平面的基本性质习题课2
2021_2022年高中数学第二章点直线平面之间的位置关系1
平面整体设计教学分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.三维目标1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图 3.图2 图3 平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD (图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图5).图4 图5③下面我们总结点与直线、平面的位置关系如下表: 点A 在直线a 上(或直线a 经过点A )A∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A ) A∈α 点A 在平面α外(或平面α不经过点A )A ∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a. 答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB 与直线EF 交于D,∵α∩β=EF,∴D ∈α,D∈平面ABC.∵A∈α,A∈平面ABC ,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC ,它与平面α的交线为直线BC ,DE 平面ABC ,∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm ,∴PQ=10342121=+Q B P B cm. 点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β.又∵AB∩α=P,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l,同理可证:Q ∈l,R ∈l,∴P、Q 、R 三点共线.变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行. 求证:l 1、l 2、l 3相交于一点.证明:如图20,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,图20∵l 1⊂β,l 2⊂β,且l 1、l 2不平行,∴l 1与l 2必相交.设l 1∩l 2=P ,则P ∈l 1⊂α,P∈l 2⊂γ,∴P∈α∩γ=l 3.∴l 1、l 2、l 3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3. 知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1 A组5、6.11。
1.1.2平面基本性质与推论2
课题1.2.1平面的基本性质与推论课型主备人李冬旭上课教师李冬旭上课时间学习目标1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。
2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。
能运用已获得的结论证明一些空间位置关系的简单命题。
教学重点平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定教学难点自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教师准备教学过程时间分配集备修正(二)平面中的平行关系1. 平行直线(1)空间两条直线的位置关系①相交:在同一平面内,有且只有一个公共点;②平行:在同一平面内,没有公共点。
(2)初中几何中的平行公理:过直线外一点有且只有一条直线和这条直线平行。
【说明】此结论在空间中仍成立.(3)公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c。
【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行。
2. 等角定理等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这两个角相等。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
需要说明的是:对于等角定理中的条件:“方向相同”。
1’5x5’(1)若仅将它改成“方向相反”,则这两个角也相等。
(2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补。
此定理及推论是证明角相等问题的常用方法。
3. 空间图形的平移如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移。
平面的基本性质
2.1.1平面的概念和性质一、学习目标:(1)准确理解平面的几何概念,掌握平面的性质。
(2)熟练掌握三种语言的转换,会用三个公理证明共点共线共面的问题。
二、学习重点难点:(1)准确理解平面的概念,会用数学符号语言表述性质,(2)掌握熟记三个公理平面的性质四、学习过程:一)自主学习(认真阅读课本P40~43)1.几何里的平面是_______________的,我们通常把水平的平面画成一个______________, 平面通常记作___________________或____________________或__________________。
2.常用符号的记法:(1)点A 在平面α内,记作______________;点A 在平面α外,记作______________。
(2)点A 在直线l 上,记作_______________;点A 在直线l 外,记作________________。
(3)直线l 在平面α内,记作_____________;直线l 不在平面α内,记作_____________。
3.公理1:假如____________________________,那么这条直线在此平面内。
用符号表示 为____________________,图形为________________,其作用是____________________。
4.公理2:假如______________________的三点,___________________一个平面。
图形为 _________________________,其作用是__________________________________。
5.公理3:假如两个不重合的平面 ,那么它们_______________________的公共直线。
用符号表示为_________________________,图形为___________________,其作用是____________________________________。
【优创课件】8.4.1平面(人教A版2019必修二)
【探究3】把三角尺的一个角立在课桌面上,三角尺所在平面与课桌面只有一个公共点吗? [提示]由于平面是无限延展的,所以不可能只有一个公共点,它们应该有一条公共直线.
基本事实3:如果两个不重合的平面有一个公共点,那 么它们有且只有一条过该点的公共直线。 图形:
符号:P∈α,且P∈β⇒α∩β=l,且P∈l
【思考1】几何里的“平面”有边界吗?用什么 图形表示平面?
【提示】 没有.平行四边形. 【思考2】一个平面把空间分成了几部分? 【提示】 二部分.
知识点二 点、线、面之间的关系及符号表示 A是点,l,m是直线,α,β是平面.
文字语言 A在l上 A在l外 A在α内 A在α外 l在α内 l在α外
l,m相交于A l,α相交于A α,β相交于l
证明:若EF、GH交于一点P, 则E,F,G,H四点共面, 又因为EF⊂平面ABD,GH⊂平面CBD, 平面ABD∩平面CBD=BD, 所以P∈平面ABD,且P∈平面CBD, 由基本事实3可得P∈BD.
(四)操作演练 素养提升
1.下列有关平面的说法正确的是( )
A.平行四边形是一个平面
B.任何一个平面图形都是一个平面
(三)典型例题
4.三点共线问题
例4.如图,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q, 求证:B,Q,D1三点共线.
证明:如图,连接A1B,CD1,BD1,显然B∈平面A1BCD1,D1∈平面A1BCD1, ∴BD1⊂平面A1BCD1. 同理,BD1⊂平面ABC1D1, ∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q, ∴Q∈平面ABC1D1. 又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1. ∴Q在平面A1BCD1与平面ABC1D1的交线上,即Q∈BD1,∴B,Q,D1三点共线.
名师辅导 立体几何 第1课 平面的概念与性质(含答案解析)
名师辅导立体几何第1课平面的概念与性质(含答案解析)●考试目标主词填空1.平面(1)平面是理想的、绝对的平且无限延展的.(2)平面是由它内部的所有点组成的点集,其中每个点都是它的元素.2.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且这些公共点的集合是一条过这个公共点的直线.(3)公理3:经过不在同一直线上的三点,有且只有一个平面.推论1 经过一条直线和这条直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.●题型示例点津归纳【例1】在空间内,可以确定一个平面的条件是 ( )A.两两相交的三条直线B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点E. 两条直线【解前点津】 A中的两两相交的三条直线,它们可能相交于同一点,也可能不交于同一点;若交于同一点,则三直线不一定在同一个平面内.∴应排除A.B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,三条直线是不能确定一个平面的.∴应排除B.对于C来说,三个点的位置可能不在同一直线上,也可能在同一直线上,只有前者才能确定一个平面,后者是不能的.∴应排除C.条件E中的两条直线可能共面,也可能不共面.∴应排除E.只有条件D中的三条直线,它们两两相交且不交于同一点,可确定一个平面.【规范解答】 D.【解后归纳】平面的基本性质(三个公理及公理3的三个推论)是研究空间图形性质的理论基础,必须认真理解,熟练地掌握本题主要利用公理3及其推论来解答的.【例2】把下列用文字语言叙述的语句,用集合符号表示,并画直观图表示.(1)点A在平面α内,点B不在平面α内,点A、B都在直线l上;(2)平面α与平面β相交于直线l,直线a在平面α内且平行于直线l.【解前点津】注重数学语言(文字语言、符号语言、图形语言)间的相互转化训练,有利于提高分析问题、解决问题的能力.正确使用⊂、⊄、∈、∉、⋂等符号表示空间基本元素之间的位置关系是解决本题的关键.【规范解答】 (1)A ∈α,B ∉α,A ∈l ,B ∈l ,如图(1);(2)α∩β=l ,a ⊂α,a ∥l ,如图(2).例2题解图【例3】 如图,已知:l 不属于α,A 、B 、C …∈l ,AA 1⊥α,BB 1⊥α,CC 1⊥α.求证:AA 1、BB 1、CC 1…共面.【解前点津】 证明n 条直线共面,首先,选择适当的条件,确定一个平面,然后分别证明直线都在此平面内.【规范解答】 证法一 ∵AA 1⊥α,CC 1⊥α,∴AA 1∥CC 1.∴AA 1与CC 1确定平面β,且β⊥α.∵AC ⊂β,即l ⊂β,而B ∈l,∴B ∈β,又知BB 1⊥α,∴BB 1⊂β.∴AA 1、BB 1、CC 1…共面.证法二 反证法由证法1得β⊥α于A 1C 1,假设BB 1不属于β,在β内作BB ′⊥A 1C 1(如图).∴BB ′⊥α,已知BB 1⊥α,与过一点引面的垂线,有且只有一条矛盾.∴BB 1不属于β是不可能的,∴BB 1⊂β,∴AA 1、BB 1、CC 1…共面.【解后归纳】 证明共面的一般方法有直接法和间接法两种.【例4】 设平行四边形ABCD 的各边和对角线所在的直线与平面α依次相交于A 1,B 1,C 1,D 1,E 1,F 1六点,求证:A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【规范解答】 设平行四边形ABCD 所在平面为α,∵A ∈β,B ∈β,∴AB ⊂β,又A 1∈AB,∴A 1∈β,又A 1∈α∴A 1在平面α与平面β的交线上,设交线为l ,则A 1∈l ,同理可证B 1,C 1,D 1,E 1,F 1都在直线l 上,∴A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【解后归纳】 证明点共线通常证明这些点都在两平面的交线 上,或先由某两点作一条直线再证明其他点也在这条直线上,选此题的意图,就是使学生掌握证点共线的一般方法.●对应训练 分阶提升一、基础夯实1.α、β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面的个数为 ( ).32 C 例3题图例4题图2.下列说法正确的是 ( )A.如果两个平面α、β有一条公共直线a ,就说平面α、β相交,并记作α∩β=aB.两平面α、β有一公共点A ,就说α、β相交于过A 的任意一条直线C.两平面α、β有一个公共点,就说α、β相交于A 点,并记作α∩β=AD.两平面ABC 与DBC 交于线段BC3.下列命题正确的是 ( )A.一点和一条直线确定一个平面B.两条直线确定一个平面C.相交于同一点的三条直线一定在同一平面内D.两两相交的三条直线不一定在同一个平面内4.设α、β是不重合的两个平面,α∩β=a ,下面四个命题:①如果点P ∈α,且P∈β,那么P ∈a ;②如果点A ∈α,点B ∈β,那么AB α;③如果点A ∈α,那么点B ∈β;④如果线段AB α,且AB β,那么AB a .其中正确命题的个数是 ( ).1 C5.空间四点A 、B 、C 、D 共面但不共线,那么这四点中 ( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线6.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长为1的等腰梯形,则这个平面图形的面积是 ( ) A.221+ B. 222+ C.21+ D.22+ 7.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原三角形ABC 的面积为 ( )A.223aB. 243aC. 223a D.26a 8.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的什么条件 ( )A.充分不必要B.必要不充分C.充要D.不充分不必要二、思维激活9.如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有 个.10.不重合的三个平面把空间分成n 个部分,则n 的可能值为 .11.四条线段首尾相连,它们最多确定平面的个数是 .12.与空间不共面四点距离相等的平面为 个.13.四边形ABCD 中,AB =BC =CD =DA =BD =1,则成为空间四面体时,AC 的取值范围是 .三、能力提高14.如图,已知l 1∥l 2∥l 3,l ∩l 1=A,l ∩l 2=B,l ∩l 3=C .求证:l 1、l 2、l 3、l 共面.第14题图15.四个点不共面,证明它们中任何三点都不在同一条直线上.它的逆命题正确吗 已知:A 、B 、C 、D 是不共面四点.求证:它们中任何三点都不共线.16.已知△ABC 的三个顶点都不在平面α上,它的三边AB 、AC 、BC 的延长线交平面α于P 、R 、Q 三点.求证:P 、R 、Q 三点共线.17.已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF .求证:直线EF 、GH 、AC 交于一点.18.已知直线a,b,c ,其中b,c 为异面直线,试就a 与b,c 的不同位置关系,讨论可以确定平面的情况.第1课 平面的概念与性质习题解答C 24C 13+C 23C 13+2=32. 排除法.有三个交点或只有一个交点.②③错在条件不充分.分有三点共线和只有两点共线两类.第17题图根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1.容易求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形.再由“竖取半”知,直腰长为2,∴S=2211++·2=2+2. 按斜二测画法还原.充分性根据公理2进行判断,必要性用反证法得到证明.公共点最多1个,否则直线在平面内,得知直线上所有的点在平面内.,6,7,8.个 可确定C 24-2=4个.个 这四点构成一个四面体,当平面平行于四个面中某一个面时有四个;当平面平行于三对异面直线时有三个.13.(0,3) AC>0,ABCD 为菱形时AC =3.14.由l 1∥l 2,知l 1与l 2确定一个平面α,同理l 2、l 3确定一个平面β,由A ∈l 1,l 1α,知A ∈α,同理B ∈α,又A 、B ∈l ,故l α,同理l β.由上知l ∩l 2=B,且l 、l 2α,l 、l 2β,因两相交直线l 、l 2确定一个平面,故α与β重合,所以l 1、l 2、l 3、l 共面.15.证明:假设其中有三点共线,如A 、B 、C 在同一直线a 上,点D ∉a .∴点D 和a 可确定一平面α,∴A 、B 、C 、D ∈α.与A 、B 、C 、D 不共面矛盾.逆命题是:如果四点中任何三点都不共线,那么这四点不共面.逆命题不正确.16.如图,∵AP ∩AR =A ,∴AP 与AR 确定平面APR又P 、R ∈α,∴α∩平面APR =PR .又B ∈平面APR ,C ∈平面APR ,∴BC 平面APR ,即Q ∈平面APR .又Q ∈α,∴Q ∈α∩平面APR =PR .∴P 、Q 、R 三点共线.点评:欲证三点共线,可以证明某点在经过其余两点的直线上即可.17.∵E 、H 分别是AB 、AD 的中点,∴EH ∥BD ,EH =21BD , ∵F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF , ∴EH ∥FG ,EH ≠FG ,∴四边形EFGH 为梯形,则EF 与GH 必相交,设交点为P .∵EF 平面ABC ,∴P ∈平面ABC .又P ∈平面DAC ,平面BAC ∩平面DAC =AC .故P ∈AC ,即EF 、GH 、AC 交于一点P .18.(1)若a 与b,c 都相交,a 与b ,a 与c 都能确定平面,故可确定两个平面.(2)若a 与b ,c 之一相交,不妨设a 与b 相交.①a ∥c ,a 与b ,a 与c 都可确定平面故可确定两个平面.②a 与c 不平行,只a 与b 确定平面,故可确定一个平面.(3)若a 与b ,c 都不相交. 第16题图解①若a与b,c之一平行,不妨设a与b平行,只a与b可确定平面,故确定一个平面.②若a与b,c都不平行,又因为都不相交,故不能确定平面.点评:此题应用启发、引导、归纳法讲解,这样才能达到使学生建立空间概念,加强严密的逻辑思维,并达到复习,巩固“分类讨论”的思想方法.本资料来源于《七彩教育网》。
三课时上课用时公理,及推论的证明题平面的基本性质(习题课)课件
a b M , a c N, a d P,b c Q,b d S,c d R
a bM a,b可确定一个平面
N a,Q b
N ,Q NQ 即 c
同理:ad, b,c,d共面.
变式2
如图2所示已知a,b,c,d是两两相交且 不共点的四条直线,求证:a,b,c,d共 面.
C
A1 D1
A
D
∴由推论 3 可知, AA1 与 CC1 可确定平面 AC1 ,
AA CC ∴ 与 在同一平面内
1
1
新疆 王新敞
奎屯
口答
B1 C1
A1 D1
点 B,C1,D是否在同一平面内?
B
A
C
D
解:∵ 点 B C1D 不共线,
由公理
可知,点
B,,C 1
D
可确定平面
BC 1
D
,
B,C , D ∴点
❖ 例4、空间三个点能确定几个平面? 空间四个点能确定几个平面?
❖ 例5、 空间三条直线相交于一点,可以确定几个平面? 空间四条直线相交于一点,可以确定几个平面?
❖ 例6、两个平面可以把空间分成________部分, 三个平面呢?_________________。
三条直线相交于一点,可以确定几个平面?
2个平面分空间有两种情况:
(1)两平面没有公共点时
(2)两平面有公共点时
两个平面把空间分成3或4个部分。
3个平面把空间分成4,6,7或8个部分。
(1)
(2)
(3)
(4)
(5)
14.1平面及其基本性质(1)
❖ 课时小结 ❖ 1、数学知识:
(1)平面的定义 (2)平面的表示方法 (3)平面的基本性质 ❖ 2、数学思想方法:
人教A版数学必修二第二章第四课时导学案2.1(习题课)
§2.1 空间点、直线、平面之间的位置关系(习题课)学习目标1.理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.学习过程一、课前准备40~ P 50,找出疑惑之处) 复习1:概念与性质⑴平面的特征和平面的性质(三个公理); ⑵平行公理、等角定理;⑶直线与直线的位置关系⎧⎪⎨⎪⎩平行相交异面 ⑷直线与平面的位置关系⎧⎪⎨⎪⎩在平面内相交平行⑸平面与平面的位置关系⎧⎨⎩平行相交复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系; ⑵线与线、线与面的关系; ⑶面与面的关系.二、新课导学※ 典型例题例1 如图4-1,ABC ∆在平面α外,AB P α=,BC Q α=,AC R α=, 求证:P ,Q ,R 三点共线.图4-1小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.例2 如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD 上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.图4-2小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所在平面的公共点,第三条直线是两个平面的交线,由公理3得证这三线共点.例3 如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?图4-3反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※动手试试练1. 如图4-4,是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线其中正确命题的序号是()图4-4A.①②③B.②④C.③④D.②③④练2. 如图4-5,在正方体中,E,F分别为AB、AA'的中点,求证:CE,DF',DA三线交于一点.图4-5练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平行,也不相交,即不可能在同一个平面内.②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一定共面,即这两条直线可能相交,也可能平行,然后根据题设条件推出矛盾.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ). A.相交、平行或异面 B.相交或平行 C.异面 D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是__________________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业'与CN所成的角.1. 如图4-6,在正方体中M,N分别是AB和DD'的中点,求异面直线B M图4-62. 如图4-7,已知不共面的直线a,b,c相交于O点,M,P点是直线α上两点,N,Q分别是直线b,c上一点.求证:MN和PQ是异面直线.。
14.1 平面及其基本性质
二、典型习题
(一)概念的辨析 1.判断下列命题的真假,真的打“√”,假的打“×”
(1)可画一个平面,使它的长为4cm,宽为2cm。( )
(2)一条直线把它所在的平面分成两部分, 一个平面把空间分成两部分.
()
(3)一个平面的面积为20 cm2.
()
(4) 一条直线和任意一点确定一个平面
()
2、在下列命题正确的是(
• 2、习题14.1A组1 习题14.1B组1,2
• 3、画一个正方体
2.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形.
(2)l , m A
(3) l
思考题:
几位同学一次野炊活动,带去一张折叠方桌, 不小心弄坏了桌脚,有一生提议可将几根一样长的 木棍,在等高处用绳捆扎一下作桌脚(如图所示),
类比思考:
如果两个不重合的平面有公共点,其公共点有多少个?
如图,把三角板的一个角立 在课桌面上,三角板所在的 平面与桌面所在的平面是否 只相交于一点B?为什么?
BB
两相交平面的公共部分的特点:有无穷多点, 而且是直线。
公理2 如果两个平面有一个公共点,那么 它们有且只有一条经过这个点的公共直线.
P l, Pl
同理,P∈平面CBD. ∴P在平面ABD与平面CBD的交线BD上, 即B、D、P三点在同一条直线上.
题型: 证明多线共面
【例3】求证:两两相交且不共点的四条直线在同一平面内.
分析 由题知,四条直线两两相交且不共点,故有两种情况:一种是三条交 于一点,另一种是任何三条都不共点,故分两种情况证明. 要证明四线共面,先根据公理2的推论证两条直线共面,然后再证第三条直 线在这个平面内,同理第四条直线也在这个平面内,故四线共面.
平面的基本性质教案
平面的基本性质教案一、教学目标1. 知识与技能:(1)理解平面的基本性质;(2)学会用平面图形来表示和证明平面的基本性质;(3)能够运用平面的基本性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力;(2)学会运用归纳法、演绎法、类比法等数学方法。
3. 情感态度价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、克服困难的意志品质;(3)培养学生合作交流、分工协作的能力。
二、教学重点与难点1. 教学重点:(1)平面的基本性质;(2)平面图形的表示和证明;(3)运用平面的基本性质解决实际问题。
2. 教学难点:(1)平面的性质的证明和理解;(2)平面图形表示方法的灵活运用;(3)实际问题中平面的基本性质的应用。
三、教学方法与手段1. 教学方法:(1)情境教学法:通过实物、模型、图片等创设情境,引发学生兴趣;(2)问题驱动法:引导学生提出问题,自主探究,合作交流;(3)案例教学法:分析实际问题,培养学生的应用能力。
2. 教学手段:(1)多媒体课件:生动展示平面图形,提高学生的空间观念;(2)教具:实物模型、平面图形等,帮助学生直观理解;(3)练习软件:巩固所学知识,提高解题能力。
四、教学内容与课时安排1. 教学内容:(1)平面的定义及表示方法;(2)平面的基本性质及证明;(3)平面图形的分类及特点;(4)运用平面的基本性质解决实际问题。
2. 课时安排:(1)第一课时:平面的定义及表示方法;(2)第二课时:平面的基本性质及证明;(3)第三课时:平面图形的分类及特点;(4)第四课时:运用平面的基本性质解决实际问题。
五、教学评价1. 过程性评价:关注学生在学习过程中的表现,如参与程度、合作意识、问题解决能力等;2. 结果性评价:检测学生对平面基本性质的理解和运用,如课堂练习、课后作业、实践活动等;3. 综合性评价:结合学生的学习态度、方法、成果等多方面进行评价,全面反映学生的学习情况。
平面图形的认识(二)、幂的运算习题课 导学案
弘文教育学科导学案教师: 彭晴晴学生: 常笑日期: 2012.7.30 星期: 一时段: 10—12 课题平面图形的认识(二)、幂的运算习题课学习目标考点分析1. 会正确识别图形中的同位角,并能运用“同位角相等,两直线平行”判断两直线平行;2. 会正确识别图形中的内错角、同旁内角;并能运用“内错角相等,两直线平行”,“同旁内角相等,两直线平行”判断两直线平行;3. 能正确运用平行线的性质进行简单的说理、计算;4. 掌握平移的基本基本性质,理解对应点连线平行且相等;5. 会作出平面图形平移后的的图形,利用平移进行图案设计;6. 认识三角形的概念,理解三角形三边之间的关系;7. 了解三角形的高、中线、角平分线;8. 掌握三角形内角和定理,会用三角形内角和定理解决相关问题;9. 了解多边形的外角和公式;10. 学会应用同底数幂的乘法;11. 学会应用同底数幂的除法;12. 掌握幂的乘方;13. 理解积的乘方。
学习重点1. 能正确运用平行线的性质进行简单的说理、计算;2. 掌握三角形内角和定理,会用三角形内角和定理解决相关问题;3. 学会应用同底数幂的乘法;4. 学会应用同底数幂的除法;5. 掌握幂的乘方。
学习方法讲练结合学习内容与过程1.现有两根木棒,它们的长分别是20 cm和30 cm.若要订一个三角架,则下列四根木棒的长()A.10 cm B.30 cm C.50 cm D.70 cm2.列说法正确的是 ( )三角形的角平分线,中线和高都在三角形的内部直角三角形的高只有一条钝角三角形的三条高都在三角形外三角形的高至少有一条在三角形内3、若多边形的边数增加1,则其内角和的度数()A、增加180ºB、其内角和为360ºC、其内角和不变D、其外角和减少24.在△ABC 中,∠A :∠B :∠C=1:2:3,则△ABC 是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .是边长之比为1:2:3的三角形 5. 如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A=( )A . 50B. 40C. 70D. 35第5题 第6题6、如图,l 1∥l 2,AB ⊥l 2,垂足为O ,BC 交l 2于点E ,若∠ABC=140°,则∠1=_____°.7、如图,H 是△ABC 三条高AD 、BE 、CF 的交点,则△ABC 中BC 边上的高是_________,AHC 中HC 边上的高是__________,△ABH 中AB 边上的高是_________.第7题 第8题8、如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=50°,∠C=70°,则∠BAD= °,∠EAD= °.9、下列说法:①三角形的外角和等于它的内角和;②三角形的一个外角大于任何一个内角;③三角形的一个外角和内角互补;④三角形的一个外角大于和它不相邻的内角.其中正确的有___________.(填写正确答案的序号) 10、三角形三个外角的比为2:3:4,则最大的内角是________度 11、若多边形的每一个外角都是其相邻内角的21,则它的每个外角的度数为 °。
平面基本性质与推论
符号语言表述:X ■「二1 J匚二二]''■二人二匚厂r②内容剖析:公理1的内容反映了直线与平面的位置关系,条件“线上两点在平面内”是公理的必须条件,结论“线上所有点都在面内”。
这个结论阐述两个观点,一是整个直线在平面内,二是直线上所有点都在平面内。
③公理<1)的作用:既可判定直线是否在平面内,点是否在平面内,又可用直线检验平面。
<2)关于公理2①公理2的三种数学语言表述:文字语言表述:过不在同一直线上的三点,有且只有一个平面。
图形语言表述:如图2所示符号语言表述:A B C三点不共线;有且只有一个平面a,使②内容剖析:公理2的条件是“过不在同一直线上的三点”,结论是“有且只有一个平面”。
条件中的“三点”是条件的骨干,不会被忽视,但“不在同一直线上”这一附加条件则易被遗忘,如舍之,结论就不成立了,因此绝对不能遗忘.同时还应认识到经过一点、两点或在同一直线上的三点可有无数个平面;过不在同一直线上的四点,不一定有平面,因此要充分重视“不在同一直线上的三点”这一条件的重要性。
公理2中的“有且只有一个”含义要准确理解。
这里的“有”是说图形存在。
“只有一个”是说图形惟一,本公理强调的是存在和惟一两个方面。
因此“有且只有一个”必须完整的使用,不能仅用“只有一个”来替代“有且只有一个”,否则就没有表达存在性。
“确定一个平面”中的“确定”是“有且只有”的同义词,也是指存在性和惟一性这两方面的,这个术语今后也会常常出现,要理解好。
③公理2的作用:作用一是确定平面;作用二是可用其证明点、线共面问题。
<3)关于公理3①公理3的三种数学语言表述:文字语言表述:如果不重合的两个平面有一个公共点,那么它们有且只有一条过该点的公共直线。
图形语言表述:如图3所示符号语言表述:[上■- - < r-i. -i-■:-②公理3的剖析:公理3的内容反映了平面与平面的位置关系。
公理2的条件简言之是“两面共一点”,结论是“两面共一线,且过这一点,线惟一”。
职高数学第九章平面的基本性质 直线与直线、直线与平面、平面与平面平行的判定与性质
【课题】9.1 平面的基本性质【教学目标】知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】平面的表示法与画法.【教学难点】对平面的概念及平面的基本性质的理解.【教学设计】教材通过观察平静的湖面、窗户的玻璃面、黑板面等,引入平面的概念,并介绍了平面的表示法与画法.注意,平面是原始概念,原始概念是不能定义的,教材是用“光滑并且可以无限延展的图形”来描述平面.在教学中要着重指出,平面在空间是可以无限延展的.在讲“通常用平行四边形表示平面”时要向学生指出:(1) 所画的平行四边形表示它所在的整个平面,需要时可以把它延展出去;(2) 有时根据需要也可用其他平面图形,如三角形、多边形、圆、椭圆等表示平面,故加上“通常”两字;(3) 画表示水平平面的平行四边形时,通常把它的锐角画成 45 °,横边画成邻边的2倍.但在实际画图时,也不一定非按上述规定画不可;在画直立的平面时,要使平行四边形的一组对边画成铅垂线;在画其他位置的平面时,只要画成平行四边形就可以了;(4) 画两个相交平面,一定要画出交线;(5) 当用字母表示平面时,通常把表示平面的希腊字母写在平行四边形的锐角内,并且不被其他平面遮住的地方;(6) 在立体几何中,被遮住部分的线段要画成虚线或不画.“确定一个平面”包含两层意思,一是存在性,即“存在一个平面”;二是唯一性,即“只存在一个平面”.故“确定一个平面”也通常说成“有且只有一个平面”.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题9.1 平面的基本性质*创设情境兴趣导入观察平静的湖面(图9−1(1))、窗户的玻璃面(图9−1(2))、黑板面、课桌面、墙面等,发现它们都有一个共同的特征:平坦、光滑,给我们以平面的形象,但是它们都是有限的.(1)(2)图9−1介绍质疑引导分析了解思考启发学生思考8*动脑思考探索新知【新知识】平面的概念就是从这些场景中抽象出来的.数学中的平面是指光滑并且可以无限延展的图形.平静的湖面、窗户的玻璃面、黑板面、课桌面、墙面等,都是平面的一部分.我们知道,直线是可以无限延伸的,通常画出直线的一部分来表示直线.同样,我们也可以画出平面的一部分来表示平面.通常用平行四边形表示平面,并用小写的希腊字母αβγ、、、来表示不同的平面.如图9−2,记作平面α、平面β.也可以用平行四边形的四个顶点的字母或两个相对顶点的字母来命名,如图9−2(1)中的平面α也可以记作平面ABCD,平面AC或平面BD.【说明】根据具体情况,有时也用其他的平面图形表示平面,如圆、三角形等.当平面水平放置的时候,通常把平行四边形的锐角画成45°,讲解说明引领分析思考理解带领学生分析过 程行为 行为 意图 间横边画成邻边的2倍长(如图9−2(1)).当平面正对我们竖直放置的时候,通常把平面画成矩形(如图9−2(2)).仔细 分析关键 语句记忆20 *巩固知识 典型例题例1 表示出正方体1111ABCD A B C D -(如图9−3)的6个面1. 【说明】如图9−3所示的正方体一般写作正方体1111ABCD A B C D -,也可以简记作正方体1A C .图9−3解 这6个面可以分别表示为:平面AC 、平面11A C 、平面1AB 、平面1BC 、平面1CD 、平面1DA . 【试一试】请换一种方法表示这6个面.说明 强调引领讲解 说明 观察 思考 主动 求解通过例题进一步领会27 *运用知识 强化练习1.举出生活中平面的实例.2.画出一个平面,写出字母并表述出来. 提问 指导 思考 口答领会知识 32 *创设情境 兴趣导入 【实验】αABC Dβ(2)图9−2(1)过程行为行为意图间把一根铅笔平放在桌面上,发现铅笔的一边就紧贴在桌面上.也就是铅笔紧贴桌面的一边上的所有的点都在桌面上(如图9−4).图9−4质疑引导分析思考启发学生思考37*动脑思考探索新知【新知识】直线与平面都可以看做点的集合.点A、B在直线l上,记作A l B l∈∈、;点A、B在平面α内,记作A Bαα∈∈、.(如图9−5)由上述实验和大量类似的事实中,归纳出平面的性质1:如果直线l上的两个点都在平面α内,那么直线l上的所有点都在平面α内.此时称直线l在平面α内或平面α经过直线l.记作lα⊆.画直线l在平面α内的图形表示时,要将直线画在平行四边形的内部(如图9−5).讲解说明引领分析思考理解带领学生分析42 *创设情境兴趣导入【观察】观察教室里墙角上的一个点,它是相邻两个墙面的公共点,可以发现,除这个点外两个墙面还有其他的公共点,并且这些公共点的集合就是这两个墙面的交线.质疑思考带领学生分析45 *动脑思考探索新知【新知识】由上述观察和大量类似的事实中,归纳出平面的性质2:如果两个平面有一个公共点,那么它们还有其他公共点,并且图9−5桌子BA铅笔过 程行为 行为 意图 间所有公共点的集合是过这个点的一条直线(如图9−6). 此时称这两个平面相交,并把所有公共点组成的直线l 叫做两个平面的交线.平面α与平面β相交,交线为l ,记作l αβ=.【说明】本章中的两个平面是指不重合的两个平面,两条直线是指不重合的两条直线.画两个平面相交的图形时,一定要画出它们的交线.图形中被遮住部分的线段,要画成虚线(如图9−7(1)),或者不画(如图9−7(2)). 【试一试】请画出两个相交的平面,并标注字母. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语思考 理解 记忆带领 学生 分析 引导 式启 发学 生得 出结 果55*创设情境 兴趣导入【实验】在桌面上只放一颗或两颗尖朝上的图钉,是否能将一块硬纸板架起?如果在桌面上放置三颗尖朝上的图钉,那么结果会怎样?质疑思考带领 学生 分析60 *动脑思考 探索新知【新知识】由上述实验和大量类似的事实中,归纳出平面的性质3:不在同一条直线上的三个点,可以确定一个平面(如图9−8).讲解图9−7图9−6过程行为行为意图间【说明】“确定一个平面”指的是“存在着一个平面,并且只存在着一个平面”.利用三角架可以将照相机放稳(图9−9),就是性质3的应用.图9−9根据上述性质,可以得出下面的三个结论.1.直线与这条直线外的一点可以确定一个平面(如图9−10(1)).2.两条相交直线可以确定一个平面(如图9−10(2)).3.两条平行直线可以确定一个平面(如图9−10(3)).(3)【试一试】请用平面的性质说明这三个结论.工人常用两根平行的木条来固定一排物品(如图9−11(1));营业员用彩带交叉捆扎礼品盒(如图9−11(2)),说明引领分析仔细分析讲解关键词语引领分析思考理解记忆理解带领学生分析引导式启发学生得出结果图9−8 Aα(1)α(2)α过 程行为 行为 意图 间都是上述结论的应用.(1) (2) 图9−11【想一想】如何用两根细绳来检查一把椅子的4条腿的下端是否在同一个平面内?仔细 分析 讲解 关键词语记忆70*巩固知识 典型例题例2 在长方体1111ABCD A B C D -(如图9−12)中,画出由A 、C 、1D 三点所确定的平面γ与长方体的表面的交线.分析 画两个相交平面的交线,关键是找出这两个平面的两个公共点.解 点A 、1D 为平面γ与平面11ADD A 的公共点,点A 、C 为平面γ与平面ABCD 的公共点,点C 、1D 为平面γ与平面11CC D D 的公共点,分别将这三个点两两连接,得到直线11AD AC CD 、、就是为由1A C D 、、三点所确定的平面γ与长方体的表面的交线(如图9−12(2)).图9−12【想一想】为什么这三条连线都画成虚线?说明强调引领讲解 说明观察 思考 主动 求解 思考 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点78 *运用知识 强化练习1.“平面α与平面β只有一个公共点”的说法正确吗? 2.梯形是平面图形吗?为什么?提问 巡视思考 求解了解 学生 知识γ【教师教学后记】【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.2 直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境 兴趣导入观察图9−13所示的正方体,可以发现:棱11A B 与AD 所在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?介绍质疑引导 分析了解 思考启发 学生思考0 2 *动脑思考 探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B 与直线AD 就是两条异面直线.这样,空间两条直线就有三种位置关系:平行、相交、异面.将两支铅笔平放到桌面上(如图9−14),抬起一支铅笔的一端(如D 端),发现此时两支铅笔所在的直线异面.图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).讲解 说明 引领 分析思考 理解带领 学生 分析桌子 BA C D两支铅笔(1) (2) 图9−15 利用铅笔和书本,演示图9−15(2)的异面直线位置关系.仔细 分析关键语句 记忆5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢? 观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑引导 分析思考启发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 10 *创设情境 兴趣导入 将平面 内的四边形ABCD 的两条边AD 与DC ,沿着对角线AC 向上折起,将点D 折叠到1D 的位置(如图9−17).此时A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑 引领 分析思考带领 学生 分析13图9−16图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?2为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.线延伸到平行四边形外(如图9−19(2)).如果一条直线与一个平面没有公共点,那么就称这条直线与这个平面平行. 直线l 与平面α平行,记作l ∥α.画直线与平面平行的图形时,要把直线画在平行四边形外,并与平行四边形的一边平行(如图9−19(3)).(1) (2)(3)这样,直线与平面的位置关系有三种:直线在平面内、直线与平面相交、直线与平面平行.直线与平面相交及直线与平面平行统称为直线在平面外.引领 分析 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果30*创设情境 兴趣导入在桌面上放一张白纸,在白纸上画出两条平行直线,沿着其中的一条直线将纸折起(如图9−20).观察发现:在折起的各个位置上,另一条直线始终与桌面保持平行.图9−20质疑思考引导 学生 分析32 *动脑思考 探索新知从大量实验中归纳出判定直线与平面平行的方法: 如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行. 讲解 说明 理解 记忆 带领 学生 分析 35 *巩固知识 典型例题例2 如图9−21,长方体1111ABCD A B C D -中,直线1DD 2平行于平面11BCC B 吗?为什么?lαlααl图9−21解 在长方体1111ABCD A B C D -中,因为四边形11DCC D 边是长方形,所以DD 1∥CC 1,又因为CC 1在平面BCC 1B 1内,DD 1在平面BCC 1B 1外,因此直线1DD 平行于平面11BCC B .说明 强调引领 讲解 说明观察 思考 主动 求解 通过例题进一步领会 识 点 40*创设情境 兴趣导入将铅笔放到与桌面平行的位置上, 用矩形硬纸片的面紧贴铅笔,矩形硬纸片的一边紧贴桌面(如图9−22),观察铅笔及硬纸片与桌面的交线,发现它们是平行的.图9−22(请画出实物图)质疑 引导 分析思考启发 学生思考42*动脑思考 探索新知从大量的实验与观察中,归纳出直线与平面平行的性质: 如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行. 如图9−23所示,设直线l 为平面α与平面β的交线,直线m 在平面β内且m α∥,则m l ∥.图9-23讲解 说明 引领 分析思考 理解 带领 学生 分析45*巩固知识 典型例题例 3 在如图9−24所示的一块木料中,已知BC ∥平面1111A B C D ,BC ∥11B C ,要经过平面11A C 内的一点P 与棱BC 将说明 观察铅笔木料锯开,应当怎样画线?分析 设点P 和棱BC 确定的平面α,则EF 是α与平面1111A B C D 的交线,由于BC ∥平面1111A B C D ,故EF ∥BC ,11B C BC ∥.所以11EF B C ∥.解 画线的方法是:在平面1111A B C D 内,过点P 作直线11B C 的平行线EF ,分别交直线11A B 及直线11D C 与点E 、F ,连接EB 和FC . 强调 引领 讲解 说明思考 主动 求解通过例题进一步领会48*运用知识 强化练习1.试举出一个直线和平面平行的例子.2.请在黑板上画一条直线与地面平行,并说出所画的直线与地面平行的理由.3.如果一条直线平行于一个平面,那么这条直线是不是和这个平面内所有的直线都平行?4.说明长方体的上底面各条边与下底面平行的理由. 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况50 *创设情境 兴趣导入教室中的墙壁与地面相交于一条直线,而天花板与地面,没有公共点.质疑思考 引导 学生 分析 52 *动脑思考 探索新知如果两个平面没有公共点,那么称这两个平面互相平行.平面α与平面β平行,记做α∥β.画两个互相平行平面的图形时,要使两个平行四边形的对应边分别平行(如图9−25).这样,空间两个平面就有两种位置关系:平行与相交.讲解 说明 引领 分析思考 理解带领 学生 分析55 *创设情境 兴趣导入进行乒乓球或台球比赛时,必需要保证台面与地面平行.技术人员利用水准器来进行检测.水准器内的玻璃管装有水,管内的水柱相当于一条直线,水准器内的水泡在中央,表示水准器所在的直线与地平面平行.把水准器在平板上交叉放图9−25 αβ图9−24置两次(如图9−26),如果两次检测,水准器内的水泡都在中央,就表示台面与地面平行,可以进行比赛,否则就需要进行调整.图9−26质疑思考引导学生分析57 *动脑思考探索新知实例中,技术人员使用的方法就是我们常用的判定平面与平面平行的方法:如果一个平面内的两条相交直线都与另一个平面平行,那么这两个平面平行.【想一想】如果一个平面内的一条直线平行于另一个平面内的一条直线 , 那么这两个平面是否一定平行讲解说明思考理解带领学生分析60 *巩固知识典型例题例4设平面α内的两条相交直线m,n分别平行于另一个平面β内的两条直线k,l(如图9−27),试判断平面α,β是否平行?解因为m在β外、l在β内,且m∥l,所以直线m∥平面β.同理可得直线n∥平面β.由于m、n是平面α内两条相交直线,故可以判断α∥β.说明强调引领讲解说明观察思考主动求解通过例题进一步领会65*创设情境兴趣导入将一本书放在与桌面平行的位置,用作业本靠紧书一边,绕着这条边移动作业本,观察作业本和书的交线与作业本和桌面的交线之间的关系(如图9−28).质疑思考引导学生分析70图9−27A mnβαkl放到不同位置的本图9−28(请画出实物图) *动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .讲解 说明 引领 分析思考 理解 带领 学生 分析75 *运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况80 *理论升华 整体建构 思考并回答下面的问题:异面直线的定义?质疑回答及时了解学生ba第2题图βαMACD B 桌子 书图9−29【教师教学后记】。
苏教版必修2《平面的基本性质》教案及教学反思
苏教版必修2《平面的基本性质》教案及教学反思教学目标本节课程的教学目标主要包括以下几个方面:1.能够了解平面的基本性质,如平行、垂直、相交等概念的定义;2.能够熟练掌握平行线的判定方法和垂直线的判定方法;3.能够运用所学知识解决平面几何中的常见问题,如求两条平行线的距离、求一条直线在平面内的垂线等;4.能够发现问题、分析问题、解决问题的能力。
授课方法本节课程采用“启发式教学法”,主要方法包括:1.通过讲解二维平面几何的实际例子,激发学生的学习兴趣和求知欲;2.依托视觉教学,使用简单易懂的图片和图表,让学生更加直观地理解概念和知识点;3.通过问题解决的方法,引导学生发现问题、分析问题、解决问题的思维方式,培养学生的思维能力。
课程设计导入环节通过导入环节,让学生感受到二维平面几何与自己生活息息相关,从而激发学生的学习兴趣和探究欲望。
具体内容如下:•引导学生回顾日常生活中有哪些与平面几何有关的现象;•提出问题:如何判断两条线是平行的?如何判断两条线是垂直的?•通过讨论,引导学生自主探究平行、垂直的定义和判定方式。
拓展环节在学生掌握基本知识的基础上,通过拓展问题,巩固已掌握的知识,同时培养学生的分析和推理能力。
具体内容如下:•针对判定平行、垂直线的方法,让学生自主设计问题,探究知识的灵活应用;•引导学生在实践中发现不同问题的共性和差异;•演示实际应用场景,让学生认识到数学知识与生活实际的紧密联系。
总结环节通过总结环节,让学生掌握知识点,并加深对问题解决思路的理解。
具体内容如下:•小结当天学习内容,梳理概念和知识;•回顾实践环节中的问题解决思路,强化学生的思维方式;•通过讨论,进一步提高学生的思维能力和解决问题的能力。
教学反思通过本节课程的教学,我认为可以对教学内容和方法进行以下反思和改进:1.授课方法需要更加多样化,可以不仅仅使用视觉教学,通过实物教学、实践操作等多种方式,激发学生的学习兴趣和求知欲;2.需要更加注重巩固性的教学环节,通过拓展问题、练习题等方式,全面提高学生的应用和掌握能力;3.需要更加注重个性化的教学,根据学生的差异性,采用不同的教学策略和手段,实现教学效果的最大化。
高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系
A B
AB
B
A
作用:用于判定线在面内
小结:公理2及其推论 A,B,C不共线
A,B,C确定一平面.
A∈ a
A和a确定一平面.
aIb=P
a和b确定一平面.
ab
a和b确定一平面.
作用:用于确定一个平面.
A
B C
Aa
aP
b
a
b
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。
空间中基本图形:点、线、面
一、平面的表示方法
1.特点:平面是无限延展,没有厚度的.
(但常用平面的一部分表示平面)
2.画法:水平或竖直的平面常用平行四边形表示.
D
D
C
C
A
B
A
3.记法:
B
①平面α、平面β、平面γ(标记在边上)
②平面ABCD、平面AC或平面BD
巩固:判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 .
CA
C (G)
A
G
E
H
DB
HE F
D
B(F)
空间两条不重合直线的位图关系有且只有三种:
若从有没有公共点的角度来看,可分为两类 :
(1) 有且仅有一个公共点相交直线
(
2)
没有公共点
平行直线 异面直线
若从有没有共面的角度来看,也可分为两类:
(1)
在同一个平面内
相交直线 平行直线
( 2)不同在任何一个平面内异面直线
A1
B1
(2) 直线MB1与CC1异面直线关系
主要特征:既不平行,也不相交
异面直线的定义:
D A
北师大版七年级上册第四章基本平面图形课程设计 (2)
北师大版七年级上册第四章基本平面图形课程设计课程简介本课程设计是针对北师大版七年级上册第四章基本平面图形的教学内容而设计的。
课程旨在帮助学生掌握基本平面图形的相关知识,包括平行四边形、矩形、正方形、菱形等。
通过本课程的学习,学生能够了解各种平面图形的性质和特点,掌握它们的基本构造方法,并能够简单地解决与平面图形相关的问题。
本课程适用于初学者,没有学习过平面几何的学生也可以轻松掌握。
教学目标本课程旨在让学生掌握以下知识和技能:1.了解平行四边形、矩形、正方形、菱形等基本平面图形的定义和性质;2.掌握各种平面图形的构造方法;3.能够应用所学知识解决基本平面图形相关的问题;4.开发学生的数学思维能力和几何直觉。
教学内容第一课时:平行四边形1.平行四边形的定义及性质;2.平行四边形的构造方法;3.平行四边形的周长和面积计算。
第二课时:矩形1.矩形的定义及性质;2.矩形的构造方法;3.矩形的周长和面积计算。
第三课时:正方形1.正方形的定义及性质;2.正方形的构造方法;3.正方形的周长和面积计算。
第四课时:菱形1.菱形的定义及性质;2.菱形的构造方法;3.菱形的周长和面积计算。
第五课时:综合练习本节课为综合练习课,将之前所学的知识进行综合运用及巩固。
教学方法本课程采用多种教学方法,包括讲解、演示、练习、小组讨论等。
1.讲解:教师将知识点讲解清楚,在讲解中让学生理解相关知识的定义、性质、构造方法等;2.演示:由教师带领学生进行图形的绘制和相关计算演示;3.练习:每节课都会安排一定的练习时间,让学生进行相关图形绘制、计算;4.小组讨论:采用小组讨论的形式,让学生互相交流、合作,帮助学生更好地掌握知识和加深印象。
教学评价方式学生评价是教学过程中重要的一环,也是教师教学效果的反馈。
本课程采用如下几种评价方式:1.课堂表现:包括学生的听讲、提问、回答问题等,以及学生在练习中的独立完成情况;2.课后作业:每节课都布置一定量的练习题,学生完成后进行互相检查;3.小组讨论表现:评价学生在小组讨论中的合作、沟通、思考等能力。
2.1.1平面
探讨: 探讨:
根据刚才的两个实例,你得到怎么样的 根据刚才的两个实例, 一个结论? 一个结论?
公理2 公理2 经过不在同一条直线上的 三点, 三点,有且只有一个平面
不共线的三点A,B,C的 不共线的三点A,B,C的 A,B,C 平面通常记作〝平面ABC 平面通常记作〝平面ABC 〞
A, B, C不共线 ⇒ A, B, C确定一平面
课堂小结: 课堂小结
1.平面的概念.表示及记法. 1.平面的概念.表示及记法. 平面的概念 2.空间中的点 空间中的点, 2.空间中的点,线,面位置关系及 符号表示. 符号表示. 3.平面的三个性质 平面的三个性质. 3.平面的三个性质.
作
书 43 页 书 51 页
业
练习 习题 第 4 题 第 1、2 题
例2:
⑴一条直线可以将平面分成两部分,那么 一条直线可以将平面分成两部分, 个部分。 一个平面可以把空间分成 2 个部分。 3或 个部分。 ⑵两个平面可以将空间分成 3或4 个部分。
下列叙述正确的是----------( D ) 例3.下列叙述正确的是 下列叙述正确的是 A. 因为 ∈ α ,Q ∈ α 所以 因为P 所以PQ ∈ α B. 因为 ∈ α ,Q ∈ β 所以 α ∩ β = PQ 因为P
普通高中课程标准实验教科书 数学必修2——A版(人民教育出版社)
第二章点、线、平面之间的位置关系 ——第2.1.1平面
大安二中数学组张利坚
2.1.1平面
β
大安二中张利坚
a
α
1.平面 平面 立体几何中的平面的特点: 立体几何中的平面的特点
1.平的 1.平的 2.四周无限延展 2.四周无限延展 3.不计大小 3.不计大小 4.不计厚薄 4.不计厚薄 (不是凹凸不平) 不是凹凸不平) (没有边界) 没有边界) (无所谓面积) 无所谓面积) (没有体积) 没有体积)
平面的基本性质和作用
几何里的平面没有大小、厚薄和宽窄,平面在空间是无 限延伸的.
二.平面的画法:
我们常常把水平的平面画成一个平行四边形,用 平行四边形表示平面.
平行四边形的锐角通常画成45°,且横边长等于 其邻边长的2倍.
(1)水平放置的平面:(2)垂直放置的平面:
∩ l, AB, CD, AB//l, CD//l.
解: 画图如下:
C
D
l
A
B
P53 B 组 2. 如图, △ABC 在平面 外, AB∩ P, BC∩ Q, AC∩ R, 求证: P, Q, R 三点共线.
证明: ∵AB∩ P, AC∩ R,
则 P、R 就是平面ABC
A
与平面 的公共点, 即
A∉l
A∈α
A∉α
文字语言 l在α内
符号语言
l⊂α
l在α外
l⊄α
l,m 相交于 A l∩m=A
l,α 相交于 A l∩α=A
α,β 相交于 l α∩β=l
图形语言
五.用数学符号来表示点、线、面之间的位置关系:
a B
A
A∈a
B∈a
B
α
A
A∈α B∈α
b
a
aA
α
α
a α
b∩α=A
a∩α=φ 或 a∥α
典型例题
例1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.
a
B A
l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B.
在(2)中, l,a ,b ,a l P,b l P.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题与练习
1、几条线共面
例1求证:两两相交而不过同一点的四条直线必在同一平面内 .
分析:四条直线两两相交且不共点,可能有两种:一是有三 条直线共点;二是没有三条直线共点,故而证明要分两种 情况.
例2两类问题的常用方法外,本练习是证三线共点问题,也有常用证法 。
证明三线共点通常先证其中的两条直线相交于一点,然后再证 第三条直线经过这一点。
总结、扩展
本课以练习为主,学习了线共面、点共线, 线共点的一般证明方法和分类讨论的思想 .证明依据是平面的基本性质,数学方法 有反证法和同一法,这也是这一单元的主 要证明方法.在证明的书写中,要求推论 有据,书写规范.
B C
RN
M
点,且EF交GH于P.
求证:P在直线BD上.
A
已知:EF∩GH=P,E∈AB、 E F∈AD, G∈BC, H∈CD, 求证:B、D、P三点共线.
B
F P
D H
C G
说明证三点共线的常规思路是:1、将三点看 成是某两个相交平面的交点;2、根据公理 2两相交平面有且只有一条公共直线,得出 三点共线
练习:两个平面两两相交,有三条交线,若其中两 条相交于一点,证明第三条交线也过这一点.
已知:如图1-26,α∩β=a,β∩γ=b, α∩γ=c,b∩c=p.
求证:p∈a.
证明:∵b∩c=p, ∴p∈b. ∵β∩γ=b,
∴p∈β. 同理,p∈α.
又∵α∩β=a,∴p∈a. 总结:以上例、习题分别证明了四线共面.三点共线和三线共点 问题,这只是证明这类问题中的个例,根据不同的条件有不同的 分析问题和解决问题的过程,但也具有一般的思路和方法.除了例1、
Q
P
a
RSd bc
A
a
D
E
B b
C E
c
d
证明若干点或直线共面通常有两种思路 (1)先由部分元素确定若干平面,再证明这些平面重合,如例1之①; (2)先由部分元素确定一个平面,再证明其余元素在这平面内,如例1之②.
例2如图1-25,已知空间四边形ABCD中,E
、F、G、H分别是AB、AD、BC、CD上的
平面的基本性质习题课
温州四中 林凤余
复习旧知
1、具备哪些条件可以确定一个平面?
C A
B
A
a
Aa
b
a,现在请同学们共同讨论 这个证明过程.
已知:直线a∥b. 求证:经过a、b有且只有一个平面. 证明:“存在性”. ∵a∥b, ∴a、b在同一平面α内(平行线的定义). “唯一性” 在直线a上作一点A.
布置作业
1.求证:两两相交的三条直线必在同一个平面内.
2.已知:△ABC在平面α外,三角形三边AB、AC 、BC所在直线分别交α于M、N、R,求证:M、 N、R三点共线.
3.如图1-27,在正方体ABCD-A1B1C1D1中,点 E、、F、F分B共别面是.接AA1、CC1的中点,求证:点D1、E
A