新人教版高中物理选修3-3精品教案全册
人教版高中物理选修3-3教案
高中物理人教版选秀3-3教案第七章 1、物质是由大量分子组成的一、教学目标1.在物理知识方面的要求:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
二、重点、难点分析1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
三、教具1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程(一)热学内容简介1.热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程1.分子的大小。
分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?在学生回答的基础上,还要指出:如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
新人教版高中物理选修3-3全册教案设计
高中物理选修3-3全册精品教案第七章分子动理论27.1物质是由大量分子组成的2第一节物质是由大量分子组成的37.2分子的热运动5第二节分子的热运动67.3分子间的相互作用力8第三节分子间的相互作用力87.4物体的内能11第四节物体的内能12第八章气体148.1气体的等温变化玻意耳定律14第一节气体的等温变化玻意耳定律148.2气体的等容变化和等压变化16第二节气体的等容变化和等压变化168.3气体理想气体的状态方程18第三节气体•理想气体的状态方程198.4气体实验定律的微观解释21第四节气体实验定律的微观解释22第九章物体和物态变化259.1固体25第一节固体259.2液体26第二节液体2610.1、2功和内能热和内能29第一节功和内能热和内能3010.3热力学第一定律能量守恒定律30第三节热力学第一定律能量守恒定律3110.4热力学第二定律32第四节热力学第二定律3310.5能源环境和可持续发展35第五节能源环境和可持续发展35第七章分子动理论7.1物质是由大量分子组成的教学目标1、知识与技能(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
2、过程与方法:通过单分子油膜法估算测量分子大小,让学生体会到物质是由大量分子组成的。
形成正确的唯物主义价值观。
3、情感、态度与价值观教学重难点(1)使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;(2)运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
教学教具(1)教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样;(2)演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
教学过程:第一节物质是由大量分子组成的(一)热学内容简介(1)热现象:与温度有关的物理现象。
高中物理选修3-3教案《热力学第一定律 能量守恒定律》
热力学第一定律能量守恒定律新课标要求(一)知识与技能1.能够从能量转化的观点理解热力学第一定律及其公式表达,会用ΔU=W+Q 分析和计算问题。
2.掌握能量守恒定律,理解这个定律的重要意义。
会用能量守恒的观点分析物理现象。
3.能综合运用学过的知识,用能量守恒定律进行有关计算,分析、解决有关问题。
4.了解第一类永动机不可能制成的原因。
(二)过程与方法通过用定量计算的例题讲解及课件展示来加深大家对知识的理解。
(三)情感、态度与价值观1.学习众多科学家孜孜以求、勇于探索自然规律的精神,进一步进行辩证唯物主义教育,为将来能在开发新能源、合理利用能源、发展节能技术的领域内作出贡献而努力。
2.感受英国科学家焦耳勤奋、刻苦,40年如一日研究电流热效应,测定热功当量的顽强意志体现出来的人格美。
教学重点能量转化和守恒定律的理解及综合应用,涉及热力学第一定律的定性分析和定量计算。
教学难点热力学第一定律的正确运用(定性分析和定量计算)及对第一类永动机不可能制成的具体分析探究过程的理解。
教学方法讲练法、分析归纳法、阅读法教学用具:投影仪、投影片。
教学过程(一)引入新课教师:(复习提问)改变物体内能的方式有哪些?学生:做功和热传递是改变物体内能的两种方式。
教师:既然做功和热传递都可以改变物体的内能,那么功,热量跟内能的改变之间一定有某种联系,本节课我们就来研究这个问题。
(二)进行新课1.热力学第一定律[投影]1.一个物体,它既没有吸收热量也没有放出热量,那么:①如果外界做的功为W,则它的内能如何变化?变化了多少?②如果物体对外界做的功为W,则它的内能如何变化?变化了多少?2.一个物体,如果外界既没有对物体做功,物体也没有对外界做功,那么:①如果物体吸收热量Q,它的内能如何变化?变化了多少?②如果放出热量Q,它的内能如何变化?变化了多少?[学生解答思考题]教师总结:一个物体,如果它既没有吸收热量也没有放出热量,那么,外界对它做多少功,它的内能就增加多少;物体对外界做多少功,它的内能就减少多少。
物理科选修3-3教案.新人教31页
1.把盛有二氧化氮的玻璃瓶与另一个玻璃瓶竖直方向对口相接触,看到二氧化氮气体从下面的瓶 内逐渐扩展到上面瓶内。
2.在一烧杯的净水中,滴入一二滴红墨水后,红墨水在水中逐渐扩展开来。 提问:上述两个实验属于什么物理现象?这现象说明什么问题? 在学生回答的基础上总结:上述实验是气体、液体的扩散现象,扩散现象是一种热现象。它说明
M 、密
度 ρ 、阿伏伽德罗常数 N A ,计算出分子直径
一、教学目标
2、分子的热运动
1.物理知识方面的要求: ( 1)知道并记住什么是布朗运动, 知道影响布朗运动激烈程度的因素, 知道布朗运动产生的原因。
( 2)知道布朗运动是分子无规则运动的反映。 ( 3)知道什么是分子的热运动,知道分子热运动的激烈程度与温度的关系。
向移动。但布朗运动对不同颗粒运动情况不相同,因此液体的温度差不可能产生布朗运动。又如液体的 压强差或振动等都只能使液体具有定向运动,悬浮在液体中的小颗粒的定向移动不是布朗运动。因此, 推理得出外界因素的影响不是产生布朗运动的原因,只能是液体内部造成的。
( 2)布朗运动是悬浮在液体中的微小颗粒受到液体各个方向液体分子撞击作用不平衡造成的。 显微镜下看到的是固体的微小悬浮颗粒,液体分子是看不到的,因为液体分子太小。但液体中许 许多多做无规则运动的分子不断地撞击微小悬浮颗粒,当微小颗粒足够小时,它受到来自各个方向的液 体分子的撞击作用是不平衡的。如教科书上的插图所示。 在某一瞬间,微小颗粒在某个方向受到撞击作用强,它就沿着这个方向运动。在下一瞬间,微小 颗粒在另一方向受到的撞击作用强,它又向着另一个方向运动。任一时刻微小颗粒所受的撞击在某一方 向上占优势只能是偶然的,这样就引起了微粒的无规则的布朗运动。
悬浮在液体中的颗粒越小,在某一瞬间跟它相撞击的分子数越少。布朗运动微粒大小在
人教版年高中物理选修3-3教学案全集
第1节气体的等温变化1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化。
2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C 。
3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线。
在p -1V 图像中,等温线是倾斜直线。
一、探究气体等温变化的规律 1.状态参量研究气体性质时,常用气体的温度、体积、压强来描述气体的状态。
2.实验探究二、玻意耳定律1.内容一定质量的某种气体,在温度不变的情况下,压强与体积成反比。
2.公式pV=C或p1V1=p2V2。
3.条件气体的质量一定,温度不变。
4.气体等温变化的p -V图像气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线。
一定质量的气体,不同温度下的等温线是不同的。
图8-1-11.自主思考——判一判(1)一定质量的气体压强跟体积成反比。
(×)(2)一定质量的气体压强跟体积成正比。
(×)(3)一定质量的气体在温度不变时,压强跟体积成反比。
(√)(4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法。
(√)(5)玻意耳定律适用于质量不变、温度变化的气体。
(×)(6)在公式pV=C中,C是一个与气体无关的参量。
(×)2.合作探究——议一议(1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行?提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变。
(2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢?提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立。
高中物理人教版选修3-3教案《内能》
高中物理人教版选修3-3教案《内能》内能目标导航(1)知道分子热运动的动能跟温度有关,知道温度是分子热运动平均动能的标志。
(2)知道什么是分子的势能;知道改变分子间的距离,分子势能就发生变化;知道分子势能跟物体体积有关。
(3)知道什么是内能,知道物体的内能跟温度和体积有关。
(4)能够区别内能和机械能。
诱思导学1.分子动能(1)分子平均动能做热运动的分子,都具有动能,这就是分子动能。
由于分子运动的无规则性,若想研究单个分子的动能是非常困难、也是没有必要的。
热现象研究的是大量分子运动的宏观表现,所以,重要的不是系统中某个分子的动能大小,而是所有分子的动能的平均值,即分子平均动能。
(2)温度是物体分子热运动平均动能的标志。
说明:①温度是大量分子无规则热运动的宏观表现,含有统计的意义,对于个别分子,温度是没有意义的。
分子平均动能的大小由温度高低决定:温度升高,分子的平均动能增大;温度降低,分子的平均动能减小;温度不变,分子的平均动能不变。
温度升高,分子的平均动能增大,但不是每一个分子的动能都增大,可能有个别的分子动能反而减小。
②分子的平均动能大小只由温度决定,与物质的种类无关。
也就是说,只要处于同一温度下,任何物质分子做热运动的平均动能都相同。
由于不同物质分子的质量不尽相同,因此,在同一温度下,不同物质分子运动的平均速率大小也不相同。
2.分子势能(1)分子势能由于分子间存在着相互作用力,所以分子间也有相互作用的势能。
这就是分子势能。
分子势能的大小有分子间的相互位置决定。
分子势能的变化非常类似于长度变化的弹簧中的弹性势能的变化。
(2)影响份子势能大小的身分份子势能的大小与份子间的距离有关,即与物体的体积有关。
份子势能的变化与份子间的距离发生变化时份子力做正功还是负功有关。
具体情况如下:①当份子间的距离r r时(此时类似于被拉伸的弹簧),份子间的作用力表现为引力,份子间的距离增大时,份子力做负功,因而份子势能随份子间距离的增大而增大。
人教版高中物理全套教案和导学案人教版选修3-3物理全册教案合集(25页
高中物理人教版选秀3-3教案第七章1、物质是由大量分子组成的一、教学目标1.在物理知识方面的要求:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
二、重点、难点分析1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
三、教具1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程(一)热学内容简介1.热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程1.分子的大小。
分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?在学生回答的基础上,还要指出:如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
高中物理人教版选修3精品学案(全册整理)
高中物理人教版选修3-1精品学案(全册整理)§1 电荷及其守恒定律学习目标1.知道两种电荷及其相互作用,知道电荷量的概念.2.知道摩擦起电和接触带电的实质.3.知道静电感应现象及其本质.4.知道电荷守恒定律及元电荷,了解比荷的概念.自主探究1.自然界中只存在两种电荷:和.(1)丝绸摩擦过的玻璃棒所带的电荷是.(2)毛皮摩擦过的硬橡胶棒所带的电荷是.2.同号电荷相互,异号电荷相互.合作探究一、起电的三种方式【提出问题】1.摩擦起电:当两个物体互相摩擦时,一些束缚的不紧的从一个物体转移到,使得原来呈电中性的物体由于得到而带负电,失去的物体带正电.【例题1】毛皮与硬橡胶棒摩擦后,毛皮带正电,这是因为()A.毛皮上的一些电子转移到橡胶棒上了B.毛皮上的一些正电荷转移到了硬橡胶棒上了C.硬橡胶棒上的一些电子转移到了毛皮上了D.硬橡胶棒上的一些正电荷转移到毛皮上了【归纳总结】(1)相互摩擦的物体一定是同时带上了量的号电荷.(2)摩擦起电的本质是.2.接触带电:指一个的金属导体跟另一个的金属导体后分开,而使不带电的导体带上电荷的方式.【例题2】两个完全一样的金属小球A、B,其中A带电为Q,B不带电,将A 与B接触后再分开,则A、B的带电情况怎样?【归纳总结】(1)接触带电的本质:.(2)电荷量分配:两个完全相同的导体球相互接触后,总电荷量.3.感应起电(1)当一个带电体导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带,远离带电体的一端带.这种现象叫静电感应.(2)感应起电:利用而使金属导体带电的过程.(3)感应起电的本质:.二、电荷守恒定律1.表述一:电荷既不会,也不会,它只能从一个物体转移到,或者从物体的一部分转移到.在转移过程中,电荷的总量.2.表述二:一个与外界没有电荷交换的系统,电荷的代数和.三、元电荷1.电荷量:电荷的多少.其国际制单位是,简称,用表示.2.元电荷:最小的,即所带的电荷量,用表示,等于C,最早由美国物理学家测得.3.电子的比荷:电子的与电子的之比.【例题3】关于元电荷的理解,下列说法正确的是()A.元电荷就是电子B.元电荷是表示跟电子所带电量数值相等的电荷量C.元电荷就是质子D.物体所带的电荷量只能是元电荷的整数倍课堂检测一、选择题1.如图所示,挂在绝缘细线下的轻质带电小球,由于电荷的相互作用而靠近或远离,所以()A.甲图中两球一定带异号电荷B.乙图中两球一定带同号电荷C.甲图中两球至少有一个带电D.乙图中两球至少有一个带电2.如图所示,用起电机使金属球A带正电,靠近验电器B,则()A.验电器金属箔不张开,因为球A没有和B接触B.验电器金属箔张开,因为整个验电器都带上了正电C.验电器金属箔张开,因为整个验电器都带上了负电D.验电器金属箔张开,因为验电器下部箔片都带上了正电3.一带负电绝缘金属小球被放在潮湿的空气中,经过一段时间后,发现该小球上净电荷几乎不存在,这说明()A.小球上原有的负电荷逐渐消失了B.在此现象中,电荷不守恒C.小球上负电荷减少的主要原因是潮湿的空气将电荷导走了D.该现象是由于电子的转移引起,仍然遵循电荷守恒定律4.下列说法正确的是()A.电子和质子都是元电荷B.一个带电体的电荷量为元电荷的205.5倍C.元电荷是最小的电荷量单位D.元电荷没有正、负之分5.关于摩擦起电现象,下列说法中正确的是()A.摩擦起电是用摩擦的方法将其他物质变成了电荷B.摩擦起电是通过摩擦将一个物体中的电子转移到另一个物体C.通过摩擦起电的两个原来不带电的物体,一定带有等量异号电荷D.通过摩擦起电的两个原来不带电的物体,可能带有同号电荷6.如图所示,将带正电的球C移近不带电的枕形金属导体时,枕形导体上电荷的移动情况是()A.枕形导体中的正电荷向B端移动,负电荷不移动B.枕形导体中电子向A端移动,正电荷不移动C.枕形导体中的正、负电荷同时分别向B端和A端移动D.枕形导体中的正、负电荷同时分别向A端和B端移动二、非选择题7.在如图所示的实验中,最终A带上了-10-8 C的电荷.实验过程中,是电子由A转移到B还是由B转移到A?A、B得到或失去的电子数各是多少?8.A为带正电的小球,B为原来不带电的导体.把B放在A附近,A、B之间存在吸引力还是排斥力?§2 库仑定律学习目标1.通过演示实验,定性了解电荷之间的作用力大小与电荷量的多少以及电荷之间距离大小的关系.2.明确点电荷是个理想模型,知道带电体简化为点电荷的条件.3.了解库仑扭秤实验.4.掌握库仑定律的文字表达及公式表达.自主探究1.自然界中存在、两种电荷,同号电荷,异号电荷.2.万有引力定律的公式,其中引力常量为.合作探究一、实验演示:探究影响电荷间相互作用力的因素提示:悬挂的小球受重力、拉力和电荷间相互作用力,电荷间作用力F=mg tan α,偏角α越大,表明电荷间作用力越大.演示一:让带电物体A靠近悬挂在丝线上的带正电小球,观察在不同距离时小球的偏转角度.演示二:使小球处于同一位置,增大或减少小球所带的电荷量,观察小球偏角的变化关系.结论:.二、库仑定律1.库仑定律的内容: .2.库仑定律的适用条件: .3.什么是点电荷?.点电荷类似力学中的,它也是一种 .三、库仑的实验1.结构简介如图A是带电小球,B是不带电的小球,B与A的重力平衡,另一带电小球C 靠近A时,A与C的作用力使悬丝扭转,通过悬丝扭转的角度比较力的大小.2.研究方法——(1)控制电荷量Q不变,验证静电力F与r2的关系(2)控制带电小球之间的距离r不变,验证静电力F和电荷量Q的关系3.思想方法(1)小量放大思想;(2)电荷均分原理.【提问】库仑的那个年代还不能测量物体所带的电荷量,他是怎样解决这个问题的?4.库仑定律的表达式:,其中k是,叫做,k的数值为.【例题1】氢原子核(即质子)的质量是1.67×10-27 kg,电子的质量是9.1×10-31 kg,在氢原子内它们之间的最短距离为5.3×10-11 m.试比较氢核与核外电子之间的库仑力和万有引力.【例题2】真空中有三个点电荷,它们固定在边长为50 cm的等边三角形的三个顶点上,每个点电荷都是+2×10-6 C,求它们各自所受的库仑力.课堂检测1.下列说法中正确的是()A.点电荷是一种理想模型,真正的点电荷是不存在的B.点电荷就是体积和带电量都很小的带电体C.根据F=k可知,当r趋近于0时,F趋近于∞D.一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题的影响是否可以忽略不计2.有两个半径为r的带电金属球中心相距为L(L=4r),对于它们之间的静电作用力(设每次各球带电量绝对值相同)()A.带同号电荷时大于带异号电荷时B.带异号电荷时大于带同号电荷时C.带等量负电荷时大于带等量正电荷时D.大小与带电性质无关,只取决于电荷量3.三个相同的金属小球a、b和c,原来c不带电,而a和b带等量异号电荷,相隔一定距离放置,a、b之间的静电力为F.现将c球分别与a、b接触后拿开,则a、b之间的静电力将变为()A. B. C. D.F/164.如图所示,两个带电小球A、B分别用细丝线悬吊在同一点O,静止后两小球在同一水平线上,丝线与竖直方向的夹角分别为α、β(α>β),关于两小球的质量m1、m2和带电荷量q1、q2,下列说法中正确的是()A.一定有m1<m2,q1<q2B.可能有m1<m2,q1>q2C.可能有m1=m2,q1=q2D.可能有m1>m2,q1=q25.两个完全相同的带电小球,质量均为m且带有等量同号电荷,用两根长度相同的绝缘细线悬挂于同一点,如图所示,静止后两条细线张角为2θ,若细线长度为L,两个小球所带电荷量大小均为,悬线张力大小为.6.如图所示,把质量为0.2 g的带电小球A用丝线吊起,若将带电荷量为4×10-8 C的小球B靠近它,当两小球在同一高度且相距3 cm时,丝线与竖直方向夹角为45°,此时小球B受到库仑力F= .小球A带的电荷量= .qA7.如图所示,等边三角形ABC,边长为L,在顶点A、B处有等量异号点电荷Q,Q B,Q A=+Q,Q B=-Q,求在顶点C处的点电荷+Q C所受的静电力.A§3 电场强度学习目标1.了解静电场,初步了解场是物质存在的形式之一.2.理解电场强度的概念及定义式,会用电场强度、电场线描述电场.3.掌握点电荷的电场、电场线,理解电场强度的叠加.4.加深比值定义的理解.自主探究1.19世纪30年代,第一个提出了场的观点.物质存在的两种形式为、.2. 产生的电场为静电场.电场具有的性质.3. 称为试探电荷或检验电荷;称为场源电荷或源电荷.4.叫做电场强度,其公式为,单位.点电荷的电场强度公式为.5.形象地描述电场的方法是.合作探究一、电场1.什么是电场?电荷间的相互作用是怎样发生的?2.什么是静电场?二、电场强度1.试探电荷和场源电荷试探电荷必须具备的条件:.2.电场强度(1)定义:(比值定义).(2)公式:.(3)单位:.(4)电场强度是,它的方向是.说明:(1)E=为定义式,适用于一切电场.(2)某点的电场强度的大小及方向取决于电场本身,与检验电荷的正负、电荷量的大小及受到的电场力无关.三、点电荷的电场、电场强度的叠加1.点电荷电场强度公式:.2.以点电荷Q为圆心的球面上各点的电场强度的特点:.当Q为正电荷时,E的方向:.当Q为负电荷时,E的方向:.3.如果场源电荷有多个点电荷,则如何求电场中某点的电场强度?.【例题】真空中两个正点电荷A、B所带电荷量皆为+Q,且相距为r,则A、B 之间连线上距离A为处的P点的电场强度为多少?思考:能否在P点处放入一个带负电的点电荷-q,通过求出-q在P处受合电场力,然后根据E=求出P处的电场强度大小和方向?拓展:如果带电体是半径为R的均匀球体(或球壳),它外部空间某点的电场强度该怎样计算?四、电场线1.电场线:如果在电场中画出一些曲线,使曲线上每一点的,这样的曲线就叫做电场线(如图所示)2.特点(1). (2). (3).3.画出几种特殊的电场线五、匀强电场电场中各点电场强度的、方向的电场就叫匀强电场.课堂检测1.电场中有一点P,下列说法中正确的有()A.若放在P点的电荷的电荷量减半,则P点的电场强度减半B.若P点没有检验电荷,则P点电场强度为零C.P点的电场强度越大,则同一电荷在P点受到的电场力越大D.P点的电场强度方向为放在该点的电荷的受力方向2.在一个电场中a、b、c、d四点分别引入检验电荷时,测得的检验电荷所受电场力跟其电荷量的函数关系图象,如图所示.下列叙述正确的是()A.这个电场是匀强电场B.四点电场强度大小关系是E d>E a>E b>E cC.四点电场强度大小关系是E a>E b>E d>E cD.无法确定四个点的电场强度大小关系3.如图所示,A、B为两个等量的正点电荷,在其连线中垂线上的P点放一个负点电荷q(不计重力),由静止释放后,下列说法中正确的是()A.点电荷在从P点到O点运动的过程中,加速度越来越大,速度越来越大B.点电荷在从P点到O点运动的过程中,加速度越来越小,速度越来越大C.点电荷运动到O点时加速度为零,速度达最大值D.点电荷越过O点后,速度越来越小,加速度越来越大,直到粒子速度为零4.关于电场线,下列说法正确的是()A.电场线是客观存在的B.电场线与电荷运动的轨迹是一致的C.电场线上某点的切线方向与电荷在该点的受力方向可以不相同D.沿电场线方向,电场强度一定越来越大5.如图所示,四个电场线图,一正电荷在电场中由P到Q做加速运动且加速度越来越大,那么它所在的电场是()6.如图所示,A、B、C、D、E是半径为r的圆周上等间距的五个点,在这些点上各固定一个点电荷,除A点处的电荷量为-q外,其余各点处的电荷量均为+q,则圆心O处()A.电场强度大小为,方向沿OA方向B.电场强度大小为,方向沿AO方向C.电场强度大小为,方向沿OA方向D.电场强度大小为,方向沿AO方向7.如图所示,一带电粒子只受电场力从A飞到B,径迹如图中虚线所示,下列说法正确的是()A.粒子带负电B.粒子加速度不断变小C.粒子在A点时动能较大D.B点电场强度大于A点电场强度8.如图所示,有一水平方向的匀强电场,电场强度为9×103N/C,在电场内的竖直平面内作半径为1 m的圆,圆心处放置电荷量为1×10-6 C的正点电荷.则圆周上C点处的电场强度大小为.9.如图所示,把一个倾角为θ的绝缘斜面固定在匀强电场中,电场方向水平向右,电场强度大小为E.有一质量为m、带电量为+q的物体以初速度v0,从A端滑上斜面恰好能沿斜面匀速运动,求物体与斜面间的动摩擦因数.§4 电势能和电势学习目标1.明确静电力做功的特点.2.理解电势能的概念.3.弄清静电力做功与电势能变化之间的关系.4.理解电势的概念、等势面的特点.自主探究一、静电力做功的特点是.二、电势能1.电势能的定义:.用表示.2.静电力做功与电势能变化的关系:.3.如何求电荷在某点处具有的电势能?.4.零势能面的选择:.三、电势1.定义:.2.电势是,它只有,没有方向,但有正负.3.电场线指向电势的方向.顺着电场线方向,电势越来越.4.零电势位置的规定:.四、等势面1.等势面:.2.等势面与电场线的关系:.合作探究一、静电力做功的特点【思考讨论1】如图所示,质量为m的物体在重力场中,分别:(1)沿折线从A运动到B;(2)沿直线从A运动到B;(3)沿曲线从A运动到B.重力分别做多少功?重力做功的特点是什么?重力做功与重力势能的关系是什么?【自主尝试】结合教材图1.4-1,分析如图所示的试探电荷q在电场强度为E的匀强电场中沿不同路径从A运动到B电场力做功的情况.(1)q沿直线从A到B;(2)q沿折线从A到M、再从M到B;(3)q沿任意曲线从A到B.二、静电力做功与电势能的关系【思考讨论2】在重力场中由静止释放质点,质点一定加速运动,动能增加,势能减少;如图所示,在静电场中,静电力做功使试探电荷获得动能,是什么转化为试探电荷的动能的?【思考讨论3】重力做的正功等于减少的重力势能,克服重力做的功等于增加的重力势能,用公式表示为W AB=E p A-E p B=-ΔE p.那么,静电力做功与电势能的关系呢?【案例分析】分析对不同的电荷从A运动到B的过程中电势能的变化情况.【思考讨论4】如何确定电荷在某点处具有的电势能?(类比分析:如何求出A点的重力势能呢?进而总结出电势能的求法.)【拓展】零势能面的选择:通常把电荷离场源电荷无限远处的电势能规定为零,或把电荷在大地表面上的电势能规定为零.【思考讨论5】重力势能是物体和地球组成的系统所共有的,那么电势能是否也是电荷和电场所共有的呢?(1)若被移动电荷的极性、电荷量不同,对其电势能有何影响?(2)若电荷所处电场发生变化,对位于其中的电荷的电势能有何影响?(3)若电场中没有电荷或者空间不存在电场,还有电势能吗?【巩固训练】1.关于在电场中移动电荷与电势能的关系,下列说法中正确的是()A.电荷沿电场线方向移动,电势能一定增加B.电荷沿电场力方向移动,电势能一定增加C.电荷逆电场力方向移动,电势能一定增加D.电荷沿垂直于电场线方向移动,电势能一定不变2.有一电荷量q=-3×10-6C的电荷,从电场中的A点移到B点时,克服静电力做功6×10-4J.求:(1)电荷的电势能怎样变化?变化了多少?(2)以B为零势能点,电荷在A点的电势能E p A是多少?(3)如果把这一电荷从B点移到C点时静电力做功9×10-4J,电荷的电势能怎样变化?变化了多少?(4)如果选取C点为零势能点,则电荷在A点的电势能E p A'又是多少?(5)通过这一例题你有什么收获?三、电势【思考讨论6】如何判断电势的高低呢?四、等势面【思考讨论7】在地理课上常用等高线来表示地势的高低.今天学习了电势的知识后,那我们可以用什么来表示电势的高低呢?【体验性实践】寻找等势面:找正点电荷和带电平行金属板中的等势面.【思考讨论8】什么情况下会出现力做功为零的情况?电场线跟等势面有什么关系?课堂检测1.关于等势面的说法,正确的是()A.不同等势面上各点的电势也可能相等B.各等势面永不相交C.等势面总是和电场线垂直D.等势面都是封闭的曲面2.如图展示了等量异号点电荷的电场线和等势面.关于场中的A、B、C、D 四点,下列说法正确的是()A.A、B两点的电势和电场强度都相同B.A、B两点的电场强度相同,电势不同C.C、D两点的电势和电场强度都不同D.C、D两点的电势相同,电场强度不同3.关于等势面、电场力做功和电场的关系,下列说法正确的是()A.在等势面上移动电荷,电场力总是不做功B.电荷从A点移到B点,电场力做功为零,则电荷一定是沿等势面移动的C.在同一个等势面上的各点,电场强度的大小必然是相等的D.电场线总是从电势高的等势面指向电势低的等势面4.如图所示,展示了不规则形状的带电导体周围的电场线和等势面.从图中可以看出,越靠近导体,等势面的形状就越趋近导体表面的形状,这是因为,导体的表面本身就是一个,而且导体内部的电势也处处相等,所以导体是一个;而越是远离导体,等势面的形状就越趋近球面,这是因为,从足够远的地方看导体,它就是一个点电荷,而点电荷的就是球面.5.电场线和等势面都可以形象、直观地描述电场.由于电场线和等势面有着固定的空间位置关系,我们只要知道了其中之一,就可以根据相互关系描绘出另一个.而且,从测量方便性的角度看,我们一般是描绘更容易(选填“电场线”或“等势面”).6.如图展示了等量同号点电荷的电场线和等势面.从图中可以看出,这三点的电势关系是φaφbφc(均填“>”“<”或“=”)§5 电势差学习目标1.掌握电势差的概念.2.会应用电势差的概念求解静电力对电荷所做的功.自主探究1.电荷、电场强度、电势、电势能是怎样定义的?电荷:.电场强度:.电势:.电势能:.2.电场中两点间电势的叫做电势差.电场中的各点电势的大小与电势零点的选取,但电场中两点的电势差与电势零点的选取.电势与电势差都是反映电场中的物理量.合作探究(一)电势差【情景引入,展示目标】某电场的等势面如图所示,试画出电场线的大致分布.若以C点为电势零点,则A点的电势为多少?D点的电势为多少?A、D两点的电势相差多少?若以B点为电势零点,则A点的电势为多少?D点的电势为多少?A、D两点的电势相差多少?小结:电势是描述电场能性质的物理量,并且在电场中的不同位置,电势不同,那么不同点的电势的差值就叫做电势差.【推导】根据教材第20页的电势差的定义和前面电势能与电场力关系的变化关系,试着推导电势差的定义式.推导一:推导二:【思考讨论】如图所示,如果B板接地(取大地的电势为0,则与大地相连的导体的电势也为0),则A点电势为8 V,M点的电势为6 V,N点电势为2 V,M、N两点间的电势差是多少?如果改为A板接地,B板电势多大?M、N两点电势各多大?M、N两点间电势差多大?【讨论后小结】1.电势差与电势的关系:.电势的数值与电势零点的选取关,电势差的数值与电势零点的选取关.2.物体在重力作用下从高处向低处移动时,重力做功,对于同一个物体,重力做功越多,高度差越大.与此类似,同一个电荷从一点移动到另一点时,电场力做功越多,就说这两点间的电势差.电势差U AB与q、W AB均关,仅与电场中A、B两点的位置关.3.电势差的物理意义:.UAB在数值上的含义:.4.单位:,符号,1 V= .(二)典型例题与尝试练习【典型例题】在电场中把电荷量为2.0×10-9 C的正电荷从A点移到B点,电场力做功1.5×10-7J,再把这个电荷从B点移到C点,克服电场力做功4.0×10-7J.(1)求A、B、C三点中哪点电势最高?哪点电势最低?(2)A、B间,B、C间,A、C间的电势差各是多大?(3)把-1.5×10-9 C的电荷从A移到C,静电力做多少功?电势能如何变化?变化多少?(4)根据以上所得结果,定性地画出电场分布的示意图,标出A、B、C三点可能的位置.【尝试练习】1.如图所示,Q是带负电的点电荷,A和B为其电场中的两点.若E1、E2为A、B两点的电场强度的大小,φ1、φ2为A、B两点的电势,则()A.E1>E2,φ1>φ 2B.E1>E2,φ1<φ 2C.E1<E2,φ1>φ 2D.E1<E2,φ1<φ22.关于电势差和电场力做功的说法中,正确的是()A.电势差的大小由电场力在两点间移动电荷做的功和电荷的电荷量决定B.电场力在两点间移动电荷做功的多少由两点间的电势差和该电荷的电荷量决定C.电势差是矢量,电场力做的功是标量D.在匀强电场中与电场线垂直方向上任意两点电势差相等课堂检测1.下列说法中正确的是( )A.重力做功与路径无关,与移动物体的初末位置的竖直高度差有关,即W AB =mgh ABB.静电场力做功与路径无关,与移动电荷的初末位置的电势差有关,即W AB =qU ABC.重力对物体做正功,其重力势能减少,做负功则重力势能增加D.静电场力对正电荷做正功,正电荷电势能增加,对负电荷做正功,负电荷电势能减少2.正电荷在电场中沿某一电场线从A 到B ,此过程中可能出现( ) A.AB 间电势差一定是正的 B.电场力的大小保持不变 C.电荷克服电场力做功D.电荷的电势能不断减小3.如图所示,电场中有A 、B 两点,则下列说法中正确的是( )A.电势φA >φB ,电场强度E A >E BB.电势φA >φB ,电场强度E A <E BC.将+q 电荷从A 点移动到B 点电场力做正功D.将-q 电荷分别放在A 、B 两点时具有的电势能E p A >E p B4.如图A 、B 为两等量异号电荷,A 带正电,B 带负电,在A 、B 连线上有a 、b 、c 三点,其中b 为ac 连线的中点,ab=bc ,则( )A.a点与c点的电场强度相同B.a点与c点的电势相同C.a、b间电势差与b、c间电势差相等D.点电荷q沿A、B连线的中垂线移动,电场力不做功5.在静电场中,一个带电量q=2.0×10-9 C的负电荷从A点移动到B点,在此过程中,除电场力外,其他力做的功为4.0×10-5 J,质点的动能增加了8.0×10-5 J,则A、B两点间的电势差为()A.2×10-4 VB.1×104 VC.4×104 VD.-2×104 V§6 电势差与电场强度的关系学习目标1.理解匀强电场中电势差与电场强度的定性、定量关系.对于公式U=Ed要知道推导过程.2.能够熟练应用U=Ed解决有关问题.3.知道电场强度另一个单位“V/m”的物理意义.自主探究【问题1】根据如图所示,分析电场强度大的地方电势是否一定高?反之又如何呢?【结论】.【问题2】根据如图所示,分析电场强度为零的点电势一定为零吗?反之又如何呢?。
高中物理教案3一3教案
高中物理教案3一3教案
教学目标:学生能够理解物体内能和熵的概念,掌握热容和热传导的相关知识,同时能够应用这些知识解决实际问题。
教学重点:内能和熵的概念、热容和热传导的计算方法。
教学难点:内能和熵的概念的理解和应用。
教学准备:物理教科书、黑板、教学PPT、实验器材。
教学步骤:
一、导入(5分钟)
介绍热力学的基本概念,引入本节课的学习内容。
二、讲解内能和熵(15分钟)
1. 内能和熵的概念
2. 内能和熵的计算方法
3. 内能和熵的应用举例
三、讲解热容和热传导(20分钟)
1. 热容的概念和计算方法
2. 热传导的概念和计算方法
3. 热容和热传导的区别和联系
四、实验演示(15分钟)
进行一个与热容和热传导相关的实验演示,让学生亲自操作并观察实验现象。
五、课堂讨论(10分钟)
让学生分享自己的实验观察结果和解题过程,引导他们互相讨论,澄清疑惑。
六、总结与作业布置(5分钟)
总结本节课的重点内容,并布置相关作业,巩固学生的理解和应用能力。
教学反思:
本节课设计紧扣教学内容,通过理论讲解和实验演示相结合的方式,引导学生理解热力学
的基本概念,培养学生的实验操作能力和问题解决能力。
同时,通过课堂讨论和作业布置,巩固学生的学习成果,提高他们的综合素质。
新人教版高中物理选修3-3第八章《理想气体状态方程》精品教案
教学过态参量p c或p′c均可得到:这就是理想气体状态方程。
它说明:一定质量的理想气体的压强、体积的乘积与热力例题1 一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?教师引导学生按以下步骤解答此题:(1)该题研究对象是什么?(2)画出该题两个状态的示意图:(3)分别写出两个状态的状态参量:p1=758-738=20mmHg V1=80Smm3(S是管的横截面积)。
T1=273+27=300 Kp2=p-743mmHg V2=(738+80)S-743S=75Smm3T2=273+(-3)=270K解得p=762.2 mmHg完成例题1,并总结此类问题的解题思路(5分钟)学习札记:课堂达标练习1、对于理想气体下列哪些说法是不正确的()A、理想气体是严格遵守气体实验定律的气体模型B、理想气体的分子间没有分子力C、理想气体是一种理想模型,没有实际意义D、实际气体在温度不太低,压强不太大的情况下,可当成理想气体2、一定质量的理想气体,从状态P1、V1、T1变化到状态P2、V2、T2。
下述过程不可能的是()A、P2>P1,V2>V1,T2>T1B、P2>P1,V2>V1,T2<T1C、P2>P1,V2<V1,T2>T1D、P2>P1,V2<V1,T2<T13、如图8—24所示,表示一定质量的理想气体沿从a到b到c到d再到a的方向发生状态变化的过程,则该气体压强变化情况是()ArrayA、从状态c到状态d,压强减小,内能减小B、从状态d到状态a,压强增大,内能减小C、从状态a到状态b,压强增大,内能增大D、从状态b到状态c,压强不变,内能增大4、密封的体积为2L的理想气体,压强为2atm,温度为270C。
加热后,压强和体积各增加20%,则它的最后温度是5、用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0、压强为P0的空气打入容器内。
新课标人教版高中物理选修3-3全套精品教案(46页)
第七章分子动理论7.1 物质是由大量分子组成的教学目标1、知识与技能(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
2、过程与方法:通过单分子油膜法估算测量分子大小,让学生体会到物质是由大量分子组成的。
形成正确的唯物主义价值观。
3、情感、态度与价值观教学重难点(1)使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;(2)运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
教学教具(1)教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样;(2)演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
教学过程:第一节物质是由大量分子组成的(一)热学内容简介(1)热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
(2)热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
(3)热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学1、分子的大小:分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?(如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m)(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
人教版高中物理选修3-3教案
人教版高中物理全套教案和导学案人教版选修3-3物理全册教案合集(25页
高中物理人教版选秀3-3教案第七章1、物质是由大量分子组成的一、教学目标1.在物理知识方面的要求:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
二、重点、难点分析1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
三、教具1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程(一)热学内容简介1.热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程1.分子的大小。
分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?在学生回答的基础上,还要指出:如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
高中物理选修3-3教案
1.在物理知识方面的要求:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
二、重点、难点分析1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
三、教具1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O ),滴管,直径约20cm 圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程(一)热学内容简介1.热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程1.分子的大小。
分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V 和水面上油膜面积S ,那么这种油分子的直径是多少?在学生回答的基础上,还要指出:如果分子直径为d ,油滴体积是V ,油膜面积为S ,则d=V /S ,根据估算得出分子直径的数量级为10-10m 。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m 。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L 就等于钨原子的直径d ,如图2所示。
高中物理人教版选修3-3教案 磁场第三节
第三节、几种常见的磁场(1.5课时)一、教学目标(一)知识与技能1.知道什么叫磁感线。
2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。
4.知道安培分子电流假说,并能解释有关现象5.理解匀强磁场的概念,明确两种情形的匀强磁场6.理解磁通量的概念并能进行有关计算(二)过程与方法通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。
(三)情感态度与价值观1.进一步培养学生的实验观察、分析的能力.2.培养学生的空间想象能力.二、重点与难点:1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向.2.正确理解磁通量的概念并能进行有关计算三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源四、教学过程:(一)复习引入要点:磁感应强度B的大小和方向。
[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢?[学生答]磁场可以用磁感线形象地描述.----- 引入新课(老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向(二)新课讲解【板书】1.磁感线(1)磁感线的定义在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。
(2)特点:A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极.B、每条磁感线都是闭合曲线,任意两条磁感线不相交。
C、磁感线上每一点的切线方向都表示该点的磁场方向。
D、磁感线的疏密程度表示磁感应强度的大小【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。
同时与电场线加以类比。
【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。
②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版高中物理选修3-3精品教案全册第七章分子动理论7.1 物质是由大量分子组成的三维教学目标1、知识与技能(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
2、过程与方法:通过单分子油膜法估算测量分子大小,让学生体会到物质是由大量分子组成的。
形成正确的唯物主义价值观。
3、情感、态度与价值观教学重难点(1)使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;(2)运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
教学教具(1)教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样;(2)演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
教学过程:第一节物质是由大量分子组成的(一)热学内容简介(1)热现象:与温度有关的物理现象。
如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
(2)热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
(3)热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学1、分子的大小:分子是看不见的,怎样能知道分子的大小呢?(1)单分子油膜法是最粗略地说明分子大小的一种方法。
演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。
如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?(如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m)(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。
经过计算得出钨原子之间的距离是2×10-10m。
如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
(3)用不同方法测量出分子的大小并不完全相同,但是数量级是相同的。
测量结果表明,一般分子直径的数量级是10-10m。
例如水分子直径是4×10-10m,氢分子直径是2.3×10-10m。
(4)分子是小球形是一种近似模型,是简化地处理问题,实际分子结构很复杂,但通过估算分子大小的数量级,对分子的大小有了较深入的认识。
2、阿伏伽德罗常数提问:在化学课上学过的阿伏伽德罗常数是什么意义?数值是多少?明确1mol物质中含有的微粒数(包括原子数、分子数、离子数……)都相同。
此数叫阿伏伽德罗常数,可用符号NA表示此常数, NA=6.02×1023个/mol,粗略计算可用NA=6×1023个/mol。
(阿伏伽德罗常数是一个基本常数,科学工作者不断用各种方法测量它,以期得到它精确的数值。
)提问:摩尔质量、摩尔体积的意义?如果已经知道分子的大小,不难粗略算出阿伏伽德罗常数。
例如,1mol水的质量是0.018kg,体积是1.8×10-5m3。
每个水分子的直径是4×10-10m,它的体积是(4×10-10)m3=3×10-29m3。
如果设想水分子是一个挨着一个排列的。
如何算出1mol水中所含的水分子数?3、微观物理量的估算若已知阿伏伽德罗常数,可对液体、固体的分子大小进行估算。
事先我们假定近似地认为液体和固体的分子是一个挨一个排列的(气体不能这样假设)。
提问:1mol水的质量是M=18g,那么每个水分子质量如何求?提问:若已知铁的相对原子质量是56,铁的密度是7.8×103kg/m3,试求质量是1g的铁块中铁原子的数目(取1位有效数字)。
又问:是否可以计算出铁原子的直径是多少来?总结:以上计算分子的数量、分子的直径,都需要借助于阿伏伽德罗常数。
因此可以说,阿伏伽德罗常数是联系微观世界和宏观世界的桥梁。
它把摩尔质量、摩尔体积等这些宏观量与分子质量、分子体积(直径)等这些微观量联系起来。
课堂练习:(1)体积是10-4cm3的油滴滴于水中,若展开成一单分子油膜,则油膜面积的数量级是(B)A.102cm2B.104cm2C.106cm2D. 108cm2(2)已知铜的密度是8.9×103kg/m3,铜的摩尔质量是63.5×10-3kg/mol。
体积是4.5cm3的铜块中,含有多少原子?并估算铜分子的大小。
(3.8×1023, 3×10-10m)课堂小结(1)物体是由体积很小的分子组成的。
这一结论有坚实的实验基础。
单分子油膜实验等实验是上述结论的有力依据。
分子直径大约有10-10m的数量级。
(2)阿伏伽德罗常数是物理学中的一个重要常数,它的意义和常数数值应该记住。
(3)学会计算微观世界的物理量(如分子数目、分子质量、分子直径等)的一般方法。
由于微观量是不能直接测量的,人们可以测定宏观物理量,用阿伏伽德罗常数作为桥梁,间接计算出微观量来。
如分子质量m,可通过物质摩尔质量M和阿伏伽德罗常数NA,得到m=M/NA。
通过物质摩尔质量 M、密度ρ、阿伏伽德罗常数NA,计算出分子直径:7.2 分子的热运动三维教学目标1、知识与技能(1)知道并记住什么是布朗运动,知道影响布朗运动激烈程度的因素,知道布朗运动产生的原因;(2)知道布朗运动是分子无规则运动的反映;(3)知道什么是分子的热运动,知道分子热运动的激烈程度与温度的关系。
2、过程与方法:分析概括出布朗运动的原因;培养学生概括、分析能力和推理判断能力。
从对悬浮颗粒无规则运动的原因分析,使学生初步接触到用概率统计的观点分析大量偶然事件的必然结果。
3、情感、态度与价值观教学重点:通过学生对布朗运动的观察,引导学生思考、分析出布朗运动不是外界影响产生的,是液体分子撞击微粒不平衡性产生的。
布朗运动是永不停息的无规则运动,反映了液体分子的永不停息的无规则运动。
这一连串结论的得出是这堂课的教学重点。
教学难点:学生观察到的布朗运动不是分子运动,但它又间接反映液体分子无规则运动的特点。
这是课堂上的难点。
这个难点要从开始分析显微镜下看不到分子运动这个问题逐渐分散解疑。
教学教具:气体和液体的扩散实验:分别装有二氧化氮和空气的玻璃储气瓶、玻璃片;250mL水杯内盛有净水、红墨水。
教学过程:第二节分子的热运动(一)引入新课演示实验:(1)把盛有二氧化氮的玻璃瓶与另一个玻璃瓶竖直方向对口相接触,看到二氧化氮气体从下面的瓶内逐渐扩展到上面瓶内。
(2)在一烧杯的净水中,滴入一二滴红墨水后,红墨水在水中逐渐扩展开来。
提问:上述两个实验属于什么物理现象?这现象说明什么问题?总结:上述实验是气体、液体的扩散现象,扩散现象是一种热现象。
它说明分子在做永不停息的无规则运动。
而且扩散现象的快慢直接与温度有关,温度高,扩散现象加快。
这些内容在初中物理中已经学习过了。
(二)新课教学1、介绍布朗运动现象1827年英国植物学家布朗用显微镜观察悬浮在水中的花粉,发现花粉颗粒在水中不停地做无规则运动,后来把颗粒的这种无规则运动叫做布朗运动。
不只是花粉,其他的物质如藤黄、墨汁中的炭粒,这些小微粒悬浮在水中都有布朗运动存在。
看教科书上图,图上画的几个布朗颗粒运动的路线,指出这不是布朗微粒运动的轨迹,它只是每隔30s观察到的位置的一些连线。
实际上在这短短的30s内微粒运动也极不规则,绝不是直线运动。
2、介绍布朗运动的几个特点(1)连续观察布朗运动,发现在多天甚至几个月时间内,只要液体不干涸,就看不到这种运动停下来。
这种布朗运动不分白天和黑夜,不分夏天和冬天(只要悬浮液不冰冻),永远在运动着。
所以说,这种布朗运动是永不停息的。
(2)换不同种类悬浮颗粒,如花粉、藤黄、墨汁中的炭粒等都存在布朗运动,说明布朗运动不取决于颗粒本身。
更换不同种类液体,都不存在布朗运动。
(3)悬浮的颗粒越小,布朗运动越明显。
颗粒大了,布朗运动不明显,甚至观察不到运动。
(4)布朗运动随着温度的升高而愈加激烈。
3、分析、解释布朗运动的原因(1)布朗运动不是由外界因素影响产生的,所谓外界因素的影响,是指存在温度差、压强差、液体振动等等。
提问:若液体两端有温度差,液体是怎样传递热量的?液体中的悬浮颗粒将做定向移动,还是无规则运动?温度差这样的外界因素能产生布朗运动吗?总结:液体存在着温度差时,液体依靠对流传递热量,这样悬浮颗粒将随液体有定向移动。
但布朗运动对不同颗粒运动情况不相同,因此液体的温度差不可能产生布朗运动。
又如液体的压强差或振动等都只能使液体具有定向运动,悬浮在液体中的小颗粒的定向移动不是布朗运动。
因此,推理得出外界因素的影响不是产生布朗运动的原因,只能是液体内部造成的。
(2)布朗运动是悬浮在液体中的微小颗粒受到液体各个方向液体分子撞击作用不平衡造成的。
显微镜下看到的是固体的微小悬浮颗粒,液体分子是看不到的,因为液体分子太小。
但液体中许许多多做无规则运动的分子不断地撞击微小悬浮颗粒,当微小颗粒足够小时,它受到来自各个方向的液体分子的撞击作用是不平衡的。
如教科书上的插图所示。
在某一瞬间,微小颗粒在某个方向受到撞击作用强,它就沿着这个方向运动。
在下一瞬间,微小颗粒在另一方向受到的撞击作用强,它又向着另一个方向运动。
任一时刻微小颗粒所受的撞击在某一方向上占优势只能是偶然的,这样就引起了微粒的无规则的布朗运动。
悬浮在液体中的颗粒越小,在某一瞬间跟它相撞击的分子数越少。
布朗运动微粒大小在10-6m数量级,液体分子大小在10-10m数量级,撞击作用的不平衡性就表现得越明显,因此,布朗运动越明显。
悬浮在液体中的微粒越大,在某一瞬间跟它相撞击的分子越多,撞击作用的不平衡性就表现得越不明显,以至可以认为撞击作用互相平衡,因此布朗运动不明显,甚至观察不到。
液体温度越高,分子做无规则运动越激烈,撞击微小颗粒的作用就越激烈,而且撞击次数也加大,造成布朗运动越激烈。
5、布朗运动的发现及原因分析的重要意义(1)布朗运动是悬浮在液体中的固体微粒分子的运动吗?是液体分子无规则运动吗?布朗微粒是被谁无规则撞击而造成的?布朗运动间接地反映了谁的无规则运动?总结:(1)固体颗粒是由大量分子组成的,仍然是宏观物体;显微镜下看到的只是固体微小颗粒,光学显微镜是看不到分子的;布朗运动不是固体颗粒中分子的运动,也不是液体分子的无规则运动,而是悬浮在液体中的固体颗粒的无规则运动。
无规则运动的原因是液体分子对它无规则撞击的不平衡性。
因此,布朗运动间接地证实了液体分子的无规则运动。