平行线经典四大模型典型例题及练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线四大模型
平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同
旁内角也有相应的数量关系,这就是平行线的性质.
性质1:
两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等
性质2:
两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等
性质3:
两条平行线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补
本讲进阶平行线四大模型
模型一“铅笔”模型
点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、CD外部“骨折”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习平行线四大模型证明
(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
.
(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .
模块一平行线四大模型应用
例1
(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.
(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .
练
(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.
(2) (七一中学2015-2016七下3月月考)
如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .
例2
如图,已知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.
如图,已知AB ∥DE ,∠FBC =
n 1∠ABF ,∠FDC =n
1
∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;
(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).
例3
如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .
练
如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.
例4
如图,∠3==∠1+∠2,求证:∠A +∠B +∠C +∠D = 180°.
(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().
A. 120°
B. 135°
C. 145°
D. 150°
模块二平行线四大模型构造
例5
如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则
∠GHM= .
练
如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .
已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.
练
已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.