3,y =413x +4813,解得{x =935,y =13235, ∴M 点的坐标为(935,13235).(14分)评分说明:其他解法可参照给分.。

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.22.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣46.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5 8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.510.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是;众数是.12.(4分)化简得;当m=﹣1时,原式的值为.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于%.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.2012年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.2【考点】1B:有理数的加减混合运算.【专题】11:计算题.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.2.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离【考点】MJ:圆与圆的位置关系.【分析】两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d>R+r则两圆相离,若d=R+r则两圆外切,若d=R﹣r则两圆内切,若R﹣r<d<R+r则两圆相交.本题可把半径的值代入,看符合哪一种情况.【解答】解:∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4,∴两圆内切.故选:B.【点评】本题主要考查两圆的位置关系.两圆的位置关系有:外离(d>R+r)、内含(d <R﹣r)、相切(外切:d=R+r或内切:d=R﹣r)、相交(R﹣r<d<R+r).3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【考点】X1:随机事件;X2:可能性的大小.【分析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.【点评】此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键.4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【考点】JA:平行线的性质;L5:平行四边形的性质.【专题】11:计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【考点】4I:整式的混合运算;6F:负整数指数幂.【分析】根据幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法分别进行计算,即可判断.【解答】解:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、3m2÷(3m﹣1)=,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确;故选:D.【点评】此题考查了整式的混合运算,用到的知识点是幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法等,需熟练掌握运算法则,才不容易出错.6.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】VC:条形统计图.【分析】根据条形统计图可以看出每个区的人口数,根据每个区的人口数进行判断,可选出答案.【解答】解:A、只有上城区人口数都低于40万,故此选项错误;B、萧山区、余杭区两个区的人口超过100万,故此选项错误;C、上城区与下城区的人口数之和低于江干区的人口数,故此选项错误;D、杭州市区的人口数已超过600万,故此选项正确;故选:D.【点评】此题主要考查了条形统计图,关键是从图中获取正确信息,从条形统计图中很容易看出数据的大小,便于比较.7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5【考点】2B:估算无理数的大小;75:二次根式的乘除法.【分析】求出m的值,求出2()的范围5<m<6,即可得出选项.【解答】解:m=(﹣)×(﹣2),=,=×3,=2=,∵<<,∴5<<6,即5<m<6,故选:A.【点评】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【考点】J5:点到直线的距离;JA:平行线的性质;T7:解直角三角形.【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=AB sin36°,即可判断A、B;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AO sin36°,AO=AB•sin54°,求出AD,即可判断C、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=AB sin36°=sin36°,故A、B选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故C选项正确,D 选项错误;故选:C.【点评】本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.5【考点】HA:抛物线与x轴的交点.【专题】17:推理填空题.【分析】整理抛物线解析式,确定出抛物线与x轴的一个交点A和y轴的交点C,然后求出AC的长度,再分①k>0时,点B在x轴正半轴时,分AC=BC、AC=AB、AB=BC三种情况求解;②k<0时,点B在x轴的负半轴时,点B只能在点A的左边,只有AC=AB一种情况列式计算即可.【解答】解:y=k(x+1)(x﹣)=(x+1)(kx﹣3),所以,抛物线经过点A(﹣1,0),C(0,﹣3),AC===,点B坐标为(,0),①k>0时,点B在x正半轴上,若AC=BC,则=,解得k=3,若AC=AB,则+1=,解得k==,若AB=BC,则+1=,解得k=;②k<0时,点B在x轴的负半轴,点B只能在点A的左侧,只有AC=AB,则﹣1﹣=,解得k=﹣=﹣,所以,能使△ABC为等腰三角形的抛物线共有4条.故选:C.【点评】本题考查了抛物线与x轴的交点问题,根据抛物线的解析式确定出抛物线经过的两个定点是解题的关键,注意分情况讨论.10.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④【考点】97:二元一次方程组的解;CB:解一元一次不等式组.【专题】16:压轴题.【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断.【解答】解:解方程组,得,∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4,①不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,且﹣3≤a≤1,∴﹣3≤a≤0∴1≤1﹣a≤4∴1≤y≤4结论正确,故选:C.【点评】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x、y的表达式及x、y的取值范围.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是2;众数是1.【考点】W1:算术平均数;W5:众数.【分析】利用算术平均数的求法求平均数,众数的定义求众数即可.【解答】解:平均数为:(1+1+1+3+4)÷5=2;数据1出现了3次,最多,众数为1.故答案为2,1.【点评】本题考查了众数及算术平均数的求法,属于基础题,比较简单.12.(4分)化简得;当m=﹣1时,原式的值为1.【考点】64:分式的值;66:约分.【专题】11:计算题.【分析】先把分式的分子和分母分解因式得出,约分后得出,把m=﹣1代入上式即可求出答案.【解答】解:,=,=,当m=﹣1时,原式==1,故答案为:,1.【点评】本题主要考查了分式的约分,关键是找出分式的分子和分母的公因式,题目比较典型,难度适中.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于6.56%.【考点】1G:有理数的混合运算.【分析】根据题意和年利率的概念列出代数式,再进行计算即可求出答案.【解答】解:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6﹣1000)÷1000=0.0656=6.56%,则年利率高于6.56%;故答案为:6.56.【点评】此题考查了有理数的混合运算,关键是根据年利率的概念列出代数式,进行计算.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是2﹣<b<2.【考点】72:二次根式有意义的条件;C2:不等式的性质.【分析】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2﹣a的范围即可得解.【解答】解:∵(a﹣)<0,∴>0,a﹣<0,解得a>0且a<,∴0<a<,∴﹣<﹣a<0,∴2﹣<2﹣a<2,即2﹣<b<2.故答案为:2﹣<b<2.【点评】本题考查了二次根式有意义的条件,不等式的基本性质,先确定出a的取值范围是解题的关键.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为15cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为1或9cm.【考点】I1:认识立体图形;I6:几何体的展开图;L8:菱形的性质.【分析】由底面为菱形的直棱柱,高为10cm,体积为150cm3,由体积=底面积×高,即可求得这个棱柱的下底面积,又由该棱柱侧面展开图的面积为200cm2,即可求得底面菱形的周长与BC边上的高AE的长,由勾股定理求得BE的长,继而求得CE的长.【解答】解:∵底面为菱形的直棱柱,高为10cm,体积为150cm3,∴这个棱柱的下底面积为:150÷10=15(cm2);∵该棱柱侧面展开图的面积为200cm2,高为10cm,∴底面菱形的周长为:200÷10=20(cm),∴AB=BC=CD=AD=20÷4=5(cm),∴AE=S菱形ABCD÷BC=15÷5=3(cm),∴BE==4(cm),∴如图1:EC=BC﹣BE=5﹣4=1(cm),如图2:EC=BC+BE=5+4=9(cm),故答案为:15;1或9.【点评】此题考查了菱形的性质、直棱柱的性质以及勾股定理.此题难度不大,注意审题,掌握直棱柱体积与侧面积的求解方法.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【考点】P8:利用轴对称设计图案.【专题】16:压轴题.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,把A进行移动可得到点的坐标,注意考虑全面.【解答】解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),故答案为:(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义,根据3个定点所在位置,找出A的位置.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘以多项式法则先计算括号里的乘法,再去括号合并同类项,即可算出结果.【解答】解:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)]=2(m2﹣m+m2+m)(m2﹣m﹣m2﹣m)=﹣8m3原式=﹣8m3,表示一个能被8整除的数.【点评】此题主要考查了整式的混合运算,关键是掌握计算顺序,先算乘法,后算加减,注意符号的变化,运用乘法分配律是不要漏乘.18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】H7:二次函数的最值.【专题】32:分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.【考点】KQ:勾股定理;MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】(1)在数轴上截取AC=5a,再以A,C为圆心3a,4a为半径,画弧交点为B;(2)利用△ABC的外接圆的面积为S圆,根据直角三角形外接圆的性质得出AC为外接圆直径,求出的比值即可.【解答】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S圆,∴S圆=π×()2=π,△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【点评】此题主要考查了复杂作图以及直角三角形外接圆的性质,根据已知得出外接圆直径为AC是解题关键.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.【考点】CE:一元一次不等式组的应用;K6:三角形三边关系;X4:概率公式.【分析】(1)设三角形的第三边为x,根据三角形的三边关系列出不等式组,再解不等式组即可;(2)求出x的所有整数值,即可求出n的值;(3)先求出该三角形周长为偶数的所有情况,再除以总的个数,即可求出答案.【解答】解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,又∵有9个三角形,∴该三角形周长为偶数的概率是.【点评】此题考查了一元一次不等式组的应用,关键是根据三角形的三边关系列出不等式组,在解题时要注意x只能取整数.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;LJ:等腰梯形的性质.【专题】2B:探究型.【分析】(1)根据等腰梯形的性质和等边三角形的性质以及全等三角形的判定方法证明△AED≌△DF A即可;(2)如图作BH⊥AD,CK⊥AD,利用给出的条件和梯形的面积公式即可求出BC的长.【解答】(1)证明:在梯形ABCD中,AD∥BC,AB=CD,∴∠BAD=∠CDA,而在等边三角形ABE和等边三角形DCF中,AB=AE,DC=DF,且∠BAE=∠CDF=60°,∴AE=DF,∠EAD=∠FDA,AD=DA,∴△AED≌△DF A(SAS),∴AF=DE;(2)解:如图作BH⊥AD,CK⊥AD,则有BC=HK,∵∠BAD=45°,∴∠HAB=∠KDC=45°,∴AB=BH=AH,同理:CD=CK=KD,∵S梯形ABCD=,AB=a,∴S梯形ABCD==,而S△ABE=S△DCF=a2,∴=2×a2,∴BC=a.【点评】本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】方法一:(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0,又由二次函数y =k(x2+x﹣1)的对称轴为x=﹣,可得x<﹣时,才能使得y随着x的增大而增大;(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(﹣,﹣k),A(1,k),即可得=,继而求得答案.方法二:(1)略.(2)根据反比例函数及二次函数的增减性得出k及x的取值范围.(3)设参数Q点坐标,由于AB为斜边,得出AQ垂直BQ,利用黄金法则二列式便可求解.(4)列出A,B,C三点参数坐标,利用黄金法则二列式便可求解.【解答】方法一:解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,﹣k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作BD⊥OC,QC⊥OC,∴OQ==,∵OB==,∴=,解得:k=±.方法二:(1)略.(2)略.(3)抛物线的顶点Q(﹣,﹣k),A(1,k),B(﹣1,﹣k),∵△ABQ是以AB为斜边的直角三角形,∴AQ⊥BQ,∴K AQ×K BQ=﹣1,∴,∴,k1=,k2=﹣,方法二追加第(4)问:点C为x轴上一动点,且C点坐标为(2k,0),当△ABC是以AB为斜边的直角三角形时,求K的值.(4)△ABC是以AB为斜边的直角三角形,∴AC⊥BC,∴K AC×K BC=﹣1,∵A(1,k),B(﹣1,﹣k),C(2k,0),∴,∴3k2=1,∴k1=,k2=﹣.【点评】此题考查了二次函数的性质、反比例函数的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意掌握待定系数法求函数解析式,注意数形结合思想的应用.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.【考点】KO:含30度角的直角三角形;KQ:勾股定理;M2:垂径定理;MC:切线的性质;Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质.【专题】11:计算题;16:压轴题.【分析】(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与AT垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tan A的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合,在EF的同一侧,这样的三角形共有3个.延长EO与圆交于点D,连接DF,如图所示,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.【解答】解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tan A=tan30°=,即EC=AE tan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.【点评】此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含。

2012年中考数学试题(含答案)

2012年中考数学试题(含答案)

2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A.0 B.-2 C.1 D.1 22.计算(ab)3的结果是( )A.ab3B.a3b C.a3b3D.3ab3.如图中几何体的主视图是( )A. B. C. D.4.下列各数中,为不等式组230,40xx->⎧⎨-<⎩的解的是( )A.-1 B.0 C.2 D.45.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A.AE>BE B.AD=BCC.∠D=12∠AEC D.△ADE∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每两次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上 D. 不可能有10次正面向上7.如图,点C 在∠A O B 的O B 边上,用尺规作出了C N ∥O A ,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x+2)2=3B .(x -2)2=3C .(x -2)2=5D .(x+2)2=59.如图,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠A MF 等于( )A .70°B .40°C .30°D .20° 10.化简的结果是22111x x ÷--( ) A .21x - B .321x - C .21x + D .2(x+1)11.如图,两个正方形的面积分别为16和9,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A.7 B.6 C.5 D.412.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确的结论是( )A.①②B.②③C.③④D.①④卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13.-5的相反数是___________.14.如图,AB、CD相交于点O,AC⊥CD于点C,若∠B O D=38°,则∠A等于_______°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为_______.16.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为________.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为________.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:|-5|--3)0+6×(1132)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC -CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:DC=10:5:2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a =_______,x乙=________; (2)请完成图11中表示乙变化情况的折线;(3)①观察图11,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m x (x>0)的图象经过点D,点P是一次函数y=k x+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=k x+3-3k(k≠0)的图象一定经过点C;(3)对于一次函数y=k x+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为_________,AE和ED的位置关系为__________;(2)在图1中,以点E为位似中心,作△E GF与△EAB位似,点H是BC所在直线上的一点,连接GH,H D,分别得到了图2和图3.①在图2中,点F在BE上,△E GF与△EAB的相似比为1:2,H是EC的中点.求证:GH=H D,GH⊥H D.②在图3中,点F在BE的延长线上,△E GF与△EAB的相似比是k:1,若BC=2,请直接写出C H的长为多少时,恰好使得GH=H D且GH⊥H D(用含k的代数式表示).某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,变长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长40cm 的薄板,获得的利润是26元;(利润=出厂价-成本价) ①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标是(2b a-,244ac b a-).如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CB O=45°,CD∥AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BC P=15°时,求t的值;(3)以点P为圆心,P C为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=5.13探究如图1,A H⊥BC于点H,则A H=________,AC=________,△ABC的面积S△ABC =________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,C F=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD和S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x的值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省中考数学试卷参考答案与试题解析1.【答案】B【思路分析】考点解剖:本题考查负数的概念与有理数的分类,解题的关键掌握有理数的概念.【解题思路】直接根据负数的概念,可以确定其中的负数只有-2.解答过程:【解答】A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【规律总结】对提供的实数,确定其是正数还是负数时,往往先对其进行化简,再与0进行大小比较,大于零即为正数、小于零即为负数.2.【答案】C【思路分析】考点解剖:本题考查了幂的运算,解题的关键是正确掌握积的乘方法则.【解题思路】积的乘方等于把每一个因式分别乘方,再把所得的幂相乘.解答过程:【解答】把其中的因式a、b分别乘方,得a3b3,结果为a3b3, 故选C.【规律总结】进行幂的运算时,关键是要正确确定其中的运算法则,防止滥用公式,而导致出现错误.3.【答案】A【思路分析】考点解剖:本题考查了对几何体的三视图的认识,解题的关键是正确根据三视图的特征,确定平面图形.【解题思路】主视图也就是从几何体的正面观察,得到的平面图形.解答过程:【解答】从正面观察这个几何体,得到的平面图形是左、中、右三个矩形,其中左、右两个矩形的大小相同,中间一个是小于两边的矩形.因此,符合题意的主视图是A, 故选A.【规律总结】三个视图中,主视图反映了物体的长度和高度并反映上下、左右的位置关系;俯视图反映了物体的长度和宽度,并反映了物体左右、前后的位置关系;左视图反映了物体的高度和宽度,并反映了物体上下、前后的位置关系.三视图之间的对应关系:主、俯长相等;主、左高平齐;俯、左宽相等.4.【答案】C【思路分析】考点解剖:本题考查了不等式组的解法,解题的关键是正确解答不等式,并能够确定几个不等式组成不等式组的解集.【解题思路】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,,进而确定符合条件的特殊解.解答过程:【解答】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,则所给的数中是不等式的解的有2,故选C.【规律总结】确定不等式组的解集可采用口诀:(1)小小取小:都是小于号的取小于号后面较小的那个数;(2)大大取大:都是大于号的取大于号后面较大的那个数;(3)大小小大中间找:大于小的小于大的中间的部分即为解集;(4)大大小小无处找:大于大的小于小的不等式组无解.5.【答案】D【思路分析】考点解剖:本题考查了垂径定理、圆周角定理,解题的关键正确掌握垂径定理、圆周角定理.【解题思路】根据圆的垂径定理知道:点E是AB的中点、CD垂直平分AB所对的两条弧AB、ADB,∠AEC=90°、∠D的度数无法确定;根据圆周角性质,可以知道:∠D=∠B、∠A=∠C,因此,可以确定图形中隐含的三角形相似.解答过程:【解答】∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,AC BC,,故A、B错误;∵∠AEC不是圆心角,∴∠D≠12∠AEC,故C错误;∵∠CEB=∠AED,∠DAE=∠BCE,∴△ADE∽△CBE,故C正确.故选D.【规律总结】垂径定理往往隐含着图形中存在着的相等弧、相等的角.同弧所对的圆周角相等,为图形中构造三角形相似架设了桥梁.6.【答案】B【思路分析】考点解剖:本题考查了概率与频率之间的关系,解题的关键正确理解概率与频率之间的内在联系.【解题思路】掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是12,因此,平均每两次中有1次正面向上或有1次反面向上.解答过程:【解答】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有5次正面向上;故选B.【规律总结】随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.7.【答案】D【思路分析】考点解剖:本题考查了平行线的判定、尺规作图,解题的关键正确掌握基本的尺规作图方法.【解题思路】先根据条件确定图形中相等的角,再用尺规作一个角等于已知角的方法解决问题.解答过程:【解答】由图形和条件可以知道:∠A O B=∠N CB,根据用尺规作一个角等于已知角的方法,即可知道FG是以点E为圆心,D M为半径的弧, 故选D.【规律总结】解答这类问题的一般步骤,往往是先根据问题条件,再确定隐含在图形中的边角之间的关系,从而解决问题.8.【答案】A【思路分析】考点解剖:本题考查了等式的性质和配方法,解题的关键正确理解等式的性质,并熟练掌握配方法的意义和一般方法.【解题思路】方法一:在方程的两边同时加上3,使方程的一边化为完全平方式;方法二:也可以先将方程中的常数项移至方程的另一边,再在方程的两边同时加上4.解答过程:【解答】方法一:在方程的两边同时加上3,得x 2+4x +4=3,即:(x +2)2=3;方法二:也可以先将方程中的常数项移至方程的另一边,得得x 2+4x =-1,再在方程的两边同时加上4,得得x 2+4x +4=-1+4,即:(x +2)2=3.故选A ﹒【规律总结】配方法的一般步骤:1.方程两边同除以二次项系数,化二次系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为(x +a )2=b 的形式.9.【答案】B【思路分析】考点解剖:本题考查了平行四边形性质和轴对称图形的性质,解题的关键是熟练掌握灵活应用平行四边形性质和轴对称图形的性质将问题进行转化.【解题思路】根据题意知道∠D MN =∠FMN 、∠D =∠MF E ,再根据平行四边形的性质,可以得到∠MF A =∠A =70°.再应用三角形内角和定理可以求得∠A MF 的度数. 解答过程:【解答】根据题意知道四边形MF E N 与四边形M DC N 关于折痕MN 成轴对称,则∠D MN =∠FMN ,即∠D MF =2∠D MN 、∠MF E =∠D .又因为∠A +∠D =180°、∠MF A +∠MF E =180°,所以∠MF A =∠A =70°.因为∠A MF+∠MF A +∠A =180°,所以∠A MF =40°. 故选B .【规律总结】解答这类问题时,往往需要灵活应用轴对称图形隐含的边、角之间的相等关系解决问题.10.【答案】C【思路分析】考点解剖:本题考查了分式的运算,解题的关键熟练掌握因式分解和约分.【解题思路】先将除法运算转化为乘法运算,并把分子分母因式分解,再进行约分计算. 解答过程: 【解答】22111x x ÷--=2(1)(1)(1)x x x ⨯--+=21x +,故选择C. 【规律总结】分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化.11.【答案】A【思路分析】考点解剖:本题考查了同学们整体、转化数学思想的形成,解题的关键是灵活地将陌生的数学问题转化为熟悉的问题.【解题思路】运用整体思想,把求a-b的问题转化为与已知的两个正方形的面积有关的计算.解答过程:【解答】令重叠部分的面积为m,则a-b=(16+m)-(9+m)=16-9=7.【规律总结】解答这类问题时,往往需要灵活地从整体出发,善于将待求的问题进行转化.12.【答案】D【思路分析】考点解剖:本题考查了二次函数的解析式确定、图象信息,解题的关键是正确从图象中获取相关信息,并结合问题条件进行解题.【解题思路】根据抛物线上的点A坐标,可以直接确定y1的解析式,即知道a值,进而确定点A、B、C的坐标以及当x=0时,y1、y2的值,从而解决问题.解答过程:【解答】由图象可以知道y2的图象全部在x轴上方,所以无论x取何值,y2的值总是正数.∵抛物线y1=a(x+2)2-3过点A(1,3),∴a(1+2)2-3=3,∴a=23,即y1=23(x+2)2-3,当x=0时,y1=-13、y2=112,则y2-y1=356;当y=3时,23(x+2)2-3=3,解得x1=-5、x2=1,即A(1,3)、B(-5,3),则AB=6;当y=3时,y2=12(x-3)2+1,解得x1=5、x2=1,即A(1,3)、C(5,3),则AC=4;∴2AB=3AC.因此,其中正确的有①④.故选D.【规律总结】解答这类问题,往往需要综合应用所学的数学知识,从二次函数的图象性质、解析式的求法角度灵活运用,正确获取相关信息进行解答.有时还需要应用淘汰法加以选择.13.【答案】5【思路分析】考点解剖:本题考查了实数的相关概念,解题的关键正确理解实数相反数的意义.【解题思路】直接相反数的意义确定,只有符号不同的两个数叫做互为相反数.解答过程:【解答】-5的相反数是5,故填5﹒【规律总结】正数的相反数是负数、负数的相反数是正数、0的相反数是0.14.【答案】52°【思路分析】考点解剖:本题考查了垂直定义、三角形内角和定理、对顶角性质,解题的关键是灵活应用垂直定义、三角形内角和定理和对顶角性质,使待求问题得以转化.【解题思路】根据垂直定义知道:∠AC O=90°,再根据对顶角性质可以知道∠A O C=∠B O D =38°,最后应用三角形内角和定理确定∠A的度数.解答过程:【解答】∵∠BOD=38°,∴∠AOC=38°,∵AC⊥CD于点C,∴∠A=90°﹣∠AOC=90°﹣38°=52°.故答案为52°.【规律总结】解答这类问题时,往往借助于三角形内角和、外角或平行线的相关性质,使问题得以转化.15.【答案】1【思路分析】考点解剖:本题考查了代数式的值,解题的关键是灵活对条件和问题进行适当变形.【解题思路】将y=x-1变形为x-y=1,再代入其中进行计算求得结果.解答过程:【解答】(x-y)2+(y-x)+1=(x-y)2-(x-y)+1=1-1+1=1,故填1﹒【规律总结】整体思想是指淡化问题的细节,将结构相同的部分看作一个整体的解题思想,它实质上是化归思想的一种具体的体现.恰当地使用整体思想解题,可以将复杂问题简单化,取到事半功倍的效果,但在使用前一定要将问题的细节分析清楚,以免弄巧成拙,产生错误..16.【答案】3 4【思路分析】考点解剖:本题考查了等可能条件下的概率,解题的关键正确理解等可能条件下的概率的意义.【解题思路】先确定这个等可能事件下共有多少种等可能的结果,再确定所要研究的事件可能出现的结果数目,从而应用概率计算公式求解.解答过程:【解答】因为第三个棋子可能落在其余四个位置的格点上,而以这枚棋子所在格点与已知格点为顶点的三角形的格点有3个,因此,以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.故答案为:34﹒【规律总结】确定等可能条件下的概率时,一定确定好等可能事件下共有等可能发生的结果数目以及所要研究的事件可能出现的结果数.17.【答案】21【思路分析】考点解剖:本题考查了阅读理解能力和探索规律的能力,解题的关键正确阅读规则,确定其中隐含的内在规律.【解题思路】根据报数游戏规则,可以知道:第n位同学报(1n+1).不妨先求得到的第2个数的积、得到的第3个数的积、得到的第4个数的积,并从中发现隐含在其中的规律.解答过程:【解答】第2个数的积为(11+1)(12+1)=2×(12+1)=3、得到的第3个数的积为3×(13+1)=4、得到的第4个数的积为4×(14+1)=5、得到的第n个数的积为n×(1n+1)=n+1.因此,这样得到的第20个数的积为21.故答案为:21.【规律总结】解决有探索规律的问题,往往先从特殊的问题进行入手,再对其进行一般化,从而获取一般化的结论.18.【答案】6【思路分析】考点解剖:本题考查了正多边形的性质,解题的关键是熟练应用正多边形的边数与内角的数量关系进行解题.【解题思路】先求得正八边形的每个内角的度数,再确定所求的中间一个正多边形的内角度数,从而根据多边形的外角和为360°,进而确定其边数.解答过程:【解答】正六边形的每个内角都是120°,则所求的中间一个正多边形的内角度数360°-120°-120°=120°,则这个多边形的每个外角度数为180°-120°=60°,即n=360°÷60°=6,故答案为:6.【规律总结】解决与正多边形边、角有关的问题时,往往从其外角和以及每个外角的度数进行如手进行思考,较为简捷.19【答案】4【思路分析】考点解剖:本题考查了实数的混合运算,解题的关键是熟练掌握实数的混合运算法则.【解题思路】观察本题中的算式,不妨先对算式中的绝对值、乘方和乘法同时进行运算,再进行加减运算.解答过程:【解答】|-5|--3)0+6×(1132-)+(-1)2=5-1+(2-3)+1=4.【规律总结】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果.20.【答案】10【思路分析】考点解剖:本题考查了列代数式和列方程解决实际问题的能力,解题的关键是从实际问题中获取等量关系式.【解题思路】用含有相同参数的代数式分别表示外环公路总长、市区公路长,进而解决问题(1);问题(2)中,隐含着这样一个相等关系式:去时所用时间-返回时所用时间=110h ,进而建立方程解决问题.解答过程:【解答】(1)设AB =10x km ,则AD =5x km ,CD =2x km .∵四边形ABCD 是等腰梯形,DC ∥AB ,∴BC =AD =5x ,∴AD +DC +CB =12x ,∴外环公路总长和市区公路总长的比为12x :10x =6:5;(2)由(1)可知,市区公路的长为10x km ,外环公路的长为12x km .由题意,得10121408010x x =+,解这个方程,得x =1,∴10x =10.答:市区公路的长为10km .【规律总结】应用方程解决实际问题,其关键根据实际问题,寻找等量关系式建立恰当的方程.21.【答案】(1)见解析(2)见解析(3)见解析【思路分析】考点解剖:本题考查了从统计图表中获取信息,应用数据的集中程度、离散程度的知识进行解决实际问题.【解题思路】(1)根据他们的总成绩相同可以求得a值,并应用平均数的意义得到可以解决;(2)直接可以补全统计图;(3)只要求得乙成绩的方差,即可联系平均数确定应该是谁将被选中.解答过程:【解答】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①乙,S2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于S2乙<S2甲,所以上述判断正确;②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.【规律总结】确定谁被选中参加某项活动,往往从综合数据的集中程度和离散程度进行思考.一组数据的方差越大,这组数据越稳定.22.【答案】见解析【思路分析】考点解剖:本题考查了平行四边形性质、反比例函数、一次函数的图象性质,解题的关键是灵活应用待定系数法解决相关问题.【解题思路】(1)根据图形性质,可以看成是点D 由点A 平移而得,并应用待定系数法求得反比例函数解析式;(2)直接将点C 坐标代入其中,看是否符合一次函数解析式,从而进行说理;(3)由于一次函数是y 随x 的增大而增大,所以整个图象从左到右是呈上升趋势,即分别求得过点C 分别与x 、y 垂直时直线与双曲线相交时的点的横坐标.解答过程:【解答】(1)由题意,得AD =CB =2,故点D 的坐标为(1,2).∵反比例函数y =m x 的图象经过点D (1,2),∴2=1m .∴m =2,∴反比例函数的解析式为y =2x ;(2)当x =3时,y = k x +3-3k =3,∴一次函数y =k x +3-3k(k≠0)的图象一定过点C ;(3)设点P 的横坐标为a ,23<a <3.【规律总结】确定反比例函数解析式时,往往只需要知道图象上的一个点的坐标即可.确定一次函数系数的取值范围问题,往往通过y 与x 之间的增减性关系来确定.23.【答案】(1)见解析(2)见解析【思路分析】考点解剖:本题考查了三角形全等判定、性质和三角形相似的判定、性质以及条件探索能力,解题的关键是正确应用三角形全等、三角形相似的判定和性质解题.【解题思路】(1)直接知道其中的△EAB ≌△ECD ,从而可以得到AE =DE 、∠AED =90°;(2)①可以得到GF =H C 、∠GFH =∠C =90°、FH =CD ,则有△HGF ≌△D H C ,从而可以得到GH =H D ,GH ⊥H D ;②要使得GH =H D 且GH ⊥H D ,必须具备的条件是△HGF ≌△D H C ,即C H =GF =k 时,恰好有FH =CD .解答过程:【解答】(1)∵点E 是线段BC 的中点,分别BC 以为直角顶点的△EAB 和△EDC 均是等腰三角形,∴BE=EC=DC=AB ,∠B=∠C=90°,∴△ABE ≌△DCE ,∴AE=DE ,∠AEB=∠DEC=45°,∴∠AED=90°,∴AE ⊥ED .故答案为:AE=ED,AE⊥ED;(2)①证明:由题意,∠B=∠C=90°,AB=BE=EC=DC.∵△E GF与△EAB位似且相似比为1:2,∴∠GF E=∠B=90°,GF=12AB,E F=12EB,∴∠GF E=∠C.∵E H=H C=1 2EC,∴GF=H C,FH=F E+E H=12EB+12EC=12BC=EC=CD,∴△HGF≌△D H C,∴GH=H D,∠GHF=∠H DC.又∵∠H DC+∠D H C=90°,∴∠GHF+∠D H C=90°,∴∠GH D=90°,∴GH⊥H D;②根据题意得出:∵当GH=HD,GH⊥HD时,∴∠FHG+∠DHC=90°,∵∠FHG+∠FGH=90°,∴∠FGH=∠DHC,∴DH GHFGH DHCDCH GFH=⎧⎪∠=⎨⎪∠=⎩,∴△GFH≌△HCD,∴CH=FG,∵EF=FG,∴EF=CH,∵△EGF与△EAB的相似比是k:1,BC=2,∴BE=EC=1,∴EF=k,∴CH的长为k.【规律总结】这是一道融三角形全等、三角形相似和条件探索于一体的简单综合题.解答时,需要应用类比的方法、综合应用所学数学知识解决问题.24.【答案】(1)y=2x+10(2)见解析【思路分析】考点解剖:本题考查了应用一次函数、二次函数解决实际问题的能力,解题的关键是对于实际问题能够灵活地构建恰当的数学模型,并应用其相关性质加以解答.【解题思路】(1)由每张薄板的出厂价是薄板的边长一次函数,根据表格中的对应值即可求得其函数关系式;(2)由于利润=出厂价-成本价,即从(1)中的函数关系中减去成本价,可得一张薄板的利润与边长之间的二次函数关系式,进而可确定边长为某值时对应的函数的最大值. 解答过程:【解答】(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为k x 元,则y =k x +n .由表格中的数据,得5020,7030.k n k n =+⎧⎨=+⎩ 解得2,10.k n =⎧⎨=⎩,所以y =2x +10;(2)①设一张薄板的利润为P 元,它的成本价为m x 2元,由题意, 得P =y -m x 2=2x +10-m x 2.将x =40,P =26代入P =2x +10-m x 2中, 得26=2×40+10-m×402,解得m =125,所以P =-125x 2+2x +10;②因为a =-125<0,所以,当x =-22512225ba=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,P 最大值=22141024253514425ac b a⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭,即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元.【规律总结】对于生活中的实际问题,要能够抓住隐含中其中的数量关系,根据变量之间的变化关系确定适当的数学函数模型进行解答. 25.【答案】(1)(0,3)(2)(3)1或4或5.6【思路分析】考点解剖:本题考查了勾股定理、解直角三角形和直线与圆相切的性质,解题的关键灵活应用三角形中的边角关系构造直角三角形解决问题,并根据点的运动位置确定时直线与圆相切时的性质.【解题思路】(1)直接求得O C 的长度;(2)先求得OP 的长度,再确定运动的路程PQ 长度,进而求得时间t 的值;(3)⊙P 与四边形ABCD 的边(或边所在的直线)相切,其实质隐含了三种情况进行分类讨论. 解答过程:【解答】(1)∵∠BC O =∠CB O =45°,∴O C =O B =3.又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3);(2)当点P 在点B 的右侧时,如图2.由∠BC P =15°,得∠P C O =30°,故OP =O C t a n30°。

2012年安徽中考数学试题及答案(解析版)

2012年安徽中考数学试题及答案(解析版)

2012年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(2012•安徽)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.(2012•安徽)计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x54.(2012•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1C.m2﹣n D.m2﹣2m+15.(2012•安徽)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元6.(2012•安徽)化简的结果是()A.x+1B.x﹣1C.﹣x D.x7.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.(2012•安徽)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()9.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.10.(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题共4小题,每小题5分,满分20分)11.(2012•安徽)2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是_________.12.(2012•安徽)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为,,,则数据波动最小的一组是_________.13.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.14.(2012•安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是_________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(2012•安徽)计算:(a+3)(a﹣1)+a(a﹣2)16.(2012•安徽)解方程:x2﹣2x=2x+1.四、(本大题共2小题,每小题8分,满分16分)17.(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是_________(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.18.(2012•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.五、(本大题共2小题,每小题10分,满分20分)19.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.20.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.七、(本题满分12分)22.(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG 的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.2012年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法。

2012年昆明中考数学试卷及解析

2012年昆明中考数学试卷及解析

2012年云南省中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2012•云南)5的相反数是()A.B.﹣5C.D.52.(3分)(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.3.(3分)(2012•云南)下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6C.(x3)2=x5D.40=14.(3分)(2012•云南)不等式组的解集是()A.x<1B.x>﹣4C.﹣4<x<1D.x>15.(3分)(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°6.(3分)(2012•云南)如图,AB、CD是⊙O的两条弦,连接AD、BC.若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°7.(3分)(2012•云南)我省五个5A级旅游景区门票票价如下表所示(单位:元)关于这五个里边有景区门票票价,下列说法中错误的是()景区名称石林玉龙雪山丽江古城大理三塔文化旅游区西双版纳热带植物园票价(元)175 105 80 121 80A.平均数是120B.中位数是105C.众数是80D.极差是958.(3分)(2012•云南)若,,则a+b的值为()A.B.C.1D.2二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2012•云南)国家统计局发布第六次全国人口普查主要数据公布报告显示:云南省常住人口约为45960000人.这个数据用科学记数法可表示为人.10.(3分)(2012•云南)写出一个大于2小于4的无理数:.11.(3分)(2012•云南)因式分解:3x2﹣6x+3=.12.(3分)(2014•攀枝花)函数中自变量x的取值范围是.13.(3分)(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)14.(3分)(2012•云南)观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是.(填图形的名称)▲■★■▲★▲■★■▲★▲…三、解答题(共9小题,满分58分)15.(5分)(2012•云南)化简求值:,其中.16.(5分)(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.17.(6分)(2012•云南)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水各多少件?18.(7分)(2012•云南)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示.根据以上统计图提供的信息,回答下列问题:种类 A B C D E用牙开瓶盖常喝饮料嚼冰常吃生冷零食磨牙不良习惯睡前吃水果喝牛奶(1)这个班有多少名学生?(2)这个班中有C类用牙不良习惯的学生多少人?占全班人数的百分比是多少?(3)请补全条形统计图;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生多少人?19.(7分)(2012•云南)现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3.先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.20.(6分)(2012•云南)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取,结果保留整数)21.(6分)(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.22.(7分)(2012•云南)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.23.(9分)(2012•云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y 轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2012年云南省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)【考点】相反数.【分析】根据相反数的定义,即只有符号不同的两个数互为相反数,进行求解.【解答】解:5的相反数是﹣5.故选B.【点评】此题考查了相反数的概念.求一个数的相反数,只需在它的前面加“﹣”号.2.(3分)【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的识图分析解答.【解答】解:从上面看,是1行3列并排在一起的三个正方形.故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.(3分)【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.【解答】解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;∴可得﹣4<x<1.故选C.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.(3分)【考点】三角形内角和定理.【分析】首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.【解答】解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.【点评】本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.6.(3分)【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:∵∠BAD与∠BCD都是对的圆周角,∴∠BCD=∠BAD=60°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用,注意数形结合思想的应用.7.(3分)【考点】极差;算术平均数;中位数;众数.【分析】根据极差,中位数和众数的定义解答,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差.【解答】解:A、平均数为(175+105+80+121+80)÷5=112.2,错误.B、从高到低排列后,为80,80,105,121,175,中位数是105,正确;C、80出现了两次,出现的次数最多,所以众数是80,正确;D、极差是175﹣80=95,正确.故选A.【点评】本题考查了极差、平均数、中位数、众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)【考点】平方差公式.【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b 的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.二、填空题(共6小题,每小题3分,满分18分)9.(3分)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将45960000用科学记数法表示为:4.596×107.故答案为:4.596×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)【考点】实数大小比较;估算无理数的大小.【分析】根据算术平方根的性质可以把2和4写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.【解答】解:∵2=,4=,∴写出一个大于2小于4的无理数是、、、π….故答案为:、、、π…(只要是大于小于无理数都可以)等.本题答案不唯一.【点评】此题考查了无理数大小的估算,熟悉算术平方根的性质是解题关键.11.(3分)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.13.(3分)【考点】扇形面积的计算.【分析】根据扇形公式S扇形=,代入数据运算即可得出答案.【解答】解:由题意得,n=120°,R=3,故S扇形===3π.故答案为:3π.【点评】此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.14.(3分)【考点】规律型:图形的变化类.【分析】本题是循环类问题,只要找到所求值在第几个循环,便可找出答案.【解答】解:根据题意可知,每6个图形一个循环,第18个图形经过了3个循环,且是第3个循环中的最后1个,即第18个图形是五角星.故答案为:五角星.【点评】此题考查了图形的变化类,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,主要培养学生的观察能力和归纳总结能力.三、解答题(共9小题,满分58分)15.(5分)【考点】分式的化简求值.【分析】根据乘法的分配律展开得出×(x+1)(x﹣1)+×(x+1)(x﹣1),求出结果是2x,代入求出即可.【解答】解:原式=×(x+1)(x﹣1)+×(x+1)(x﹣1)=x﹣1+x+1=2x,当x=时,原式=2×=1.【点评】本题考查了分式的化简求值的应用,主要考查学生的化简能力,题型较好,但是一道比较容易出错的题目.【考点】全等三角形的判定.【分析】根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).【点评】此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.17.(6分)【考点】二元一次方程组的应用.【分析】设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,则根据总共捐赠2000件,及捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件可得出方程,联立求解即可.【解答】解:设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,由题意得,,解得:.答:该企业向甲学校捐了1200件矿泉水,向乙学校捐了800件矿泉水.【点评】此题考查了二元一次方程组的知识,属于基础题,解答本题的关键是设出未知数,根据题意的等量关系得出方程,难度一般.18.(7分)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A组的频数除以其所占的百分比即可求得总人数;(2)用单位1减去其他小组所占的百分比即可求得C小组所占的百分比;(3)小长方形的高等于其频数;(4)用总人数乘以B类所占的百分比即可求得用牙不良习惯的学生人数.【解答】解:(1)25÷50%=50…(1分)(2)1﹣50%﹣20%=30%…(2分)50×30%=15…(3分)(3)(4)850×10%=85…(6分)答:(1)这个班有50名学生;(2)这个班中有C类用牙不良习惯的学生15人占全班人数的百分比是30%;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生85人.…(7分)【点评】此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)【考点】列表法与树状图法.【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【解答】解:(1)列表得:﹣1 2﹣2 ﹣3 01 0 33 2 5则共有6种结果,且它们的可能性相同;…(3分)(2)∵取出的两个小球上的数字之和等于0的有:(1,﹣1),(﹣2,2),∴两个小球上的数字之和等于0的概率为:=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(6分)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据已知条件转化为直角三角形ABC中的有关量,然后选择合适的边角关系求得BD的长即可.【解答】解:由题意知:∠CAB=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,即=,∴BC=32∴BD=32﹣16≈39答:荷塘宽BD为39米.【点评】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC中的有关元素.21.(6分)【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形的面积.【分析】(1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0),将A(2,1)、B(﹣1,﹣2)代入y1得到方程组,求出即可;将A(2,1)代入y2得出关于a的方程,求出即可;(2)求出C的坐标,根据三角形的面积公式求出即可.【解答】解:(1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0),∵将A(2,1)、B(﹣1,﹣2)代入y1得:,∴,∴y1=x﹣1;∵将A(2,1)代入y2得:a=2,∴;答:反比例函数的解析式是y2=,一次函数的解析式是y1=x﹣1.(2)∵y1=x﹣1,当y1=0时,x=1,∴C(1,0),∴OC=1,∴S△AOC=×1×1=.答:△AOC的面积为.【点评】本题考查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目.22.(7分)【考点】矩形的性质;线段垂直平分线的性质;勾股定理;平行四边形的判定;菱形的性质;菱形的判定.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣16x+64+16,求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.【点评】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.23.(9分)【考点】二次函数综合题.【分析】方法一:(1)首先求出A点坐标,然后利用待定系数法求出抛物线的解析式;(2)利用相似三角形(Rt△OCA∽Rt△OPA)比例线段之间的关系,求出线段OC的长度,从而得到C点的坐标,如题图所示;(3)存在所求的M点,在x轴上有3个,y轴上有2个,注意不要遗漏.求点M坐标的过程并不复杂,但要充分利用相似三角形比例线段之间的关系.方法二:(1)略.(2)利用黄金法则二,得出AC直线方程,令y=0求出点C坐标.(3)设参数点M,分类讨论三种位置关系,利用黄金法则二求出点M.【解答】方法一:解:(1)直线解析式为y=x+2,令x=0,则y=2,∴A(0,2),∵抛物线y=x2+bx+c的图象过点A(0,2),E(﹣1,0),∴,解得.∴抛物线的解析式为:y=x2+x+2.(2)∵直线y=x+2分别交x轴、y轴于点P、点A,∴P(6,0),A(0,2),∴OP=6,OA=2.∵AC⊥AB,OA⊥OP,∴Rt△OCA∽Rt△OPA,∠OAC=∠OPA,∴,∴OC=,又C点在x轴负半轴上,∴点C的坐标为C(,0).(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,∴B(,).如答图①所示,过点B作BD⊥x轴于点D,则D(,0),BD=,DP=6﹣=.点M在坐标轴上,且△MAB是直角三角形,有以下几种情况:①当点M在x轴上,且BM⊥AB,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AB,BD⊥x轴,∴,即,解得m=,∴此时M点坐标为(,0);②当点M在x轴上,且BM⊥AM,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AM,易知Rt△AOM∽Rt△MDB,∴,即,化简得:m2﹣m+=0,解得:m1=,m2=,∴此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)③当点M在y轴上,且BM⊥AM,如答图②所示.此时M点坐标为(0,);④当点M在y轴上,且BM′⊥AB,如答图②所示.设M′(0,m),则AM=2﹣=,BM=,MM′=﹣m.易知Rt△ABM∽Rt△BM′M,∴,即,解得m=,∴此时M′点坐标为(0,).综上所述,除点C外,在坐标轴上存在点M,使得△MAB是直角三角形.符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,).方法二:(1)略.(2)抛物线y=﹣x2+x+2与直线y=﹣x+2交于A、B两点,﹣x2+x+2=﹣x+2,解得:x1=0,x2=,∴B(,),∵AC⊥AB,∴K AC×K AB=﹣1,又K AB=﹣,∴K AC=3,∵A(0,2),∴l AC:y=3x+2,当y=0时,x=﹣,∴点C的坐标为(﹣,0).(3)①当M在y轴时,过B作y轴垂线得M1(0,),作BM⊥AB交y轴于M,∴K BM×K AB=﹣1,∴K AB=﹣,K BM=3,又B(,),∴l BM:y=3x﹣,∴M2(0,﹣).②当M在x轴时,当y=0,x=,∴M3(,0),∵AM⊥BM,∴K AM×K BM=﹣1,∵A(0,2),B(,),设M(t,0),∴=﹣1,∴t2﹣t+=0,∴t=或,∴M4(,0),M5(,0).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式、一次函数、解一元二次方程、相似三角形的判定与性质等重要知识点.难点在于第(3)问,所求的M点有5个(x轴上有3个,y轴上有2个),需要分情况讨论,不要遗漏.。

2012南京中考数学试题及答案

2012南京中考数学试题及答案

2012南京中考数学试题及答案2012年南京中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数除以3的余数是2,那么这个数除以5的余数是多少?A. 1B. 2C. 3D. 4答案:A3. 下列哪个表达式的结果是一个偶数?A. (2x + 1)(2y + 1)B. (2x - 1)(2y - 1)C. (2x + 1)(2y - 1)D. (2x - 1)(2y + 1)答案:D4. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A5. 下列哪个数是无理数?A. 3.14B. √2C. 1/3D. 2.71828答案:B6. 一个数的60%加上它的40%等于这个数的多少?A. 100%B. 80%C. 90%D. 110%答案:A7. 下列哪个选项不是一元一次方程?A. 3x + 5 = 14B. 5x - 3 = 2x + 1C. x^2 - 4 = 0D. 2x = 8答案:C8. 一个班级有40名学生,其中2/5是男生,那么女生有多少人?A. 16B. 20C. 24D. 28答案:B9. 下列哪个选项是正确的不等式?A. 2 > πB. 3 < √9C. √3 > 1.7D. √5 < 2答案:C10. 一个数的3倍加上5等于这个数的7倍,设这个数为x,可以列出的方程是:A. 3x + 5 = 7xB. 3x + 5 = 2xC. 3x + 5 = x + 5D. 3x - 5 = 7x答案:A二、填空题(每题4分,共20分)11. 一个数的1/4加上它的1/2等于______(填入一个分数)。

答案:3/412. 一个长方体的长是10cm,宽是5cm,高是3cm,它的表面积是______cm²。

2012年湖北省黄石市数学中考题(含答案)

2012年湖北省黄石市数学中考题(含答案)

湖北省黄石市2012年初中毕业生学业考试数学试题卷姓名:准考证号:注意事项:1.本试卷分为试题卷和答题卷两部分,考试时间120分钟,满分120分。

2.考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3.所有答案均须做在答题卷相应区域,做在其它区域内无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请把正确的选项所对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案。

1.13-的倒数是(C)A.13B. 3C. -3D.13-【考点】倒数.【分析】一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.【解答】解:13-的倒数是331-=-.故选C.【点评】此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某星球的体积约为66354213km,用科学计数法(保留三个有效数字)表示为6.6410n⨯3km,则n=(C)A. 4B. 5C. 6D. 7【考点】科学记数法与有效数字.【分析】科学记数法的形式为 a×10n,其中1≤|a|<10,n是整数.此时的有效数字是指a中的有效数字.【解答】×106≈×106.故选C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.3.已知反比例函数byx=(b为常数),当0x>时,y随x的增大而增大,则一次函数y x b=+的图像不经过第几象限( B)A.一B.二C. 三D.四【考点】一次函数图象与系数的关系;反比例函数的性质.【专题】探究型.【分析】先根据反比例函数的增减性判断出b的符号,再根据一次函数的图象与系数的关系判断出次函数y=x+b 的图象经过的象限即可.【解答】解:∵反比例函数b y x =(b 为常数),当x >0时,y 随x 的增大而增大, ∴b <0,∵一次函数y=x+b 中k=1>0,b <0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.故选B .【点评】本题考查的是一次函数的图象与系数的关系及反比例函数的性质,熟知一次函数y=kx+b (k ≠0)中,当k >0,b <0时函数的图象在一、三、四象限是解答此题的关键.4. 2012年5月某日我国部分城市的最高气温统计如下表所示:城 市 武汉 成都 北京 上海 海南 南京 拉萨 深圳 气温(℃) 27 27 24 25 28 28 23 26 请问这组数据的平均数是( C )【考点】算术平均数.【分析】求这组数据的算术平均数,用8个城市的温度和÷8即为所求.【解答】解:(27+27+24+25+28+28+23+26)÷8=208÷8=26(℃).故选C .【点评】考查了算术平均数,只要运用求平均数公式:121()n x x x x n =++⋅⋅⋅+. 即可求出,为简单题.5.如图(1)所示,该几何体的主视图应为( C )【考点】简单组合体的三视图.【分析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看可得到一个大矩形左上边去掉一个小矩形的图形.故选C .【点评】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.6.如图(2)所示,扇形AOB 的圆心角为120°,半径为2,则图中阴影部分的面积为( A ) A. 433π- B. 4233π- C. 4332π- D. 43π 【考点】扇形面积的计算.【专题】探究型.【分析】过点O 作OD ⊥AB ,先根据等腰三角形的性质得出∠OAD的度数,由直角三角形的性质得出OD 的长,再根据S 阴影=S 扇形OAB -S △AOB 进行计算即可.【解答】解:过点O 作OD ⊥AB ,图(1) A B C D OAB 图(2)∵∠AOB=120°,OA=2,∴∠OAD=90°-∠AOB/2 =180°-120°/2 =30°,∴OD=12 OA=12×2=1,∴2AB AD ==,∴S 阴影=S 扇形OAB -S △AOB =120π×22/360 -1/2×1=43π 故选A .【点评】本题考查的是扇形面积的计算及三角形的面积,根据题意得出S 阴影=S 扇形OAB -S△AOB 是解答此题的关键.7.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( B )A. 1x =,3y =B. 3x =,2y =C. 4x =,1y =D. 2x =,3y =【考点】一次函数的应用.【分析】根据金属棒的长度是40mm ,则可以得到7x+9y ≤40,再 根据x ,y 都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.【解答】解:根据题意得:7x+9y ≤40,则x ≤40-9y 7 ,∵40-9y ≥0且y 是非负整数,∴y 的值可以是:0或1或2或3或4.当x 的值最大时,废料最少,因而当y=0时,x ≤40 7 ,则x=5,此时,所剩的废料是:40-5×7=5mm ;当y=1时,x ≤31 7 ,则x=4,此时,所剩的废料是:40-1×9-4×7=3mm ;当y=2时,x ≤22 7 ,则x=3,此时,所剩的废料是:40-2×9-3×7=1mm ;当y=3时,x ≤13 7 ,则x=1,此时,所剩的废料是:40-3×9-7=6mm ;当y=4时,x ≤4 7 ,则x=0,此时,所剩的废料是:40-4×9=4mm .则最小的是:x=3,y=2.故选B .【点评】本题考查了不等式的应用,正确确定x ,y 的所有取值情况是关键.8.如图(3)所示,矩形纸片ABCD 中,6AB cm =,8BC cm =,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( B )A. 258cmB. 254cmC. 252cm D. 8cm 【考点】翻折变换(折叠问题).【分析】设AF=xcm ,则DF=(8-x )cm ,利用矩形纸片ABCD 中,现将其沿EF 对折,使得点C 与点A 重合,由勾股定理求AF 即可. D (C) AB CE F D 图(3)【解答】解:设AF=xcm ,则DF=(8-x )cm ,∵矩形纸片ABCD 中,AB=6cm ,BC=8cm ,现将其沿EF 对折,使得点C 与点A重合,∴DF=D ′F ,在Rt △AD ′F 中,∵AF 2=AD ′2+D ′F 2,∴x 2=62+(8-x )2,解得:x=25/4 (cm ).故选:B .【点评】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变是解题关键.9.如图(4)所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且2AB =,1AD =,P 点在切线CD 上移动.当APB ∠的度数最大时,则ABP ∠的度数为( B )A. 15°B. 30°C. 60°D. 90° 【考点】切线的性质;三角形的外角性质;圆周角定理.【分析】连接BD ,有题意可知当P 和D 重合时,∠APB 的度数最大,利用圆周角定理和直角三角形的性质即可求出∠ABP 的度数.【解答】解:连接BD ,∵直线CD 与以线段AB 为直径的圆相切于点D ,∴∠ADB=90°,当∠APB 的度数最大时,则P 和D 重合,∴∠APB=90°,∵AB=2,AD=1,∴sin ∠DBP=AD/AB =1/2 ,∴∠ABP=30°,∴当∠APB 的度数最大时,∠ABP 的度数为30°.故选B .【点评】本题考查了切线的性质,圆周角定理以及解直角三角形的有关知识,解题的关键是有题意可知当P 和D 重合时,∠APB 的度数最大为90°.(圆内角>圆周角>圆外角)10.如图(5)所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x =图像上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( D ) A. 1(,0)2B. (1,0) P 图(4) · O A C D B yx O ABP图(5)C. 3(,0)2D. 5(,0)2【考点】反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.【专题】计算题.【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P ′,当P 在P ′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【解答】解:∵把A (1/2 ,y 1),B (2,y 2)代入反比例函数y=1/ x 得:y 1=2,y 2=1/2 ,∴A (1/2 ,2),B (2,1/2 ),∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得: 2=1/2k+b ,1/2 =2k+b ,解得:k=-1,b=5/2 ,∴直线AB 的解析式是y=-x+5/2 ,当y=0时,x=5/2 ,即P (5/2 ,0),故选D .【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式:22x x +-=(2)(1)x x +-.【考点】因式分解-十字相乘法等.【专题】探究型.【分析】因为(-1)×2=-2,2-1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(-1)×2=-2,2-1=1,∴x 2+x-2=(x-1)(x+2).故答案为:(x-1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.12.若关于x 的不等式组{23335x x x a >-->有实数解,则a 的取值范围是4a <. 【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a 的不等式,求出a 的取值范围即可.【解答】解: 2x >3x-3①, 3x-a >5② ,由①得,x <3,由②得,x >5+a 3 ,∵此不等式组有实数解,∴5+a/3 <3,解得a <4.故答案为:a <4.【点评】本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a 的不等式是解答此题的关键.13.某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图(6)所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为0075. 【考点】频数(率)分布直方图;用样本估计 总体. 【专题】计算题.【分析】先根据频率分布直方图,利用频数=频数组距 ×组距,求出每一阶段内的频数,然后让60减去已求的每一阶段内的人数,易求70≤x <80阶段内的频数,再把所有大于等于60分的频数相加,然后除以60易求及格率.【解答】解:∵频数=频数 组距 ×组距,∴当40≤×10=6,同理可得:50≤x <60,频数=9,60≤x <70,频数=9,80≤x <90,频数=15,90≤x <100,频数=3,∴70≤x <80,频数=60-6-9-9-15-3=18,∴这次测试的及格率=9+18+15+3 60 ×100%=75%,故答案是75%.【点评】本题考查了频率分布直方图,解题的关键是利用公式频数=频数 组距 ×组距,求出每一阶段内的频数.14.将下列正确的命题的序号填在横线上② .①若n 大于2的正整数,则n 边形的所有外角之和为0(2)180n -.②三角形三条中线的交点就是三角形的重心.③证明两三角形全等的方法有:SSS ,SAS ,ASA ,SSA 及HL 等.【考点】三角形的重心;全等三角形的判定;多边形内角与外角;命题与定理.【专题】探究型.【分析】分别根据多边形内角和定理、三角形的重心及全等三角形的判定定理得出结论.【解答】解:①若n 为大于2的正整数,则n 边形的所有内角之和为(n-2)•180°,故本小题错误;②三角形三条中线的交点就是三角形的重心,符合重心的定义,故本小题正确;③SSA 不能证明两三角形全等,故本小题错误.故答案为:②.【点评】本题考查的是多边形内角和定理、三角形的重心及全等三角形的判定定理,熟知以上知识是解答此题的关键.15.“数学王子”高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出12398991005050+++⋅⋅⋅⋅⋅⋅+++=,今天我们可以将高斯的做法归纳如下:令1239899100S =+++⋅⋅⋅⋅⋅⋅+++ ①1009998321S =+++⋅⋅⋅⋅⋅⋅+++ ②分数 图(6)①+②:有2(1100)100S =+⨯ 解得:5050S =请类比以上做法,回答下列问题:若n 为正整数,357(21)168n +++⋅⋅⋅⋅⋅⋅++=,则n =12. 【考点】有理数的混合运算.【专题】规律型.【分析】根据题目提供的信息,列出方程,然后求解即可.【解答】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n (2n+1+3)=2×168,整理得,n 2+2n-168=0,解得n 1=12,n 2=-14(舍去).故答案为:12.【点评】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.16.如图(7)所示,已知A 点从点(1,0)出发,以每秒1个单位长的速度沿着x 轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且060AOC ∠=,又以P(0,4)为圆心,PC 为半径的圆恰好与OA 所在直线相切,则t =431-. 【考点】切线的性质;坐标与图形性质;菱形的性 质;解直角三角形.【专题】动点型.【分析】先根据已知条件,求出经过t 秒后,OC 的长,当⊙P 与OA ,即与x 轴相切时,如图所示,则切点为O ,此时PC=OP ,过P 作PE ⊥OC ,利用垂径定理和解直角三角形的有关知识即可求出t 的值.【解答】解:∵已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,∴经过t 秒后,∴OA=1+t ,∵四边形OABC 是菱形,∴OC=1+t ,当⊙P 与OA ,即与x 轴相切时,如图所示,则切点为O ,此时PC=OP ,过P 作PE ⊥OC ,∴OE=CE=1/2 OC ,∴OE=1+t/2 ,在Rt △OPE 中,OE=OP •cos30°=23,O 1 A B CP · yx图(7)∴112t +=∴1t =故答案为:1.【点评】本题综合性的考查了菱形的性质、坐标与图形性质、切线的性质、垂径定理的运用以及解直角三角形的有关知识,属于中档题目.三、全面答一答(本题有9个小题,共72分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答尽量写出来。

2012年福建省宁德市中考数学试题(含答案)

2012年福建省宁德市中考数学试题(含答案)

2012年中考数学试题(福建宁德卷)(本试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1. 2012的相反数是【 】A .-2012B .2012C .-12012D .12012【答案】A 。

2.下列运算正确的是【 】A .a 3+a 2=a 5B .a 3·a 2=a 5C .a 6÷a 2=a 3D .(4a)2=8a 2 【答案】B 。

3. 2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被 称为“伦敦碗”,预计可容纳80000人.将80000用科学记数法表示为【 】 A .80×103 B .5 C .8×104 D .8×103 【答案】C 。

4.下列事件是必然事件的是【 】A .从一副扑克牌中任意抽取一张牌,花色是红桃B .掷一枚均匀的骰子,骰子停止转动后6点朝上C .在同一年出生的367名学生中,至少有两人的生日是同一天D .两条线段可以组成一个三角形 【答案】C 。

5.下列两个电子数字成中心对称的是【 】 【答案】A 。

6.二元一次方程组⎩⎨⎧x +y =32x -y =6的解是【 】A .⎩⎨⎧x =6y =-3B .⎩⎨⎧x =0y =3C .⎩⎨⎧x =2y =1D .⎩⎨⎧x =3y =0【答案】D 。

7.已知正n 边形的一个内角为135º,则边数n 的值是【 】 A .6 B .7 C .8 D .9 【答案】C 。

8.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得到的图案是【 】A .B .C .D .【答案】B 。

9.一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4 的图象的交点不可能...在【 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年湖南省张家界市中考数学试卷2012年湖南省张家界市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)2.(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()4.(2012•张家界)如图,直线a、b被直线c所截,下列说法正确的是()5.(2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()6.(2012•张家界)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为()8.(2012•张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()二、填空题(共8小题,每小题3分,满分24分)9.(2011•随州)分解因式:8a2﹣2=_________.10.(2009•重庆)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为_________.11.(2012•张家界)一组数据是4、x、5、10、11共有五个数,其平均数为7,则这组数据的众数是_________.12.(2012•张家界)2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力.据此,三峡电站每天能发电约540000000度,用科学记数法表示应为_________度.13.(2012•张家界)已知m和n是方程2x2﹣5x﹣3=0的两根,则=_________.14.(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为_________.15.(2012•张家界)已知,则x+y=_________.16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_________.三、解答题(共9小题,满分72分)17.(2012•张家界)计算:.18.(2012•张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.(2012•张家界)先化简:,再用一个你最喜欢的数代替a计算结果.20.(2012•张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.(1)请用画树状图或列表的方法表示出所有可能出现的结果;(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;(3)求张家界会展区被选中的概率.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,)(2)求∠ACD的余弦值.22.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?23.(2012•张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.24.(2012•张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A、C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.25.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.2012年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)2.(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()4.(2012•张家界)如图,直线a、b被直线c所截,下列说法正确的是()5.(2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()6.(2012•张家界)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为()BDBD HG=8.(2012•张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()y=过二、四象限;二、填空题(共8小题,每小题3分,满分24分)9.(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).10.(2009•重庆)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5.(11.(2012•张家界)一组数据是4、x、5、10、11共有五个数,其平均数为7,则这组数据的众数是5.12.(2012•张家界)2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力.据此,三峡电站每天能发电约540000000度,用科学记数法表示应为 5.4×108度.13.(2012•张家界)已知m和n是方程2x2﹣5x﹣3=0的两根,则=﹣.,n===,=,∴+==故答案为﹣.14.(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.=15.(2012•张家界)已知,则x+y=1.解:∵∴,16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为2.三、解答题(共9小题,满分72分)17.(2012•张家界)计算:.×+18.(2012•张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.(2012•张家界)先化简:,再用一个你最喜欢的数代替a计算结果.×+120.(2012•张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.(1)请用画树状图或列表的方法表示出所有可能出现的结果;(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;(3)求张家界会展区被选中的概率.;=.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,)(2)求∠ACD的余弦值.AC=15==12=AB+BC+CD+DA=30+3+12≈ACD==…22.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?23.(2012•张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.)根据符号的意义得到=∴=324.(2012•张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A、C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.的中点,得到两条弧相等,根据OA=OB=OC=AB=2∠25.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.+﹣=2(﹣,222x+22OA=2OD=OA=2点的横坐标为,纵坐标为(y=,∴.AQ=t AQ=2﹣•﹣t﹣);依题意,得t=2时,有最大值为参与本试卷答题和审题的老师有:sjzx;gsls;ZJX;CJX;zcx;gbl210;sks;lf2-9;137-hui;MMCH;王岑;mmll852;Linaliu。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案第一节:选择题1. 若 a + b = 8,且 a - b = 4,则 a 的值是多少?A. 12B. 6C. 4D. 2答案:C. 4解析:将两个等式相加得到 2a = 12,因此 a = 6。

将 a = 6 代入第一个等式得到 6 + b = 8,从而可以得到 b = 2。

因此 a 的值是 4。

2. 已知一个等腰直角三角形的两条直角边分别为 5 cm。

那么斜边的长是多少?A. 5 cmB. 10 cmC. 7.07 cmD. 4.24 cm答案:C. 7.07 cm解析:根据勾股定理,斜边的长可以计算为√(a^2 + a^2),其中 a 代表直角边的长度。

代入 a = 5 cm,得到斜边的长约为 7.07 cm。

3. 若 3x - 4 = 7,则 x 的值是多少?A. 2B. 3C. 4D. 5答案:D. 5解析:将等式两边同时加上 4,得到 3x = 11。

接着将等式两边同时除以 3,得到 x = 11/3 或约等于 3.67。

因此 x 的值是 5。

第二节:填空题1. 若 f(x) = 2x^2 + 3x - 5,则 f(-1) 的值是多少?答案:-6解析:将 x = -1 代入函数 f(x) = 2x^2 + 3x - 5,得到 f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。

2. 在一个等差数列中,首项为 3,公差为 4。

第 n 项为多少?答案:3 + 4(n-1)解析:在一个等差数列中,第 n 项可以通过首项加上 (n-1) 倍的公差得到。

代入首项为 3,公差为 4,得到第 n 项为 3 + 4(n-1)。

第三节:解答题1. 请用因数分解法求解方程 x^2 + 6x + 8 = 0 的解。

解答:首先,我们可以尝试将方程进行因数分解。

将方程右侧的 8 进行因式分解得到 8 = 2 * 2 * 2 或者 8 = 1 * 2 * 4。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。

答案:5或-513. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的平方根和立方根相等,这个数是______。

答案:0或115. 如果一个数的对数是2,那么这个数是______。

答案:10016. 一个数的平方是36,那么这个数是______或______。

答案:6或-617. 一个数的倒数是2/3,这个数是______。

答案:3/218. 如果一个数的立方是-27,那么这个数是______。

2012年山东省临沂市中考数学试题及答案

2012年山东省临沂市中考数学试题及答案

2012年临沂中考数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共14题,每小题3分,共42分,在每小题所给的4个选项中,只有一项是符合题目要求的)1.﹣的倒数是A.6B.﹣6C .D .﹣2.太阳的半径大约是696000千米,用科学记数法可表示为A.696×103千米B.69.6×104千米C.6.96×105千米D.6.96×106千米3.下列计算正确的是A.2a2+4a2=6a4B.(a+1)2=a2+1C.(a2)3=a5D.x7÷x5=x24.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是A.40°B.50°C.60°D.140°5.化简4(1)22aa a+÷--的结果是()A.2aa+B.2aa+C.2aa-D.2aa-6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是A.14B.12C.34D.17.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=98.不等式组2153112xxx-<⎧⎪⎨-+≥⎪⎩,的解集在数轴上表示正确的是A.B.C.D.9.如图是一个几何体的三视图,则这个几何体的侧面积是A.18cm2B.20cm2C.(18+23)cm2D.(18+43)cm210.关于x,y的方程组3,x y mx my n-=⎧⎨+=⎩的解是11xy=⎧⎨=⎩,,则|m-n|的值是A.5B. 3C. 2D. 111.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD(第11题图)(第12题图)12.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1kyx=(x>0)和2kyx=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是A.∠POQ不可能等于90°B.12kPMQM k=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是121(||||)2k k+13.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为A.1B3C3D.23(第13题图)(第14题图)14.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C 和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为A.B.C.D.第Ⅱ卷(非选择题共78分)二.填空题(本大题共5小题,每小题3分,共15分,把答案填在题中横线上)15.分解因式:369a ab ab-+=.16.计算:1482=.17.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=°.(第17题图)(第18题图)18.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.19.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001nn=∑,这里“Σ”是求和符号,通过对以上材料的阅读,计算201211(1)nn n=+∑=.三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?21.(本小题满分7分)某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件.若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.22.(本小题满分7分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.(第22题图)四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.(第23题图)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(第24题图)(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?五、相信自己,加油啊!(本大题共2小题,共24分)25.(本小题满分11分)已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.(第25题图)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.(第26题图)2012年临沂中考数学试题参考答案一、选择题(每小题3分,共42分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案BCDBABDAADCDCB二、填空题(每小题3分,共15分)15.2(31)a b -或2(13)a b - 16. 0 17. 70 18. 3 19.20122013。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 45°C. 60°D. 120°答案:D3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A5. 一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B6. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1/3D. 1答案:A7. 一个长方体的长、宽、高分别是4cm,3cm,2cm,那么它的体积是:A. 24 cm³B. 36 cm³C. 48 cm³D. 52 cm³答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 5 或 -5答案:D9. 一个分数的分子是3,分母是5,那么它的最简形式是:A. 3/5B. 1/5C. 3/1D. 5/3答案:A10. 如果一个数的立方根是3,那么这个数是:A. 27B. 3C. 9D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是____。

答案:±412. 一个数的立方是-27,这个数是____。

答案:-313. 一个圆的直径是14cm,那么它的半径是____cm。

答案:714. 如果一个三角形的内角和是180°,那么一个四边形的内角和是____°。

答案:36015. 一个数的相反数是-5,这个数是____。

2012年常州市中考数学试题及答案解析

2012年常州市中考数学试题及答案解析

江苏常州市2012年中考数学试题(本试卷满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.-3的相反数是【 】 A.-3 B.13- C. 13D.3 2.下列运算正确的是【 】A.3a +2a =a 5B.a 2·a 3= a 6C.(a +b )(a -b )= a 2-b 2D.(a +b )2= a 2+b 2 3.如图所示,由三个相同的小正方体组成的立体图形的主视图...是【 】4.为了参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,经统计10双运动鞋的尺码(cm )如下表所示:尺码 25 25.5 26 26.5 27 购买量(双)24211则这10双运动鞋的众数和中位数分别为【 】A.25.5 cm 26 cmB.26 cm 25.5 cmC.26 cm 26 cmD.25.5 cm 25.5 cm 5.已知两圆半径分别为7,3,圆心距为4,则这两圆的位置关系为【 】 A.外离 B.内切 C.相交 D.内含6.已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【 】 A.13 B.17 C.22 D.17或227.已知二次函数()()2y=a x 2+c a 0>-,当自变量x 23,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】A. 321y y y <<B. 123y y y <<C. 213y y y <<D. 312y y y <<8.已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b da+b c+d<。

其中不等式正确的是【 】A. ①③B. ①④C. ②④D. ②③二、填空题(本大题共9小题,第9小题4分,其余8小题每小题2分,共20分)9.计算:∣-2∣= ▲ ,12--()= ▲ ,22-()= ▲ ,327=▲ 。

2012中考数学试卷及答案

2012中考数学试卷及答案

2012年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一项符合题意,请用2B 铅笔在答题卡上规定的位置进行填涂。

)1.16-的相反数是A. 16B. 6C.-6D. 16-2.若|2|a -与2(3)b +互为相反数,则a b 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体 4.“一方有难。

八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元B. 120.43710⨯元C.104.3710⨯元D.943.710⨯元 5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值为A.2007B.2008C.2009D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数 8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A. 1201803x x =+B. 1201803x x =-C. 1201803x x =+D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。

2012陕西省中考数学

2012陕西省中考数学

2012年陕西省中考试题数 学(满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的.) 1.(2012陕西,1,3分)如果零上5℃记作+5℃,那么零下7℃可记作( ) A. -7℃ B. +7℃ C. +12℃ D. -12℃ 【答案】A2. (2012陕西,2,3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )【答案】C3. (2012陕西,3,3分)计算(-5a 3)2的结果是( )A. -105aB. 610aC. 525aD. 625a 【答案】D4.(2012陕西,4,3分)某中学举行歌咏比赛,以班为单位参赛.评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )【答案】C5. (2012陕西,5,3分)如图,△ABC 中,AD 、BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 2∶3C. 1∶3D. 1∶4 【答案】D6. (2012陕西,6,3分)下列四组点中,可以在同一个正比例函数图象上的一组点是( )A. (2,-3),(-4,6)B. (-2,3),(4,6)C. (-2,-3,(4,-6)D. (2,3),(-4,6) 【答案】A7. (2012陕西,7,3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E,若∠ADC =130°,则∠AOE 的大小为()A.75°B. 65°C. 55°D. 50°第2题图C A B DABCD E第5题图【答案】B8. (2012陕西,8,3分)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A. (-1,4)B. (-1,2)C. (2,-1)D. (2,1)【答案】D9. (2012陕西,9,3分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A. 3B. 4C.D.【答案】C10. (2012陕西,10,3分)在平面直角坐标系中,将抛物线26y x x=--向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A. 1B. 2C. 3D. 6【答案】B第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11. (2012陕西,11,3分)计算:02cos45(1︒-=____________.【答案】1-12. (2012陕西,12,3分)分解因式:32232x y x y xy-+=______________.【答案】2()xy x y-13. (2012陕西,13,3分)请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.A.在平面内,将长度为4的线段AB绕它的中点M,按逆时针方向旋转30°,则线段AB扫过的面积为______.【答案】23π(填2.093或2.094也正确)AB CDOE第7题图第9题图A C D EF 123第18题图 B .69︒≈__________(精确到0.01).【答案】2.4714. (2012陕西,14,3分)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买_____瓶甲饮料. 【答案】315. (2012陕西,15,3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y =-2x +6的图象无公共点,则这个反比例啊函数的表达式是_____________.(只写出符合条件的一个即可)【答案】18y x =(只要k y x=中的k 满足k >92即可.)16. (2012陕西,16,3分)如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (4,3),则这束光从点A 到点B 所经过的路径的长为__________.三、解答题(共9小题,计72分,解答应写出过程) 17. (2012陕西,17,5分)化简:22()a b b a ba b a b a b---÷+-+. 【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⨯+-- ·············································································· 1分=22222()(2)a ab ab b ab b a b a b --+---- ····················································································· 2分=224()(2)a aba b a b --- ··········································································································· 3分=2(2)()(2)a ab a b a b --- ··········································································································· 4分=2aa b- ·························································································································· 5分 18. (2012陕西,18,6分)如图,在□ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB =AF ;(2)当AB =3,BC =5时,求AE AC的值.第16题图科普漫画文学其它图书种类科普漫画文学其它图书种类科普类_____%漫画类40%其它类15%科普类35%漫画类40%其它类15%【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,························································································································1分∵BF是∠ABC的平分线,∴∠1=∠2,∴∠1=∠3,························································································································2分∴AB=AF. ·····························································································································3分(2)∵AD∥BC,∴△AEF∽△CEB, ···············································································································4分∴AE AFCE CB==35, ··················································································································5分∴AEAC=33358AEAE CE==++. ······························································································6分19. (2012陕西,19,7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图:请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买者四类图书各多少本?【答案】(1)·············································································································································2分(2)该校学生最喜欢借阅漫画类图书. ··················································································3分(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文字类:600×10%=60(本),600×15%=90(本). ···································································7分20. (2012陕西,20,8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65度方向,然后,他从凉亭A 处沿湖岸往正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45°方向(点A 、B 、C 在同一平面内).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 25°≈0.4226,cos 25°≈0.9063,tan 25°≈0.4663,sin 65°≈0.9063,cos 65°≈0.4226,tan 65°≈2.1445)【答案】解:如图,作CD ⊥AB 交AB 的延长线于点D , ······························································ 1分 则∠BCD =45°,∠ACD =65°, ······················································································· 2分 在Rt △ACD 和Rt △BCD 中, 设AC =x ,则AD =xsin 65°,BD =CD =xcos 65°, ··············································································· 4分 ∴100+ xcos 65°= xsin 65°, ····························································································· 6分 ∴x ≈207(米). ······················································································································· 7分 答:湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离约为207米. ····················· 8分21. (2012陕西,21,8分)科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数关系式;(2)一直某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 【答案】解:(1)设y kx b =+,则有2992000235b k b =⎧⎨+=⎩, ·································································· 2分解得1125299.k b ⎧=-⎪⎨⎪=⎩···················································································································· 4分 ∴4299125y x =-+. ············································································································· 5分 (2)当x=1200时,41200299260.6125y =-⨯+=(克/立方米), ········································· 7分 ∴该山山顶处的空气含氧量约为260.6克/立方米. ···························································· 8分 (学生在整个运算过程中,使用了“≈”也可以)22. (2012陕西,22,8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜,点数和相同为平局. 依据上述规则,解答下列问题: A BCD65°45°北 东(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小正方体.点数和:两枚骰子朝上的点数之和) 【答案】解:(1)表中共有36种等可能的结果,其中点数和为2的结果只有一种,∴P (点数和为2)=136. ········································································································· 3分 (2)由上表可以看出,点数和大于7的结果共有15种, ··················································· 5分 ∴P (小轩胜小峰)=1553612. ································································································· 8分 23. (2012陕西,23,8分)如图,P A 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N .(1)求证:OM =AN ;(2)若⊙O的半径R =3,P A =9,求OM 的长.【答案】(1)证明:如图,连接OA ,则OA ⊥AP , ·········································································· 1分 ∵MN ⊥AP , ∴MN ∥OA , ······················································································································· 2分 ∵OM ∥AP ,∴四边形ANMO 是矩形, ∴OM =AN . ··························································································································· 3分 (2)连接OB ,则OB ⊥BP ,∵OA =MN ,OA =OB ,OM ∥AP , ∴OB =MN ,∠OMB =∠NPM , ∴Rt △OBM ≌Rt △MNP , ··································································································· 5分 ∴OM =MP ,设OM =x ,则NP =9-x ,第23题答案图第23题图在Rt △MNP 中,有2223(9)x x =+-, ·············································································· 6分 ∴x =5,即OM =5. ················································································································ 8分24. (2012陕西,24,10分)如果一条抛物线2(0)y ax bx c a =++≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形成为这条抛物线的“抛物线三角形”. (1) “抛物线三角形”一定是_________三角形;(2)若抛物线2(0)y x bx b =-+>的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线2(0)y x b x b =-+''>的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.【答案】 (1)等腰. ································································································································ 1分 (2)∵抛物线2(0)y x bx b =-+>的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点(2b ,24b )满足2b =24b (b >0),∴b =2. ·································································································································· 4分 (3)存在. ································································································································ 5分 如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形,当OA =OB 时,平行四边形ABCD 为矩形, 有∵AO =AB ,∴△OAB 为等边三角形, 作AE ⊥OB ,垂足为E ,∴AE,∴4b 2'()2b b ''>0,∴b ′························································································································· 7分第24题答案图第24题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档