静电场中的导体与电介质习题课

合集下载

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

静电场中的导体和介质习题

静电场中的导体和介质习题

.该定理表明,静电场是 有势(或保守力) 场.
9.一空气平行板电容器,两极板间距为d,充电后板间电压
为U.然后将电源断开,在两板间平行地插入一厚度为d/3的 金属板,则板间电压变成U' =_2_U__/3__.
10.带有电荷q、半径为rA的金属球A,与一原先
不带电、内外半径分别为rB和rC的金属球壳B同心
静电场中的导体与电介质
一 选择题
1.一带正电荷的物体M,靠近一原不带电的金属导体N,N
的左端感生出负电荷,右端感生出正电荷.若将N的左端
接地,如图所示,则 (A)N上有负电荷入地.
M
N
(B) N上有正电荷入地.
(C) N上的电荷不动.
(D) N上所有电荷都入地. [ B ]
2.如图所示,一带负电荷的金属球,外面同心地罩一
A 点与外筒 : 间的电势差
U 'R 2E dr U R 2d r U lnR 21.5 2 V
R
lnR 2(/R 1)R r lnR 2(/R 1) R
ቤተ መጻሕፍቲ ባይዱ
四 理论推导与证明题 16.一导体A,带电荷Q1,其外包一导体壳B,带电荷Q2,且 不与导体A接触.试证在静电平衡时,B的外表面带电荷为Q1 + Q2.
4Q 1 0R 14 Q 01 R 4Q 0 2R 24 Q 02 R
代入数 : Q 据 1/Q 2得 1/7
两导体表面上的场强最强,其最大场强之比为
E E1 2m ma a x x4Q 01R 12/4Q 02 R22Q Q 1 2R R 2 12 27 4
分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为εr的各 向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如

导体电介质习题课

导体电介质习题课

基本概念和规律
1 . 导体静电平衡的条件
(1) 用电场强度描述 0 导体内部任一点的电场强度为零 E 内
导体表面上任一点的电场强度垂直于该点的表面。
E 表面 表
(2) 用电势描述:整个导体是等势体,表面是等势面。 (3) 用电荷分布描述:导体内部没有电荷,电荷只分 布在导体表面。且
( R R R R ) q R R q R R q ' 2 3 1 3 1 2 1 2 q q q 2 3 R R R R R R R R R R R R 1 3 2 3 1 2 1 3 2 3 1 2 R R R R R R 1 2 2 3 1 3
q '1
q '2
q V2 ( R r R ) 4 0 r 1 2
q q 4 0 R 2 4 0 R 3
q 1 1 1 ( ) 4 R R 0 r 2 3
q2
R3
q3
( R r R ) 2 3
q q q r V3 4 0 r 4 0 r 4 0 R 3 q 4 0 R 3
Q2 b W ln 4 L a 0
ab
b a
Q
ab ln 4 a 0L
b ln 4 0 L a Q
2
Q2
Q
L
1 Q2 b 1 ln W 2 4 L a 0 2
3、再把内球接地: 电荷重新分布: ' 由高斯定律: q'2 q 1
q '1
q '2
q '3
R3
R1
由电守恒定律: ' q q '3 q 2 又因内球接地,电势为零
' q q q 3 0 4 0 R 1 4 0 R 2 4 0 R3

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

第6章静电场中的导体和电介质习题

第6章静电场中的导体和电介质习题

2第6章静电场中的导体和电介质、选择题1. 一个不带电的导体球壳半径为 r ,球心处放一点电荷,可测得球壳内外的电场.此后将该点电荷移至距球心 r/2处,重新测量电场•试问电荷的移动对电场的影响为下列哪一种情况? [](A)对球壳内外电场无影响(B) 球壳内外电场均改变(C) 球壳内电场改变,球壳外电场不变 (D) 球壳内电场不变,球壳外电场改变 T6-1-1图2. 当一个导体带电时,下列陈述中正确的是 [](A)表面上电荷密度较大处电势较高 (B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过3. 关于带电导体球中的场强和电势,下列叙述中正确的是 [](A)导体内的场强和电势均为零 (B) 导体内的场强为零,电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [](A)导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高球半径为m ,小球半径为n ,当静电平衡后,两球表面的电荷密度之比二m /二n 为8. 真空中有两块面积相同的金属板 ,甲板带电q,乙板带电Q.现将两板相距很近地平行放置 ,并使乙5. 一点电荷q 放在一无限大导体平面附近 导体平面上的总电量是 相距d ,若无限大导体平面与地相连,则q](A)q(B)(C) q(D) -q6. 在一个绝缘的导体球壳的中心放一点电荷 使q 偏离球心,则表面电荷分布情况为 [ ](A)内、外表面仍均匀分布(C)内、外表面都不均匀分布 q ,则球壳内、外表面上电荷均匀分布.若 (B) 内表面均匀分布,外表面不均匀分布 (D) 内表面不均匀分布,外表面均匀分布 7.带电量不相等的两个球形导体相隔很远现用一根细导线将它们连接起来. 若大m [](A)-nn(B)—m2m (C)— n2 n (D)—m(B) - q (D)板接地,则乙板所带的电量为[ ](A)(C)2T6-1-8 图9.在带电量为+q 的金属球的电场中,为测量某点的电场强度E ,现在该点放一带电10.在一个带电量为 Q 的大导体附近的P 点,置一试验电何q,实验Q13. 真空中有一组带电导体,其中某一导体表面处电荷面密度为强大小E =匚/ ;0,其中E 是 [](A)该处无穷小面元上电荷产生的场 (B) 该导体上全部电荷在该处产生的场 (C) 这一组导体的所有电荷在该处产生的场 (D)以上说法都不对15. 一平行板电容器始终与一端电压恒定的电源相连•当此电容器两极间为真空时 其场强为E 0,电位移为D 0;而当两极间充满相对介电常数为;r 的各向同性均匀电介质时其间场强为E ,电位移为D ,则有关系量为(+q/3)的试验电荷,电荷受力为F ,则该点的电场强度满足 [](A)E 6F(C)(B)(D)3F 3F测得它所受力为F .若考虑到q 不是足够小 时的场强 [ ](A)小 (B)大 (C)相等 (D) 大小不能确定则此时F /q 比p 点未放qQ qPT6-1-10 图,则导体内场强大小将[ ](A)不变(B)增大(C)减小 (D)其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中.在距球心为r[ ](A) 放入前后场强相同(B) 放入小球后场强增加(C) 因两者电荷异号,故场强减小(D) 无法判定匚,该表面附近的场14.设无穷远处电势为零 为r 处的电场强度大小为,半径为R 的导体球带电后其电势为 U,则球外离球心距离R 2U[](A) 厂r(B)—RU (C)—r(D)q11.有一负电荷靠近一个不带电的孤立导体 (r ::: R)处的电场与放入小球前相比将 T6-1-12 图[ ](A) E - E0 / r , D ~ D0(B) E = E0, D - D0(C) E = E0 / ;r , D = D0 / ;rT6-1-15 图(D) E = E0 , D = ;r D016. 一空气平行板电容器接上电源后,在不断开电源的情况下浸入媒油中,则极板间的电场强度大小E和电位移大小D的变化情况为[ ](A) E和D均减小(B) E和D均增大(C) E不变,D减小(D) E不变,D增大17. 把一个带正电的导体B靠近一个不带电的绝缘导体A时,导体A的电势将[ ](A)升高(B)降低(C)不变(D)变化与否不能确定18. 有两个大小不等的金属球,其大球半径是小球半径的两倍,小球带有正电荷.当用金属细线连接两金属球后[ ](A)大球电势是小球电势的两倍(B)大球电势是小球电势的一半(C)所有电荷流向大球(D)两球电势相等19. 在无穷大的平板A上均匀分布正电荷,面电荷密度为c,在与平板相距为d处放一不带净电荷的大导体平板B,则A板与B板间的电势差是](A) 匚d^0 (B)cd(C) cd3;Sod(D)--cr Iz T6-1-19 图20. 导体壳内有点电荷q,壳外有点电荷Q,导体壳不接地. 壳内任意一点的电势和任意两点的电势差的说法中正确的是[ ](A)电势改变,电势差不变(B) 电势不变,电势差改变(C) 电势和电势差都不变(D) 电势和电势差都改变当Q值改变时,下列关于21. 两绝缘导体A、B带等量异号电荷.现将第三个不带电的导体C插入A、B之间,但不与A、B接触,则A、B间的电势差将[ ](A)增大(B)减小(C)不变(D)如何变化不能确定22. 两个薄金属同心球壳,半径分别为R和r (R> r),若分别带上电量为Q和q的电荷,此时二者的电势分别为U和V.现用导线将二球壳连起来,则它们的电势为q R[ ](A)U(B)V Q(C)U + V(D)1-(U V)T6-1-22 图2[](A)两类电介质极化的微观过程不冋,宏观结果也不同(B)两类电介质极化的微观过程相冋,宏观结果也相同(C)两类电介质极化的微观过程相冋,宏观结果不同(D)两类电介质极化的微观过程不冋,宏观结果相同B T6-1-21 图V r23.就有极分子电介质和无极分子电介质的极化现象而论则导体球面上的自由电荷面密度 C 为29. 关于介质中的高斯定理:I :I D dS = ' q o ,下列说法中正确的是 • • s[](A)高斯面的D 通量仅与面内的自由电荷的代数和有关 (B) 高斯面上处处D 为零,则高斯面内必不存在自由电荷 (C) 高斯面的D 通量由面内的自由电荷和束缚电荷共同决定 (D) 高斯面内不包围自由电荷时,高斯面上各点电位移矢量 D 为零30. 关于静电场中的电位移线,下列说法中正确的是 [](A)起自正电荷,止于负电荷,不形成闭合线,不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷,止于负自由电荷,任何两条电位移线不相交31. 两个半径相同的金属球,一个为空心,另一个为实心.把两者各自孤立时的电容值 加以比较,有 [](A)空心球电容值大 (B)实心球电容值大 (C)两球容值相等(D)大小关系无法确定32. 有一空气球形电容器,当使其内球半径增大到两球面间的距离为原来的一半时 此电容器的电容为 [](A)原来的两倍 (B)原来的一半(C)与原来的相同(D)以上答案都不对产生的电场强度大小为CT ,CF , [ ](A)(B)匚02匕0(C)名0®a (D)-H卜;r 的均匀电介质,若测得导体表面附近场强为巳[ ](A);o E(B) ;0;r E(C) ;r E(D) ( ;0 ;r - ;r )E27.在一点电荷产生的电场中,以点电荷处为球心作一球形圭寸闭高斯面 块对球心不对称的电介质,则 [ ](A)高斯定理成立,并可用其求出封闭面上各点的场强(B) 即使电介质对称分布,高斯定理也不成立(C) 高斯定理成立,但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立28.在某静电场中作一封闭曲面 S .若有11 D d S = 0,贝U S 面内必定[](A)没有自由电荷(C)自由电荷的代数和为零(B)既无自由电荷,也无束缚电荷 (D) 自由电荷和束缚电荷的代数和为零24. —平行板电容器中充满相对电容率为 「的各向同性均匀电介质•已知电介质表面极化电荷面密度为土 C ',则极化电荷在电容器中25. 一导体球外充满相对电容率为 电场中有T6-1-26 图33. n 只具有相同电容的电容器,并联后接在电压为.:U 的电源上充电•去掉电源后通 过开关使之接法改为串联.则串联后电容器组两端的电压 V 和系统的电场能W [](A) V 二n :U , W 增大 (B) V =n :U , W 不变1 十十(C) V 二 n :U , W 减小(D) V U , W 不变n34. 把一充电的电容器与一未充电的电容器并联•如果两电容器的电容一样 ,则总电能将 [](A)增加(B)不变 (C)减小 (D)如何变化不能确定35.平行板电容器的极板面积为 S,两极板间的间距为d,极板间介质电容率为;•现对极板充电 Q,则两极间的电势差为(C)Qd 2 S(D)Qd 4 ;S[](A) 0Qd (B)Qd36. 一 平行板电容器充电后与电源断开,再将两极板拉开 ,则电容器上的[](A) 电荷增加 (B)电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大 ](A)极板上的电荷增加 (B) (C)两极间的场强减小(D)38.真空中带电的导体球面和带电的导体球体 ,若它们的半径和所带的电量都相等则球面的静电能W !与球体的静电能W 2之间的关系为 40. 一空气平板电容器,充电后把电源断开,这时电容器中储存的能量为 W o .然后在两极板间充满相对电容率为;「的各向同性均匀电介质,则该电容器中储存的能量 W 为,将会发生什么样的变化电容器的电容增大 电容器储存的能量不变 [](A) W i >W 2(B) Wi = W 239. 如果某带电体电荷分布的体密度 的1[](A) 2 倍(B)-倍2(C) W 1V W 2(D)不能确定?增大为原来的两倍,则其电场的能量变为原来(C) 4 倍1(D)-倍2[ ](A) W =(C) W = ( ;r 1)W0 (B)(D) W 二W041. 平行板电容器,两板间距为d,与一电池联接时,相互作用力为F •若将电池断开,极间距离增大到3d,则其相互作用力变为F[](A)3 (B) 3FF (C) 942.金属圆锥体带正电时,其圆锥表面[ ](A)顶点处电势最高(B) 顶点处场强最大(C) 顶点处电势最低(D) 表面附近场强处处相等名一尸W DT6-1-40 图(D)不变T6-1-42 图43. 平板电容器与电源相连,现把两板间距拉大,则 [](A)电容量增大 (B) 电场强度增大 (C) 带电量增大(D) 电容量、带电量及两板间场强都减小 44. 空气平行板电容器接通电源后 ,将电容率为;的厚度与极板间距相等的介质板插 入电容器的两极板之间.则插入前后 ,电容C 、场强E 和极板上的电荷面密度-的变化情况为[](A) C 不变,E 不变,▽不变r-ll-(B) C 增大,E 不变,b 增大(C) C 不变,E 增大,▽不变_U … (D) C 增大,E 增大,◎增大T6-1-44 图45.空气平板电容器与电源相连接•现将极板间充满油液,比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 [](A) C 增大,U 减小,W 减小 (B) C 增大,U 不变,W 增大 (C) C 减小,U 不变,W 减小 (D) C 减小,U 减小,W 减小46. —空气平行板电容器 充电后与电源断开,然后在两极间充满某种各向同性均匀电 介质•比较充入电介质前后的情形 ,以下四个物理量的变化情况为 [](A) E 增大,C 增大,.:U 增大,W 增大 (B) E 减小,C 增大,■ U 减小,W 减小 (C) E 减小,C 增大,=U 增大,W 减小(D) E 增大,C 减小,.U减小,W 增大47.平行板电容器两极板 关系是・ 关系疋・ (可看作无限大平板)间的相互作用力F 与两极板间电压=U 的[](A) F 二 U 1(B) F 尤也U2(C) Fx :u 2(D) “廿48.在中性导体球壳内、外分别放置点电荷 q 和Q ,当q 在壳内空间任意移动时受合力的大小 [](A)不变 (B)减小(C)增大 (D)与q 、Q 距离有关49.在水平干燥的玻璃板上,放两个大小不同的小钢球,且小球上带的电量比大球上电量多•发现两球被静电作用力排开时,小球跑得较快,这是由于[ ](A)小球受到的斥力较大(B) 大球受到的斥力较大(C) 两球受到的斥力大小相等,但大球惯性大T6-1-49 图(D) 以上说法都不对,Q所T6-2-1 图 T6-2-2 图2. 在T6-2-2图所示的导体腔 C 中,放置两个导体 A 和B ,最初它们均不带电•现设 法使导体A 带上正电,则这三个导体电势的大小关系为 _____________________________ .3. 半径为r 的导体球原来不带电.在离球心为R ( R r )的地方放一个点电荷 q,则该导体球的电势等于 ________________________ .4. 金属球壳的内外半径分别r 和R,其中心置一点电荷 q,则金属球壳的电势为 ________________________ .50. 一带电导体球壳,内部没有其它电荷,则 [](A)球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体,球心处电势为零51.如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板 由于电介质的插入及其相对于极板所放置的不同 ,对电容器电容的影响为[](A)使电容减小,但与电介质板的位置无关 (B) 使电容减小,且与电介质板的位置有关 (C) 使电容增大,但与电介质板的位置无关(D) 使电容增大,且与电介质板的位置有关52. 一均匀带电Q 的球体外,罩一个内、外半径分别为 r 和R 的同心金属球壳.若以 无限远处为电势零点,则在金属球壳r v R /< R 的区域内 [](A) E = 0,U = 0 (B) E = 0,U 丰 0 (C) E 丰 0, U 丰 0(D) E 丰 0,U = 053.把A 、B 两块不带电的导体放在一带正电导体的电场中,如 T6-1-53图所示,设无限远处为电势零点, A 的电势为U A , B 的电势为U B ,则[](A) U B > U A =0 (B) U B > U A = 0 (C) U B = U A (D) U B < U A、填空题1.两金属球壳A 和B 中心相距I ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷 Q 作用在q 上的电力大小为 F = ______________________ .如果去掉金属壳 A ,此 时,电荷 Q 作用在q 上的电力大小是______________________.T6-1-52 图T6-2-4 图5. 一个未带电的空腔导体球壳内半径为 R.在腔内离球心的距离为d 处(d < R)固定一电量为+ q 的点电荷,用导线把球壳接地后,再把 地线撤去,选无穷远处为电势零点,则球心 0处的电势 为 _______________________6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶 数箔联在一起作为电容器的另一极.如果每张箔片的面积都是 S ,相邻两箔片间的距离为 d ,箔片间都是空气.忽略边缘效应,此电容器的电容为7. T6-2-7图中所示电容器的电容 C 2、C 3已知,C 4的值可调•当C 4的值调节到A 、B 两点的电势相等时,C 4二 8.位于边长为I 的正三角形三个顶点上的点电荷电荷量分别为 q 、2q 和- 4q ,这个系统的静电能为 __________________ .9.有一半径为R 的均匀带电球体,若球体内、外电介质的电容率相等 ,此时球内的静电能与球外的静电能之比为 __________________ 10.电荷q 均匀分布在内外半径分别为 R i 和R 2的球壳体内,这个电荷体系的电势能为 __________________ , 电场能为 __________________11. 一平行板空气电容器,极板面积为 S,间距为d,接在电源上并保持电压恒定为 U .若将极板距离拉开一倍,则电容器中的静电能改变量为 _______________________ . 12. 有一半径为R 的均匀带电球体,若球体内、外电介质的电容率相等,此时球内的静 电能与球外的静电能之比为 __________________.T6-2-7 图T6-2-6 图二、计算题1.真空中一导体球A原来不带电.现将一点电荷q移到距导体球A的中心距离为r处,此时,导体球的电势是多少2.真空中一带电的导体球到距导体球A的中心距离为零•求此导体球所带的电荷量. A半径为R.现将一点电荷q移r处,测得此时导体球的电势为qriT6-3-1 图8. 静电天平的原理如 T6-3-8图所示:面积为S 、相距x 的空气平行板电容器下板固定, 上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待 称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量 测得其极板上的电压值为U,问此物的质量是多少?9. 两块面积相同的大金属平板A 、B,平行放置,板面积为S ,相距d , d 远小于平板的线度.今在 A , B 板之间插入另外一面积相同,厚度为 I 的金属板,三板平行.求A 、B 之间的电容.10.真空中两个同心的金属薄球壳,内外球壳的半径分别为R 1和R 2, (1)试求它们所构成的电容器的电容;(2)如果令内球壳接地,它们之间的电容又是多大 ?11. 已知一均匀带电球体(非导体)的半径为R ,带电量为q .如果球体内外介质的电 容率均近似为;,在半径为多大的球面空间内的电场能量为其总能量的一半?12. 半径为R 的雨点带有电量q .现将其打破,在保持总体积不变的情况下分成完全 相同的两点,并拉开到“无限远” .此系统的电能改变量是多少 ?解释出现这个结果的原因.3. 一盖革-米勒计数管,由半径为 0.1mm 的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为 10mm •金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值 为4.3 106V m -1.忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?4.设有一电荷面密度为 -0( . 0)的均匀带电大平面,在它附近平行地 放置一块原来不带电,有一定厚度的金属板,不计边缘效应 ,(1)求此金属板两面的电荷分布;(2)把金属板接地,金属板两面的电荷又将如何分布?6. 一平行板电容器两极板的面积都是 S ,其间充有N 层平行介质层,7. 如T6-3-7图所示,一球形电容器由半径为R 1的导体球和与它同心的半径为 R 2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为 ;的均匀介质.求此电容器的电容.T6-3-6 图 T6-3-8 图 bT6-3-4 图R 2R 1T6-3-7 图-q以后与13. 一面积为S、间隔为d的平板电容器,最初极板间为空气,在对其充电电源断开,再充以电容率为;的电介质;求此过程中该电容器的静电能减少量•试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连•当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a, 油的相对电容率为$,试求此电容器等效相对电容率与液面高度h的关系.15.如T6-3-15图所示,在场强为E的均匀电场中,静止地放入一电矩为p、转动惯量为J的电偶极子.若电矩p与场强E之间的夹角二很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E方向一致时所经历的最短时间. T6-3-14 图T6-3-15 图。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

静电场中的导体和电介质习题详解

静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。

答案:C D?解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。

3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。

4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

静电场中的导体与电介质习题课.ppt

静电场中的导体与电介质习题课.ppt

S2
代入上面式子,可求得:
E1
1
r1 0
E2 2 r20
1 S2 E1
- S1 2 E2
D2
D、E 方向均向右。
D1
A d1
d2
B
静电场中的导体和介质习题课
(2)正负两极板A、B的电势差为:
U A U B E1d1 E2d2
d1
1
d2
2
q S
d1
1
d2
2
按电容的定义式:C
q UA UB
d1
S
d2
1 2
上面结果可推广到多层介质的情况。
静电场中的导体和介质习题课
【例题】平行板电容器的极板是边长为 a的正方形,间
距为 d,两板带电±Q。如图所示,把厚度为d、相对介
电常量为εr的电介质板插入一半。试求电介质板所受
电场力的大小及方向。
解:选取坐标系
OX,如图所示。 当介质极插入x 距离时,电容器 的电容为
功等于电容器储能的增量,有
F
W (x) x
( r 20a[a
1)Q2d
(r 1)x]2
静电场中的导体和介质习题课
插入一半时,x=a/2 ,则
F( a ) 2( r 1)Q2d 2 0a3 ( r 1)2
F(a/2)的方向沿图中X轴的正方向。
注释:由结果可知,εr>1,电场力F是指向电容器内 部的,这是由于在电场中电介质被极化,其表面上产 生束缚电荷。在平行极电容器的边缘,由于边缘效应 ,电场是不均匀的,场强E 对电介质中正负电荷的作 用力都有一个沿板面向右的分量,因此电介质将受到 一个向右的合力,所以电介质板是被吸入的。
E E0
r

大学物理第六章课后习题答案马文蔚第五版

大学物理第六章课后习题答案马文蔚第五版

第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )d εqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理习题静电场中的导体和电介质习题课

大学物理习题静电场中的导体和电介质习题课

解:因保持与电源连接,两极间电势保持不变,而
电容值为 C 0S / d C' 0S /(nd ) C / n
电容器储存的电场能量由 We CU 2 / 2
We' C'U 2 / 2 CU 2 / 2n
We
We'We
U
2
/ 2(C
/n
C)
CU 2
21
n n
当电介质被裁成两段后撤去电场,极化的电介质又恢 复原状,仍各保持中性。
选择题:
1.“无限大”均匀带电平面 A 附近平行放 置有一定厚度的“无限大”平面导体板 B, 如图所示,已知 A 上的电荷面密度为 + , 则在导体板 B 的两个表面 1 和 2 上的感
应电荷面密度为
(A) 1=–, 2=0 (B) 1= –, 2=+, (C) 1= – /2 , 2=+ /2 (D) 1= – /2 , 2= – /2
电量还是原来的分布吗?
C

+Q -Q
C
+2Q -2Q

C
+-qq11
C
+-qq22
C +-qq11
C
由(2)得 由(1)得
C +1.5Q C -1.5Q
+-qq22
求 q1,q2:
q1 q2 3Q
q1 q2 CC
q1 q1

q2 q2

3 2
Q
(1) (2)
+1.5Q -1.5Q
[C]
1 2
AB
2.在一个带电量为 +q 的外表面为球形的 空腔导体 A 内,放有一带电量为 +Q 的带 电导体 B ,则比较空腔导体 A 的电势 UA, 和导体 B 的电势 UB 时,可得以下结论:

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

大学物理第六章课后习题答案(马文蔚第五版)

大学物理第六章课后习题答案(马文蔚第五版)

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

静电场习题课1

静电场习题课1
2
2.两条无限长平行直导线相距为 0,均匀带有等量异号电荷,电 两条无限长平行直导线相距为r 均匀带有等量异号电荷, 两条无限长平行直导线相距为 .(1) 荷线密度为λ.( )求两导线构成的平面上任一点的电场强度 设该点到其中一线的垂直距离为x);( );(2) (设该点到其中一线的垂直距离为 );( )求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力. 单位长度导线受到另一根导线上电荷作用的电场力. 分析: 分析 : ( 1 ) 在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加. 此所激发的电场的叠加. (2)由F = qE,单位长度导线所受 , 的电场力等于另一根导线在该导线 o 处的电场强度来乘以单位长度导线 所带电的量, 应该注意: 所带电的量,即:F = λE应该注意: 应该注意 式中的电场强度E是除去自身电荷 式中的电场强度 是除去自身电荷 外其它电荷的合电场强度. 外其它电荷的合电场强度.
= r0 λ i 2πε 0 x ( r0 x )
λ
E
E+
λ
p
o
分别表示正, (2)设F+,F-分别表示正,负带电 导线单位长度所受的电场力, 导线单位长度所受的电场力,则有
x
x
r0
λ2 F+ = λE = i 2πε0r0
λ2 F = λE+ = i 2πε0r0
相互作用力大小相等, 相互作用力大小相等,方向相 两导线相互吸引. 反,两导线相互吸引.
b2 x =0 2
2
x=
b , ( 0 ≤ x ≤ b) 2
6
6.在一半径为 的金属球A外面套有一个同心的金属球壳 6.在一半径为R1 =6.0 cm的金属球 外面套有一个同心的金属球壳 在一半径为 的金属球 B.已知球壳 的内,外半径分别为 2 =8.0 cm,R3 =10.0 cm.设 的内, .已知球壳B的内 外半径分别为R , . 带有总电荷Q 球壳B带有总电荷 带有总电荷Q 球A带有总电荷 A= 3.0×10-8C ,球壳 带有总电荷 B= 2.0×10-8C. 带有总电荷 × × . 和球壳B的电势 (l)求球壳 内,外表面上所带的电荷以及球 和球壳 的电势; )求球壳B内 外表面上所带的电荷以及球A和球壳 的电势; 接地然后断开, 接地, 和球壳B (2)将球壳 接地然后断开,再把金属球 接地,求球 和球壳 )将球壳B接地然后断开 再把金属球A接地 求球A和球壳 外表面上所带的电荷以及球A和球壳 的电势. 和球壳B的电势 内,外表面上所带的电荷以及球 和球壳 的电势. 分析:( )根据静电感应和静电平衡 分析:(1) :( 时导体表面电荷分布的规律,电荷Q 时导体表面电荷分布的规律,电荷 A 均匀分布在球A表面 球壳B内表面带 表面, 均匀分布在球 表面,球壳 内表面带 电荷电荷-QA ,

第6章静电场中的导体和电介质习题

第6章静电场中的导体和电介质习题

第6章 静电场中的导体和电介质一、选择题1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场. 此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一种情况?[ ] (A) 对球壳内外电场无影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 (D) 球壳内电场不变, 球壳外电场改变2. 当一个导体带电时, 下列陈述中正确的是[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数4. 当一个带电导体达到静电平衡时[ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A)2q (B) 2q- (C) q (D) q -6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若使q 偏离球心, 则表面电荷分布情况为[ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来. 若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比 σ m /σ n 为[ ] (A) n m (B) mn(C) 22n m (D) 22m n8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) 2Q q +- (D) 2Qq +T6-1-1图T6-1-5图T6-1-8图9. 在带电量为+q 的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q /3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 [ ] (A) q F E 6> (B) q FE 3> (C) qF E 3< (D) qFE 3=10. 在一个带电量为Q 的大导体附近的P 点, 置一试验电荷q , 实验测得它所受力为F .若考虑到q 不是足够小, 则此时F/q 比P 点未放q时的场强[ ] (A) 小 (B) 大(C) 相等 (D) 大小不能确定11. 有一负电荷靠近一个不带电的孤立导体, 则导体内场强大小将[ ] (A) 不变 (B) 增大 (C) 减小 (D) 其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中.在距球心为r (R r <)处的电场与放入小球前相比将 [ ] (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小(D) 无法判定13. 真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小0/εσ=E , 其中E 是[ ] (A) 该处无穷小面元上电荷产生的场 (B) 该导体上全部电荷在该处产生的场 (C) 这一组导体的所有电荷在该处产生的场 (D) 以上说法都不对14. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为U , 则球外离球心距离为r 处的电场强度大小为[ ] (A) 32r U R (B) r U (C) 2r RU(D) R U15. 一平行板电容器始终与一端电压恒定的电源相连.当此电容器两极间为真空时,其场强为0E , 电位移为0D; 而当两极间充满相对介电常数为εr 的各向同性均匀电介质时,其间场强为E , 电位移为D, 则有关系[ ] (A) 00,/D D E E r==ε(B) 00,D D E E ==(C) r r D D E E εε/,/00==(D) 00,D D E E rε==T6-1-9图 3q qT6-1-10图QqPT6-1-12图 q -q R T6-1-15图16. 一空气平行板电容器接上电源后, 在不断开电源的情况下浸入媒油中, 则极板间的电场强度大小E 和电位移大小D 的变化情况为[ ] (A) E 和D 均减小 (B) E 和D 均增大 (C) E 不变, D 减小 (D) E 不变, D 增大17. 把一个带正电的导体B 靠近一个不带电的绝缘导体A 时, 导体A 的电势将[ ] (A) 升高 (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后[ ] (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等19. 在无穷大的平板A 上均匀分布正电荷, 面电荷密度为σ,不带净电荷的大导体平板B , 则A 板与B 板间的电势差是 [] (A) 02εσd(B)0εσd(C) 03εσd(D)σεd20. 导体壳内有点电荷q , 壳外有点电荷Q , 导体壳不接地.当Q 值改变时, 下列关于壳内任意一点的电势和任意两点的电势差的说法中正确的是 [ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变21. 两绝缘导体A 、B 带等量异号电荷.现将第三个不带电的导体C 插入A 、B 之间, 但不与A 、B 接触, 则A 、B 间的电势差将[ ] (A) 增大 (B) 减小(C) 不变 (D) 如何变化不能确定22. 两个薄金属同心球壳, 半径分别为R 和r (R >r ), 若分别带上电量为Q 和q 的电荷, 此时二者的电势分别为U 和V .现用导线将二球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U +V (D))(21V U +23. 就有极分子电介质和无极分子电介质的极化现象而论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同T6-1-19图T6-1-20图T6-1-21图T6-1-22图24. 一平行板电容器中充满相对电容率为r ε的各向同性均匀电介质.已知电介质表面极化电荷面密度为±σ', 则极化电荷在电容器中产生的电场强度大小为[ ] (A) 0εσ'(B) 02εσ'(C) rεεσ0'(D) rεσ'25. 一导体球外充满相对电容率为r ε的均匀电介质, 若测得导体表面附近场强为E , 则导体球面上的自由电荷面密度σ为[ ] (A) E 0ε (B) E r εε0 (C) E r ε (D) E r r )(0εεε-27. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则 [ ] (A) 高斯定理成立,并可用其求出封闭面上各点的场强(B) 即使电介质对称分布, 高斯定理也不成立 (C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立28. 在某静电场中作一封闭曲面S .若有⎰⎰=⋅sS D 0d, 则S 面内必定[ ] (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零29. 关于介质中的高斯定理⎰⎰∑=⋅sq S D 0d, 下列说法中正确的是[ ] (A) 高斯面的D通量仅与面内的自由电荷的代数和有关(B) 高斯面上处处D为零, 则高斯面内必不存在自由电荷(C) 高斯面的D通量由面内的自由电荷和束缚电荷共同决定(D) 高斯面内不包围自由电荷时, 高斯面上各点电位移矢量D为零30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线不相交31. 两个半径相同的金属球, 一个为空心, 另一个为实心.把两者各自孤立时的电容值加以比较, 有[ ] (A) 空心球电容值大 (B) 实心球电容值大 (C) 两球容值相等 (D) 大小关系无法确定32. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对T6-1-24图T6-1-26图33. n 只具有相同电容的电容器, 并联后接在电压为∆U 的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V 和系统的电场能W [ ] (A) U n V ∆=,W 增大 (B) U n V ∆=,W 不变 (C) U n V ∆=,W 减小 (D) U nV ∆=1,W 不变34. 把一充电的电容器与一未充电的电容器并联.如果两电容器的电容一样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减小 (D) 如何变化不能确定35. 平行板电容器的极板面积为S , 两极板间的间距为d , 极板间介质电容率为ε. 现对极板充电Q , 则两极间的电势差为 [ ] (A) 0 (B)S Qd ε (C) S Qd ε2 (D) SQdε436. 一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增大(C) 两极间的场强减小 (D) 电容器储存的能量不变38. 真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电量都相等, 则球面的静电能W 1与球体的静电能W 2之间的关系为[ ] (A) W 1>W 2 (B) W 1=W 2 (C) W 1<W 2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增大为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B)21倍 (C) 4倍 (D) 21倍 40. 一空气平板电容器, 充电后把电源断开, 这时电容器中储存的能量为0W .然后在两极板间充满相对电容率为r ε的各向同性均匀电介质, 则该电容器中储存的能量W 为[ ] (A) 0W W r ε= (B) rWW ε0=(C) 0)1(W W r +=ε (D) 0W W =41. 一平行板电容器, 两板间距为d , 与一电池联接时, 相互作用力为F.若将电池断开, 极间距离增大到3d , 则其相互作用力变为[ ] (A) 3F (B)F 3 (C) 9F(D) 不变42. 金属圆锥体带正电时, 其圆锥表面[ ] (A) 顶点处电势最高 (B) 顶点处场强最大 (C) 顶点处电势最低(D) 表面附近场强处处相等T6-1-40图+-r ε0WT6-1-42图43. 平板电容器与电源相连, 现把两板间距拉大, 则 [ ] (A) 电容量增大 (B) 电场强度增大 (C) 带电量增大(D) 电容量、带电量及两板间场强都减小44. 空气平行板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插入电容器的两极板之间.则插入前后, 电容C 、场强E和极板上的电荷面密度σ的变化情况为[ ] (A) C 不变, E不变, σ不变 (B) C 增大, E不变, σ增大 (C) C 不变, E增大, σ不变 (D) C 增大,E增大, σ增大45. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 [ ] (A) C 增大, U 减小, W 减小 (B) C 增大, U 不变, W 增大 (C) C 减小, U 不变, W 减小 (D) C 减小, U 减小, W 减小46. 一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为 [ ] (A) E增大, C 增大, ∆U 增大, W 增大 (B) E减小, C 增大, ∆U 减小, W 减小 (C) E减小, C 增大, ∆U 增大, W 减小 (D)E增大, C 减小, ∆U 减小, W 增大47. 平行板电容器两极板(可看作无限大平板)间的相互作用力F 与两极板间电压∆U 的关系是:[ ] (A) U F ∆∝ (B) U F ∆∝1 (C) 2U F ∆∝ (D) 21U F ∆∝48. 在中性导体球壳内、外分别放置点电荷q 和Q , 当q 在壳内空间任意移动时, Q 所受合力的大小[ ] (A) 不变 (B) 减小(C) 增大 (D) 与q 、Q 距离有关49. 在水平干燥的玻璃板上, 放两个大小不同的小钢球, 且小球上带的电量比大球上电量多.发现两球被静电作用力排开时, 小球跑得较快, 这是由于 [ ] (A) 小球受到的斥力较大 (B) 大球受到的斥力较大(C) 两球受到的斥力大小相等, 但大球惯性大 (D) 以上说法都不对T6-1-43图T6-1-44图T6-1-49图50. 一带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体, 球心处电势为零51. 如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板, 则由于电介质的插入及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减小, 但与电介质板的位置无关 (B) 使电容减小, 且与电介质板的位置有关 (C) 使电容增大, 但与电介质板的位置无关(D) 使电容增大, 且与电介质板的位置有关52. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳. 若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 [ ] (A) E =0, U =0 (B) E =0, U ≠0 (C) E ≠0, U ≠0 (D) E ≠0, U =0 53. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如T6-1-53图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 [ ] (A) U B > U A ≠0 (B) U B > U A = 0(C) U B = U A (D) U B < U A二、填空题1. 两金属球壳A 和B 中心相距l ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F = .如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是 .2. 在T6-2-2图所示的导体腔C 中,放置两个导体A 和B ,最初它们均不带电.现设法使导体A 带上正电,则这三个导体电势的大小关系为 .3. 半径为r 的导体球原来不带电.在离球心为R (r R >)的地方放一个点电荷q , 则该导体球的电势等于 .4. 金属球壳的内外半径分别r 和R , 其中心置一点电荷q , 则金属球壳的电势为 .T6-2-4图rRqT6-1-51图T6-1-52图r RQT6-2-1图 T6-2-2图ABCABQqlA B++++++++++T6-1-53图5. 一个未带电的空腔导体球壳内半径为R .在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为 .6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶数箔联在一起作为电容器的另一极.如果每张箔片的面积都是S ,相邻两箔片间的距离为d ,箔片间都是空气.忽略边缘效应,此电容器的电容为C = .7. T6-2-7图中所示电容器的电容321C C C 、、已知,4C 的值可调.当4C 的值调节到A 、B 两点的电势相等时,=4C .8. 位于边长为l 的正三角形三个顶点上的点电荷电荷量分别为q 、q 2和q 4-,这个系统的静电能为 .9. 有一半径为R 的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为 .10. 电荷q 均匀分布在内外半径分别为1R 和2R 的球壳体内,这个电荷体系的电势能为 , 电场能为 .11. 一平行板空气电容器, 极板面积为S , 间距为d , 接在电源上并保持电压恒定为U . 若将极板距离拉开一倍, 则电容器中的静电能改变量为 . 12. 有一半径为R 的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为 .三、计算题1. 真空中一导体球A 原来不带电.现将一点电荷q 移到距导体球A 的中心距离为r 处,此时,导体球的电势是多少?2. 真空中一带电的导体球A 半径为R .现将一点电荷q 移到距导体球A 的中心距离为r 处,测得此时导体球的电势为零.求此导体球所带的电荷量.T6-3-1图qT6-2-6图 T6-2-7图T6-2-5图3. 一盖革-米勒计数管,由半径为0.1mm 的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为10mm .金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值为6103.4⨯V ⋅m -1. 忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?4. 设有一电荷面密度为0(0)σ>放置一块原来不带电,有一定厚度的金属板,不计边缘效应, (1)板两面的电荷分布;(2) 把金属板接地,金属板两面的电荷又将如何分布6. 一平行板电容器两极板的面积都是S ,其间充有N 它们的电容率分别为N εεεε 、、、321,厚度分别为N d d d d 、、、321.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所示,一球形电容器由半径为R 1的导体球和与它同心的半径为R 2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为ε的均匀介质.求此电容器的电容. 8. 静电天平的原理如T6-3-8图所示:面积为S 、相距x 的空气平行板电容器下板固定,上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U , 问此物的质量是多少?9. 两块面积相同的大金属平板A 、B, 平行放置,板面积为S ,相距d , d 远小于平板的线度.今在A ,B 板之间插入另外一面积相同,厚度为l 的金属板,三板平行.求 A 、B 之间的电容.10. 真空中两个同心的金属薄球壳,内外球壳的半径分别为R 1和R 2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容又是多大?11. 已知一均匀带电球体(非导体)的半径为R ,带电量为q .如果球体内外介质的电容率均近似为ε,在半径为多大的球面空间内的电场能量为其总能量的一半?12. 半径为R 的雨点带有电量q .现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“无限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. 一面积为S 、间隔为d 的平板电容器,最初极板间为空气,在对其充电±q 以后与T6-3-6图 T6-3-8图T6-3-4图电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连.当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.15. 如T6-3-15图所示,在场强为E的均匀电场中,静止地放入一电矩为p 、转动惯量为J 的电偶极子.若电矩p与场强E 之间的夹角θ 很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E 方向一致时所经历的最短时间.T6-3-14图T6-3-15图。

习题课(静电场中的导体和电介质)

习题课(静电场中的导体和电介质)

习题课(静电场中的导体和电介质)1、半径为R 1的导体球带正电Q 1其内外半径分别为R 2和R 3,球壳带正电Q 2(1)此带电系统的场强分布;(2)球的电势U 1和球壳的电势U 2; (3)球与球壳的电势差;(4)若用导线将球和球壳相连,U 1和U 2解:(1)电量均匀分布在球面上,即R 1球面电量为Q 1,R 2球面电量为-Q 1,R 3球面电量为Q 1+Q 2 ,利用均匀带电球面在空间任一点场强的结果和场强叠加原理,可求得场强分布为: r < R 1: E 1 = 0; R 1 < r <R 2 : E 2 = Q 1/4πε0r 2; R 2 < r < R 3 : E 3 = 0 r > R 3: E 4 = (Q 1+Q 2)/4πε0r 2(2) 30214243R Q Q dr E U Rπε+==⎰∞dr E dr E dr E U R R R R R ⎰⎰⎰∞++=332214321302121014)11(4R Q Q R R Q πεπε++-=(3) )11(421012112R R Q U U U -=-=πε (4) 3021214R Q Q U U πε+== 2、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr (1)介质层内外的场强大小;(2)介质层内外的电势; (3)金属球的电势;(4)电场的总能量; (5)解:(1)电量Q 均匀分布在半径为a r的球面为高斯面,利用高斯定理可求得场强分布 r < a : E 1 = 0; a < r < b : 2024rQ E r επε=; r > b : rQ E 034πε=(2) r > b : rQ dr E U r0334πε==⎰∞a < r <b : b Q b r Q dr E dr E U r bb r 003224)11(4πεεπε+-=+=⎰⎰∞r < a : b Q b a Q dr E dr E dr E U r bb a a r 0032114)11(4πεεπε+-=++=⎰⎰⎰∞(3)金属球的电势等于U 1(4)abb a a Q dV E dV E W r r b r baεπεεεεε022302208)(2121+-=+=⎰⎰∞ (5)ba a ab U Q C r r +-==εεπε014 3、在半径为R 的导体球壳薄壁附近与球心相距为d(d >R)的P 点处,放一点电荷q ,求:(1)球壳表面感应电荷在的球心O 处产生电势和场强; (2)空腔内任一点的电势和场强; (3)若将球壳接地,计算球壳表面感应电荷的总电量。

ch10习题

ch10习题

第十章 静电场中的导体与电介质
静电场中的导体与电介质习题课选讲例题
物理学教程 (第二版)
E1
E2
D
0 r1
D


0 0 r1
0
d1 d2
U

l
0 r2 0 r2 E d l E1d 1 E 2 d 2
Q
S + + + + 0+ +++1 + - - - - - 1 ' E1 + + + + + 1' - - - - - ' 2 E2

S
D
D

+++++++++++
0
E1
E2

d1
0
- S1 - - - - 1 ' -
0 r1
D
0 r1 0
0 r2
d2
0 r2
E1 ' 1 + + + + + + - - - -- - ' 2 E2 + + + + + + ' 2 ----------0
(A)增加
(C)不变
(B)减少
(D)无法确定
q
第十章 静电场中的导体与电介质
静电场中的导体与电介质习题课选讲例题
物理学教程 (第二版)
例 一平行平板电容器充满两层厚度各为 d 1 和 d 2 的电介质,它们的相对电容率分别为 r1 和 r2 , 极板 面积为 S . 求(1)电容器的电容;(2)当极板上的 自由电荷面密度的值为 0 时,两介质分界面上的极化 电荷面密度. 0 解(1) D d S 0 S 1

第十章静电场中的导体与电介质(标准答案)

第十章静电场中的导体与电介质(标准答案)

一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。

已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。

金属球接地,球心电势为零。

球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q
q Q q
U1 q
4 0RR1 1R24Q 0R2
4 0R3
0
R1R2 R3 (R2 R1)
U2
R1 Edr
R2
R1 q dr q(R2 R1)
R2 4 0r 2
4 0R1R2
静电场中的导体和介质习题课
练习:两同心导体球壳的内球壳半径为a,外球壳半径为b。 设球壳极薄,若使内球壳带电Q,求(1)外球壳内表面和外 表面上的电荷如何分布?(2)要使内球壳电势为零,则外球 壳必须带多少电量?
4 0 R1 R2 4 0R3
外球:取球壳外表面一点
U2
E
dr
R3 E外dr
qQ
qQ
dr
R3 4 0r
4 0R3
静电场中的导体和介质习题课
(2)连接后电荷Q+q全部分布在外表面。
U1
U2
Qq
4 0R3
(3)内球接地,U1=0。内球带电q´,外球壳内表面- q´, 外表面Q+ q´,
2、同心导体球套球壳场中一点的电势用叠加法。
例:习题10.6, (1)求两球的电势U1和 U2;(2)若用导线连接球和球壳,求 电势;(3)若(1)的情形下将内球接
地,求U1和 U2。
解:(1)由静电感应,球壳内表面带电-q, 外表面电荷为Q+q。由叠加原理,
内球:取球心
q
U1 4 0R1
q
4 0R2
E dE P sin cos2 d P
【例题】一个半径为R的电介质球被均匀极化后,已知 电极化强度为P,求:⑴电介质球表面上极化面电荷的 分布;⑵极化面电荷在电介质球心处所激发的场强?
解:⑴ 由于 P cos
en
在右半球,
, 为正,在左半球,
2
PA θ x
o
, 为负,在两球分界面上,
2
, 0
2
,在轴线两端
0或 ,
U q
4 0R
静电场中的导体和介质习题课
例: 习题10.4 求:(1)球内各点电势 (2) 若把金属球壳接地,球上的感应电荷q´。
解:
(1)
Uo
Uq
Ui
q
4
0l
1
4 0R
dq q
4 0l
(2)
Uo
Uq
Ui
q
4
0l
1
4 0R
dq
q q 0 q R q
4 0l 4 0R
l
a
静电场中的导体和介质习题课
练习:一无限大的导体平板置于电场强度为E0 的均匀电场中。 求平板上感应电荷的面密度。
A
B
E0
静电场中的导体和介质习题课
二、静电场中的介质问题 求电介质中的场强,一般用有介质时的高斯定理先求D,再求 E。
三、电容和电容器 电容器充满介质后,其电容为真空时的εr倍。
四、电场能量
先考虑能否将问题看成电容器的能量问题,用电容器能量公 式求解。若不行,再考虑用电场能量密度积分计算能量。
解:由于两球由导线连接,两球电势相等:
1Q 1q
U
4 0 R 4 0 r Q
q
得:
QR
qr
R
r
可见,大球所带电量Q比小球q多。 两球的面电荷密度分别为:
静电场中的导体和介质习题课
R
Q
4R2
r
q
4r 2
所以:
R r
Qr2 qR2
r R
结论:两球电荷面密度与曲率半径成反比,即 与曲率成正比。
静电场中的导体和介质习题课
Qq
4 0R3
外球:取球壳中一点
U2
q
4 0r
q
4 0r
Qq
4 0R3
Qq
4 0R3
静电场中的导体和介质习题课
用电势定义计算
内球:取内球外表面一点
U1
E
dr
R2 R1
E内dr
R3 E外dr
R2 q dr q Q dr
R1 4 0r 2
R3 4 0r 2
q ( 1 1 ) qQ
静电场中的导体和介质习题课
例:计算机键盘的键结构如图。按键连有一可移动的金属片。
下面是一固定的金属片,中间是软的绝缘介质(εr=2)。两
块金属片就构成一个平板电容器。当键按下时,电容器的电容
发生变化,与之相连的电路就能检测出哪一个键被按下,从而
给出相应的信号。设金属片面积为50mm2,两金属片间距 0.6mm。如果电路能检测出的电容的变化是0.25pF,那么需要 将键按下多大的距离才能给出必要的信号?
绝对值最大。
静电场中的导体和介质习题课
P
⑵在球面的极化电荷为;
dE O
dq 2R2 sind P2R2 sin cosd
此电荷在球心处所激发的场强:
dE dq cos P sin cos2 d
4 0 R 2
2 0
方向沿X轴的负方向。整个球面上的极化电荷在
球心处所激发的总场强为;
解:按键前电容
C1
r0S
d
按键后电容
C2
r0S
d d
C r0S r0S
d d d
静电场中的导体和介质习题课
d
1
d
r0S
dC
静电场中的导体和介质习题课
【例题】两个半径分别为 R 和 r 的球形导体(R> r),用 一根很长的细导线连接起来,使这个导体组带电,电势为 U,求两球表面电荷与曲率的关系?
三、电容和电容器 CQ U
C Q U
静电场中的导体和介质习题课
孤立导体球的电容
C 4 0R
真空中平行板电容器的电容 C 0S
d
真空中球形电容器的电容
C
4 0
RA RB RB RA
电容器的串联
1 1 1 1
C C1 C2
CN
电容器的并联
C C1 C2 CN
静电场中的导体和介质习题课
四、电介质 均匀介质中的场强
E
E 0
E
E E0
r
加均匀介质的电容器的电容
E
E 0
C rC0
电位移矢量
D r0E E
有介质的高斯定理
DdS q
静电场中的导体和介质习题课
五、电场的能量 电容器电场的能量
W 1 Q2 1 QU 1 CU 2
2C 2
2
电场的能量密度 电场的能量
w
1 2
0 r E 2
1 2
DE
1 2
D
E
W wdV
静电场中的导体和介质习题课
【解题指导】:
一、静电场中的导体问题 基本依据:导体静电平衡条件;电荷守恒;高斯定理。
1、均匀带电导体球(壳)内外一点的场强和电势
导体球外:
E
q
4 0r 2
,
U q
4 0r
导体球内(不论空心还是实心):
电场E为零。
电势U不为零,导体是等势体,球内一点电势等于球表面的电 势。
静电场中的导体和介质习题课
【基本概念和规律】:
一、导体静电平衡条件
导体内部场强为零。导体是等势体,导体表面是等势面。 导体表面附近场强垂直于表面。
二、导体静电平衡时导体上电荷的分布
导体上的电荷分布在外表面。导体表面附近场强为σ/ε0。
导体表面曲率半径大,表面上电荷面密度小。导体表面曲率 半径小,表面上电荷面密度大。
相关文档
最新文档