123相反数练习题

合集下载

[精品]初一七年级数学(上册)导学案[含答案][131页]

[精品]初一七年级数学(上册)导学案[含答案][131页]

初中数学七年级(上册)导学案第一章 有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念 【导学指导】: 一、知识链接:1、小学里学过哪些数请写出来: 、 、 。

2、阅读课本P 1和P 2三幅图(重点是三个例子,边阅读边思考) 回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? 二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要 2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。

数学新人教版七年级上册校本作业

数学新人教版七年级上册校本作业

第一章有理数课题:1.1 正数和负数(1)班级___________姓名_____________座号_________【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

【课堂练习】:1. P3第一题到第二题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239;则正数有_____________________;负数有____________________。

初中数学规律技巧

初中数学规律技巧

初中数学规律技巧例1计算:200720061......431321211⨯++⨯+⨯+⨯ 例2 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)例3 计算:2-22-23-24-……-218-219+220.【练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 例4 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.例5平面内两两相交的6条直线,其交点个数最少为______个,最多为______规律题应用知识汇总一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。

[精品]初一七年级数学(上册)导学案[含答案][131页]

[精品]初一七年级数学(上册)导学案[含答案][131页]

初中数学七年级(上册)导学案及答案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

沪科版七年级数学上册-课后练习题有答案

沪科版七年级数学上册-课后练习题有答案

第1章 有理数1.1 正数和负数第1课时 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元说明收入增加了300元C.向东骑行-500米说明向北骑行500米D.增长率为-20%等同于增长率为20%4.“牛牛”饮料公司的一种饮料包装上有“500±30mL ”字样,其中500表示标准容量是500mL.如果+30mL 表示超出标准容量30mL ,那么-30mL 表示 .5.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.3·,-259,480.正数有: ; 负数有: ; 既不是正数也不是负数的有: .6.每袋精盐的标准质量为200g ,现有5袋精盐的质量如下:203g,198g,200g,202g,196g.如果超重部分用正数表示,请表示出这5袋精盐的超重数或不足数.第2课时 有理数及其分类1.下列各数中是负分数的是( ) A.-12 B.17C.-0.4·D.1.52.在0,14,-3,+10.2,15中,整数的个数是( )A.1个B.2个C.3个D.4个 3.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数 4.下列说法正确的是( ) A.整数可分为正整数和负整数 B.分数可分为正分数和负分数 C.0不属于整数也不属于分数 D.所有的整数都是正数5.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .6.把下列有理数填入相应的括号内:+4,-7,-54,0,3.85,-49%,-80,13,-4.95.正整数:{ …}; 负整数:{ …}; 正分数:{ …}; 负分数:{ …}; 负有理数:{ …}; 正有理数:{ …}.1.2 数轴、相反数和绝对值第1课时 数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度后表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点所表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数的个数是 个.6.在数轴上表示下列各数,并有“>”号连接起来.1.8,-1,52,3.1,-2.6,0,1.第2课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和03.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A.点AB.点BC.点CD.点D4.化简:(1)+(-1)= ;(2)-(-3)= ; (3)+(+2)= .5.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第3课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.计算:(1)|7|= ; (2)|5.4|= ; (3)|-3.5|= ; (4)|0|= .4.已知|x -2017|+|y +2018|=0,则x = ,y = .1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.下列各数中,小于-2的是( ) A.-12 B.-3C.-1D.13.如图,有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 4.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.5.小明通过科普读物了解到:在同一天世界各地的气温差别很大.若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.6.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.有理数的加法1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,低于标准的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2018)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.2.有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第一天 第二天 第三天 第四天 第五天 最高气温(℃) -1 5 6 8 11 最低气温(℃) -7-3-4-423.加、减混合运算1.把7-(-3)+(-5)-(+2)写成省略括号的和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和 3.计算(-2)+(-3)-6的结果是( ) A .-1 B .-11 C .11 D .1 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚的温度为-2℃,求该地清晨的温度.1.5 有理数的乘除 1.有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.一种商品原价120元,按八折出售,则实际售价应为 元.4.填表(想法则,写结果):因数 因数 积的符号积的绝对值积 +8 -6 -10 +8 -9 -4 2085.计算:(1)(-15)×13; (2)-218×0;(3)154×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-73.第2课时 多个有理数相乘1.下列各式中积为负数的是( ) A .(+3)×(+4)×5 B .-13×(-6)×(-7)C .(-5)×0×2018D .(-2)×(-4)×8 2.计算-3×2×27的结果是( )A .127B .-127C .27D .-273.某件商品原价100元,先涨价20%,然后再降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5);(2)23×⎝⎛⎭⎫-97×(-24)×⎝⎛⎭⎫+134;(3)(-4)×499.7×57×0×(-1);(4)(-3)×⎝⎛⎭⎫-79×(-0.8).2.有理数的除法第1课时 有理数的除法法则1.下列计算结果为负数的是( )A .0÷3B .5÷2C .-1÷(-2)D .-4÷22计算(-18)÷6的结果是( )A .-3B .3C .-13D .133.下列说法不正确的是( )A .0可以作被除数B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等4.计算:(1)0÷(-3.4); (2)15÷(-3);(3)(-0.1)÷(-10); (4)-125÷35.5.列式计算:(1)两数的积是1,已知一个数是-0.5,求另一个数;(2)两数的商是-3,已知被除数是-157,求除数.第2课时 除法转化为乘法的运算1.计算(-8)÷⎝⎛⎭⎫-18的结果是( )A .-64B .64C .1D .-12.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝⎛⎭⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=03.如果▽×⎝⎛⎭⎫-45=2,则“▽”表示的有理数应是() A .-52 B .-58 C .52 D .584.若长方形的面积为112,长为338,则宽为 .5.计算:(1)(-6)÷14; (2)⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52;(3)+56÷⎝⎛⎭⎫-13; (4)-34÷⎝⎛⎭⎫+76.3.乘、除混合运算1.简便计算2.25×(-7)×4×⎝⎛⎭⎫-37时,应运用的运算律是( ) A .加法交换律 B .加法结合律C .乘法交换律和结合律D .乘法分配律2.计算(-2)×3÷(-2)的结果是( )A .12B .3C .-3D .-123.计算3×⎝⎛⎭⎫13-12的结果是 . 4.计算:(1)36÷(-3)×⎝⎛⎭⎫-16; (2)27÷(-9)×527;(3)2-7×(-3)+10÷(-2); (4)916÷⎝⎛⎭⎫12-2×524;(5)5÷⎝⎛⎭⎫-87-5×98; (6)1011×1213×1112-1÷⎝⎛⎭⎫-132.1.6 有理数的乘方第1课时 有理数的乘方及混合运算1.-24表示( )A .4个-2相乘B .4个2相乘的相反数C .2个-4相乘D .2个4的相反数2.计算(-3)2的结果是( )A .-6B .6C .-9D .93.计算(-8)×3÷(-2)2的结果是( )A .-6B .6C .-12D .124.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝⎛⎭⎫-122+2×3-0÷2243.第2课时科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.7近似数1.下面所列四个数据中,是准确数的是()A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是()A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到()A.个位B.十分位C.百分位D.以上都不对4.求下列各数的近似数.(1)23.45(精确到十分位);(2)0.2529(精确到百分位);(3)13.50505(精确到十分位);(4)5.36×105(精确到万位).第2章 整式加减2.1 代数式1.用字母表示数1.已知甲数比乙数的2倍少1,设乙数为x ,则甲数可表示为( )A .2x -1B .2x +1C .2(x -1)D .2(x +1)2.填空:(1)某商店运来一批苹果,共6箱,每箱n 个,则共有 个苹果;(2)某三角形的一边长为a cm ,这条边上的高为b cm ,则该三角形的面积为 cm 2;(3)某校去年七年级招收新生x 人,今年比去年增加10%,则今年该校七年级学生的人数是 人;(4)若某三位数的个位上的数字为a ,十位上的数字为b ,百位上的数字为c ,则这个三位数可表示为 .2.代数式第1课时 代数式1.下列书写格式正确的是( )A .x5B .4m÷nC .x(x +1)34D .-12ab 2.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )A .(4m +7n)元B .28mn 元C .(7m +4n)元D .11mn 元3.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .4.如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r 米,广场的长为a 米,宽为b 米,求广场空地的面积.第2课时 整 式1.单项式-2x 2y 3的系数和次数分别是( ) A .-2,3 B .-2,2 C .-23,3 D .-23,2 2.多项式3x 2-2x -1的各项分别是( )A .3x 2,2x,1B .3x 2,-2x,1C .-3x 2,2x ,-1D .3x 2,-2x ,-13.在下列代数式中,整式的个数是( )x 3,2x +y 3,5,-mn ,4yA .5个B .4个C .3个D .2个4.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b,3x -y 2中,单项式的个数是 个. 5.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .6.下列代数式中,哪些是单项式?哪些是多项式?xy 3,-34xy 2z ,a ,x -y ,1x,3.14,-m ,-m 2+2m -1.7.若关于a ,b 的单项式-58a 2b m 与-117x 3y 4是次数相同的单项式,求m 的值.3.代数式的值1.当x =1时,代数式4-3x 的值是( )A .1B .2C .3D .42.当x =3,y =2时,代数式2x -y 3的值是( ) A .43B .2C .0D .3 3.若m -n =-1,则(m -n)2-2(m -n)= .4.已知a 是-2的相反数,b 是-2的倒数,则(1)a = ,b = ;(2)求代数式a 2b +ab 的值.5.邮购一种书,每册定价m 元,另加10%的邮费,购书x 册.(1)用含x 的代数式表示总金额;(2)当m =2.5,x =100时,总金额是多少?2.2整式加减1.合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m 23.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并4.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本和6支圆珠笔,小明买6本笔记本和3支圆珠笔,小红和小明买这些笔记本和圆珠笔一共花费元.5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.2.去括号、添括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .-2m -2nD .-2m +2n2.-(2x -y)+(-y +3)去括号后的结果为( )A .-2x -y +3B .-2x +3C .2x +3D .-2x -2y +33.下列去括号与添括号变形中,正确的是( )A .2a -(3b -c)=2a -3b -cB .3a +2(2b -1)=3a +4b -1C .a +2b -3c =a +(2b -3c)D .m -n +a -b =m -(n +a -b)4.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ;(3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= .5.在括号内填上恰当的项:(1)a -2b +3c =-( );(2)x 2-y 2+8y -4=x 2-( ).6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .3.整式加减1.整式4-m +3m 2n 3-5m 3是( )A .按m 的升幂排列B .按n 的升幂排列C .按m 的降幂排列D .按n 的降幂排列2.化简x +y -(x -y)的结果是( )A .2x +2yB .2yC .2xD .03.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( )A .-a +bB .11a +bC .11a -7bD .-a -7b4.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-125.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( )A .3a +bB .2a +2bC .a +bD .a +3b6.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).7.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一次方程的概念及等式的基本性质1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=2 2.若a =b ,则下列式子一定正确的是( )A .3a =3+bB .-a 2=-b 2C .5-a =5+bD .a +b =03.解方程-34x =12时,应在方程两边( ) A .同时乘-34B .同时乘4C .同时除以34D .同时除以-344.由2x -16=5得2x =5+16,在此变形中,是在原方程的两边同时加上了 .5.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .6.利用等式的基本性质解下列方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x2.解方程-3x +4=x -8时,移项正确的是( )A .-3x -x =-8-4B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,而且唐诗的数目是宋词数目的3倍,则这本《唐诗宋词选读》中唐诗有多少首?1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)2y -13=y +24-1.(3)15(x +15)=12-13(x -7); (4)4x +95-3+2x 3=1;5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?3.2 一元一次方程的应用第1课时 等积变形与行程问题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x 秒后甲可追上乙,则下列所列方程中正确的是( )A .6.5+x =7.5B .7x =6.5x +5C .7x +5=6.5xD .6.5+5x =7.52.用一根长12cm 的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A .4cm 2B .6cm 2C .8cm 2D .12cm 23.小明和爸爸在一长400米的环形跑道上,小明跑步每秒跑5米,爸爸骑车每秒骑15米,两人同时同地反向而行,经过 秒两人相遇.4.一般轮船从甲码头到乙码头顺流而行用了3h ,从乙码头返回甲码头用了5h .已知轮船在静水中的平均速度为32km /h ,求水流的速度.5.将一个底面半径为5cm ,高为10cm 的圆柱体冰淇淋盒改造成一个直径为20cm 的圆柱体.若体积不变,则改造后圆柱体的高为多少?第2课时储蓄与销售问题1.如图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.小华的妈妈去年存了一个期限为1年的存款,年利率为3.50%,今年到期后得到利息700元,则小华的妈妈去年存款的本金为()A.1000元B.2000元C.10000元D.20000元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.五年前李老师把一笔钱存入银行,存期为5年,年利率为4.75%.今年到期时李老师共取回74250元,则本金是多少元?5.一件商品在进价的基础上提价20%后,又以9折销售,获利20元,则进价是多少元?第3课时比例与产品配套问题1.一个数比它的相反数大-4,若设这数是x,则可列出关于x的方程为()A.x=-x+4B.x=-x+(-4)C.x=x-(-4)D.x×(-x)=42.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了()A.3场B.4场C.5场D.6场3.李敏家8月份共缴水、电和煤气费140元,已知水、电和煤气费用的比是3∶16∶9,则李敏家8月份三种费用各是多少元?4.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?3.3二元一次方程组及其解法第1课时二元一次方程组1.下列方程组中是二元一次方程组的是()2.小刚用41元钱买了甲、乙两种笔记本,甲种笔记本每本5元,乙种笔记本每本8元,且甲种笔记本比乙种笔记本多买了3本,则甲、乙两种笔记本各买了多少本?设小刚买了甲种笔记本x本,乙种笔记本y本,则可列方程组为()3.已知方程3x m-2y n=7是关于x、y的二元一次方程,则m+n=.4.根据题意,列出二元一次方程组:(1)某校七年级二班组织全班40名同学去参加义务植树活动,男生每人植树4棵,女生每人植树3棵,全班共植树123棵.问男生和女生各有多少人?(2)某人从学校出发骑自行车去县城,中途因为道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车与步行各用了多少时间?(3)加工某种产品需要两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成产品的件数相等?第2课时用代入法解二元一次方程组1.下列二元一次方程组的解为的是()2.用代入法解方程组时,下列代入变形正确的是()A.3x-4x-1=1B.3x-4x+1=1C.3x-4x-2=1D.3x-4x+2=13.若是关于x、y的方程x-ny=3的一组解,则n的值为.4.用代入法解下列方程组:第3课时用加减法解二元一次方程组1.用加减消元法解方程组适合的方法是()A.①-②B.②+①C.①×2+②D.②×1+①2.用加减法解方程组时,①×2-②,得()A.3x=-1B.-2x=13C.17x=-1D.3x=173.已知方程组则x-y的值为.4.用加减法解下列方程组:第4课时较复杂方程组的解法1.解以下两个方程组:较为简便的方法是()A.①②均用代入法B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法2.已知二元一次方程组如果用加减法消去n,那么下列方法可行的是()A.4×①+5×②B.5×①+4×②C.5×①-4×②D.4×①-5×②3.解下列方程组:3.4二元一次方程组的应用第1课时简单实际问题与行程问题1.甲、乙两人在相距18千米的两地,若同时出发相向而行,2小时后相遇;若同向而行,且甲比乙先出发1小时追击乙,则在乙出发后4小时两人相遇.求甲、乙两人的速度.设甲的速度为x千米/时,乙的速度为y千米/时,则可列方程组为()2.若买2支圆珠笔,1本笔记本需14元;买1支圆珠笔,2本笔记本需16元,则1支圆珠笔元,1本笔记本元.3.某市火车站北广场将于2018年底投入使用,计划在广场内种植A,B两种花木共6600棵.若A花木的数量是B花木的数量的2倍少600棵,则A,B两种花木的数量分别是多少棵?4.一条船顺水航行45千米需要3小时,逆水航行65千米需要5小时,求该船在静水中的速度和水流速度.第2课时物质配比与变化率问题1.已知A种盐水含盐15%,B种盐水含盐40%,现在要配制500克含盐25%的盐水,需要A、B两种盐水各多少克?若设需要A种盐水x克,B种盐水y克,根据题意可列方程组为()2.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,则去年的总产值为万元,总支出是万元.3.甲种矿石含铁50%,乙种矿石含铁36%,取两种矿石各若干吨,混合后得到含铁48%的矿石140吨,问混合时,两种矿石各取了多少吨?4.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,则该农场今年实际生产玉米、小麦各多少吨?第3课时调配与配套问题1.某车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若1个甲种玩具零件与2个乙种玩具零件能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?设生产甲种玩具零件x天,乙种玩具零件y天,则有()2.用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身可以和两个盒底制成一个罐头盒.现有36张白铁皮,则用张制盒身,张制盒底,恰好配套制成罐头盒.3.有一个运输队承包了一家公司运送货物的业务,第一次运送18吨,派了1辆大卡车和5辆小卡车;第二次运送38吨,派了2辆大卡车和11辆小卡车,并且两次派的车都刚好装满.请问两种车型的载重量各是多少?4.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身2个或盒盖3个,且1个盒身和2个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.现有14张白板纸,问最多可做几个包装盒?*3.5三元一次方程组及其解法1.下列方程组中,是三元一次方程组的是()2.解方程组若要使运算简便,消元的方法应选择()A.先消去xB.先消去yC.先消去zD.以上说法都不对3.把方程组消去未知数z,转化为只含x,y的方程组为.4.由方程组可以得到x+y+z的值是.5.解下列方程组:第4章直线与角4.1几何图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列图形属于多面体的有()A.2个B.3个C.4个D.5个4.围成圆柱的面有()A.1个B.2个C.3个D.4个5.如图,用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.一个长方体一共有条棱,有个面;如果长方体的底面边长都是2cm,高是4cm,那么它的所有棱长的和是.7.把下列图形与对应的名称用线连起来.圆柱四棱锥正方体三角形圆4.2线段、射线、直线1.向两边延伸的笔直铁轨可看作()A.直线B.射线C.线段D.以上都不对2.给出下列图形,其表示方法不正确的是()3.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O第3题图第5题图4.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.5.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.6.已知平面上的四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.4.3线段的长短比较1.如图所示的两条线段的关系是()A.AB=CDB.AB<CDC.AB>CDD.无法确定2.如图,已知线段AB=6cm,C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.如图,已知D是线段AB延长线上的一点,C为线段BD的中点,则下列等式一定成立的是()A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如把弯路改直可以缩短路程,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.4角1.图中∠AOC还可表示为()A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(小于180°)的个数是()A.1个B.2个C.3个D.4个3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午4时整时针和分针的位置如图所示,则此时时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.4.5角的比较与补(余)角1.如图,其中最大的角是()A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第4题图第5题图2.若∠A=50°,则∠A的余角的度数为()A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为()A.100°B.10°C.20°D.90°4.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=90°B.∠2+∠α=90°C.∠1=∠2D.∠1+∠2=90°5.如图,OC为∠AOB内的一条射线.若∠AOB=70°,∠BOC=30°,则∠AOC的度数为.6.如图,已知OC为∠AOB内的一条射线,OM、ON分别平分∠AOC、∠BOC.若∠AOM =30°,∠NOB=35°,求∠AOB的度数.4.6用尺规作线段与角1.下列尺规作图的语句正确的是()A.延长射线AB到DB.以点D为圆心,任意长为半径画弧C.作直线AB=3cmD.延长线段AB至C,使AC=BC2.如图,已知∠α,∠β,求作∠AOC=∠α+∠β(不写作法,保留作图痕迹).3.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC长度之间的大小关系;(3)若AB=2cm,求线段BD和CD的长度.第5章数据的收集与整理5.1数据的收集1.下列调查适合普查的是()A.调查2017年2月份利辛市场上某品牌饮料的质量B.调查某月长江安徽段水域的水质情况C.光明节能厂检测一批新型节能灯的使用寿命D.了解某班50名学生的年龄情况2.下列调查中,调查方式选择合理的是()A.为了解淮河安徽段的水质情况,选择抽样调查B.为了解一批袋装食品是否有防腐剂,选择全面调查C.为了解一架Y-8GX7新型战斗机各零部件的质量,选择抽样调查D.为了解一批药品是否合格,选择全面调查3.要了解一批投影仪的使用寿命,从中任意抽取40台投影仪进行实验,在这个问题中,样本是()A.每台投影仪的使用寿命B.一批投影仪的使用寿命C.40台投影仪的使用寿命D.404.为了解某校学生每日的运动量,下列收集数据合理的是()A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某一班级的学生每日的运动量5.每年4月23日是“世界读书日”,为了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.(1)采用的是哪种调查方式?(2)总体、个体、样本、样本容量分别是什么?5.2数据的整理1.为了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月的用水量绘制成如图所示的折线统计图,则小方家这6个月中用水量最多是()A.1月B.4月C.5月D.6月第1题图第2题图2.在一次慈善基金捐款活动中,某单位对捐款金额分别是人民币100元、200元、300元、400元和500元的人数进行了统计,制成如图所示的统计图.小明从该统计图获得以下四条信息,其中正确的是()A.捐款金额越高,捐款的人数越少B.捐款金额为500元的人数最多C.捐款金额为400元的人数比捐款金额为200元的人数要少D.捐款金额为100元的人数最少3.某校八年级(5)班60名学生在一次英语测试中优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角的度数是度.4.某校根据该校700名学生上学方式的调查结果,制作了下表:上学的方式步行骑车乘车其他人数m n 105 70百分比40% 35% a b(1)表格中m=,n=,a=,b=;(2)根据抽样调查的结果,将所有学生上学方式的情况绘制成扇形统计图.5.3用统计图描述数据1.要反映我区12月11日至17日这一周每天最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图2.需要清楚地表示每个项目的具体数目应选择()A.折线统计图B.扇形统计图C.条形统计图D.以上三者均可3.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其他物质的含量的百分比,应选择的统计图是.4.如图是某校初中三个年级男、女生人数的条形统计图,则学生数最多的年级是.5.小颖的母亲开了一家服装店,专门卖羽绒服,去年一年各月的销售情况如下表:月份 1 2 3 4 5 6 7 8 9 10 11 12 销量(件) 100 90 50 11 8 6 4 6 5 30 80 110 根据上表,回答下列问题:(1)计算去年各季度销售量在全年销售总量中所占的百分比,并用适当的统计图表示;(2)从这些统计图表中,你能得出什么结论?请你为小颖的母亲今后的决策提出好的建议.。

七年级上册数学导学案答案

七年级上册数学导学案答案

七年级上册数学导学案答案在七年级上册的数学学习中,导学案是帮助同学们理解和掌握知识的重要工具。

而答案则是检验学习成果、纠正错误和加深理解的关键。

以下是对七年级上册数学导学案中常见题型的答案及解析。

一、有理数1、正数和负数像 5,12,1/2 这样大于 0 的数叫做正数。

像-3,-25,-1/3 这样在正数前面加上“”号的数叫做负数。

0 既不是正数也不是负数。

练习:指出下列各数哪些是正数,哪些是负数。

7,-925,-301, 3125, 0,-20,-314答案:正数有 7,3125;负数有-925,-301,-20,-314;0 既不是正数也不是负数。

2、有理数正整数、0、负整数统称为整数;正分数、负分数统称为分数。

整数和分数统称为有理数。

练习:把下列各数填入相应的集合内。

15,-5/9, 0, 015,-30, 12, 52,-65答案:整数集合{-15,0,-30,12};分数集合{-5/9,015,52,-65};有理数集合{-15,-5/9,0,015,-30,12,52,-65}二、数轴1、数轴的定义规定了原点、正方向和单位长度的直线叫做数轴。

练习:画出数轴,并在数轴上表示出下列各数。

3,-15, 0, 25, 4答案:(数轴略)2、利用数轴比较大小在数轴上,右边的数总比左边的数大。

练习:比较下列各组数的大小。

(1)-3 和 0 (2)-15 和-2 (3)25 和 4答案:(1)-3 < 0 (2)-15 >-2 (3)25 < 4三、相反数1、相反数的定义只有符号不同的两个数叫做互为相反数。

0 的相反数是 0。

练习:写出下列各数的相反数。

5,-075, 1/3, 0答案:5 的相反数是-5;-075 的相反数是 075;1/3 的相反数是-1/3;0 的相反数是 0。

2、相反数的性质互为相反数的两个数的和为 0。

练习:若 a,b 互为相反数,且 a =-7,则 b = 7。

四、绝对值1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。

人教初一数学有理数单元检测题10套

人教初一数学有理数单元检测题10套

人教初一数学有理数单元检测题10套单元检测有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、13的倒数是____;123的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:3212____;95_____.4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2,最高气温为8℃,那么该景点这天的温差是____.C7、计算:(1)100(1)101______.8、平方得214的数是____;立方得–64的数是____.9、用计算器计算:95_________.10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是()A、5B、–5C、15D、1512、在–2,+3.5,0,23,–0.7,11中.负分数有()A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是()A、0(5)B、4(0.5)(10)C、(1.5)(2)D、(2)(1)(253)14、下列各组数中,相等的是()A、–1与(–4)+(–3)B、3与–(–3)C、324与916D、(4)2与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A、90分B、75分C、91分D、81分16、l米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为()A、112B、132C、1164D、12817、不超过(32)3的最大整数是()A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价()A、高12.8%B、低12.8%C、高40%D、高28%单元检测三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,21,-l.5,6.2要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小.(1)43525与4(2)45与45(3)52与2(4)23与(23)222、(8分)计算.(1)38715(2)12(1146)(3)236(3)2(4)(4)1(11163)623、(12分)计算.(l)43(2)215(2)1.530.750.53343.40.75(3)(10.5)132(4)2(4)(5)3(35)32(22)(114)24、(4分)已知水结成冰的温度是0C,酒精冻结的温度是–117℃。

人教版七年级数学123相反数

人教版七年级数学123相反数

5.若a是负数,则 a 是_正__数;若 a是负数, 则 a 是___正___数.
课堂小结
的符号与前面“-”的个数有关:
若有奇数个“-”,则最后结果为“-”;
若有偶数个“-”,则最后结果为“+”;
它与“+”的个数无关 .
思考:
在一个数前面加上“-”号表示求这个数的 ___相__反_,数如果在这些数前面加上“+”号呢?
在一个数前面加上“+”仍表示这个 数,“+”号可省略.
举例
典型例题例题1 -4是_4___的相源自数, 4 _-__4________
注意:到原点的距离相等。
0
观察这两个数,有什么相同和不同? 符号不同
3.5 3.5
数字相同
像-6和6,5和-5这样,只有符号 不同的两个数叫做互为相反数。
例如
成对出现
-8的相反数是8, 8的相反数是-8,8和
。 - -8互为相反数 7的相反数是-7。 7
的相反数是7 ,7和-7互为相反数。
想一想
2.下列几对数中互为相反数的一对为( A ).
A. (8)和 (8) B. (8) 与 (8) C. (8) 与 (8)
3.5的相反数是__-_5_;a的相反数是_-_a_;a b 的相
反数可表示为_-_(__a.-b)
4.若 a 若 a 6
13,则 ,则 a
a ___1__3____; ___6______ .
5 =-5 7 =7
0 =0
2 =-2
多重符号的化简
简化符号(根据相反数的意义)
-(-6)= 6 _____ ;
+(-6)= -6 _____
-(+0.73)=-_0__._7_ 3; -0= 0_____

1.2有理数 七年级数学上课后答案

1.2有理数 七年级数学上课后答案

1.2有理数P6练习1. 所有正数组成整数集合,所有负数组成负数集合,把下面的有理数填入它属于的集合圈内:15;— 19 ;—5;215 ;—138 ;0.1;—5.32;—80;123;2.333答案:正数集合: 15;215 ;0.1;123;2.333负数集合: — 19 ;—5;—138 ;—5.32;—802. 指出下列个数中的正数,负数,正数,分数—15;+6;-2;-0.9; 1; 35 ;0;314 ;0.63;-4.95答案:正数:+6;1;35 ;314 ;0.63负数:—15;-0.9;-4.95整数:-15;+6;-2;1;0分数: 35 ;314P9练习.答案解析: 1、A:0 B:-2 C:1 D:2.5 E:-3 2.3. 负;正P10练习答案解析:1. (1)(2)错误,(3)(4)正确2. —6、8、3.9、—52 、211 、—100、03. a=-a ,所以2a=0,a=0.故表示a 的点在数轴上的原点4. 68、-0.75、35 、-3.8P11练习2.解:(1),相反数的定义为:只有符号不同的两数叫做互为相反数.其特征“符号不同,绝对值相同.若符号不同,但绝对值也不同的话,就不是互为相反数.故这个说法是错误的.(2),若一个负数的绝对值大的时候,它在数轴上越靠左.故这个说法是错误.(3),正确.(4),正确.故答案为:(1)错误;(2)错误;(3)正确;(4)正确.4. (1)正确、(2)错误、(3)错误P13练习P14习题1.2答案解析:1、正数:15;0.15;225 ;+20负数:—38 ;-30;-12.8;-602、3、B 表示-7或者14、5、125;23;3.5;0;23 ;32 ;0.05最大的绝对值的数-125,最小的06、7、广州13.1>武汉3.8>南京2.4>北京-4.6>哈尔滨-19.48、第四个球,此题比绝对值大小9、某年我国人均水资源比上年的增幅是-5.6%.后续三年各年比上年的增幅分别是-4.0%,13.0 %,-9.6%.这些增幅中哪个最小?增幅是负数说明什么?10、在数轴上,表示那个数的点与表示-2和4的点的距离相等 答:1答案解析:11题:12题:。

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。

人教实验版七年级上第一章理数单元检测题含答案

人教实验版七年级上第一章理数单元检测题含答案

第一章有理数检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. 下列说法正确的个数是( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.A.1B. 2C. 3D. 42. 在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个3.一个数加上12-等于5-,则这个数是( )A .17 B.7C.17- D.7-4. 下列算式中,积为负分数的是( )A.)5(0-⨯B.)10()5.0(4-⨯⨯C.)2()5.1(-⨯D.)32()51()2(-⨯-⨯- 5. 有理数a 、b 在数轴上对应的位置如图所示,则( )A .a +b <0B .a +b >0C .a -b =0D .a -b >06. 在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( ) A.-212 B.-101 C .-0.01 D.-5 7.某世界级大气田,储量达 6 000亿立方米,6 000亿立方米用科学记数法表示为( )A .6×102亿立方米B .6×103亿立方米C .6×104亿立方米D .0.6×104亿立方米8. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.0502(精确到0.0001)9. 小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )A.90分B.75分C.91分D.81分10. 已知8.62=73.96,若x 2=0.739 6,则x 的值等于( )A. 0.86B. 86C.±0.86D.±86二、填空题(每小题3分,共24分)11.31-的倒数是____;321的相反数是____. 12. 在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是.13. 若0<a <1,则a ,2a ,1a的大小关系是 . 第5题图14. +5.7的相反数与-7.1的绝对值的和是.15. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.16.-9、6、-3这三个数的和比它们绝对值的和小.17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.18. 规定a ﹡b =5a +2b −1,则(-4)﹡6的值为 .三、解答题(共46分)19.(6分)计算下列各题:(1)−27+(−32)+(−8)+72;(2)(+4.3)−(−4)+(−2.3)−(+4);(3)−4−2×32+(−2×32);(4)(−48)÷(−2)3−(−25)×(−4)+(−2)2.20. (6分)如果规定a ﹡b =aba+b ,求2﹡(-3)的值. 21. (6分)比较下列各对数的大小.(1)54-与43-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯.22. (6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:−6,−3,−1,−2,+7,+3,+4,−3,−2,+1,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?23. (6分)若x >0,y <0,求32---+-x y y x 的值.24.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm ):+5,−3,+10,−8,−6,+12,−10.问:(1)小虫是否回到原点O ?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?25. (8分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x ,使得|x +5|+|x −2|=7,这样的整数是_____.第一章有理数检测题参考答案1.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.2.A 解析:负数有211-,2-,所以有2个.故选A.3.B 解析:一个数加上12-等于5-,所以-5减去-12等于这个数,所以这个数为7.故选B.4.D 解析:A 中算式乘积为0;B 中算式乘积为-20;C 中算式乘积为-3;D 中算式乘积为−415.故选D. 5.A 解析:a 是负数,b 是正数,a 离原点的距离比b 离原点的距离大,所以a +b <0,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:乘号前面的数必须是大于或等于1且小于10的.8.C 解析:C 应该是0.050.9.C 解析:小明第四次测验的成绩是85+8−12+10=91(分).故选C.10.C 解析:因为0.739 6=73.96×10−2,73.96×10−2=(±8.6×10−1)2,所以x =±0.86.故选C.11.−3−123 解析:根据倒数和相反数的定义可知−13的倒数为−3;123的相反数是−123.12.−1和5 解析:点A 所表示的数为2,到点A 的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是−1和5. 解析:当0<a <1时,0<a 2<a <1,1a >1,所以a 2<a <1a . 14.1.4 解析:+5.7的相反数为−5.7,−7.1的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车. 16.24 解析:−9+6+(−3)=−6,|−9|+|6|+|−3|=18,所以18−(−6)=24.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有100+38−42+27−33−40=50.所以这个仓库现有电脑50台.18.-9 解析:根据a ﹡b =5a +2b −1,得(-4)﹡6=5×(−4)+2×6−1=−9.19.解:(1)−27+(−32)+(−8)+72=−67+72=5.(2)(+4.3)−(−4)+(−2.3)−(+4)=4.3+4−2.3−4=2.(3)−4−2×32+(−2×32)=−4−64−64=−132.(4)(−48)÷(−2)3−(−25)×(−4)+(−2)2=6−100+4=−90.20.解:2﹡(-3)=21.解:(1)(−45)−(−34)=−120<0,所以−45<−34.(2)|−4+5|=1,|−4|+|5|=9,所以|−4+5|<|−4|+|5|.(3)52=25,25=32,所以52<25.(4) 2×32=18,(2×3)2=36,所以2×32<(2×3)2.22.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵ −6+(−3)+(−1)+(−2)+7+3+4+(−3)+(−2)+1=−2,∴ 与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg ).每袋小麦的平均质量是1 498÷10=149.8(kg ).23.解:当x >0,y <0时,|x −y +2|−|y −x −3|=x −y +2+y −x −3=−1. 所以原式=-1.24.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数. 解:(1)∵5−3+10−8−6+12−10=0,∴ 小虫最后回到原点O .(2)12㎝.(3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.25.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要求x 的整数值可以进行分段计算,令x +5=0或x −2=0时,分为3段进行计算,最后确定x 的值.解:(1)7.(2)令x +5=0或x −2=0,则x =−5或x =2. 当x ≤ −5时,−(x +5)−(x −2)=7, ∴ −x −5−x +2=7, x =−5. 当−5<x <2时,(x +5)−(x −2)=7, ∴ x +5−x +2=7,7=7,∴ x =−4,−3,−2,−1,0,1.当x ≥2时,(x +5)+(x −2)=7,∴ x +5+x −2=7,2x =4, ∴ x =2,∴ 综上所述,符合条件的整数x 有:-5,-4,-3,-2,-1,0,1,2.。

数的开方测试题

数的开方测试题

数的开方测试题数的开方是数学中一个重要的概念,它涉及到对一个数进行开方运算,以求解出相应的平方根。

开方运算在日常生活中有着广泛的应用,如测量、计算、设计等各个领域。

因此,对数的开方进行深入理解和掌握是非常必要的。

数的开方运算可以理解为求解一个数的平方根。

在数学上,任何一个非负数x都有一个唯一的正数平方根,记作√x。

同时,任何一个实数都有无数个平方根,这些平方根可以是正数、负数,也可以是零。

以下是一些关于数的开方的测试题,旨在帮助大家理解和掌握数的开方运算。

7a. (注:这是一个很大的数)若x是64的平方根,则x=_______.答案:x=±8,因为正数的平方根有两个,它们互为相反数。

一个数的平方根是123,则它的另一个平方根是_______.答案:-123,因为一个正数的平方根有两个,它们互为相反数。

答案:x=±2,因为正数的平方根有两个,它们互为相反数。

,因为正数的平方根有两个,它们互为相反数。

,因为正数的立方根只有一个。

解答:根据平方根的定义,对于任何一个正数,都有两个平方根,它们互为相反数。

所以选项A和B都是错误的。

选项C虽然部分正确,但并不是该题的最佳答案。

正确的答案是D,以上都不对。

解答:根据平方根的定义,0也有平方根,它等于0本身。

因此,选项C是错误的。

而选项A、B和D都是正确的。

如果一个数的平方根是a和-a,那么这个数是________。

如果一个数的平方根是2m和n-3m,那么这个数是________。

一个正数的平方根是x和y,如果x>y,那么这个正数是________。

由题意得,a + (-a) = 0,解得这个数是0。

由题意得,(2m)2 = (n-3m)2,解得这个数是0。

由题意得,x2 = y2,即x = y或x = -y,因为x>y,所以x = y不成立,所以这个正数是y的平方。

(2) -25没有平方根,因为负数没有平方根;(4) 25的平方根是±5。

数学课后习题答案(可编辑)

数学课后习题答案(可编辑)

数学课后习题答案1.1整数和负数练习:1.读下列各数,并指出其中哪些是正数,哪些是负数.-1,,25,+4/3,0,-3.14,120,-1.732,-2/7答:正数:25,+4/3,120;负数:-1,-3.14,-1.732,-2/7.2.如果80m表示向东走80m。

那么-60m表示向西走60m.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作-3m。

水位不升不降时水位变化记作0m。

3.月球表面的白天平均温度零上126℃。

记作+126℃,夜间平均温度零下150℃,记作-150℃。

2006年我国全年平均降水量比上年减少24毫米,2005年比上年增长8毫米,2004年比上年减少20毫米,用正数和负数表示这三年我国全年平均降水量比上年的增长量。

答:2006年:-24,;2005年:8;2004年:-20.习题1.1复习巩固:下面各数哪些是正数,哪些是负数?5,-5/7,0,0.56,-3,-25.8,12/5,-0.0001,+2,-600.答:正数:5,0.56,12/5,2;负数:-5/7,-3,-25.8,-.0001,-600.2.某蓄水池的标准水位记为0m,如果用正数表示水面高于标准水位的高度,那么:(1)0.08m和-0.2m各表示什么?(2)水面低于标准水位0.1m和高于标准水位0.23m各怎样表示?解:(1)0.08m:上升0.08m;-0.2m:下降0.2m;(2)-0.1m;0.23m。

3.“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?答:不对,0既不是正数也不是负数。

综合运用:4.如果把一个物体向后移动5m记作-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?解:向前移动5m,0m。

5.请你用带刻度的尺子量桌子的边,并将边长超出1m的部分用正数表示,不足1m的部分用负数表示。

解:0.3m,-0.02m.6.科学实验表示原子核与电子所带电荷是两种想法的电荷,物理学规定原子核所带电荷为正电荷,氢原子中的原子核与电子各带1各电荷,把它们所带电荷用正数和负数表示出来。

§123相反数

§123相反数

数学学科教案
§.1.2.3 相反数(第3 课时)
教学任务分析
教学流程安排
活动流程图活动内容和目的
活动1 通过数轴导入
活动2 动手操作
活动3 理解相反数概念活动4 相反数的分析
活动5 巩固相反数概念活动 6 相反数概念的延

活动7 巩固练习使学生能够对数与形加深理解
渗透理论联系实际的思考问题的方法。

使学生对于相反数有更深的理解。

加深学生对于相反数的认识。

通过练习,使学生掌握相反数。

进一步抽象,使学生理解化简的意义。

使学生进一步巩固相反数的概念。

课前准备
教具学具补充材料投影仪课件资料,图片
教学过程设计
是()
A一个数的相反数一定是负数;
B一个数的相反数的相反数一定是正数;
C一个数的相反数一定有倒数;
D一个数的倒数一定有相反数。

3.总结:
这节课我们学会了哪些知识?你能向大家说一说吗?
4.作业:
教科书第18页第3题,学生用书同步练习。

教师与学生共同总
结,达到共同理解。

教师布置作业,学生记
录作业。

加强学生的口语
表达能力,发展学生的
个性特长。

对所学加以巩固,
灵活运用理解。

123 相反数(解析版)

123 相反数(解析版)

1.2.3相反数相反数的概念题型一:找一个数的相反数【例题1】(2021·内蒙古赤峰市·中考真题)-2021的相反数是( ) A .2021 B .-2021C .12021D .12021-【答案】A【分析】根据相反数的定义判断即可. 【详解】解:-2021的相反数是2021, 故选:A .【点睛】本题考查了相反数的概念,解题关键是明确相反数的定义,准确求解. 变式训练【变式1-1】(2021·云南红河哈尼族彝族自治州·九年级一模)若一个数的相反数是7-,则这个数为___________. 【答案】7【分析】根据相反数的定义即可直接解答. 【详解】∵7的相反数是-7, ∵这个数为7.故答案为:7.【点睛】本题考查相反数.理解相反数的定义是解答本题的关键.知识点管理 归类探究 互为相反数意义:只有符号不同的两个数叫做相反数。

相反数意义:把其中一个数叫做另一个的相反数。

正数的相反数是负数,负数的相反数就是正数。

0的相反数是0,也就是0的相反数是它本身。

【变式1-2】(2021·山东青岛市·九年级二模)12021-的倒数的相反数是( ) A .2021- B .12021C .2021D .12021-【答案】C【分析】利用倒数和相反数的定义分析得出答案.乘积为1的两个数互为倒数;只是符号不同的两个数叫做互为相反数。

规定0的相反数为0. 【详解】∵12021-的倒数是2021-, 又∵2021-的相反数是2021, ∵12021-的倒数的相反数是2021 . 故选:C .【点睛】本题主要考查了倒数和相反数,正确把握倒数和相反数的定义是解题的关键.【变式1-3】(2021·全国七年级专题练习)画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连接.2,0,-12,-3. 【答案】数轴见解析,113202322-<-<-<<<< 【分析】先求出各数的相反数,再在数轴上表示出来,根据数轴上的位置,用“<”连接即可. 【详解】解:2的相反数是-2,0的相反数是0,-12的相反数是12,-3的相反数是3,在数轴是表示如图所示,用“<”连接如下:113202322-<-<-<<<<.【点睛】本题考查了相反数的意义和在数轴上表示数以及有理数的大小,解题关键是准确求出各数的相反数,在正确的在数轴上表示出来,利用数轴比较大小. 题型二:判定两个数是否互为相反数【例题2】(2021·深圳市南山区华侨城中学九年级二模)下列各组数中互为相反数的是( ) A .-4 和14B .14和 4 C .-4 和-14D .4 和-4【答案】D【分析】根据相反数的概念进行判断即可.【详解】解:4的相反数是-4, ∵互为相反数的是4与4-, 故选:D .【点睛】本题考查相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解题关键. 变式训练【变式2-1】(2021·江苏苏州市·九年级专题练习)-1是1的( ) A .倒数 B .相反数C .绝对值D .相反数的绝对值【答案】B【分析】根据相反数的定义判断即可. 【详解】解:-1是1的相反数, 故选:B .【点睛】本题考查了相反数的定义,解题关键是理解相反数的定义,准确进行判断.【变式2-2】(2020·四川省自贡市贡井区成佳中学校七年级月考)下列各对数中,互为相反数的是( ) A .()5+-与5- B .()5++与5-C .()5--与5D .5与()5++【答案】B【分析】依据相反数的概念求值,并要注意符号的变化.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【详解】解:A 、+(-5)=-5,选项不符合; B 、+(+5)=5,5与-5互为相反数,选项符合; C 、-(-5)=5,选项不符合; D 、+(+5)=5,选项不符合. 故选:B .【点睛】此题主要考查相反数的概念及定义.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【变式2-3】(2021·河南三门峡市·七年级期末)在0和0,34和34-,13和3这三对数中,互为相反数的有( ) A .3对 B .2对C .1对D .0对【答案】B【分析】只有符号不同的两个数叫做互为相反数. 【详解】互为相反数的是: 0和0,34和-34,共有2对, 故选: B.【点睛】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.相反数的性质题型三:相反数的性质【例题3】(2020·山东七年级月考)若34a +与26b -互为相反数,则46b a +的值为________________. 【答案】4【分析】根据相反数的定义求解即可.【详解】解:由题意可得出,34(26)0a b ++-=, ∵322a b +=∵46224b a +=⨯=. 故答案为:4.【点睛】本题考查的知识点是相反数的定义以及求代数式的值,利用已知条件得出322a b +=是解此题的关键. 变式训练【变式3-1】(2020·南通市东方中学七年级月考)若a -5和-7互为相反数,则a 的值为______. 【答案】12【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可. 【详解】解:由题意,得 a -5+(-7)=0, 解得a=12, 故答案为:12.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.【变式3-2】(2020·泰州市姜堰区励才实验学校七年级月考)已知2a -与6-互为相反数,求21a -的值. 【答案】15相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.【分析】根据互为相反数的两个数的和为0,可求得a 的值,然后代入到21a -可得答案. 【详解】∵2a -与6-互为相反数, ∵()260a -+-=, ∵8a =,2128115a ∴-=⨯-=.【点睛】本题主要考查了互为相反数的两个数的特点:互为相反数的两个数的和为0是解决本题的关键; 【变式3-3】(2020·南昌市心远中学七年级期中)若2m +的相反数是3,那么m -=_____. 【答案】5【分析】根据相反数的概念求解即可. 【详解】解:∵ 2m +的相反数是3, ∵m+2+3=0 ∵m=﹣5,∵﹣m=5. 故答案为:5.【点睛】本题考查相反数的定义,解答本题需要熟练掌握相反数的概念.多重符合化简题型四:多重符合化简【例题4】(2020·临沂第十七中学七年级月考)化简下列各数:(1)1-(-)2=________________; (2)-(+3.5)=_____________; (3)+(-4)=_______________;【答案】12-3.5 -4【分析】根据多重符号的化简规律进行化简即可. 【详解】解:11-(-)=22,-(+3.5)=-3.5,+(-4)=-4; 故答案为:12,-3.5,-4 【点睛】本题考查符号的化简.化简符号的规律是:非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.一个正数的前面有偶数个“-”时,可以化简为这个数字本身。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.3 相反数练习题
一、填空题
1.-2的相反数是,0.5的相反数是,0的相反数是。

2.如果a的相反数是-3,那么a= .
3.如a=+2.5,那么,-a=.如-a= -4,则a=
4.如果a,b互为相反数,那么a+b= ,2a+2b = .
5.―(―2)= ,与―[―(―8)]互为相反数.
6.如果a 的相反数是最大的负整数,b的相反数是最小的正整数,则a+b= .
7.a-2的相反数是3,那么, a= .
8.一个数的相反数大于它本身,那么,这个数是 .一个数的相反数等于它本身,这个数是,一个数的相反数小于它本身,这个数是 .
9. .a-b的相反数是 .
10.若果a 和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为 .
二选择题
11.下列几组数中是互为相反数的是( )
A―和0.7 B 和―0.333 C ―(―6)和6 D ―和0.25
12.一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( )
A 3
B -3
C 6
D -6
13.一个数是7,另一个数比它的相反数大3.则这两个数的和是( )
A -3
B 3
C -10
D 11
14.如果2(x+3) 与3(1-x)互为相反数,那么x的值是( )
A -8 B8 C -9 D 9
三、应用与提高:
15.如果a 的相反数是-2,且2x+3a=4.求x的值.
16.已知a 和b互为相反数且b ≠0,求a+b 与的值.
17.1 + 2 + 3 + ... + 2004 + (-1) + (-2)+ (-3) + ... +(-2004)
18.小李在做题时,画了一个数轴,在数轴上原有一点A, 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?
19.如果a 和b表示有理数,在什么条件下, a +b 和a -b互为相反数?
20.将―4,―3,―2,―1, 0 , 1, 2, 3 ,4这9个数分别填入图中的方格中,使得横,竖,斜对角的3个数相加都得0.
21. -的相反数是( )
A B - C D -
22.如图是一个正方形纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2,使得按虚线折成的正方体后,相对面上的两个数互为相反数,则A处应填 .
参考答案:
1.2,-0.5,0
2.3
3.-2.5,4
4.0,0
5.2,8
6.0
7.-1
8.负数,零,正数
9.b-a
10. 4
11. D
12. B
13. B
14. D
15. a=2, x= -1
16.a+b = 0, = -1
17. 0
18. 向左移动6个单位
19. 当a= 0时
20.
1 -4 3
2 0 -2 -
3
4 -1 21. A 22. -2。

相关文档
最新文档