与三角形有关的边的经典练习题
初中数学三角形的边同步练习题5套(含答案)
三角形的边同步练习题(5套)三角形的边练习题(一)1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x 可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.一位同学用三根木棒拼成的图形如下,则其中符合三角形定义的是()4.如图,在△ABF中,∠B的对边是()A.AD B.AE C.AF D.AC5.如图所示,图中三角形的个数是()A.6 B.8 C.10 D.12(一)参考答案1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC,三角形ABC,BC,a;AC,b;AB,c(3)三角形两边之和大于第三边,小于第三边.(4)>,<,a-b,a+b(5)1cm<x<9cm,2cm、3cm、4cm、5cm、6cm、7cm、8cm.2.(1)六,△ABC、△ABD、△ABE、△ACD、△ACE、△ADE.(2)△ABD、△ACD、△ADE.(3)△ACE,∠CAE.(4)BC:CD:DE.3.D 解析根据三角形定义即可判断D符合题意.4.C 解析在△ABF中,∠B的对边是AF;在△ABD中,∠B的对边是AD;在△ABE中,∠B的对边是AE;在△ABC中,∠B的对边是AC.5.B 解析图中的三角形有:△AOD,△ADC,△ABD,△AOB,△ABC,△BOC,△BCD,△DOC,共8个.三角形的边练习题(二)一、选择题1.如图,以BC为边的三角形有( )A.3个B.4个C.5个D.6个2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为( )A.4B.3C.2D.13.已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为( )A.3 cmB.6 cmC.9 cmD.3 cm或6 cm二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.7.小兵用长度为10 cm,45 cm和50 cm的三根木条钉一个三角形时,不小心将50 cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25 cm,你怎样通过截木条的方法钉成一个三角形木架?(二)参考答案1.答案 B 以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.答案 B 选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.答案 A 当3 cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长==4.5(cm),此时能组成三角形.∴底边长为3 cm,故选A.4.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.答案2<a<14解析根据三角形的三边关系,得解得2<a<14.6.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△A BC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.解析(1)∵两根木条的长为10 cm,45 cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10, 即35<x<55,∵第三根木条长为50 cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25 cm,则还剩25 cm.要想钉成一个三角形木架,可以将45 cm长的木条折成大于15 cm且小于35 cm的木条.三角形的边练习题(三)1.一位同学用三根木棒两两相交拼成如下图形,其中符合三角形概念的是( )2.如图所示,∠BAC的对边是( )A.BD B.DC C.BC D.AD3.如图所示.(1)图中共有多少个三角形?(2)写出其中以EC为边的三角形;(3)若有一个公共角的两个三角形称为一对“共角三角形”,则以∠B为公共角的“共角三角形”有哪些?4.下列关于三角形按边分类的图示中,正确的是(D)5.下列说法正确的是( )A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形6.如图,图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能7.已知a,b,c是三角形的三边长,则下列不等式中不成立的是( )A.a+b>c B.a-b>c C.b-c<a D.b+c>a8.(岳阳中考)下列长度的三根小木棒能构成三角形的是( )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cm C.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm 9.(崇左中考)如果一个三角形的两边长分别为2和5,那么第三边长可能是( )A.2 B.3 C.5 D.810.(怀化中考改编)等腰三角形的两边长分别为4 cm和8 cm,求它的周长.11.如图,图中三角形的个数是( )A.3 B.4 C.5 D.612.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)13.已知三角形的两边长为6和8,则第三边长x的取值范围是( )A.x>2 B.x<14 C.2<x<14 D.2≤x≤1414.有四条线段,长分别为3 cm、5 cm、7 cm、9 cm,如果用这些线段组成三角形,可以组成__个三角形.15.已知三角形的两边长分别为2 cm和7 cm,最大边的长为a cm,则a的取值范围是_________.16.(大庆中考)如图,①是一个三角形,分别连接这个三角形三边的中点得到图形②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为_______.17.(教材P3例题改编)用一条长为25 cm的绳子围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么三角形的各边长是多少?(2)能围成有一边的长是6 cm的等腰三角形吗?为什么?18.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+|b-c|=0,试判断△ABC的形状;(2)若a,b,c满足(a-b)(b-c)=0,试判断△ABC的形状;(3)化简:|a-b-c|+|b-c-a|+|c-a-b|.19.已知等腰三角形的周长为20 cm,设腰长为x cm.(1)用含x的代数式表示底边长;(2)腰长x能否为5 cm,为什么?(3)求x的范围.(三)参考答案1.D2. C3.解:(1)图中共有5个三角形.(2)△ACE,△DCE,△BCE.(3)△DBE与△CBE,△CBA与△CBE,△DBE与△CBA.4.B5.D6.D7. B8. D9. C10.解:若4 cm的边长为腰,8 cm的边长为底,4+4=8,由三角形的三边关系知,该等腰三角形不存在;若8 cm的边长为腰,4 cm的边长为底,则满足三角形的三边关系,且等腰三角形的周长为:8+8+4=20(cm).11. C12. A 13. C 14. 3 15. 7≤a<9 16. (4n-3)17. 解:(1)设底边长为x cm,则腰长为2x cm,根据题意,得2x+2x+x=25.解得x=5.∴三角形的三边长分别为:10 cm,10 cm,5 cm.(2)若长为6 cm的边是腰,则底边长为:25-6×2=13 cm.∵6+6<13,∴不能围成三角形,即长为6 cm的边不能为腰长;若长为6 cm的边是底边,则腰长为:(25-6)÷2=9.5,满足三角形的三边关系.综上所述,能围成底边长是6 cm的等腰三角形,且三角形的三边长分别为9.5 cm,9.5 cm,6 cm.18.解:(1)∵|a-b|+|b-c|=0,∴a-b=0且b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵(a-b)(b-c)=0,∴a-b=0或b-c=0.∴a=b或b=c.∴△ABC为等腰三角形.(3)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a +b +c.19. 解:(1)底边长为(20-2x) cm .(2)若腰长为5 cm ,则底边长为20-2×5=10(cm ). ∵5+5=10,不满足三角形的三边关系, ∴腰长不能为5 cm .(3)根据题意,得⎩⎪⎨⎪⎧x>0,20-2x>0.解得0<x<10.由三角形的三边关系,得x +x>20-2x.解得x>5. 综上所述,x 的范围是5<x<10.三角形的边练习题(四)一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个C.3个 C.4个2.如果三角形的两边长分别为3和5,则周长L 的取值范围是( ) A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm 和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm 的木棒B.20cm 的木棒;C.50cm 的木棒D.60cm 的木棒 4.已知等腰三角形的两边长分别为3和6,则它的周长为( ) A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( ) A.2个 B.3个 C.4个 D.5个 二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、解答题已知等腰三角形的两边长分别为4,9,求它的周长.(四)参考答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5.5cm 6.7cm 三、22三角形的边练习题(五)一、选择题1.三角形是()A.连接任意三角形组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C.由三条线段组成的图形D.以上说法均不对2.若△ABC三条边的长度分别为m,n,p,且()02=-+-pnnm,则这个三角形为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个等腰三角形一定不是等腰三角形D.一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.(2012·海南)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4cm C. 7 cm D.11cm6.(2012·义乌)一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2 B.3 C.4 D.87.(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远8.(2012•台湾)如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.5二、填空题9.(2006•绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对10.(2009•呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n个图形中,互不重叠的三角形共有__________个(用含n的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有__________ 个三角形.17.如图,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为__________.(第7题)(第8题)(第9题)18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.(2006•贵阳)两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为__________个;(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?(3)当n=2006时,按上述规则画出的图形中,最少有多少个三角形?20.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出__________个三角形;(2)其中以C为顶点可以画出__________个三角形.21.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.1122.如图,△ABC 中,A1,A2,A3,…,An 为AC 边上不同的n 个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:若出现了45个三角形,则共连接了多少个点?若一直连接到An,则图中共有__________个三角形.23.一个三角形三边长之比为2:3:4,周长为36cm ,求此三角形的三边长.(五)参考答案 一、选择题1.B2.B3.D4.C5.C6.C7.C8.C 二、填空题9.3 10.钝角 11.11或13 12.AE,BD,AB 13.2 14.(3n+1) 15.3 16.28 17.2008 18.10 三、解答题 19.解:(1)4个;(2)当有n 对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个.答:当n=2006时,最少可以画4010个三角形. 20.解:(1)如图,以AB 为一边的三角形有△ABC 、△ABD 、△ABE 共3个;(2)如图,以点C 为顶点的三角形有△ABC 、△BEC 、△BCD 、△ACE 、△ACD 、△CDE 共6个. 故答案为:(1)3,(2)6.1221.解:第一种是取各边的中点,分别取,AB .BC ,AC 的中点D ,E ,Y ,连接DE ,EY 和AE ,所形成的四个三角形面积相等(如下图).第二种,在BC 边上取四等分点D ,E ,F ,分别连接AD ,AE ,AF ,所形成的四个三角形面积相等(如下图).22.解:(2)8个点;(3)1+2+3+…+(n+1)= )2)(1(21++n n 23.解:设三边长分别为2x ,3x ,4x , 由题意得,2x+3x+4x=36, 解得:x=4.故三边长为:8cm ,12cm ,16cm .。
三角形三边关系练习题
三角形三边关系练习题1、假设等腰三角形的两边长分别为3和7,那么它的周长为_______; 假设等腰三角形的两边长分别是3和4,那么它的周长为_____.2、假设等腰三角形的腰长为6,那么它的底边长a 的取值范围是________;假设等腰三角形的底边长为4,那么它的腰长b 的取值范围是_______.3、假设三角形的周长是60cm ,且三条边的比为3:4:5,那么三边长分别为_______4、假设△ABC 的三边长都是整数,周长为11,且有一边长为4,那么这个三角形可能的最大边长是___________.5、线段3cm,5cm,xcm,x 为偶数,以3,5,x 为边能组成______个三角形。
6、长为10、7、5、3的四跟木条,选其中三根组成三角形有___种选法。
7、三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥8、如果三角形的两边长分别为3和5,那么周长L 的取值范围是( )A.6<L<15B.6<L<16C.11<L<13D.10<L<169、现有两根木棒,它们的长度分别为20cm 和30cm,假设不改变木棒的长度, 要钉成一个三角形木架,应在以下四根木棒中选取 ( )A.10cm 的木棒B.20cm 的木棒;C.50cm 的木棒D.60cm 的木棒10、等腰三角形的两边长分别为3和6,那么它的周长为(11、三角形的三边长为连续整数,且周长为12cm,那么它的最短边长为( )A.2cmB.3cmC.4cmD.5cm12、三角形的周长为9,三边长都是整数,那么满足条件的三角形共有( )个13、等腰三角形的两边长分别是2和5,那么它的周长是〔 A 、7 B 、9 C 、12 D 、9或1214、一个等腰三角形,周长为20cm ,一边长6cm ,求其他两边长。
15、等腰三角形的两边长分别为4,9,求它的周长.课后作业1、在△ABC 中,假设a =3,b =5,那么第三边c 的取值范围是____________。
直角三角形三边关系练习题(含答案)
直角三角形三边关系练习题(含答案)
问题一
已知直角三角形的两条直角边分别为3 cm和4 cm,请计算斜
边的长度。
解答一
根据勾股定理,斜边的长度可以通过以下公式计算:
$$斜边长度 = \sqrt{直角边1^2 + 直角边2^2}$$
代入已知数值,可得:
$$斜边长度 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$
所以斜边的长度为5 cm。
问题二
已知直角三角形的斜边长为10 cm,其中一个直角边长为6 cm,请计算另一个直角边的长度。
解答二
根据勾股定理,直角边的长度可以通过以下公式计算:
$$直角边长度 = \sqrt{斜边^2 - 另一直角边^2}$$
代入已知数值,可得:
$$直角边长度 = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$$
所以另一个直角边的长度为8 cm。
问题三
已知直角三角形的一个直角边长为5 cm,另一个直角边长为12 cm,请计算斜边的长度。
解答三
根据勾股定理,斜边的长度可以通过以下公式计算:
$$斜边长度 = \sqrt{直角边1^2 + 直角边2^2}$$
代入已知数值,可得:
$$斜边长度 = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$
所以斜边的长度为13 cm。
以上就是直角三角形三边关系的练习题及其答案。
希望对你有帮助!。
三角形的边练习题及答案
7.1.1 三角形的边基础过关作业1.下图中有几个三角形?用符号表示这些三角形.2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( )A .1个B .2个C .3个D .4个3.现有两根木棒,它们的长分别为40cm 和50cm ,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取( )A .10cm 长的木棒B .40cm 长的木棒C .90cm 长的木棒D .100cm 长的木棒4.下列长度的各组线段中,能组成三角形的是( )A .3cm ,12cm ,8cmB .6cm ,8cm ,15cmC .2.5cm ,3cm ,5cmD .6.3cm ,6.3cm ,12.6cm5.如图,在△ABC 中,AB=AC ,D 为AC 上一点,试说明AC>12(BD+CD ).6.已知一个三角形的两边长分别是3cm 和4cm ,则第三边长x 的取值范围是____.•若x 是奇数,则x 的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.7.已知等腰三角形的两边长分别是3和6,则它的周长等于( )A .12B .12或15C .15D .15或188.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为多少?综合创新作业9.(综合题)已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状.10.(应用题)某海军在南海某海域进行实弹演习,岛礁A的周围方圆10•千米内的区域为危险区域,有一艘渔船误入离A岛4千米的B处(如图),为了尽快驶离危险区域,该船应沿什么方向航行?为什么?11.(创新题)已知等腰三角形的周长为8,边长为整数,求这个三角形的腰长.12.(,怀化)等腰三角形两边长分别是2cm和5cm,则这个三角形周长为( •)A.9cm B.12cm C.9cm或12cm D.14cm13.(易错题)已知等腰三角形的一边长等于4,另一边长等于9,则周长为_____.名优培优作业14.(探究题)在农村电网改造中,四个自然村分别位于图中的A、B、C、D处.现计划安装一台变压器,使变压器到四个自然村的输电线路的电线总长最短,那么这个变压器应安装在AC、BD的交点E处,你知道这是为什么吗?15.用21根火柴组成一条金鱼的形状(如图),在整个鱼的图案中,有许多大大小小的三角形,如果拿去其中的一根火柴,最多能减少几个三角形?数学世界三角形的边三角形鸡圈一位农夫建了一个三角形的鸡圈.•鸡圈是用铁丝网绑在插入地里的桩子而围成的.(1)沿鸡圈各边的桩子间距相等.(2)等宽的铁丝网绑在等高的桩子上.(3)这位农民在笔记本上作了如下的记录:面对仓库那一边的铁丝网的价钱:10美元;面对水池那一边的铁丝网的价钱:20美元;面对住宅那一边的铁丝网的价钱:30美元;(4)他买铁丝网时用的全是10美元面额的钞票,而且不用找零.(5)他为鸡圈各边的铁丝网所付的10美元钞票的数目各不相同.(6)在他记录的三个价钱中,有一个记错了.这三个价钱中哪一个记错了?(提示:鸡圈各边铁丝网的价钱之比一定等于它们的长度之比.•各边铁丝要有怎样的相对长度才能构成一个三角形的鸡圈呢?)答案:1.解:图中共有8个三角形,分别是:△BCA、△BCD、△BCE、△BCO、△BOD、•△COE、△BEA、△CDA.点拨:数三角形的个数,一定要按一定的次序去数.如按图形的形成过程数,按三角形的大小顺序数等,切忌盲目,造成重复和遗漏.2.B 点拨:说法(1)、(4)正确,故选B.3.B 4.C5.解:在△ABD中,AB+AD>BD,因AB=AC,故AC+AC-CD>BD,即2AC>BD+CD.从而可知AC>12(BD+CD).6.1cm<,5cm;2;2cm,4cm,6cm;3点拨:∵(4-3)cm<,∴1cm<x<7cm.∵若;∴这样的三角形有3个.7.C 点拨:由题设知,等腰三角形的三边长可能为3,3,6或6,6,3.但3+3=6,说明以3,3,6为边长构不成三角形.∴这个等腰三角形的周长为15,故选C.8.解:设第三条边长为c,其余两条边长分别为a和b,且a>b,则有a+b+c为奇数,a-b=5,所以2b+5+c为奇数,故c为偶数.又a-b<c,故c>5,c的最小值为6.9.解:∵(b-2)2≥0,│c-3│≥0,且(b-2)2+│c-3│=0,∴b-2=0,c-3=0.即b=2,c=3.∵a为方程│x-4│=2的解,∴a=2或6.经检验,当a=6时,不满足三角形三边关系定理,故舍去.∴a=2,b=2,c=3.∴△ABC的周长为7,△ABC为等腰三角形.10.解:该船应沿射线AB方向航行.理由:如答图,设射线AB与圆交于点C,再在圆上另取一点D,连接AD、•BD,在△ABD中,有AB+BD>AD(三角形两边的和大于第三边).但半径AD=AC=AB+BC,∴AB+BD>AB+BC.∴BD>BC.11.解:设这个等腰三角形的腰长为x,底边长为y,则y=8-2x.∵边长为整数,∴x可取1,2,3.当x=1时,y=6;当x=2时,y=4;当x=3时,y=2.∴三边长可能为1,1,6或2,2,4或3,3,2.但以2,2,4或1,1,6为边长均构不成三角形,所以三边长只能为3,3,2.故这个三角形的腰长为3.12.B 点拨:如果2cm是腰,则2+2<5,不能组成三角形,这一情形要舍去.那么2cm只能是底边,则周长为2+5+5=12(cm).13.22 点拨:解答本题易错误地填入17或22两个答案.14.解:如答图,另取点E′,连接AE′、BE′、CE′、DE′.在△BDE′中,DE′+BE′>DB.在△ACE′中,AE′+CE′>AC.∴AE′+BE′+CE′+DE′>AC+BD.即AE+BE+CE+DE最短.15.解:如答图所示,最多能减少3个三角形.数学世界答案:答:面对仓库的那一边铁丝网的价钱是40美元而不是10美元.点拨:根据(1)沿鸡圈各边的桩子间距相等.(2)等宽的铁丝网绑在等高的桩子上.(3)这位农民在笔记本上作了如下的记录:面对仓库那一边的铁丝网的价钱:10美元;面对水池那一边的铁丝网的价钱:20美元;面对住宅那一边的铁丝网的价钱:30美元;和(6)在他记录的三个价钱中,有一个记错了.三角形鸡圈三条边的长度之比为1:2:3,但是其中有一个数字是错误的.根据(4)他买铁丝网时用的全是10美元面额的钞票,•而且不用找零.错误的数字代之以一个整数.根据(5)•他为鸡圈各边的铁丝网所付的10美元钞票的数目各不相同.错误的数字必须代之以大于3的整数.如果以大于3的整数取代2或3,则不可能构成一个三角形,因为三角形任何两边之和一定大于第三边.•因此1是错误的数字,也就是说,面对仓库的那一边铁丝网的价钱10美元记错了.如果用大于4的整数取代1,仍然不可能构成鸡圈.但是,如果用4取代1,则可以构成一个鸡圈.因此,面对仓库的那一边铁丝网的价钱是40美元而不是10美元.。
与三角形有关的线段练习题(含答案)
与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。
八年级三角形三边关系的试题
八年级三角形三边关系的试题1.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角选A2.图中三角形的个数是()A.8个B.9个C.10个D.11个【考点】三角形.【分析】根据三角形的定义,找出图中所有的三角形即可.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.【点评】此题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.3.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.若三角形的三边长分别为3,4,x,则x的值可能是()A.1B.6C.7D.10【考点】三角形三边关系【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可.【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.5.在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10B.AC=10或4C.4<AC<10D.4≤AC≤10【考点】三角形三边关系;两点间的距离.【分析】此题要分三点共线和不共线两种情况.三点共线时,根据线段的和、差进行计算;三点不共线时,根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行计算.【解答】解:若点A,B,C三点共线,则AC=4或10;若三点不共线,则根据三角形的三边关系,应满足大于4而小于10.所以4≤AC≤10.故选:D.【点评】此题主要考查了线段的和与差以及三角形的三边关系,关键是要考虑全面,此题有两种情况,不要漏解.6.下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)【考点】三角形三边关系.【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.7.已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个【考点】三角形三边关系.【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.【点评】此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二.填空题(共7小题)8.三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.【考点】三角形.【分析】三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.【解答】解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.【点评】此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).9.平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是4个.【考点】三角形.【分析】根据三角形的定义(由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形)填空.【解答】解:∵平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,∴用它们作顶点可以组成三角形有:△ABC、△ABD、△ACD和△BCD,共4个.故填:4.【点评】本题考查了三角形的定义.注意,是不在同一直线上的三个点才可以连接成为三角形.10.已知三角形的三边的长分别是5、x、9,则x的取值范围是4<x<14.【考点】三角形三边关系.【分析】由三角形的两边的长分别为9和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:9﹣5<x<9+5,即:4<x<14.故答案为:4<x<14.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.11.一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为8或10cm.【考点】三角形三边关系.【点评】考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.12.若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为15cm或18cm.【考点】三角形三边关系.【分析】分情况考虑:当相等的两边是4cm时或当相等的两边是7cm时,然后求出三角形的周长.【解答】解:当相等的两边是4cm时,另一边长为7cm,则三角形的周长是4×2+7=15cm,当相等的两边是7cm时,则三角形的周长是4+7×2=18cm.故答案为:15cm或18cm.【点评】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.2·1·c·n·j·y13.小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x千米,则x的值应满足3≤x≤7.【考点】三角形三边关系.【分析】小明家、小丽家和学校可能三点共线,也可能构成一个三角形,由此可列出不等式5﹣2≤x≤5+2,化简即可得出答案.【解答】解:依题意得:5﹣2≤x≤5+2,即3≤x≤7.故答案为:3≤x≤7;【点评】本题考查的是三角形三边关系定理的应用,解此类题目时要注意三个地点的位置关系.。
与三角形有关的边、角的练习试题
一、选择题 家长签名: 如图1所示,以AB 为一边的三角形有( )个 个 个 个2.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm3.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ),2,3,5,8 ,4,5 ,5,104.已知三角形的三边长分别为4、5、x ,则x 不可能是( )A .3 B .5 C .7 D .95.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm6.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )7.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) ∶2∶4∶3∶4∶4∶7∶3∶48.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm或18cm D.不能确定9.下列各组给出的三条线段中不能组成三角形的是( ) ,4,5B.3a ,4a ,5a +a ,4+a ,5+aD.三条线段之比为3∶5∶810.如图2,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( ) 是△ABC 的高 是△BCD 的高 是△ABD 的高是△BEF 的高11.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不能确定12.三角形的三条高的交点一定在( ) A.三角形内部B.三角形的外部C.三角形的内部或外部D.以上答案都不对13.下列把四边形的不稳定性合理地应用到生产实际中的例子有( )(1)活动挂架 (2)放缩尺 (3)屋顶钢架 (4)能够推拢和拉开的铁拉门(5)自行车的车架(6)大桥钢架图1图214. 以下列各组线段为边,能组成三角形的是( ),2cm ,4cm B. 2cm ,3cm ,5cm ,6cm ,12cm D. 4cm ,6cm ,8cm 15.已知三角形的三边长分别为4,5,x ,则x 不可能是( ) 16.已知等腰三角形的两边分别为2和5,则它的周长为( )或 917. 任选长为13cm 、10cm 、7cm 、5cm 的四条线段中的三条线段为边,可以组成三角形的个数是( ) 个 个 个 个 18.三角形的角平分线、高和中线均为( )A.直线B.射线C.线段D.以上说法都不正确19.如果三角形三条高的交点是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 以上说法都不正确 20.下列判断中,正确的个数为( )(1)D 是△ABC 中BC 边上的一个点,且BD =CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC =90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD =21∠BAC ,则AD 是△ABC 的角平分线 (4)三角形的中线、高、角平分线都是线段二、填空题1.三角形是具有________的图形,而四边形没有________.2.自行车用脚架撑放比较稳定的原因是________.3.如图3的三角形记作__________,它的三条边是__________,三个顶点分别是_________三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示__________.4.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.5. 已知三角形的三边长分别为3,8,x; 若x 的值为奇数,则x 的值有______个;6.如图4,在△ABC 中,BC 边上的高是_______;在△AFC 中, CF 边上的高是________;在△ABE 中,AB 边上的高是_________. 7.如图5,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是图3图4图5_______,这三条高交于是△_____、△_____、△____的高.8.如图6所示:(1)AD ⊥BC ,垂足为D ,则AD 是______的高,∠_____=∠_____=90°. (2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的_____,∠_____=∠_____=21∠______. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________. (4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.图6 图7 图8 8.如图7,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =______度. 9.如图8,BD =DC ,∠ABN =21∠ABC ,则AD 是△ABC 的______线,BN 是△ABC 的________,ND 是△BNC 的________线. 三、解答题1. 一个三角形中有两边相等,其周长为10,其中一边为3,求其他两边长。
人教版八年级数学上《11.1.1三角形的边》同步练习题(含答案)
初中数学·人教版·八年级上册——第11章三角形11.1与三角形有关的线段11.1.1三角形的边同步练习题测试时间:30分钟一、选择题1.如图,以BC为边的三角形有()A.3个B.4个C.5个D.6个答案B以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()A.4B.3C.2D.1答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cmB.6cmC.9cmD.3cm或6cm答案A当3cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3cm,3cm,6cm不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边长时,腰长=12-32=4.5(cm),此时能组成三角形.∴底边长为3cm,故选A.二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.答案2<a<14解析根据三角形的三边关系,得3 +4 >14,4 -3 <14,解得2<a<14.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.小兵用长度为10cm,45cm和50cm的三根木条钉一个三角形时,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个三角形木架?解析(1)∵两根木条的长为10cm,45cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10,即35<x<55,∵第三根木条长为50cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25cm,则还剩25cm.要想钉成一个三角形木架,可以将45cm长的木条折成大于15cm且小于35cm的木条.。
与三角形有关的边的经典练习题讲课讲稿
与三角形有关的边的经典练习题•选择题:1下列各组线段能组成一个三角形的是() (A)3cm , 3cm , 6cm(C)5cm , 8cm , 12cm2现有两根木条,它们的长分别为 根木条中应选取()(A)0.85m 长的木条 (C)1m 长的木条 3从长度分别为 10cm 、20cm 、30cm 、40cm 的四根木条中,任取三根可组成三角形的个数 是()(A)1 个 (B)2 个 (C)3 个 (D)4 个4若三角形的两边长分别为 3和5,则其周长I 的取值范围是()•(B)6 v I v 16(D)10 v I v 165 •以下说法错误的是()A •三角形的三条咼一定在三角形内部交于一点B •三角形的三条中线一定在三角形内部交于一点C •三角形的三条角平分线一定在三角形内部交于一点D •三角形的三条高可能相交于外部一点6 •如果一个三角形的三条高的交点恰好是这个三角形的一个顶点, ?那么这个 三角形是()A.锐角三角形 B •直角三角形C •钝角三角形D •不能确定1、解答题 (B)2cm ,3cm , 6cm (D)4cm , 7cm , 11cm 50cm ,35cm ,如果要钉一个三角形木架,那么下列四(B)0. 15m 长的木条(D)0.5m 长的木条(A)6 V I V 15 (C)11 v I V 137如下图所示,图中共有几个三角形,并用符号表示出来。
9.已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.11.若三角形两边长为7和10,求最长边x的范围.12•若三边分别为2, x—1, 3,求x的范围.13 .如图,在△ ABC中,D E分别是BC AD的中点,S^BC=4cm2,求S A ABE .(1)写出△ ADC的中线。
⑵写出△ ABC的角平分线。
⑶写出△ ABC的中线15 .如图3, AD是△ABCW边BC上的中线,已知AB=5cnp AC=3cm求△ ABD再△ACES勺周长之差.。
第11章 三角形 11.1 与三角形有关的线段(简答题)(老师版)
第11章三角形11.1与三角形有关的线段(简答题专练)1.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为21厘米和12厘米两部分,求△ABC 各边的长.【答案】△ABC 各边的长为14cm 、14cm 、5cm .【解析】【分析】根据题意,画出示意图,利用三角形的中线定义及三角形周长和三角形的三边关系即可求解三角形三边的长,注意不符合题意的要舍去.【详解】如图,设AB =AC =2x cm ,BC =y cm∵BD 是中线∴AD =CD =x cm若AB +AD =21 cm ,BC +CD =12 cm即22112x x x y +=⎧⎨+=⎩解得:=7x ,5y =此时,AB =AC =14 cm ,BC =5 cm若AB +AD =12 cm ,BC +CD =21 cm即21221x x x y +=⎧⎨+=⎩ 解得:=4x ,17y =∵此时AB =AC =8 cm ,BC =17 cm ,AB +AC <BC∴=4x ,17y =不合题意,舍去综上所述,△ABC 各边的长为14cm 、14cm 、5cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系,在解决等腰三角形的相关问题时,由于等腰三角形的特殊性,一般情况下是需要对其进行分类讨论,才能得解,因此熟练掌握有关等腰三角形边的分类讨论及三边关系的确定是解决本题的关键.2.已知 a 、b 、c 分别表示∆ABC 的三条边长,且∆ABC 的周长为 48 .(1)若c 是三边中最长的边,则c 的最小值是 ;(2)若c = 3a ,求证: 6 < a < 8 ;(3)若 a - c = 10 ,求c 的取值范围;(4)若 a 、b 均为整数,c=16,则这样的三角形共有 个.【答案】(1)16;(2)见解析(3)7 < c < 14 ;(4)8【解析】【分析】(1)根据等边三角形的性质即可求解;(2)根据三角形的三边关系列出不等式的即可求解;(3)根据三角形的三边关系列出不等式的即可求解;(4)依次数出可能的三角形的三边,即可判断.【详解】(1)当∆ABC 为等边三角形时,c 取最小值为48÷3=16; (2)∵c = 3a ,a+b+c=48,∴b=48-4a,∵c+a>b,c-a<b即a+3a>48-4a,3a-a<48-4a,解得6 <a< 8 ;(3)∵a -c= 10,a+b+c=48,∴a=c+10,b=38-2c,∵a+c>b,a-c<b即c+10+c>38-2c,c+10-c<38-2c,解得7 <c< 14 ;(4)根据c=16,a+b+c=48,故所以的情况如下:16,16,16;15,16,17;14,16,18;13,16,19;12,16,20;11,16,21;10,16,22;9,16,23;故为8个.,【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边,两边之差小于第三边. 3.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.【答案】3<x≤10.【解析】【分析】根据三角形的三边关系以及周长不超过37cm列出不等式组,求出x的取值范围即可.【详解】解:∵一个三角形的三边长分别是xcm,(x+2)cm,(x+5)cm,它的周长不超过37cm,∴252537 x x xx x x+++⎧⎨++++≤⎩>,解得:3<x≤10.【点睛】本题考查了三角形的三边关系和不等式组的应用,解题的关键是正确列出不等式组.4.如图,已知ABC ∆,按要求作图.(1)过点A 作BC 的垂线段AD ;(2)过C 作AB 、AC 的垂线分别交AB 于点E 、F ;(3)15AB =,7BC =,20AC =,12AD =,求点C 到线段AB 的距离.【答案】(1)详见解析;(2)详见解析;(3)点C 到线段AB 的距离为285. 【解析】【分析】(1)、(2)根据几何语言作图;(3)利用三角形面积公式得到1122AB CE BC AD =,然后把15AB =,7BC =,12AD =代入计算可求出CE .【详解】解:(1)如图,AD 为所作;(2)如图,CE 、CF 为所作;(3)1122ABC S AB CE BC AD ∆==, 71228155BC AD CE AB ⨯∴===, 即点C 到线段AB 的距离为285. 【点睛】本题考查了作图以及三角形高线的定义,熟练掌握面积法求高线是解题关键.5.已知a 、b 、c 为三角形的三边,||||||P a b c b a c a b c =+----+-+.(1)化简P ;(2)计算()P a b c -+.【答案】(1)a b c +-;(2)2222a b c bc --+.【解析】【分析】(1)根据三角形的三边关系即可得到a+b >c ,a+c >b ,根据绝对值的性质即可去掉绝对值符号,从而化简.(2)将P 值代入进行计算即可.【详解】解:(1)由三角形三边关系知a b c +>,a c b +>,故0a b c +->,0b a c --<,0a b c -+>,||||||P a b c b a c a b c ∴=+----+-+a b c b a c a b c =+-+--+-+a b c =+-,(2)()P a b c -+()()a b c a b c =+--+222a ab ac ab b bc ac bc c =-++-+-+-2222a b c bc=--+.【点睛】此题考查三角形三边关系,绝对值,整式的加减,绝对值,解题关键在于灵活运用各计算法则. 6.如图,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠CAB=90°,求:(1)AD的长;(2)△ACE和△ABE的周长的差.【答案】(1)AD的长度为125cm;(2)△ACE和△ABE的周长的差是1cm.【解析】【分析】(1)根据直角三角形的面积计算方法求解即可;(2)先按图写出两个三角形的周长,再作差计算即可.【详解】解:(1)∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=341255AB ACBC⨯==(cm),即AD的长为125cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+CE+AE﹣(AB+BE+AE)=AC﹣AB=4﹣3=1(cm),即△ACE和△ABE的周长的差是1cm.【点睛】本题考查了利用直角三角形的面积计算斜边上的高和三角形的中线等知识,难度不大,属于基础题型.7.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12 BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S △ABE =S △BCE ,∴S △ABD =S △BCE =12S △ABC =12×20=10(cm 2). (2)△AOE 与△BOD 的面积相等,理由如下.根据(1)可得:S △ABE =S △ABD ,∵S △ABE =S △ABO +S △AOE ,S △ABD =S △ABO +S △BOD ,∴S △AOE =S △BOD .【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;8.已知三角形三边长为a 、b 、c ,且-+--a b c a b c += 10,求b 的值【答案】b=5【解析】【分析】根据三角形的三边关系得出a+b >c ,a−b <c ,再去绝对值即可.【详解】解:∵a 、b 、c 是三角形的三边长,∴a+b >c ,a−b <c , ∴-+--()210a b c a b c a b c a b c a b c a b c b +=+----=+--++==,∴b=5.【点睛】本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.在△ABC 中,AB ﹦9,BC ﹦2,并且AC 为奇数,那么△ABC 的周长为多少?【答案】20【解析】【分析】根据三角形三边关系,找到AC 的取值范围,由AC 为奇数求出AC 长度,即可求出三角形周长.【详解】解:∵AB﹣BC<AC<AB﹢BC,(三角形三边关系)∴9﹣2<AC<9﹢2,即7<AC<11又A C为奇数,∴A C﹦9∴△ABC的周长﹦9+9+2﹦20【点睛】本题考查了三角形的三边关系,三角形的周长,属于简单题,熟悉三边关系是解题关键. 10.满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)△ABC中,∠A=30°,∠C=∠B;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【解析】【分析】根据角的分类对三角形进行分类即可.【详解】(1)∵∠A=30°,∠C=∠B,∠A+∠C+∠B=180°,∴∠C=∠B=75°,∴满足条件的三角形是锐角三角形.(2)∵三个内角的度数之比为1∶2∶3,∴可求得每个内角的度数分别为30°,60°,90°,∴满足条件的三角形是直角三角形.【点睛】本题主要考查了三角形的分类问题.11.如图所示,∠1=∠2=∠3=∠4=24°,根据图形填空:(1)是∠2的3倍的角是_________________(用字母表示)(2)是∠AOD 的12的角有_________个; (3)射线OC 是哪个角的3等分线?又是哪个角的4等分线?【答案】(1)∠A0E 、∠BOC ;(2) 4个;(3)OC 是∠AOE 的3等分线,是∠AOB 的4等分线.【解析】【分析】(1)根据∠1=∠2=∠3=∠4,找出是∠2的3倍的角可以解题;(2)根据∠1=∠2=∠3=∠4,找出图中哪些角是∠AOD 的12, (3)根据∠1=∠2=∠3=∠4,找出射线OC 是哪个角的三等分线、四等分线.【详解】解:(1)1234∠=∠=∠=∠12332AOE ∴∠=∠+∠+∠=∠同理:42332BOC ∴∠=∠+∠+∠=∠(2)4个;(3)∵∠1=∠2=∠3,∴OC 是∠AOE 的三等分线.同理:OC 是∠AOB 的四等分线.【点睛】本题考查了角的度数的计算,考查了角平分线和三等分线的定义,本题中不要漏解是解题的关键.12.如图①,∠AOB=∠COD=90°,OM 平分∠AOC ,ON 平分∠BOD .(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【答案】(1)∠MON=90°;(2)∠MON=90°;(3)∠MON=90°.【解析】【分析】(1)由∠AOB=∠COD=90°,∠BOC=20°,可得∠MOC=∠BON的度数,可得∠MON的度数:(2)同理由∠AOB=∠COD=90°,∠BOC=α,可得∠MOC=∠BON的度数,可得∠MON的度数:(3)由∠AOB=∠COD=90°,∠BOC=α,可得∠AOC=∠BOD=90°+α,∠MOC=∠BON=45°+α可得∠MON 的度数:【详解】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.【点睛】本题主要考查角平分线的性质及角度间的计算.13.如图,在△ABC中,D,E是BC,AC上的点,连接BE,AD,交于点F,问:(1)图中有多少个三角形?并把它们表示出来.(2)△BDF的三个顶点是什么?三条边是什么?(3)以AB为边的三角形有哪些?(4)以F为顶点的三角形有哪些?【答案】答案见解析【解析】试题分析:利用三角形的定义以及三角形有关的角和边概念分别得出即可.试题解析:(1)8个:△ABC,△ABF,△ABE,△ABD,△BDF,△AEF,△ACD,△BCE;(2)三个顶点:B,D,F;三条边:BD,BF,DF;(3)△ABC,△ABF,△ABD,△ABE;(4)△ABF,△BDF,△AEF.【点睛】此题主要考查了三角形有关定义,正确把握相关定义是解题关键.14.木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB,CD 两个木条,这是根据数学上什么原理?【答案】三角形的稳定性【解析】试题分析:用木条固定门框,即是组成三角形,故可用三角形的稳定性解释.如图加上AB,CD两个木条后,可形成两个三角形,防止门框变形.故这种做法根据的是三角形的稳定性.15.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.【答案】小明的做法正确,理由见解析.【解析】试题分析:根据三角形的稳定性可得出答案.小明的做法正确,理由:由三角形的稳定性可得出,四边形ABCD不再变形.。
三角形的边的习题
三角形的边习题1.下图中有几个三角形?用符号表示这些三角形.2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm长的木棒4.下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cmC.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm5.如图,在△ABC中,AB=AC,D为AC上一点,试说明AC>12(BD+CD).6.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.7.已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为多少?综合创新作业9.(综合题)已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状.10.(应用题)某海军在南海某海域进行实弹演习,岛礁A的周围方圆10•千米内的区域为危险区域,有一艘渔船误入离A岛4千米的B处(如图),为了尽快驶离危险区域,该船应沿什么方向航行?为什么?11.(创新题)已知等腰三角形的周长为8,边长为整数,求这个三角形的腰长.12.(2005年,怀化)等腰三角形两边长分别是2cm和5cm,则这个三角形周长为( •) A.9cm B.12cm C.9cm或12cm D.14cm13.(易错题)已知等腰三角形的一边长等于4,另一边长等于9,则周长为_____.名优培优作业14.(探究题)在农村电网改造中,四个自然村分别位于图中的A、B、C、D处.现计划安装一台变压器,使变压器到四个自然村的输电线路的电线总长最短,那么这个变压器应安装在AC、BD的交点E处,你知道这是为什么吗?15.用21根火柴组成一条金鱼的形状(如图),在整个鱼的图案中,有许多大大小小的三角形,如果拿去其中的一根火柴,最多能减少几个三角形?。
三角形的边练习题
一、选择题(每小题5分,共30分)1.若有一条公共边的两个三角形称为一对“共边三角形”,如图所示,以BC为公共边的“共边三角形”有( )A.2对 B.3对 C.4对 D.6对2.把14cm长的细铁丝截成三段,围成不等边三角形,并且使三边长均为整数,那么( )A.只有一种截法 B.只有两种截法 C.有三种截法 D.有四种截法3.有下列长度的三条线段,能组成三角形的是( )A.1cm、2cm、3cm B.1cm、4cm、2cmC.2cm、3cm、4cm D.6cm、2cm、3cm4.如果线段A、B、C能组成三角形,那么它们的长度可能比值为( )A.1︰2︰4 B.1︰3︰4 C.3︰4︰7 D.2︰3︰45.已知等腰三角形的两边长分别为2和5,则它的周长为( )A.12或9 B.12 C.9 D.76.一个三角形的两边长分别为4和8,且第三边为奇数,那么第三边长为( )A.5或7 B.7或9 C.9或11 D.5、7、9或11二、填空题(每空5分,共35分)7.三角形三条边的关系:三角形任意两边之和( ),任意两边之差( ).8.三条线段的长分别为:(1)3,8,10;(2)5,5,8;(3)4.5,3.5,8;(4)12,12,12.能组成三角形的有( )组.9.如果等腰三角形的一边等于5,另一边等于6,则它的周长等于( ).10.已知△ABC的三边长分别为5、7、A,则A的取值范围为( ).11.已知一个三角形的周长为15,且其中的两边都等于第三边的2倍,则这个三角形的最短边为( ).12.三角形的两条边长分别为6和10,它的周长x的取值范围是( ).三、解答题13.(本小题满分8分)如图所示是某小屋的屋顶的框架图,写出图中所有三角形.14.(本小题满分9分)如果三角形的两边长分别为5和2,且它的周长为偶数,求第三边的长.15.(本小题满分9分)一个三角形的三边之比是4︰5︰6,且周长为45,求三角形的三边的长.。
三角形的边和角练习题
三角形的边和角练习题在平面几何中,三角形是最简单且最基础的几何形状之一。
三角形由三条边和三个内角组成,对于提高我们理解几何形状和解决几何问题的能力来说,熟练掌握三角形的边和角是至关重要的。
本文将提供一些关于三角形边和角的练习题,帮助读者加深对该概念的理解。
练习题一:边的关系求解1. 已知一个三角形的两条边长分别为3cm和4cm,第三条边的长度应为多少?2. 如果一个三角形的两条边长分别为6cm,8cm,那么第三条边的长度可以是多少?练习题二:角的关系求解3. 在一个等边三角形中,每个内角的度数是多少?4. 如果一个三角形的两个角度分别为60°和80°,那么第三个角的度数是多少?练习题三:边与角的关系求解5. 如果一个三角形的两个角度分别为30°和60°,那么第三个角的度数是多少?另外,这个三角形是等边三角形吗?6. 如果一个三角形的两个角度分别为45°和90°,那么第三个角的度数是多少?另外,这个三角形是等腰三角形吗?练习题四:复杂角的求解7. 在一个直角三角形中,已知一条直角边长度为5cm,斜边长度为13cm,求另一条直角边的长度。
8. 在一个锐角三角形中,已知两条边的长度分别为8cm和10cm,两边夹角的度数为45°,求第三条边的长度。
练习题五:应用题9. 在一个等边三角形中,每个内角的度数是多少?10. 如果一个三角形有两条边的长度分别为4cm和5cm,而这两条边夹角的度数为90°,那么第三条边的长度是多少?以上是关于三角形的边和角练习题。
通过解答这些问题,你可以更好地理解三角形的性质和特点,并且在解决实际问题时能够灵活运用三角形的知识。
希望这些练习题能够帮助你提高对三角形的理解和应用能力。
祝你学习进步!。
《与三角形有关的线段》练习题
11.1《与三角形有关的线段》一、选择题1.下列给出的三条线段中,不能组成三角形的是( ) A 、a+1,a+2,a+3(a >0 ) B 、三边之比为5 : 6 : 10 C 、30cm ,8cm ,10cmD 、a=2m ,b=3m ,c=5m -1( m >1) 2. 如右图,图中共有三角形( ) A 、4个 B 、5个 C 、6个 D 、8个3. 如果线段a ,b ,c 能组成三角形,那么,它们的长度比可能是( ) A 、1∶2∶4 B 、1∶3∶4 C 、3∶4∶7 D 、2∶3∶44.如果三角形的两边分别为7和2,且它的周长为偶数那么第三边的长为( ) A 、5 B 、6 C 、7 D 、85.等腰三角形的两边长分别为6cm ,3cm ,则该等腰三角形的周长是( ) A 、9cm B 、12cm C 、12cm 或15cm D 、15cm 6.如右图所示,在△ABC 中,AD 为BC 边上的中线,若AB=5cm ,Ac=3cm ,则△ABD 的周长比△ACD 周长多( ) A 、5cm B 、3cm C 、8cm D 、2cm7.如图所示,在△ABC 中,D , E 分别是AC 、BC 的中点,则下列说法正确的是( ) A 、BD 是△ABC 的平分线 B 、BD 是Ac 边上的高 C 、BD 是Ac 边上的中线 D 、DE 是△ABC 的中线8.下列图形中具有不稳定性的是( )A 、长方形B 、等腰三角形C 、直角三角形D 、锐角三角形ACBD二、填空题9. 小明的家在如图所示的街道中的A 处,B 处是 小明所在的学校,小明上学走 路最近, 理由是 .10. 一个三角形中有两边相等,其周长为10,其中 一边为3,则其他两边长分别为 .11.如右图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条。
这样做的数学道理是 ; 12.如图⑴,图中所有三角形的个数为 ,在△ABE 中, AE 所对的角是 ,∠ABC 所对的边是 ,AD 在△ADE 中,是 的对边,在△ADC 中,是 的对边; 13.如图⑵,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC的平分线为 ;14.如图⑶,D 、E 是边AC 的三等分点, 图中有 个三角形, BD 是三角形 中 边上的中线,BE 是三角形 中 边上的中线;15.在△ABC 中,AB=AC ,如果已知此三角形两边的长分别为4和9,则第三边的长为 ;若此三角形两边的长分别为7和11,则此三角形的周长为 。
人教版八年级上册数学11.1与三角形有关的线段专题练习含答案
与三角形有关的线段一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B.5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC 为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。
初中三角形专题必做40题
初中三角形专题必做40题1. 两条边的和与差1) 已知等腰三角形的底边和等腰边的差是10cm,等腰边的长度是14cm,请计算底边的长度。
2) 一个三角形的两条边的和是31cm,差是3cm,求这两条边的长度分别是多少?2. 两角的和与差1) 已知一个三角形的两个内角是75度和45度,求第三个角的大小。
2) 一个三角形的两个内角的和是110度,差是20度,求这两个角的度数分别是多少?3. 利用三角形的特性1) 已知一个三角形的两个角分别是40度和75度,求第三个角的大小,判断它属于什么类型的三角形。
2) 在一个等边三角形中,每个角的度数是多少?3) 一个三角形的两个角分别是50度和60度,求第三个角的度数,并判断它是否为锐角三角形。
4. 判断三角形的类型1) 已知一个三角形的三条边分别是3cm、4cm、5cm,请判断这个三角形的类型。
2) 一个三角形的两条边分别是10cm和12cm,夹角是75度,请判断这个三角形的类型。
5. 根据给定条件计算三角形的面积1) 已知一个等边三角形的边长是8cm,求其面积。
2) 一个直角三角形的两个直角边分别是5cm和12cm,请计算其面积。
3) 在一个三角形中,已知两边分别是6cm和8cm,夹角是30度,请计算其面积。
6. 根据面积和边长计算三角形的高1) 已知一个等腰直角三角形的面积是24cm²,求其斜边的长度。
2) 在一个三角形中,已知底为10cm,高为8cm,请计算其面积。
7. 根据三角形的面积计算某一边的长度1) 在一个三角形中,已知底为16cm,高为10cm,请计算其面积。
2) 在一个等腰三角形中,底边的长度是12cm,高为8cm,求其面积。
8. 特殊三角形的性质1) 一个等边三角形的高与边长的关系是多少?2) 已知一个等腰三角形的底边是6cm,腰长是8cm,请计算其面积。
3) 在一个等腰直角三角形中,直角边的长度是10cm,请计算其斜边的长度。
通过以上40道题目的练习,你可以对初中阶段的三角形专题有更深入的了解,掌握三角形的基本概念、性质以及计算方法。
专题 认识三角形(与三角形有关的线段)(专项练习)数学七年级下册(北师大版)
专题4.2 认识三角形(与三角形有关的线段)(基础篇)(专项练习)一、单选题1.下列图形具有稳定性的是( )A .B .C .D .2.在△ABC 中,若△A -△B =90°,则△ABC 是( ) A .钝角三角形 B .直角三角形C .锐角三角形D .等边三角形3.下列线段中不能组成三角形的是( ) A .2,4,3B .12,6,8C .5,12,9D .3.5,6,2.54.图中,以DE 为边的三角形有( )A .2个B .3个C .4个D .5个5.以下是在钝角三角形ABC 中画BC 边上的高,其中画法正确的是( )A .B .C .D .6.如图,在ABC 中,AE 是高,BD 是角平分线,CF 是中线,下列说法不正确的是( )A .ACF BCF ∠=∠B .ABD CBD ∠=∠C .AEC AEB ∠=∠D .AF BF =7.周末李强和朋友到森林公园游玩,为测量园内湖岸A ,B 两点之间的距离,如图,李强在湖的一侧选取了一点O ,测得20m OA =,8m OB =,则A ,B 间的距离可能是( )A .10mB .22mC .30mD .32m8.如图,在ABC 中,12∠=∠,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上一点,CF AD ⊥于H ,下面判断正确的有( )A .AH 是ACF △的角平分线和高B .BE 是ABD △边AD 上的中线C .FH 是ABD △边AD 上的高D .AD 是ABE 的角平分线9.M 是直线l 上一点,N 是直线l 外一点,在直线l 上求作一点P ,使得PM PN -的值最大,则这点P ( )A .与M 重合B .在M 的左边C .在M 的右边D .是直线l 上任一点10.如图,在ABC 中,已知点D ,E ,F 分别为边AC BD CE ,,的中点,且阴影部分图形面积等于4平方厘米,则ABC 的面积为( )平方厘米A .8B .12C .16D .18二、填空题11.一个三角形的两条边长分别为3,5,周长为11,那么它的第三边长为__________. 12.已知三角形的三边长分别为2,5,x ,则x 的取值范围是______.13.如图,AD 为ABC 的中线,BE 为ABD 的中线.若ABC 的面积为30,5BD =,则BDE 中BD 边上的高为______.14.如图,在ABC 中,AD 是BC 边上的中线,ADC △的周长比ABD △的周长多4,24AB AC +=,则AC 的长为__________.15.如图,在三角形ABC 中,AD 是中线,DE AB ⊥于E ,DF AC ⊥于F ,若6cm,4cm AB AC ==,则DEDF=____________.16.如图,△ABC 的角平分线AD ,中线BE 相交于点O ,有下列结论:△AO 是△ABE 的角平分线;△BO 是△ABD 的中线;△DE 是△ADC 的中线;△ED 是△EBC 的角平分线.其中正确结论的序号是 ________.17.已知a 、b 、c 是ABC 的三边,74a b ==,,c 为整数,则c 的最大值为_______. 18.如图所示,BC 是新建快速公路,长度为10km ,90A ∠=︒,6AB =km ,8AC =km ,一小镇位于点A ,现在该小镇要修一条公路到达快速公路,则修这条公路最短长度为______km .三、解答题19.如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm . (1) 求第三边x 的范围;(2) 当第三边长为奇数时,求三角形的周长.20.某木材市场上的木棍规格与价格如表:(1) 现再从该市场上购买一根木棍,钉成一个三角形支架,若接头忽略不计,问有几种购买方案?(2) 若想花费最少的钱,则他应该选择的规格是哪种?21.如图,ABC 中,按要求画图: (1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ; (3) 画出ABC 中AB 边上的高CF .22.已知a ,b ,c 为三角形的三边,满足654a b c==,且26a b c +-=,求三角形周长.23.如图所示,已知,AD AE 分别是ABC 的高和中线,6cm,8cm,10cm,90AB AC BC CAB ===∠=︒.试求:(1) AD 的长; (2)ABE 的面积;(3) ACE △和ABE 的周长的差.24.如图,点D ,E ,F 分别是ABC 的三条边的中点,设ABC 的面积为S ,求DEF 的面积.你可以这样考虑:(1) 连接AE ,AEC △的面积是多少?(2) 由第(1)题,你能求出ECF △的面积吗?ADF △和DBE 的面积呢?参考答案1.D【分析】根据三角形具有稳定性解答.解:选项中只有选项D是三角形组成,故具有稳定性.故选:D.【点拨】本题考查了三角形具有稳定性,是基础题,需熟记,关键是根据三角形具有稳定性解答.2.A【分析】由已知条件,结合三角形的分类即可解答.解:在三角形ABC中,△A-△B=90°,∴∠=︒+∠A B90∴∠>︒A90△△ABC是钝角三角形故选:A.【点拨】本题考查了三角形的分类,是基础考点,掌握相关知识是解题关键.3.D【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边对各选项分析判断.+>,△能够组成三角形,故本选项不符合题意;解:A、△234B、△6812+>,△能够组成三角形,故本选项不符合题意;+>,△能够组成三角形,故本选项不符合题意;C、△5912+=,△不能够组成三角形,故本选项符合题意.D、△3.5 2.56故选:D.【点拨】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.C【分析】根据三角形的边得出三角形即可.解:以DE为边的三角形有△DEC,△AED,△DEF,△BED,故选:C.【点拨】此题考查三角形,关键是根据三角形的边解答.5.D【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.解:A、没有经过顶点A,不符合题意;B、AD不垂直于BC,不符合题意;C 、垂足没有在BC 上,不符合题意;D 、高AD 交BC 的延长线于点D 处,符合题意. 故选:D .【点拨】本题考查了三角形的高的画法,过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高,熟练掌握此定义是解决问题的关键.6.A【分析】根据三角形角平分线、高和中线的性质逐一判断即可.解:A 、当CF 是角平分线时,ACF BCF ∠=∠一定成立,但是CF 是中线,所以选项描述错误,故本选项符合题意;B 、由于BD 是角平分线,所以ABD CBD ∠=∠,故本选项不符合题意;C 、由于AE 是高,所以90AEC AEB ∠=∠=︒,故本选项不符合题意;D 、由于CF 是中线,所以点F 是AB 边的中点,即AF BF =,故本选项不符合题意; 故选:A【点拨】本题考查了三角形的角平分线、高和中线,解决本题的关键是掌握以上的性质并熟练的运用.7.B【分析】根据三角形三边的关系求出AB 的取值范围即可得到答案. 解:由题意得,OA OB AB OA AB -<<+, △20m OA =,8m OB =, △12m 28m AB <<, △只有B 选项符合题意, 故选B .【点拨】本题主要考查了三角形三边的关系,熟知三角形中,任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8.A【分析】连接三角形的顶点和对边中点的线段叫三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高,据此逐项判断即可.解:A 、AH 是ACF △的角平分线和高,故此选项判断正确,符合题意; B 、BG 是ABD △边AD 上的中线,故此选项判断错误,不符合题意; C 、FH 为AHF △边AH 上的高,故此选项判断错误,不符合题意 D 、AD 是ABC 的角平分线,故此选项判断错误,不符合题意, 故答案为:A .【点拨】本题考查了三角形的角平分线、中线、高线的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和对边相交的交点之间的线段.正确理解定义是解题的关键.9.A【分析】点P ,点M ,点N 可构成P MN ,根据三角形三边关系分析即可. 解:当点P ,点M ,点N 可构成PMN ,根据三角形三边关系得:PM PN MN -<;点P 与点M 重合时,0PM PN MN MN -=-=; △PM PN MN -≤,即当点P 与点M 重合时,PM PN -的值最大, 故选:A .【点拨】本题考查最短路线问题,利用三角形三边关系分析问题是解题的关键. 10.C【分析】根据三角形的中线得出4AEFAFCS S==,ABE AED S S =△△,BECECDSS=,然后结合图形求解即可.解:△F 是EC 的中点, △142AEFAFCAECS SS ===,△8AECS=,△ E 是BD 的中点 , △ABE AED S S =△△,BECECDS S=,△8AEDECDAECS S S +==, △8ABE BEC AECS S S +==, △228=16ABC ABE BECAECAECSSSSS=++==⨯,故选:C .【点拨】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.11.3【分析】根据三角形周长的定义求解即可.解:△一个三角形的周长为11,两条边长分别为3,5, △第三边长为:11353--=, 故答案为:3.【点拨】题目主要考查三角形的周长计算,理解题意是解题关键. 12.3<x <7【分析】根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和解答.解:根据三角形的三边关系,得:5﹣2<x <2+5,即:3<x <7. 故答案为:3<x <7.【点拨】本题考查了能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条就能够组成三角形.13.3【分析】先根据三角形的中线把三角形分成面积相等的两个三角形求得BDE △的面积,再根据三角形的面积公式求解即可.解:△AD 为ABC 的中线,ABC 的面积为30, △1152ABDABCSS ==,△BE 为ABD 的中线, △11522BDEABDSS ==, △5BD =,△BDE 中BD 边上的高为152532⨯÷=, 故答案为:3.【点拨】本题考查三角形的中线性质,熟知三角形的中线把三角形分成面积相等的两个三角形是解答的关键.14.14【分析】由ADC △的周长比ABD △的周长多4可得4AC AB -=,24AC AB +=,然后问题可求解.解:△AD 是BC 边上的中线, △BD CD =, △ADCC AD CD AC =++,ABDCAD BD AB =++,△4ADCABDCCAD CD AC AD BD AB AC AB -=++---=-=,△24AC AB +=, △228AC =, △14AC =; 故答案为14.【点拨】本题主要考查三角形的中线,熟练掌握三角形的中线得到相等的线段是解题的关键.15.23【分析】在ABC 中,可知ABD △和ADC △的面积相等;利用等面积法,即可求解.解:△在三角形ABC 中,AD 是中线, △BD CD =, △ABDADCSS=.△DE AB ⊥于E ,DF AC ⊥于F ,6cm AB =,4cm AC =, △1122AB DE AC DF ⨯=⨯, △116422DE DF ⨯⨯=⨯⨯, △4263DE DF ==. 【点拨】本题主要考查了用等面积法、三角形的中线,理解等面积法和掌握三角形中线的知识点是解题的关键.16.△△【分析】由已知条件易得△BAD=△CAD ,AE=CE ,根据这两个条件判断所给选项是否正确即可.解:△△ABC 的角平分线AD 、中线BE 相交于点O , △△BAD =△CAD ,AE =CE ,△在△ABE 中,△BAD =△CAD ,△AO 是△ABE 的角平分线,故△正确; △AO ≠OD ,所以BO 不是△ABD 的中线,故△错误; △在△ADC 中,AE =CE ,DE 是△ADC 的中线,故△正确;△△ADE 不一定等于△EDC ,那么ED 不一定是△EBC 的角平分线,故△错误; △正确的有2个选项△△.【点拨】本题考查三角形的角平分线、中线性质,熟练掌握性质是解题的关键 17.10【分析】根据已知的两边确定第三边的取值范围,再根据c 为整数,求此三角形的边c 的长度.解:△74a b ==,,△7474c -<<+,即311c <<, 又c 为整数, △c 的最大值为10. 故答案为:10.【点拨】本题考查了三角形三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.4.8【分析】过点A 作AD BC ⊥于点D ,根据点到直线的距离,垂线段最短,进而等面积法即可求解.解:如图,过点A 作AD BC ⊥于点D , 则AD 是ABC ,BC 边上的高,△90A ∠=︒,6AB =,8AC =,10BC =, △1122ABC S AB AC AD BC =⨯⨯=⨯⨯△, △68 4.810AB AC AD BC ⨯⨯===, 故答案为:4.8.【点拨】本题考查了垂线段最短,三角形的面积公式,三角形的高,掌握垂线段最短是解题的关键.19.(1)7<x <11 (2)20cm【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长. 解:(1)由三角形的三边关系得:9292x -<<+,即711x <<;(2)△第三边长的范围为711x <<,且第三边长为奇数,△第三边长为9,则三角形的周长为:99220cm ++=【点拨】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.20.(1)四种 (2)3m【分析】(1)根据三角形的三边关系,求出第三边的取值范围,即可求解;(2)根据第三根木棍时,花费最少,即可求解.(1)解:设第三根木棒的长度为m x ,根据三角形的三边关系可得:5353x -<<+,解得28x <<,3x =,4,5,6,共4种,一共有四种方案.(2)解:△规格为3m 的木棍价格最低,△应该选择的规格是3m .【点拨】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.21.(1)见分析 (2)见分析 (3)见分析【分析】(1)根据角平分线的画法即可画出BAC ∠的平分线AD ;(2)取BC 的中点E ,连接AE ,即可画出ABC 中BC 边上的中线AE ;(3)根据钝角三角形的高线的画法即可画出ABC 中AB 边上的高CF ,即过点C 画AB 的垂线CF 即可.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作图﹣复杂作图,三角形的角平分线、中线和高,解决本题的关键是掌握基本作图方法.22.30【分析】设654a b c k ===,可得6a k =,5b k =,4c k =,再由26a b c +-=,可得2k =,从而得到612a k ==,510,b k ==,48c k ==,即可求解. 解:设654a b c k ===, △6a k =,5b k =,4c k =,△26a b c +-=,△6586k k k +-=,△2k =,△612a k ==,510,b k ==,48c k ==,△30a b c ++=,即三角形的周长为30.【点拨】本题主要考查了求三角形的周长,根据题意得到a ,b ,c 的长值是解题的关键. 23.(1)AD 的长度为4.8cm(2)ABE 的面积是212cm (3)ACE △和ABE 的周长的差是2cm【分析】(1)由1122AB AC BC AD =再代入数值即可得到答案; (2)先求解()2116824cm 22ABCSAB AC ==⨯⨯=,再利用三角形的中线的性质可得答案;(3)利用三角形的中线的性质列式进行计算即可. (1)解:△90,BAC AD ∠=︒是边BC 上的高,△1122AB AC BC AD =, △6cm,8cm,10cm,AB AC BC ===△()4.8cm AD =,即AD 的长度为4.8cm ;(2)如图,△ABC 是直角三角形,6cm,8cm,10cm,AB AC BC ===△()2116824cm 22ABC S AB AC ==⨯⨯=. 又△AE 是边BC 的中线,△BE CE =,△ABE ACE SS =, △()2112cm 2ABE ABCS S ==. △ABE 的面积是212cm .(3)△AE 为BC 边上的中线,△BE CE =,△ACE △的周长-ABE 的周长()()862cm AC AE CE AB BE AE AC AB =++-++=-=-=, 即ACE △和ABE 的周长的差是2cm .【点拨】本题考查的是三角形的高,中线的含义,三角形面积的计算,掌握“三角形的高,中线的含义”是解本题的关键.24.(1)12S (2)14ECF S S =△,14DBE S S =△,14ADF S S =△,14DEF S S =△ 【分析】(1)根据三角形中线平分三角形面积进行求解即可;(2)根据三角形中线平分三角形面积进行求解即可.(1)解:△E 是BC 的中点, △1122AEC ABC S S S ==△△; (2)解:△F 是AC 的中点, △1124ECF ACE S S S ==△△; 同理可得111244DBE ABE ABC S S S S ===△△△; 如图所示,连接CD , 同理可得111244ADF ACD ABC S S S S ===△△△, △14DEF ABC ECF ADF BDE S S S S S S ==--=△△△△△.【点拨】本题主要考查了三角形中线的性质,熟知三角形中线平分三角形面积是解题的关键.。
三角形的边练习
11.1.1三角形的边练习
一、选择题
1.三角形是()
A.连接任意三角形组成的图形
B.由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C.由三条线段组成的图形
D.以上说法均不对
2.若△ABC三条边的长度分别为m,n,p,且
()0
2=
-
+
-p
n
n
m,则这个三角形()
A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形
3.试用学过的知识判断,下列说法准确的是()
A.一个直角三角形一定不是等腰三角形
B.一个等腰三角形一定不是锐角三角形
C.一个等腰三角形一定是等腰三角形
D.一个等腰三角形一定不是钝角三角形
4.下列长度的三条线段能组成三角形的是()
A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,8
5.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()
A.3cm B.4cm C. 7 cm D.11cm
6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长能够是()
A.2 B.3 C.4 D.8
二、填空题
7.若等腰三角形两边长分别为3和5,则它的周长是_______________.
8.如图,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为__________.
三、解答题
9..过A、B、C、D、E五个点中任意三点画三角形;(做在图中)
(1)其中以AB为一边可以画出__________个三角形;
(2)其中以C为顶点可以画出__________个三角形.
10.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.。
与三角形有关的边的经典练习题
与三角形有关的边的经典练习题
一.选择题:
1.下列各组线段能组成一个三角形的是(C)5cm,8cm,12cm。
2.现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取(A)0.85m长的木条。
3.从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是(D)4个。
4.若三角形的两边长分别为3和5,则其周长l的取值范围是(B)6<l<16.
5.以下说法错误的是(D)三角形的三条高可能相交于外部一点。
6.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是(B)直角三角形。
二、解答题
7.共有7个三角形,分别为:△ABC、△ABD、△ABE、△ACD、△XXX、△ADE、△XXX。
8.设等腰三角形的底边长为x,腰长为y,则周长为18,即x+2y=18;又已知3y=2x+6,代入前式得到x=6,y=6,所以等腰三角形的两腰长均为6,底边长为6.
9.等腰三角形的周长为20cm。
11.最长边x的范围为3<x<17.
12.x的范围为3<x<5.
13.根据中线定理可知,S△ABE=1/4S△ABC,所以
S△ABE=2cm²。
14.(1) AD为△ADC的中线。
2) AE为∠BAC的角平分线。
3) BE为△XXX的中线。
三角形的三边关系练习题
三角形的三边关系练习题
一、选择题
1.下列长度的三条线段能组成三角形的是()
A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,8
2.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是() A.3cm B.4 cm C. 7 cm D.11cm
3、等腰三角形的周长为16,且边长为整数,则腰与底边分别为()
A、5,6
B、6,4
C、7,2
D、以上三种情况都有可能
4.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是() A.2 B.3 C.4 D.5
二、填空题
5.若等腰三角形两边长分别为3和5,则它的周长是_______________.
6、三角形三边为3,5, a,则a的范围是 ______________ 。
7、三角形两边长分别为25cm和10cm,第三条边与其中一边的长相等,则第三边长为______ 。
8、等腰三角形两边为5cm和12cm,则周长为_______
9、等腰三角形的周长为14,其中一边长为3,则腰长为_____ 。
10、已知:等腰三角形的底边长为6cm,那么其腰长的范围是 __________
11.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。
12、已知等腰三角形一边长为24cm,腰长是底边的2倍。
求这个三角形的周长。
13.小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是偶数,小颖有几种选法?第三根的长度可以是多少?
14.有人说,自己步子大,一步能走3米多,你相信吗?说说你的理由!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题:
1下列各组线段能组成一个三角形的是( ).
(A)3cm,3cm,6cm(B)2cm,3cm,6cm
(C)5cm,8cm,12cm(D)4cm,7cm,11cm
2现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).
(A)0.85m长的木条(B)0.15m长的木条
(C)1m长的木条(D)0.5m长的木条
3从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).
(A)1个(B)2个(C)3个(D)4个
4若三角形的两边长分别为3和5,则其周长l的取值范围是( ).
(A)6<l<15(B)6<l<16
(C)11<l<13(D)10<l<16
5.以下说法错误的是()
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
6.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形 B.直角三角形
C.钝角三角形 D.不能确定
二、解答题
7如下图所示,图中共有几个三角形,并用符号表示出来。
8.一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.
9.已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.
11.若三角形两边长为7和10,求最长边x的范围.
12.若三边分别为2,x-1,3,求x的范围.
13.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.
14.如图所示,AD平分角BAC,AE=CE
(1)写出△ADC的中线。
(2)写出△ABC的角平分线。
(3)写出△ABC的中线
15.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周
长之差.。