平面简谐波方程

合集下载

平面简谐波的波函数

平面简谐波的波函数
y
o
第十章 波动
x
7
物理学
第五版
10-2 平面简谐波的波ቤተ መጻሕፍቲ ባይዱ数
3 x 、 t 都变 方程表示在不同时刻各质点的位移, 即不同时刻的波形,体现了波的传播.
y
O
u
x
第十章 波动
8
物理学
第五版
10-2 平面简谐波的波函数
4 沿 x轴方向传播的波动方程
A
y
O
u
P x
x
A
yO A cost
所以简谐波的传播也是媒质振动相位的传播。
设 t 时刻 x 处的相位经 dt 传到(x +dx)处,
x x d x 则应有 (t ) ( t d t) u u
dx —— 相速度(相速) u 于是得到 dt 即简谐波的波速就是相速。
第十章 波动
第十章 波动
6
物理学
第五版
10-2 平面简谐波的波函数
2πx 2 t 一定 x 变化 y A cos t 令 t C(定值) 2πx 则 y A cos 该方程表示 t 时刻波传播方向上各质点 的位移, 即 t 时刻的波形(y — x的关系)
y yo t t
对波动方程的各种形式,应着重从 物理意义上去理解和把握. 从实质上看:波动是振动的传播. 从形式上看:波动是波形的传播.
第十章 波动
10
物理学
第五版
总结
10-2 平面简谐波的波函数
已知振动方程,求解波动方程 1.已知坐标原点O的振动方程,求解波动方程 若点P的振动超前于点O,则波动方程为
由初始条件给出 由最大速度和最 大加速度给出

平面简谐波概念

平面简谐波概念

解:

(1)T 2, 40,u 20,A 10, 2
T
T
且t 0时:yo 5,vo 0
O

2 3

(2) OB长度
Y(cm)
10 •
u
-5 •
解:O B (O B)2
oB
C
20
-5
x(cm)

t 0时:yB 0,vB 0
O
-A
x
P
x
P点比O点超前时间 反向波波函数
y
O
P
x
x
以波线上x0处点为参考点
y
则Q点处质点的振动方程为 A x0 Q
O -A
x
P
x
Q点的任一振动状态传到P点,需要时间
则波动方程:
其中:x xo u
— 表示x处质元的振动落后(或超前)xo处质元
振动的时间
(
x u
xo
)

表示x处质元的振动落后(或超前)于xo处质元
(2)同一时刻,沿波线各质元振动状态不同,各质元相位 依次落后
*u
=

T
=
u由介质的性质决定
T T振
振 由振源决定.
得波动方程:
当x确定: y(t)——x处质元的振动方程 当t确定: y(x)——t时刻的波形
二、波的强度
1、能流P : 单位时间通过某一面积的波能 P su
—单位:焦耳/秒米2
波动在无吸收的、均匀无限大介质中传播,
1、平面波:A保持不变。
1
2
2、球面波:A与r成反比。 证明:1、 无吸收, P1 P2

14-2平面简谐波的波动方程

14-2平面简谐波的波动方程

u
振动曲线 图形
A O
波形曲线
t A O t 0 P

t0 P
T

v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t

x


x
y A cos(t

P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2

平面简谐波的波动方程

平面简谐波的波动方程

m
0.5 10
yc 3102 c os(4 π t 13 π)
m
5
将点 D 坐标:x=9m代入波动方程
y 3102 cos2π( t x )
m
0.5 10
yD 3102 c os(4πo 9 π)
m
5
4)分别求出 BC ,CD 两点间的相位差
y 3102 cos2π( t x ) 0.5 10
幅 A 1.0m ,T 2.0s , 2.0m . 在 t 0 时坐标
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 设原点处振动方程为
y Acos(t )
O
y

t 0
y 0, v 0
y cos(t )
π
2
所以波动方程为
2
y Acos[(t x ) ] Acos[2 ( t x ) ]
T

C
u B 2π d dC
TC
思考:t=T/4时, a,b,c各质点运动方向如何?
3 ) 如图简谐波 以余弦函数表示,
t =0
y t =T/4
A+∆t
u
求 O、a、b、c 各
b
点振动初相位(t=0).
Oa
c
(π ~ π )
A
A
O
A
O
y o π
y
a
π 2
A
O
y
O
y
A
t=T/4
m (以A为 坐标原点)
u
10m
8m 5m 9m
C
B oA
Dx
B点落后C点 :B
C
2 π

平面简谐波 波动方程

平面简谐波  波动方程
3
式中x以m计。
§5-3 波的能量
能流
弹性波传播到介质中的某处,该处将具有动能和势 能。在波的传播过程中,能量从波源向外传播。
1. 波的能量
考虑棒中的体积V,其质量为m(m=V )。 当波动传播到该体积元时,将具有动能 Wk和弹性势 能Wp。
x 平面简谐波 y ( x, t ) A cos t u
在t1和t1+Δt时刻,对应的位移用x(1) 和x(2)表示,则
y(t1 )
x(1) A cos t1 0 u
x( 2) A cos t1 t 0 u
y(t1 t )
u
S
平均能流密度或波的强度 通过与波传播方向垂直的 单位面积的平均能流,用I 来表示,即
1 平均能流: P w Su uSA2 2 2
2 2 2
u
I wu u A 2 z A 2
2
波的强度
其中介质的特性阻抗 z u 。 I 的单位:瓦特/米2 (W.m-2) 平面余弦行波振幅不变的意义:
加速度
y x 2 A cos t 0 , 2 t u
2
任何物理量y ,若它与时间、坐标间的关系满足上 式,则这一物理量就按波的形式传播。
波动方程的推导
例题 频率为=12.5kHz的平面余弦纵波沿细长的金属棒传播, 棒的杨氏模量为 Y =1.91011N/m2,棒的密度 =7.6103kg/m3。 如以棒上某点取为坐标原点,已知原点处质点振动的振幅为A =0.1mm,试求:(1)原点处质点的振动表式,(2)波动表式,(3) 离原点 10cm 处质点的振动表式, (4) 离原点 20cm 和 30cm 两点 处质点振动的相位差,(5)在原点振动0.0021s时的波形。

平面简谐波的运动方程

平面简谐波的运动方程
y( x,t ) 310-2 cos(4 π t - kx) k 2 5
(310-2 ) cos(4πt - x )
5
u
8m 5m 9m
C
B oA
Dx
20
5-2 平面简谐波的波函数
(2) 以 B 为坐标原点,写出波动方程
yA y(5,t ) (310-2 ) cos(4 π t )
t0 x0
y 0, v y 0 - π
t
2
y cos[2π( t - x ) - π ] (m) 2.0 2.0 2
cos(t - x - )
2
O
y
A
18
5-2 平面简谐波的波函数
例2 一平面简谐波以速度u 20 m s-1
沿直线传播,波线上点 A 的简谐运动方 程
yA 310-2 cos(4 π t); ( y, t单位分别为m,s).
5
yC
y(-13,t )
(310-2 ) cos[4 π t
13 π] 5
yD
y(9,t )
( 3 10-2
)cos[4 π t
-
9 5
π]
u
yA (310 -2 )co1s(04mπ t )
8m 5m 9m
C
B oA
Dx
22
5-2 平面简谐波的波函数
(3) 写出传播方向上点C、D的运动方程
5-2 平面简谐波的波函数
5.2.1 平面简谐波的运动方程--波函数 一、波长 波的周期和频率 波速
1 波长
波传播方向上相邻两振动状态完全相同
的质点间的距离(一完整波的长度).
Ay
u
O
x
-A

平面简谐波的波动方程

平面简谐波的波动方程
方向的运动情况.
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO

x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T

16_02_平面简谐波 波动方程

16_02_平面简谐波 波动方程

x1 点的振动方程: y1 (t ) 0.01cos[200 (t
1 ) ] ( m ) —— x 1 m 400 2
1 ) ] 2 1 (200 t ) [200 (t 2 400 2
2 1
3)
REVISED TIME: 09-10-7
-2-
CREATED BY XCH
普通物理学_程守洙_第十六章 机械波和电磁波_20090921
波数 波数 —— 波线单位长度内波的数目: k
2

x
—— 将 2 k 代入 y ( x, t ) A cos[2 ( t 3 波动方程 简谐波的波函数: y ( x, t ) A cos[ (t 对时间的二阶偏微分: 对坐标的二阶偏微分: 则:
2) 距波源 x2 2m 和 x1 1m 的两点间的振动相差
x2 点的振动方程: y2 (t ) 0.01cos(200 t ) ( m) —— x 0 2
REVISED TIME: 09-10-7 -4CREATED BY XCH

普通物理学_程守洙_第十六章 机械波和电磁波_20090921
x x0 ) 0 ] u
例题 04 如图 XCH004_135_00 所示的是一平面简谐波在 t 0 时刻的波形图,设该简谐波的频率 为 250 Hz ,且此时质点 P 的运动方向向下,求: 1) 该波的波函数; 2) 在距原点 O 为 100 m 处质点的振动方程与质点速度表达式。
x u
x u
x ) 0 ] —— 波动方程,或波函数 u 2 , uT T
—— 波函数既是时间的周期性函数,又是空间的周期性函数。 波函数的几种表示:利用关系: 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.2 平面简谐波方程
简谐波 由简谐振动的传播所形成的波动。 ➢ 简谐波又称余弦波或正弦波; ➢ 规律最简单、最基本的波。 ➢ 各种复杂的波都可以看作是许多不同频率的 简谐波的叠加。 ➢ 平面简谐波:波面是平面的简谐波。
一、平面简谐波方程的建立
一波源处)
动画演示
二、平面简谐波方程的物理意义
y
A cos[ (t
x u
)
0 ]
2. 如果 t=t0
y(x
,t0 )
A cos[ (t0
x u
)
0
]
y
表示时刻t0波线上
各个质点位移情况,即
x
λ
表示某一瞬时的波形(集体定格)。
(波具有空间的周期性)
动画演示
二、平面简谐波方程的物理意义
3 若 x,均t 变化,波函数表示波形沿传播方向
T
u 2m/s
例二
求:(2)写出t=4.2s时刻各例波1峰位置的坐标表达式,并
求出此时离坐标原点最近的那个波峰的位置;
解 波动方程为 y Acos (4t 2x)
波峰位置即y=A处 由cos (4t 2x) 1
得 (4t 2x) 2k (k 0,1,2 )
x k 2t
当t 4.2s时, x (k 8.4)m
振动方程为: yP Acos(t 0 )
则平面简谐波方程为:
y
A cos[ (t
x
x0 u
)
0 ]
二、平面简谐波方程的物理意义
y
A cos[ (t
x u
)
0 ]
1.如果 x = x0
y
波函数变为
t T
y(x0
,t)
Acos[(t
x0 u
)
0 ]
表示x0点的简谐振动规律(独舞)。
y(x0,t) y(x0,t T ) (波具有时间的周期性)
(1)试写出如图所示的坐标系中的波动方程。
解:(1)波向x轴正向传播,
xa 4
波动方程为
y
Acos[(t
2
)
2
(x
xa
)]
Acos(t 2 x )
例2
(2)b点的振动表达式.
xb 2
b点的振动表达式
yb
A c os (t
2
2
)
A c ost
例3
如图所示为一平面简谐波t=0时刻的波形,求:
波沿 X 轴正向传播 (正向行波)
原点 O 处质点的振动方程为 y0 Acos(t 0 )
波线上任一点、任意时刻的振动规律为
y
A cos[ (t
x u
)
0 ]
(平面简谐波动方程)
讨论
1、若波沿x轴负向传播,则平面简谐波动方程为
y
A cos[ (t
x u
)
0
]
2、若波沿x 轴正向传播,但已知某确定点P(x0)的
的运动情况(行波).
y
u
t1 时刻
t1 t 时刻
O
x
u/T v/k
x
(k 2 / )
三、平面简谐波方程的多种表示形式
y
Acos[
(t
mx u
)
0
]
, u 表示
y
Acos[2
v(t
mx u
)
0
]
y
Acos[2
(t T
mx
)
0
]
v, u 表示
T , 表示
y Acos( t mkx)
ku, , k 表示
y Acos k(ut mx)
ku, k, u 表示
四、波动方程
y
A cos[ ( t
x) u
0 ]
2 y t 2
A
2
cos[ ( t
x) u
0
]
2 y x 2
2
A u2
cos[ ( t
x u
)
0
]
波动方程:
2 y t 2
u2
2 y x 2
习题类型
1)已知波动方程,求波长、频率、波速。
此时离坐标原点最近的那个波峰的位置在 x=-0.4m处。
求:(3) t=4.2s时坐标原例点与1 离坐标原点最近的那个
波峰的相位差。
解:相位差为 2 x 2 0.4 2
1
5
u
y
t=4.2s
O
x
例2 若一平面简谐波在均例匀2 介质中以速度u传播,
已知a点的振动表达式为 y A(t 。 2)
(4)D点的振动速度小于零。
结束选择
请在放映状态下小点议击链你接认4为是对的答案
以波速 u 沿 X 轴逆向传播的简谐波 t 时刻的波形如下图
A
D
B
C
(1)A点的速度大于零;
(2)B点静止不动;
(3)C点向下运动;
(4)D点的振动速度小于零。
结束选择
2)已知某点振动状态,求波函数、某点 的振动方程。
3)由图形求波函数。
例1 已知一平面简谐波例的1 方程为
y Acos (4t 2x) (SI)
求:(1)求该波的波长,频率和波速u的值;
解:这是一列向x轴负向传播的波,将波方程变成
y Acos2 ( t x)
0.5
与标准形式比较得
1m
1 2HZ
(1)该波的波动方程;
u 0.08m s1 ym
(2)P点处质点的振动方程。
p
O
0.02
xm
解(1)对原点O 处的质点 0.04
t 0时
y0 Acos0 0 v0 A sin0 0
所以
0
2
例3
又有: 波方程
T 0.40 s 5s
u 0.08
y 0.04cos[2 ( t x ) ]
5 0.4 2
(2)P 处质点的振动方程为
y 0.04 cos[2 ( t 0.2 ) ]
5 0.4 2
0.04 cos(0.4 t 3 )
2
请选择你认为是随对堂的小答议案
以波速 u 沿 X 轴逆向传播的简谐波 t 时刻的波形如下图
A
D
B
C
(1)A点的速度大于零;
(2)B点静止不动;
(3)C点向下运动;
相关文档
最新文档