数列基础知识归纳
数列归纳法知识点总结
数列归纳法知识点总结一、介绍数列归纳法是数学中的一种常见证明方法,用于证明某个命题对于所有自然数或正整数都成立。
它的基本思想是通过归纳步骤,从已知条件推导出通项公式,从而得出结论。
二、数列定义数列是按照一定规律排列的一组数的集合。
通常用a₁,a₂,a₃,...表示,其中a₁,a₂,a₃,...为数列的项。
数列按照一定的规律取值,可以是等差数列、等比数列或其他类型的数列。
三、数列归纳法的步骤1. 归纳基础步骤:首先证明命题对于初始条件成立,通常是证明当n取某个特定值时命题成立。
2. 归纳假设步骤:假设当n=k时命题成立,即假设命题对于某个自然数k成立。
3. 归纳推理步骤:利用归纳假设推导出当n=k+1时命题也成立。
4. 归纳结论步骤:由归纳推理步骤得出结论,命题对于所有的自然数n成立。
四、数列归纳法的应用1. 证明数学等式或不等式:利用数列归纳法可以证明各类数学等式或不等式,例如等差数列的通项公式、等比数列的通项公式等。
2. 证明数学性质:数列归纳法也常用于证明数学性质,例如证明2的n次方大于n,证明斐波那契数列的性质等。
五、数列归纳法的例题例题1:证明等差数列的通项公式成立。
解:首先我们验证归纳基础步骤,当n=1时,等差数列的通项公式显然成立。
假设当n=k时,等差数列的通项公式成立,即aₖ=a₁+(k-1)d,其中a₁为首项,d为公差。
那么我们来看当n=k+1时,aₖ₊₁=a₁+(k+1-1)d=a₁+kd。
根据等差数列的递推关系式,aₖ₊₁=aₖ+d。
由归纳假设可得,aₖ₊₁=a₁+(k-1)d+d=a₁+kd。
所以,当n=k+1时,等差数列的通项公式也成立。
因此,根据数列归纳法,等差数列的通项公式对于所有的自然数n 成立。
例题2:证明斐波那契数列的性质。
解:首先我们验证归纳基础步骤,当n=1时,斐波那契数列的性质显然成立。
假设当n=k时,斐波那契数列的性质成立,即Fₖ=Fₖ₋₁+Fₖ₋₂。
那么我们来看当n=k+1时,Fₖ₊₁=Fₖ+Fₖ₋₁。
数列基础知识点和方法归纳
1. 等差数列的定义与性质定义:(为常数),,推论公式:等差中项:成等差数列,等差数列前项和: 性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为; (4)若是等差数列,且前项和分别为,则;(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项, 即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:(为常数,),.推论公式:等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。
(2)仍为等比数列,公比为n q。
. (3)是正项等比数列,则注意:由求时应注意什么?时,;时,.3.求数列通项公式的常用方法(1)定义法求通项公式(已知数列为等差数列或等比数列)(2)已知的关系与n或的关系时与nnas,求。
⎩⎨⎧≥-==-)2()1(11nssnsannn例:?数列的前项和.求数列的通项公式;解:当时,当时数列的通项公式为.练习:设数列的前项和为,且.求数列的通项公式。
(3)求差(商)法 例:数列,,求 解: 时,,∴①时, ②① —②得:,∴,∴练习:在数列中,,, 求数列的通项公式。
中职数学基础模块知识点、典型题目系列---6.数列(适合打印,经典)
第六章 数列第1节 数列的概念及通项公式一、数列:按一定次序....排成的一列数(项、项数,分类:有穷数列,无穷数列) 二、简单数列1.自然数列 1,2,3,4,... n a n =2.偶数数列 2,4,6,8,... n a n 2=3.奇数数列 1,3,5,7,... 1-2n a n =4.1,4,9,16,... 2n a n =5.1,8,27,64,... 3n a n =6.-1,1,-1,1,... ()n 1-=n a7.1,-1,1,-1,... ()1n 1-+=n a三、通项公式:将第n 项n a 表示成含有n 的式子。
【习题】1.根据通项公式写项(1)已知数列{}n a 的通项公式为()121++-=n n a nn ,写出它的前4项。
(2)已知数列{}n a 的通项公式为112+-=n n a n ,写出它的前5项。
2.根据项写通项公式。
(符号:一负一正()n 1-,一正一负()11-+n ) (1)21,32,43,54,··· (2)-5,10,-15,20,···(3)31,61-,91,121-,··· (4)21,43-,65,87-,··· (5)312⨯,534-⨯,756⨯,978-⨯,··· 3.判断数列中的项(1)数列⎭⎬⎫⎩⎨⎧+-2312n n ,问53是不是这个数列中的项?如果是,是第几项? (2)数列(){}1+n n ,问420是不是这个数列中的项?如果是,是第几项?第2节 等差数列及其通项公式教学过程:一、定义:设数列{}n a 的公差为d ,则d a a n n =-+1即d a a n n +=+1【习题】在等差数列{}n a 中,311=a ,321+=+n n a a ,写出数列前5项,并判断是否为等差数列。
小学奥数-等差数列基础知识
小学奥数等差数列基础知识1、数列定义:(1) 1,2,3,4,5,6,7,8,…(等差)(2) 2,4,6,8,10,12,14,16,…(等差)(3) 1,4,9,16,25,36,49,…(非等差)若干个数排成一列,像这样一串数,称为数列。
以此类推,数列中的每一个数称为一项,其中第一个数称为首项,第二个数叫做第二项最后一个数叫做这个数列的末项,数列中数的个数称为项数,如:2,4,6,8, ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
3、计算等差数列的相关公式:(1)末项公式:(2)求和公式:在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例:求等差数列3,5,7, 的第10项,第100项,并求出前100项的和。
练习1:1、6+7+8+9+……+74+75=(2835)2、2+6+10+14+……+122+126=(2112)3、已知数列2、5、8、11、14……,47应该是其中的第几项?(16)4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?(20400)5、在等差数列1、5、9、13、17……401中,401是第几项(101)?第50项是多少?(197)6、1+2+3+4+……+2007+2008=7、(2+4+6+……+2000)-(1+3+5+……+1999)=8、1+2-3+4+5-6+7+8-9+……+58+59-60=9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
10、求1——99个连续自然数的所有数字的和。
练习2:1、在等差数列1,5,9,13,17,…,401中401是第几项?(101)2、100个小朋友排成一排报数,每后一个同学报的数都比前一个同学报的数多3,小明站在第一个位置,小宏站在最后一个位置。
数列概述及基础知识
①本质上是定义域特殊:{1,2,3,…}或{1,2,…,n}
②表象上是解析式特殊: an f n y f x
2.项与项数:
①数列中的每一个数叫做这个数列的项
②第n项的序号n又称为该项的项数
排在第一位的数称为这个数列的第1项(通常也叫做首项) 排在第二位的数称为这个数列的第2项… 排在第n位的数称为这个数列的第n项. 注:数列中的项与项数;如同函数中的因变量与自变量
项
an f n
项数
因变量
y f x
自变量
3.分类:
①按单调性分: 递增数列,递减数列,常数列,摆动数列
②按项数分: 有穷数列,无穷数列
③按特殊性分: 等差数列,等比数列,周期数列,递归数列,…
④按界分:
有界数列和无界数列
练习1.数列的定义:
下列数列是否为同一个数列? ① 1,2,…,5,6 ② 1,2,3,4,5,6 ③ 1,2,3,4,5,6… ④ 6,5,4,3,2,1
简记法: {2n} 或 {an} …… 通项公式: an 2n 递推公式: a1 2, an1 an 2
列表法:
n1 2 3 4… k …
an 2
4
6 8 … 2k …
(1)课本P:30 引例 2,4,6,8,…,2n,… 列表法:
n1 2 3 4… k …
an 2
4
6 8 … 2k …
图象法: an 2n an( y)
y 2x
数列的图象: 是一系列孤立的点
n (x)
练习2.数列的表示:(3)(课本P:31 例例 3)3.已知a1 1, a
例3.已知a1 1, an 的前5项.
1
小学数学知识点数列的概念与计算
小学数学知识点数列的概念与计算数列是数学中常见的概念,广泛应用于各个领域的数学问题中。
在小学数学中,数列的概念与计算是基础内容之一。
本文将对小学数学中数列的概念与计算进行详细介绍。
一、数列的概念数列是由一系列按照一定规律排列的数所组成的序列。
数列可以用字母a1, a2, a3, …, an表示,其中ai表示数列中的第i个数。
数列中的每个数都有一个特定的位置,这个位置用正整数表示。
例如,数列1, 2, 3, 4, 5可以表示为a1, a2, a3, a4, a5。
数列中的规律可以是加减乘除或其他复杂的运算关系。
二、等差数列等差数列是指数列中相邻两项之间的差值保持相等的数列。
等差数列是小学数学中最常见的数列之一。
设等差数列的第一项为a1,公差为d,则数列中的第n项an可以用以下公式计算:an = a1 + (n-1) * d其中,n为项数,an为第n项的值。
例如,给定等差数列的首项a1为3,公差d为4,我们可以使用上述公式计算出该等差数列的各项值。
三、等比数列等比数列是指数列中相邻两项之间的比值保持相等的数列。
等比数列在小学数学中也比较常见。
设等比数列的第一项为a1,公比为r,则数列中的第n项an可以用以下公式计算:an = a1 * r^(n-1)其中,n为项数,an为第n项的值。
举个例子,如果等比数列的首项a1为2,公比r为3,我们可以使用上述公式计算出该等比数列的各项值。
四、斐波那契数列斐波那契数列是一种经典的数列,在小学数学中也有所涉及。
斐波那契数列的特点是,从第3项开始,每个数等于前两个数的和。
即f(1) = 1,f(2) = 1,f(n) = f(n-1) + f(n-2) (n≥3)。
斐波那契数列的前几项为1, 1, 2, 3, 5, 8, 13, ...五、数列的计算在小学数学中,对数列进行计算主要包括求第n项的值以及求前n 项和两个方面。
对于等差数列,我们可以根据已知的首项和公差,使用公式an = a1 + (n-1) * d来求得第n项的值。
等差等比数列基础知识点
一、等差等比数列基础知识点(一)知识归纳:1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11k n k n n q a qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=③设p 、q 、r 、s 为正整数,且,s r q p +=+1°. 若}{n a 是等差数列,则;s r q p a a a a +=+2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅④若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比为2n q 的等比数列.⑤若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a-m,a,a+m ”②三数成等比数列,可设三数为“qa ,a, aq )”③四数成等差数列,可设四数为“;3,,,3m a m a m a m a ++--”④四数成等比数列,可设四数为“,,,,33aq aq q a q a±±”等等;。
综合基础知识数列知识点归纳总结
综合基础知识数列知识点归纳总结一、数列的概念。
1. 定义。
- 按照一定次序排列的一列数称为数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第1项(通常也叫做首项),往后各项依次叫做这个数列的第2项、第3项……第n项。
- 例如:1,3,5,7,9是一个数列,1是首项,这个数列的第n项可以表示为a_n=2n - 1(n = 1,2,3,4,5)。
2. 数列的表示方法。
- 列举法。
- 就是将数列中的项一一列举出来。
如数列2,4,6,8,10,直接把各项写出来表示这个数列。
- 通项公式法。
- 如果数列{a_n}的第n项a_n与n之间的关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。
- 例如,数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,其通项公式为a_n=(1)/(n)(n∈N^*)。
- 递推公式法。
- 通过给出数列的第一项(或前几项),并给出数列的某一项与它的前一项(或前几项)的关系式来表示数列。
- 例如,斐波那契数列1,1,2,3,5,8,·s,它满足递推公式a_n=a_n - 1+a_n -2(n≥slant3),a_1=a_2=1。
二、等差数列。
1. 定义。
- 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 例如数列3,5,7,9,11是等差数列,公差d = 2,因为5 - 3=7 - 5 = 9 - 7=11 - 9 = 2。
2. 通项公式。
- a_n=a_1+(n - 1)d,其中a_1是首项,n是项数,d是公差。
- 例如,在等差数列{a_n}中,a_1=2,d = 3,则a_n=2+(n - 1)×3=3n - 1。
3. 前n项和公式。
- S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d- 例如,等差数列{a_n}中,a_1=1,d = 2,n = 5。
数列基础知识点和方法归纳
数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-,推论公式:等差中项:x A y ,,成等差数列2A x y ⇔=+,等差数列前n 项和:()()11122n na a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(下标和定理) 注意:要求等式左右两边项数相等 (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,,; (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=; (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.推论公式:等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy=±.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(下标和定理) 注意:要求等式左右两边项数相等。
数列基础知识
基础知识1.数列的概念定义1. 按照某一法则,给定了第1个数,第2个数,………,对于正整数有一个确定的数,于是得到一列有次序的数我们称它为数列,用符号表示。
数列中的每项称为数列的项,第项称为数列的一般项,又称为数列的通项。
定义2.当一个数列的项数为有限个时,称这个数列为有限数列;当一个数列的项数为无限时,则称这个数列为无限数列。
定义3.对于一个数列,如果从第2项起,每一项都不小于它的前一项,即,这样的数列称为递增数列;如果从第2项起,每一项都不大于它的前一项,即,这样的数列称为递减数列。
定义4.如果数列的每一项的绝对值都小于某一个正数,即,其中是某一个正数,则称这样的数列为有界数列,否则就称为是无界数列。
定义5.如果在数列中,项数与具有如下的函数关系:,则称这个关系为数列的通项公式。
2.等差数列定义6.一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做公差,常用字母表示。
等差数列具有以下几种性质:(1)等差数列的通项公式:或;(2)等差数列的前项和公式:或;(3)公差非零的等差数列的通项公式为的一次函数;(4)公差非零的等差数列的前项和公式是关于不含有常数项的二次函数;(5)设是等差数列,则(是常数)是公差为的等差数列;(6)设,是等差数列,则(是常数)也是等差数列;(7)设,是等差数列,且,则也是等差数列(即等差数列中等距离分离出的子数列仍为等差数列);(8)若,则;特别地,当时,;(9)设,,,则有;(10)对于项数为的等差数列,记分别表示前项中的奇数项的和与偶数项的和,则,;(11)对于项数为的等差数列,有,;(12)是等差数列的前项和,则;(13)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.3.等比数列定义7.一般地,如果有一个数列从第2项起,每一项与它的前一项的比等于现中一个常数,那么这个数列就叫做等比数列,这个常数叫做公比;公比通常用字母表示(),即。
高中数学数列基础知识
高中数学数列基础知识:等差数列定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,前n项和用Sn表示。
等差数列可以缩写为A.P.(Arithmetic Progression)。
通项公式an=a1+(n-1)dn=1时 a1=S1n≥2时 an=Sn-Sn-1an=kn+b(k,b为常数) 推导过程:an=dn+a1-d 令d=k,a1-d=b 则得到an=kn+b等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A 叫做a与b的等差中项(arithmetic mean)。
有关系:A=(a+b)÷2前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3 +·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-anan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
高中基础知识单元复习总结-数列
数列【复习要求】1、理解数列的概念和数列的通项公式,会求常见的数列通项公式,了解有穷数列和无穷数列。
2、掌握等差数列和等比数列的概念及公差或公比,熟练掌握等差数列和等比数列的通项公式,前n项和公式及等差中项和等比中项。
【主要内容】一、数列的概念1、熟练的定义按照一定的顺序排列的一列数,叫做数列。
其中的每一个数都叫做数列的项,项在数列中的序号叫做项术项数,数列a1,a2,a3,…an,记作{an},它是一个以正整数集的子集为其定义域的函数。
2、数列的通项公式用项数n来表示数列的第n项的公式,叫做这个数列的通项公式,记作an=f(n)(n∈A,A⊆N+)3、数列的前n项和在数列{an }中a1+a2+a3,+…+an叫做这个数列的前n项和,记作Sn,即Sn =a1+a2+a3,+…+an4、数列的通项公式与前n项和的关系an=⎩⎨⎧∈≥-=+-NnnSSnSnn,2,1,11二、数列的类型1、有穷数列和无穷数列项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
2、等差数列和等比数列(1)定义如果一个数列从第2项起每一项与它前一项的差都等于同一常数,则这个数列叫做等差数列;如果一个数列从第2项起每一项与它前一项的比都等于同一常数,则这个数列叫做等差数列。
(2)公比或公差等差数列中从第2项起每一项与它前一项的差叫做公差;等比数列中从第2项起每一项与它前一项的比叫做公比。
(3)等差中项与等比中项(4)公式表【例题选讲】 例1、选择题1、已知数列a n =n (n +1),则1980在该数列中的项数是( ) (A )43 (B )44 (C )45 (D )462、在条件(1)a n 是n 的一次函数;(2)a n =a n -1+b ;(3)S n 是n 的二次函数;(4)2a n =a n -1+a n +1;(5)a n +1=a n -c (c 为常数);是数列{a n }成等差数列的充要条件的是( )(A )(1)(2)(3)(4)(5) (B )(2)(3)(4) (C )(2)(4)(5) (D )(1)(2)(4)(5) 3、数列{a n }成等比数列的充要条件的是( ) (A )a n 是n 的指数函数 (B )a n =a 1q n -1 (C )n n a a 1+=1-n n a a (n ≥2,n ∈N +) (D )2n a =a n +1·a n -1 4、设lga ,lgb ,lgc 三个数成等差数列,则( ) (A )b =2c a + (B )b =2lg lg ca + (C )b =ac ± (D )a ,b ,c 成等比数列5、数列23,2,38,…,23·134-⎪⎭⎫⎝⎛n ,…( )(A )是等差数列,不是等比数列 (B )是等比数列,不是等差数列 (C )既是等差数列,又是等比数列 (D )既不是等差数列,又不是等比数列6、在等差数列中,a 2+a 3+a 10+a 11=48,则a 6+a 7=( ) (A )12 (B )16 (C )20 (D )247、如果a ,b ,c ,d 成等比数列,公比为2,那么ba dc ++33=( ) (A )1 (B )2 (C )4 (D )88、若不相等三数a ,b ,c 成等差数列,则三数2a ,2b ,2c ( ) (A )成等差数列,不成等比数列 (B )成等比数列,不成等差数列 (C )既成等差数列,又成等比数列 (D )既不成等差数列,又不成等比数列 9、能被3整除的两尾数的和是( ) (A )18 (B )1683 (C )1665 (D )1701 10、已知数列a n =25-2n ,则S n 取最大值时,n =( ) (A )10 (B )11 (C )12 (D )13 例2 填空题1、数列21,-32,43,-54,…的通项公式a n = ;2、已知数列a n =n 2+(-1)n ,则a 5= ;3、已知数列{a n }的前n 项和S n =3n 2-2,则通项公式a n = ;4、在数列{a n }中,a 1=2,a n +1=a n +2,则a 5= ;5、在数列{a n }中,a 1=3,a n +1=3a n ,则a 5= ;6、在等差数列{a n }中,已知a 4=7,则S 7= ;7、在等差数列{a n }中,已知a 4=2,则a 1a 2…a 7= ;8、在等差数列{a n }中,已知a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,则a 11+a 12+…+a 15= ;9、在等比数列{a n }中,已知a 1a 6= ; 10、若lga 1,lga 2,lga 3,lga 4,是公差为2的等差数列,则14a a = 。
数列基础知识
数列基础知识 It was last revised on January 2, 2021数列 基础知识梳理一、 数列1、数列的定义数列是按照一定顺序排列着的一列数,在函数的意义下,数列是某一定义域为正整数或它的有限子集{1,2,3,4,……,n}的函数,即当自变量从小到大依次取值时对应的一列函数值,其图像是无限个或有限个孤立的点,数列的一般形式为123,,,,,,n a a a a 通常简记为{}n a ,其中n a 是数列的第n 项,也叫通项。
注意:1){}n a 与n a 是不同的概念,{}n a 表示数列123,,,,,,n a a a a 而n a 表示的是这个数列的第n 项2)数列与集合的区别集合中元素性质:确定性,无序性,互异性;数列中数的性质:确定性,有序性,可重复性。
2、数列的通项公式当一个数列{}n a 的第n 项n a 与项数n 之间的函数关系可以用一个公式()n a f n =来表示,就把这个公式叫数列{}n a 的通项公式,可根据数列的通项公式算出数列的各项,也可判断给定的数是否为数列{}n a 中的项或可确定是第几项。
但不是所有数列都可以写出通项公式,数列的通项公式也不唯一。
3、数列的表示方法数列看成一个特殊的函数,所有从函数的观点出发,数列的表示方法有以下三种:1)解析法:通项公式和递推公式两种;2)列表法3)图像法(数列的图像是一系列孤立的点)4、数列的分类(1)有穷数列和无穷数列(2)单调数列,搬动数列,常数列5、等差数列1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示定义的表示为:*n-1(n N ,n 2)n a a d -=∈≥或者*1n (n N )n a a d +-=∈公差d 可正可负或为零,为零时,数列为常数列。
2)等差数列的通项公式对于第二个公式要求,n m a a 是数列中的项即可,也可表示为3)等差数列的增减性4)等差中项任意两个数,a b 有且仅有一个等差中项 ,即2a b A +=。
等差数列知识总结(基础)
等差数列知识总结
1、定义
1(2)n n a a d n --=≥ 1(1)n n a a d n +-=≥
注意:
①数列{}n a ,{}n b 是等差数列,数列{}n n ma kb +也是等差数列 ②若0d >,数列{}n a 为递增数列,若0d <,数列{}n a 为递减数列,若0d =,数列{}n a 为常数列
2、等差中项
若,,a A b 成等差数列,则2a b A +=;
若112(2)n n n a a a n -+=+≥,数列{}n a 是等差数列.
3、等差数列的通项公式
1(1)n a a n d =+-
①推导方法:归纳法、累加法
②公式的变形:()n m a a m n d -=-
③公式的形式(可以用来判断等差数列):n a pn q =+(,p q 为常数) ④若p q s t +=+,则p q s t a a a a +=+
4、等差数列的前n 项和
1(+)2n n n a a S =,1(1)2
n n n S na d -=+ 注意:
①推导方法:倒序相加法
②“片段和”性质:数列{}n a 是等差数列,则232,,m m m m m S S S S S --也是等差数列
③公式的形式(可以用来判断等差数列):2n S An Bn =+(,A B 为常数)
④n S 的最值问题
⑤数列{||}n a 的求和问题。
数列基础知识归纳
必修5 数列础知识归纳一、数列的有关概念:1.数列的定义:按一定次序排列的一列数叫做数列.1 数列中的每个数都叫这个数列的项.记作a n ,在数列第一个位置的项叫第1项或首项,在第二个位置的叫第2项,…,序号为n 的项叫第n 项也叫通项,记作a n .2 数列的一般形式:a 1,a 2,a 3,…,a n ,…,简记作{a n }.2.通项公式的定义:如果数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.说明:1 {a n }表示数列,a n 表示数列中的第n 项,a n = fn 表示数列的通项公式; 2 同一个数列的通项公式的形式不一定唯一.例如,a n = 1n =1,21()1,2n k k n k -=-⎧∈⎨=⎩Z ; 3 不是每个数列都有通项公式.例如,1,,,,….4 从函数观点看,数列实质上是定义域为正整数集N 或它的有限子集的函数fn ,当自变量n 从1开始依次取值时对应的一系列函数值f 1,f 2,f 3,…,fn ,….通常用a n 来代替fn ,其图象是一群孤立的点.3.数列的分类:1 按数列项数是有限还是无限分:有穷数列和无穷数列;2 按数列项与项之间的大小关系分:单调数列递增数列、递减数列、常数列和摆动数列.4.递推公式的定义:如果已知数列{a n }的第1项或前几项,且任一项a n 与它的前一项a n 1 或前几项间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.5.数列{a n }的前n 项和的定义:S n = a 1 + a 2 + a 3 + … +a n =1nk k a =∑称为数列{a n }的前n 项和.要理解S n 与a n 之间的关系.6.等差数列的定义:一般地,如果一个数列从第.2.项起..,每一项与它的前一项的差等于同一个常数..,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:{a n }为等比数列 a n + 1 a n = d 2a n + 1 = a n + a n + 2 a n = kn + b S n = An 2 + Bn .7.等比数列的定义:一般地,如果一个数列从第.2.项起..,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比.公比通常用字母q 表示q 0,即:{a n }为等比数列 a n + 1 :a n = q q 0 212n n n a a a ++=.注意条件“从第2项起”、“常数”q .由定义可知:等比数列的公比和项都不为零.n 2.三个数成等差的设法:a d ,a ,a + d ;四个数成等差的设法:a 3d ,a d ,a + d ,a + 3d ;3.三个数成等比的设法:a /q ,a ,aq ;四个数成等比的错误设法:a /q 3,a /q ,aq ,aq 3 为什么4.{a n }为等差数列,则{}na c c > 0是等比数列.5.{b n } b n > 0是等比数列,则{log c b n } c > 0且c ≠1 是等差数列.6.公差为d 的等差数列{a n }中,若d > 0,则{a n }是递增数列;若d = 0,则{a n }是常数列;若d <0,则{a n }是递减数列.7.等比数列{a n }中,若公比为q ,则1 当a 1 > 0,q > 1或a 1 < 0,0 < q < 1时为递增数列;2 当a 1 < 0,q > 1或a 1 > 0,0 < q < 1时为递减数列;3 当q < 0时为摆动数列;4 当q = 1时为常数列.8.等差数列前n 项和最值的求法:1 a 1 > 0,d < 0时,S n 有最大值;a 1 < 0,d > 0时,S n 有最小值.2 S n 最值的求法:① 若已知S n ,可用二次函数最值的求法n N ; ② 若已知a n ,则S n 取最值时n 的值n N 可如下确定:S n 最大值100n n a a +≥⎧⎨≤⎩或S n 最小值100n n a a +≤⎧⎨≥⎩. 三、常见数列通项的求法:1.定义法利用AP ,GP 的定义.2.累加法a n + 1 a n = c n 型:a n = a 1 + a 2 a 1 + a 3 a 2 + … + a n a n 1 = a 1 + c 1 + c 2 + … + c n 1n 2.3.公式法:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩. 4.累乘法1n n n a c a +=型:a n = a 1 32121n n a aa a a a -⋅⋅⋅= a 1 c 1 c 2 … c n 1n 2.5.待定系数法:a n + 1 = qa n + b q 0,q 1,b 0型,转化为a n + 1 + x = qa n + x .可以将其改写变形成如下形式:a n + 1 +1b q -= qa n +1b q -,于是可依据等比数列的定义求出其通项公式. 6.间接法例如:a n + 1 a n = 4a n + 1a n 1114n na a +-=-. 四、数列的求和方法:除化归为等差数列或等比数列求和外,还有以下一些常用方法:1.拆项求和法a n = b n c n :将一个数列拆成若干个简单数列如等差数列、等比数列、常数数列等等,然后分别求和.如a n = 2n + 3n .2.并项求和法:将数列的相邻两项或若干项并成一项或一组先求和,然后再求S n . 如“22222222123456(21)(2)n S n n =-+-+-++--”的求和.3.裂项相消法:将数列的每一项拆裂开成两项之差,即a n = fn + 1 fn ,使得正负项能互相抵消,剩下首尾若干项.用裂项相消法求和,需要掌握一些常见的裂项,如:1111()()()n a An B An C C B An B An C ==-++-++、1(1)n n +=1n 11n +1a b=-等. 4.错位相减法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法.对一个由等差数列及等比数列对应项之积组成的数列的前n 项和,常用错位相减法.即错位相减法一般只要求解决下述数列的求和:若a n = b n c n ,其中{b n }是等差数列,{c n }是等比数列,则数列{a n }的求和运用错位相减法.记S n = b 1c 1 + b 2c 2 + b 3c 3 + … + b n c n ,则qS n = b 1c 2 + b 2c 3 + … + b n 1c n + b n c n + 1,… 如a n = 2n 1 2n .5.倒序相加法:将一个数列的倒数第k 项k = 1,2,3,…,n 变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法.注意:1 “数列求和”是数列中的重要内容,在中学高考范围内,学习数列求和不需要学习任何理论,上面所述求和方法只是将一些常用的数式变换技巧运用于数列求和之中. 2 “错位”与“倒序”求和的方法是比较特殊的方法.3 数列求通项及和的方法多种多样,要视具体情形选用合适的方法.4 重要公式:① 1 + 2 + … + n =12nn + 1; ② 12 + 22 + … + n 2 =16nn + 12n + 1;③ 13 + 23 + … + n 3 = 1 + 2 + … + n 2 =14n 2n + 12;④ 等差数列中,S m + n = S m + S n + mnd ;⑤ 等比数列中,S m + n = S n + q n S m = S m + q m S n .五、分期付款按揭贷款:每次还款(1)(1)1n n ab b x b +=+-元贷款a 元,n 次还清,每期利率为b .。
等差等比数列基础知识点
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
初中数学中的数列知识点梳理
初中数学中的数列知识点梳理数列是初中数学中重要的基础知识之一,它在很多数学问题中起着重要的作用。
在初中数学教学中,数列的相关知识点也比较多。
本文将对初中数学中的数列知识点进行梳理和总结。
一、数列的概念和表示方法数列是按照一定规律排列的一组数。
数列中的每个数称为项,项的位置称为序号。
数列可以用数学符号表示,常用的表示方法有两种:通项公式和递推公式。
通项公式表示数列的第n项与n之间的关系,通常用字母an表示数列的第n项。
通项公式的常见形式有:等差数列的通项公式an=a1+(n-1)d,等比数列的通项公式an=a1*q^(n-1)。
递推公式表示数列的第n项与前一项之间的关系,通常用字母an表示数列的第n项,用字母an-1表示数列的第n-1项。
递推公式的常见形式有:等差数列的递推公式an=an-1+d,等比数列的递推公式an=q*an-1。
二、等差数列的性质和应用1. 公差与公差的性质:等差数列中,两个相邻项之间的差叫做公差。
若等差数列的公差为d,则第n项与第m项之间的差等于(m-n)d。
等差数列的公差具有可加性,即an+bn=an+b。
2. 通项公式和前n项和公式:等差数列的通项公式an=a1+(n-1)d,前n项和公式Sn=n/2(a1+an)。
通过这两个公式,可以方便地计算等差数列的特定项和前n项和。
3. 等差中项的求解:等差数列中,若an是第n项,ak是第k项,am是中项,即k+(m-k)/2=n,我们可以通过求解该方程来找到等差数列的中项。
4. 等差数列的应用:等差数列在日常生活中有很多应用,例如计算机编址问题、票务计算、交通工具的行驶时间等。
三、等比数列的性质和应用1. 公比与公比的性质:等比数列中,每一项与它的前一项的比叫做公比。
若等比数列的公比为q,则第n项与第m项的比等于q^(m-n)。
等比数列的公比具有可乘性,即an*bn=(ab)n。
2. 通项公式和前n项和公式:等比数列的通项公式an=a1*q^(n-1),前n项和公式Sn=a1*(q^n-1)/(q-1)。
高中数学知识点总结(第六章 数列 第四节 数列求和)
第四节 数列求和一、基础知识1.公式法(1)等差数列{a n }的前n 项和S n =na 1+a n 2=na 1+nn -1d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =nn +12; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.考点一 分组转化法求和[典例] 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -12+n -12=n .又a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =21-22n 1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. [解题技法]1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型[题组训练]1.已知数列{a n }的通项公式是a n =2n -⎝⎛⎭⎫12n,则其前20项和为( ) A .379+1220B .399+1220C .419+1220D .439+1220解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝⎛⎭⎫12+122+123+…+1220=420-⎝⎛⎭⎫1-1220=419+1220. 2.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×1-2101-2+10×1+10×92×2=1 123.选C.考点二 裂项相消法求和考法(一) 形如a n =1nn +k型 [典例] (2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式;(2)设c n =1a n a n +1,n ∈N *,求数列{c n }的前n 项和T n .[解] (1)设等差数列的公差为d ,则由题意可得⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1. (2)因为c n =1a n a n +1=12n +12n +3,所以c n =12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=n6n +9. 考法(二) 形如a n =1n +k +n型[典例] 已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n ,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1[解析] 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f n +1+f n =1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2- 1 )+(3- 2 )+(4- 3 )+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. [答案] C[解题技法]1.用裂项法求和的裂项原则及消项规律 2.常见的拆项公式(1)1n n +1=1n -1n +1;(2)12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1; (3)1n +n +1=n +1-n ;(4)2n2n-12n +1-1=12n-1-12n +1-1. [题组训练]1.在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为( )A.n +1n +2B.n n +2C.n n +1D.2n n +1解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =a 11-a 511-5=1, 所以a n =a 5+(n -5)d =n -3, 所以1a n +3·a n +4=1n n +1=1n -1n +1, 因此数列⎩⎨⎧⎭⎬⎫1an +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,故选C.2.各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n . 解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q , ∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2. (2)由(1)可得b n =1n log 22n +2=1n n +2=12⎝⎛⎭⎫1n -1n +2, ∴S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2 =34-2n +32n +1n +2. 考点三 错位相减法[典例] (2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[解] (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=2n +1b 1+b 2n +12=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+1-⎝⎛⎭⎫12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n .[变透练清]1.变结论若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n .解:由本例解析知a n =2n ,b n =2n +1, 故T n =3×21+5×22+7×23+…+(2n +1)×2n ,2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1 =6+81-2n-11-2-(2n +1)2n +1=(1-2n )2n +1-2 得T n =(2n -1)×2n +1+2.2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 因为q >0,解得q =2,所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8. ① 由S 11=11b 4,可得a 1+5d =16. ② 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2.所以{a n }的通项公式为a n =3n -2,{b n }的通项公式为b n =2n . (2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n -2,有 T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1, 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×1-2n 1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 得T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.[易误提醒](1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n -1项和当作n 项和.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q =1和q ≠1两种情况求解.[课时跟踪检测]A 级1.数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .82解析:选B a n =1n +n -1=n -n -1,故S n =n ,令S k =k =9,解得k =81,故选B.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得91-q 31-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.4.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100=( )A .-200B .-100C .200D .100解析:选D 设数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+3d =5,a 1+6d =11⇒⎩⎪⎨⎪⎧a 1=-1,d =2⇒a n =2n-3⇒b n =(-1)n (2n -3)⇒S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.5.已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A .1 026B .1 025C .1 024D .1 023解析:选C ∵2n +12n =1+⎝⎛⎭⎫12n, ∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013, ∴整数m 的最小值为1 024.6.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则 S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =nn +12+12⎝⎛⎭⎫1-12n 1-12=n n +12-12n +1. 答案:nn +12-12n +1 7.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +12,1S n =2nn +1=2⎝⎛⎭⎫1n -1n +1,因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2nn +1.答案:2nn +18.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+21-21 0091-2=3·21 009-3.答案:3·21 009-39.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设数列{a n }的公差为d , ∵a 2=3,S 4=16, ∴a 1+d =3,4a 1+6d =16, 解得a 1=1,d =2. ∴a n =2n -1. (2)由题意知,b n =12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1 =n2n +1. 10.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n . 解:(1)∵S n =2n +1-2,∴当n =1时,a 1=S 1=21+1-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又a 1=2=21,∴a n =2n .(2)由(1)知,b n =a n S n =2·4n -2n +1,∴T n =b 1+b 2+b 3+...+b n =2(41+42+43+...+4n )-(22+23+ (2)+1)=2×41-4n 1-4-41-2n 1-2=23·4n +1-2n +2+43.B 级1.(2019·潍坊统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n 3+2n +12=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.2.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =n +1a n ,求数列{b n }的前n 项和T n .解:(1)因为S n +1=3S n -2S n -1(n ≥2), 所以S n +1-S n =2S n -2S n -1(n ≥2),即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足,故数列{a n }的通项公式为a n =2n .(2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +111=12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1 =12+1-⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =32-n +32n +1. 故数列{b n }的前n 项和为T n =3-n +32n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5 数列础知识归纳一、数列的有关概念:1.数列的定义:按一定次序排列的一列数叫做数列.(1) 数列中的每个数都叫这个数列的项.记作a n ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,…,序号为n 的项叫第n 项(也叫通项),记作a n .(2) 数列的一般形式:a 1,a 2,a 3,…,a n ,…,简记作{a n }.2.通项公式的定义:如果数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.说明:(1) {a n }表示数列,a n 表示数列中的第n 项,a n = f (n )表示数列的通项公式;(2) 同一个数列的通项公式的形式不一定唯一.例如,a n = (- 1)n =1,21()1,2n k k n k -=-⎧∈⎨=⎩Z ; (3) 不是每个数列都有通项公式.例如,1,1.4,1.41,1.414,….(4) 从函数观点看,数列实质上是定义域为正整数集N *(或它的有限子集)的函数f (n ),当自变量n 从1开始依次取值时对应的一系列函数值f (1),f (2),f (3),…,f (n ),….通常用a n 来代替f (n ),其图象是一群孤立的点.3.数列的分类:(1) 按数列项数是有限还是无限分:有穷数列和无穷数列;(2) 按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列.4.递推公式的定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n - 1 (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.5.数列{a n }的前n 项和的定义:S n = a 1 + a 2 + a 3 + … +a n =1nk k a =∑称为数列{a n }的前n 项和.要理解S n 与a n 之间的关系.6.等差数列的定义:一般地,如果一个数列从第.2.项起..,每一项与它的前一项的差等于同一个常数..,那么数 列数列的概念 数列的定义数列的分类数列的性质等差数列与等比数列 等差数列与等比数列的概念等差数列与等比数列的性质等差数列与等比数列的基本运算数列的求和倒序相加错位相减裂项相消其他方法数列应用这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 即:{a n }为等比数列⇔ a n + 1 - a n = d ⇔ 2a n + 1 = a n + a n + 2 ⇔ a n = kn + b ⇔ S n = An 2 + Bn .7.等比数列的定义:一般地,如果一个数列从第.2.项起..,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比.公比通常用字母q 表示(q ≠ 0),即:{a n }为等比数列⇔ a n + 1 :a n = q (q ≠ 0) ⇔212n n n a a a ++=.注意条件“从第2项起”、“常数”q .由定义可知:等比数列的公比和项都不为零. 二、等差、等比数列的性质:等差数列(AP ) 等比数列(GP )通项公式 a n = a 1 + (n - 1)da n = a 1q n - 1 (a 1 ≠ 0,q ≠ 0) 前n 项和 11()(1)22n n n a a n n S na d +-==+ 11,1,(1), 1.1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩性质 ①a n = a m + (n - m )d ①a n = a m q n - m②m + n = s + t ,则a m + a n = a s + a t②m + n = s + t ,则a m ⋅ a n = a s ⋅ a t ③S m ,S 2m - S m ,S 3m - S 2m ,…成AP ③S m ,S 2m - S m ,S 3m - S 2m ,…成GP(q ≠ -1或m 不为偶数)④a k ,a k + m ,a k + 2m ,…成AP ,d ' = md④a k ,a k + m ,a k + 2m ,…成GP ,q ' = q m 注:1.等差(等比)数列{a n }的任意等距离的项构成的数列仍为等差(等比)数列.2.三个数成等差的设法:a - d ,a ,a + d ;四个数成等差的设法:a - 3d ,a - d ,a + d ,a + 3d ;3.三个数成等比的设法:a /q ,a ,aq ;四个数成等比的错误设法:a /q 3,a /q ,aq ,aq 3 (为什么?)4.{a n }为等差数列,则{}na c (c > 0)是等比数列.5.{b n } (b n > 0)是等比数列,则{log c b n } (c > 0且c ≠1) 是等差数列.6.公差为d 的等差数列{a n }中,若d > 0,则{a n }是递增数列;若d = 0,则{a n }是常数列;若d < 0,则{a n }是递减数列.7.等比数列{a n }中,若公比为q ,则(1) 当a 1 > 0,q > 1或a 1 < 0,0 < q < 1时为递增数列; (2) 当a 1 < 0,q > 1或a 1 > 0,0 < q < 1时为递减数列;(3) 当q < 0时为摆动数列; (4) 当q = 1时为常数列.8.等差数列前n 项和最值的求法:(1) a 1 > 0,d < 0时,S n 有最大值;a 1 < 0,d > 0时,S n 有最小值.(2) S n 最值的求法:① 若已知S n ,可用二次函数最值的求法(n ∈ N *); ② 若已知a n ,则S n 取最值时n 的值(n ∈ N *)可如下确定:S n 最大值100n n a a +≥⎧⎨≤⎩(或S n 最小值100n n a a +≤⎧⎨≥⎩). 三、常见数列通项的求法:1.定义法(利用AP ,GP 的定义).2.累加法(a n + 1 - a n = c n 型):a n = a 1 + (a 2 - a 1) + (a 3 - a 2) + … + (a n - a n - 1) = a 1 + c 1 + c 2+ … + c n - 1(n ≥ 2).3.公式法:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩. 4.累乘法(1n n na c a +=型):a n = a 1 ⋅32121n n a aa a a a -⋅⋅⋅= a 1 ⋅ c 1 ⋅ c 2 ⋅ …⋅ c n - 1(n ≥ 2). 5.待定系数法:a n + 1 = qa n +b (q ≠ 0,q ≠ 1,b ≠ 0)型,转化为a n + 1 + x = q (a n + x ).可以将其改写变形成如下形式:a n + 1 +1b q -= q (a n +1b q -),于是可依据等比数列的定义求出其通项公式. 6.间接法(例如:a n + 1 - a n = 4a n + 1a n ⇒1114n na a +-=-). 四、数列的求和方法:除化归为等差数列或等比数列求和外,还有以下一些常用方法:1.拆项求和法(a n = b n ± c n ):将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和.如a n = 2n + 3n .2.并项求和法:将数列的相邻两项(或若干项)并成一项(或一组)先求和,然后再求S n . 如“22222222123456(21)(2)n S n n =-+-+-++--”的求和.3.裂项相消法:将数列的每一项拆(裂开)成两项之差,即a n = f (n + 1) - f (n ),使得正负项能互相抵消,剩下首尾若干项.用裂项相消法求和,需要掌握一些常见的裂项,如:1111()()()n a An B An C C B An B An C ==-++-++、1(1)n n +=1n -11n +、11()a b a ba b =--+等. 4.错位相减法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法.对一个由等差数列及等比数列对应项之积组成的数列的前n 项和,常用错位相减法.即错位相减法一般只要求解决下述数列的求和:若a n = b n c n ,其中{b n }是等差数列,{c n }是等比数列,则数列{a n }的求和运用错位相减法.记S n = b 1c 1 + b 2c 2 + b 3c 3 + … + b n c n ,则qS n = b 1c 2 + b 2c 3 + … + b n - 1c n + b n c n + 1,… 如a n = (2n - 1) ⋅ 2n .5.倒序相加法:将一个数列的倒数第k 项(k = 1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法.注意:(1) “数列求和”是数列中的重要内容,在中学高考范围内,学习数列求和不需要学习任何理论,上面所述求和方法只是将一些常用的数式变换技巧运用于数列求和之中.(2) “错位”与“倒序”求和的方法是比较特殊的方法.(3) 数列求通项及和的方法多种多样,要视具体情形选用合适的方法.(4) 重要公式:① 1 + 2 + … + n =12n (n + 1); ② 12 + 22 + … + n 2 =16n (n + 1)(2n + 1);③ 13 + 23 + … + n 3 = (1 + 2 + … + n )2 =14n 2(n + 1)2; *④ 等差数列中,S m + n = S m + S n + mnd ;*⑤ 等比数列中,S m + n = S n + q n S m = S m + q m S n .五、分期付款(按揭贷款):每次还款(1)(1)1n n ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).。