数列基础知识点和方法归纳
数列基础知识点和方法归纳
1. 等差数列的定义与性质定义:(为常数),,推论公式:等差中项:成等差数列,等差数列前项和: 性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为; (4)若是等差数列,且前项和分别为,则;(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项, 即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:(为常数,),.推论公式:等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。
(2)仍为等比数列,公比为n q。
. (3)是正项等比数列,则注意:由求时应注意什么?时,;时,.3.求数列通项公式的常用方法(1)定义法求通项公式(已知数列为等差数列或等比数列)(2)已知的关系与n或的关系时与nnas,求。
⎩⎨⎧≥-==-)2()1(11nssnsannn例:?数列的前项和.求数列的通项公式;解:当时,当时数列的通项公式为.练习:设数列的前项和为,且.求数列的通项公式。
(3)求差(商)法 例:数列,,求 解: 时,,∴①时, ②① —②得:,∴,∴练习:在数列中,,, 求数列的通项公式。
数列知识点总结(经典)
数列基础知识点和方法归纳
1.等差数列的定义与性质
定义: ( 为常数),
等差中项: 成等差数列
前n 项和()()11122
n n a a n n n S na d +-==+ 性质: 是等差数列
(1)若 , 则
(2)数列 仍为等差数列, 仍为等差数列, 公差为 ;
(3)若三个成等差数列, 可设为
(4)若 是等差数列, 且前 项和分别为 , 则
(5) 为等差数列 ( 为常数, 是关于 的常数项为0的二次函数) 的最值可求二次函数 的最值;或者求出 中的正、负分界项,
2.等比数列的定义与性质
定义: ( 为常数, ), .
等比中项: 成等比数列 , 或 .
前 项和: (要注意! )
性质: 是等比数列
(1)若 , 则
(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .
注意: 由 求 时应注意什么?
时, ;
时, .
4.求数列前n 项和的常用方法
(1) 裂项法
(2)错位相减法
如: ①
()23412341n n n x S x x x x n x nx -=+++++-+·……
② ①—②()21
11n n n x S x x x nx --=++++-……
时, , 时,。
新高考数列知识点总结归纳
新高考数列知识点总结归纳数列是数学中重要的概念之一,它是由一系列按特定规律排列的数按一定的次序形成的有序集合。
而在新高考数学考试中,数列作为一个重要的知识点,经常出现在试卷中。
本文将对新高考数列相关的知识点进行总结归纳,以期帮助同学们更好地掌握数列的概念和相关的解题方法。
一、数列的基本概念数列由一系列按特定规律排列的数按照一定的次序形成,通常用{a₁,a₂,a₃,...,aₙ}表示。
其中,a₁表示数列的第一个数,aₙ表示数列的第n个数。
数列中相邻两项之间的差称为公差,通常用d表示。
若给定数列的第一项和公差,可以通过an = a₁ + (n-1)d来计算数列的第n项。
二、等差数列等差数列是指数列中相邻两项之间的差恒定的数列。
在新高考数学中,等差数列是最常见的数列类型之一。
1. 等差数列的通项公式对于等差数列{a₁,a₂,a₃,...,aₙ},如果其公差为d,首项为a₁,那么它的通项公式为an = a₁ + (n-1)d。
2. 等差数列的和等差数列的和可以通过求和公式Sn = n/2[2a₁ + (n-1)d]来计算,其中Sn表示等差数列的前n项和。
3. 等差数列的性质等差数列具有以下性质:- 等差数列的相邻两项的和相等;- 等差数列的前n项和与n成正比;- 等差数列的对称轴为前后两项和的平均值。
三、等比数列等比数列是指数列中相邻两项之间的比恒定的数列。
在新高考数学中,等比数列也是常见的数列类型之一。
1. 等比数列的通项公式对于等比数列{a₁,a₂,a₃,...,aₙ},如果其公比为q,首项为a₁,那么它的通项公式为an = a₁ * q^(n-1)。
2. 等比数列的和等比数列的和可以通过求和公式Sn = a₁ * (1 - q^n)/(1 - q)来计算,其中Sn表示等比数列的前n项和。
3. 等比数列的性质等比数列具有以下性质:- 等比数列的相邻两项的比相等;- 等比数列的前n项和与n无关;- 等比数列的对数轴为前后两项比的平均值的对数。
数学数列知识点归纳总结
数学数列知识点归纳总结一、数列的概念1.1 数列的定义数列是按照一定的顺序排列的一系列数的集合,通常用一对大括号{}表示,其中的每个数称为数列的项。
例如:{1, 2, 3, 4, 5, ...}就是一个数列,它包含了无穷多个项,每个项都是自然数。
1.2 数列的表示数列可以用不同的方式表示,常见的表示方法有公式法、图形表示法和文字描述法。
- 公式法:可以用一个通项公式来表示数列的每一项,例如:an = n^2表示数列{1, 4, 9, 16, ...}的通项公式。
- 图形表示法:可以用图形来表示数列,例如:等差数列可以用直线表示,等比数列可以用曲线表示。
- 文字描述法:可以用文字描述数列的规律,例如:数列{2, 4, 6, 8, ...}可以描述为“每一项都比前一项大2”。
1.3 数列的分类数列可以按照不同的规律进行分类,常见的分类有等差数列、等比数列和斐波那契数列等。
- 等差数列:数列中相邻两项的差等于一个常数,这个常数称为公差。
- 等比数列:数列中相邻两项的比等于一个常数,这个常数称为公比。
- 斐波那契数列:数列中每一项都是前两项之和,例如:1, 1, 2, 3, 5, 8, 13, ...1.4 数列的通项公式数列的通项公式是指数列中任意一项与项号之间的函数关系式,一般用an表示第n项的值,n表示项号。
如果一个数列存在通项公式,则可以利用通项公式计算数列的任意项的值。
1.5 数列的性质数列有许多重要的性质,例如数列的有界性、单调性、敛散性以及极限等。
- 有界性:如果数列的项有上界或下界,则称该数列是有界的。
- 单调性:如果数列的项都单调递增或单调递减,则称该数列是单调的。
- 敛散性:数列是否有极限,如果有极限则称该数列是收敛的,否则是发散的。
二、等差数列2.1 等差数列的定义等差数列是指数列中相邻两项的差等于一个常数的数列,这个常数称为公差。
例如:{2, 4, 6, 8, ...}就是一个等差数列,公差为2。
数列知识点归纳
数列知识点归纳
1. 定义:数列是按照一定规律排列的数的集合。
2. 公式表示:数列可以用通项公式表示,通项公式中含有一个变量n,表示数列中的第n项。
3. 等差数列:如果一个数列中相邻两项之间的差值相等,那么这个数列就是等差数列。
其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
4. 等比数列:如果一个数列中相邻两项之间的比值相等,那么这个数列就是等比数列。
其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。
5. 递推公式:数列也可以用递推公式表示,递推公式中含有一个或多个前一项的变量,表示第n项与前一项之间的关系。
6. 求和公式:数列的前n项和可以用求和公式表示,包括等差数列和、等比数列和及其它一些特殊数列和。
7. 应用:数列在数学中有广泛的应用,如在数学分析、数值计算、概率论、组合数学等领域中都有涉及。
在物理、化学、生物、经济等学科中也有广泛应用。
数列函数知识点归纳总结
数列函数知识点归纳总结一、数列的概念1.1 数列的定义数列是由一列有序的数按照一定的规律排列形成的。
1.2 数列的常见表示方式数列可以用通项公式、递推公式、列表等方法表示。
1.3 数列的分类根据数列的性质可分为等差数列、等比数列、等差数列等。
二、等差数列2.1 等差数列的定义和通项公式若数列中任意相邻两项的差是一个常数d,那么这个数列就是等差数列。
等差数列的通项公式可以表示为an=a1+(n-1)d。
2.2 等差数列的性质等差数列的通项公式、前n项和公式、公差和首项的关系等。
2.3 等差数列的应用在实际问题中,可以利用等差数列来描述一些数量随时间或次数变化的规律。
三、等比数列3.1 等比数列的定义和通项公式若数列中任意相邻两项的比是一个常数q,那么这个数列就是等比数列。
等比数列的通项公式可以表示为an=a1*q^(n-1)。
3.2 等比数列的性质等比数列的通项公式、前n项和公式等。
3.3 等比数列的应用等比数列在成倍增长或成倍减少的情况下有着广泛的应用。
四、数列的求和4.1 数列求和的概念数列求和就是将数列中的前n项相加,得到一个数列前n项和的公式。
4.2 等差数列的求和等差数列的前n项和公式可以表示为Sn=n*(a1+an)/2。
4.3 等比数列的求和等比数列的前n项和公式可以表示为Sn=a1*(1-q^n)/(1-q)。
五、数列的递推5.1 递推数列的概念递推数列就是通过数列中的前一项来定义后一项的一种特殊数列。
5.2 递推数列的通项公式递推数列可以通过已知的初始条件和递推关系求解通项公式。
5.3 递推数列的应用递推数列在描述一些连续变化的规律的问题中有着重要的应用。
六、数列函数6.1 数列函数的定义数列函数是将自然数集合映射到实数集合的函数。
6.2 数列函数的性质数列函数有着和一般函数相似的性质,包括单调性、有界性、周期性等。
6.3 数列函数的应用数列函数可以用来描述一些随时间变化的规律,并在实际问题中有着重要的应用。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
总结数列第一节知识点归纳
总结数列第一节知识点归纳数列是高中数学中重要的一个概念,它是指按一定规律排列的一组数。
数列的学习是数学学习的基础,而数列的第一节知识点是我们对于数列的认识和基本概念的初步了解。
本文将对数列的第一节知识点进行归纳总结。
1. 什么是数列数列是按照一定规律排列的一组数。
数列的构成元素有两个要素,即首项和公差。
首项是数列中的第一个数,而公差是数列中相邻两项之间的差值。
数列的一般形式可以表示为:{a₁, a₂, a₃, ..., aₙ},其中a₁表示首项,aₙ表示第n项。
2. 等差数列等差数列是指数列中相邻两项之间的差值保持不变的数列。
等差数列的通项公式为:aₙ = a₁ + (n-1)d,其中aₙ表示第n项,a₁表示首项,d表示公差。
初学等差数列,重要的是掌握如何计算任意一项和前n项的和。
3. 等差数列的性质(1)等差数列的项数无限。
(2)等差数列的相邻两项之间的差值是相等的。
(3)等差数列的平均数等于中间项。
4. 等差中项等差中项是指等差数列中两个已知项的中间项。
计算等差中项的方法是将已知项相加除以2。
若已知项为a和b,那么等差中项为(a+b)/2。
5. 等比数列等比数列是指数列中相邻两项之间的比值保持不变的数列。
等比数列的通项公式为:aₙ = a₁ * q^(n-1),其中aₙ表示第n项,a₁表示首项,q表示公比。
对于初学等比数列的学生,要掌握如何计算任意一项和前n项的和。
6. 等比数列的性质(1)等比数列的项数无限。
(2)等比数列的相邻两项之间的比值是相等的。
(3)等比数列的前n项和等于首项与公比的幂次和减一的商。
7. 递推公式递推公式是指通过已知的一项或多项来推导出后面的项的公式。
对于等差数列,递推公式为:aₙ = aₙ₋₁ + d;对于等比数列,递推公式为:aₙ = aₙ₋₁ * q。
8. 数列的应用数列的应用非常广泛,涉及到很多实际问题。
例如金融领域中的利息计算、生物学中的生长规律、物理学中的运动规律等。
数列复习基本知识点归纳与总结
数列基本知识点归纳与总结一、数列的概念:数列是按一定次序排成的一列数。
数列中的每一个数都叫做这个数列的项。
数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。
数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156n n a n N n =∈+,则在数列{}na 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项n a 与它的前一项a n-1(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。
数列的分类:①按项数多少,分为有穷数列、无穷数列;②按项的增减,分为递增数列、递减数列、摆动数列、常数列。
③按项有无界限,分为有界数列、无界数列。
数列的前n 项和:a a a a s n n ++++= (3)21.已知s n 求a n 的方法(只有一种):即利用公式 a n=⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。
二、等差数列的有关概念:1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+).(1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
《数列》知识点归纳
《数列》知识点归纳一、数列:(1)一般形式:n a a a ,,,21⋯ (2)通项公式:)(n f a n =(3)前n 项和:12n n S a a a =++⋯及数列的通项a n 与前n 项和S n 的关系:1121(1)(2)n n n n n Sn S a a a a S S n -=⎧=++⋯⇔=⎨-≥⎩ 二、等差数列: 1等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列3等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和:⑤2)(1n n a a n S += ⑥d n n na S n 2)1(1-+=对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项:⑦如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质:⑧等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑨对于等差数列{}n a ,若q p m n +=+,则p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑩若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列如下图所示:kkk k k S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 6奇数项和与偶数项和的关系:⑾设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:前n 项的和偶奇S S S n +=当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; 当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)7前n 项和与通项的关系:⑿若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1212--=n n n n b a三、等比数列1.等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比常用字母q 表示(0≠q )2.等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项 也就是,如果是的等比中项,那么Gb a G =,即ab G =23.等比数列的判定方法:①定义法:对于数列{}n a ,若)0(1≠=+q q a a nn ,则数列{}n a 是等比数列②等比中项:对于数列{}n a ,若212++=n n n a a a ,则数列{}n a 是等比数列 4.等比数列的通项公式:如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 或n m n m a a q -=5.等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q q q a a S n n ○3当1=q 时,1na S n =当1q ≠时,前n 项和必须..具备形式(1),(n n S A q A =-≠ 6.等比数列的性质:①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=② 对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ⋅=⋅也就是: =⋅=⋅=⋅--23121n n n a a a a a a 如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么只有当公比1q =-且k 为偶数时,k S ,k k S S -2,k k S S 23-不成等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 四、等差数列与等比数列的性质及其应用 1一般数列的通项a n 与前n 项和S n 的关系:a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n2等差数列的通项公式:a n =a 1+(n-1)d a n =a m +(n--m )d (其中a 1为首项、a m 为已知的第m 项) 当d ≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数3等差数列的前n 项和公式:S n =d n n na 2)1(1-+S n =2)(1n a a n + 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式4等差数列的通项a n 与前n 项和S n 的关系:a n =1212--n S n 5等差中项公式:A=2ba + (有唯一的值) 6等比数列的通项公式:a n = a 1 q n-1 a n = a m q n --m(其中a 1为首项、a m 为已知的第m 项,a n ≠0)7等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --118等比中项公式:G=ab ± (ab>0,有两个值)9等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列10等差数列{a n }中,若m+n=p+q ,则q p n m a a a a +=+11等比数列{a n }中,若m+n=p+q ,则q p n m a a a a ∙=∙12等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列(当m 为偶数且公比为-1的情况除外)13两个等差数列{a n }与{b n }的和差的数列{a n+b n }、{a n -b n }仍为等差数列14两个等比数列{a n }与{b n }的积、商、倒数的数列{a n ∙b n }、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列15等差数列{a n }的任意等距离的项构成的数列仍为等差数列 16等比数列{a n }的任意等距离的项构成的数列仍为等比数列17三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d18三个数成等比的设法:a/q,a,aq ;四个数成等比的错误设法:a/q 3,a/q,aq,aq 3 (因为其公比为2q >0,对于公比为负的情况不能包括) 19{a n }为等差数列,则{}na c(c>0)是等比数列20{b n }(b n >0)是等比数列,则{log c b n } (c>0且c ≠1) 是等差数列五、数列的通项求法1、公式法:①d n a a n )1(1-+=或d m n a a m n )(-+=;②11-=n n q a a 或n mn m a a q-=2、观察法:1137153121,,,,...4816322n n n a ++-=3、裂项相消法:)11(1))((1CAn B An B C C An B An a n +-+-=++=4、利用n nS a 与的关系求(定义法):⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 5、逐差求和法:1(),(2)n n a a f n n --=≥若,)2(12f a a =-则 , )3(23f a a =-,………, )(1n f a a n n =--1(2)(3)()n a a f f f n ⇒-=++⋯ 6、逐商求积法:)(1n g a a n n =-若,)2(12g a a =则,)3(23g a a =,………,)(1n g a a n n =-1(2)()n ag g n a ⇒=⋯7、构造等差、等比数列法:11();()1n n n n qp q x p x x pa a a a ++=+⇒-=-=- 11111111}1,1,{}21122,21221{}.211(),2()222n n nn n n n n n n n n a a a a a a a a b b a a a +++--==+-==-==-=-∴∴=--==-+1n n 1n n n 例:在数列{中,求数列的通项.解:(-2) 令 则是以-1为首项,为公比的等比数列由知 b b b b b111{}1133)323233)()323nn n n n n n n nn n a a a a a a a a a a a a a a a -=∙+⇒=∙+⇒-=-∴--=-∙⇒=-n+1n+1n+1n+1n+1n n+1n+1n+1n n+1n 1n 1511例2.已知=,=+(),求数列的通项.63212解:22223322(232{2}是以公比为,首项为(2-3)的等比数列.32(2六、数列求和的方法高考要求等差数列与等比数列的有限项求和总是有公式可求的,其它的数列的求和不总是可求的,但某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法 知识点归纳1等差数列的前n 项和公式法:S n =d n n na 2)1(1-+S n =2)(1n a a n + S n =d n n na n 2)1(-- 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 2等比数列的前n 项和公式法:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --113拆项法求数列的和,如a n =2n+3n4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式)5裂项法求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα6倒序相加法求和,如a n =nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =……⎪⎩⎪⎨⎧<=>000 如a n = -2n 2+29n-3 ②⎪⎩⎪⎨⎧<=>=+1111 n n a a (a n >0) 如a n =n n n 10)1(9+ ③a n =f(n) 研究函数f(n)的增减性 如a n 1562+n n8等比、等差数列和的形式:{}Bn An S B An a a n n n +=⇔+=⇔2成等差数列 {}(1)(0)n n n a S A q A ≠⇔=-≠(q 1)成等比数列9无穷递缩等比数列的所有项和:{}1lim 1n n n a a S S q→∞⇔==-(|q|<1)成等比数列题型讲解例1 (分情况讨论)求和:)(*122221N n b ab b a b a b a a S n n n n n n n ∈++++++=---- 解:①当a=0或b=0时,)(n n n a b S = ②当a=b 时,n n a n S )1(+=;③当a ≠b 时,ba ba S n n n --=++11例2(分部求和法)已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++ 解:首先由3145291010110=⇒=⨯⨯+=d da S 则12(1)32322n n na a n d n a =+-=-⇒=⋅-22423(222)2n na a a n ∴+++=+++-12(12)32322612n n n n +-=-=⋅--- 例3(分部求和法)求数列1,3+13,32+132,……,3n +13n 的各项的和 解:其和为:(1+3+ (3))+(13132++……+13n )=3121321n n +--+-=12(3n +1-3-n)例4(裂项求和法))(,32114321132112111*N n n∈+++++++++++++++ 解:)1(2211+=+⋯++=k k k a k ,])1n (n 1321211[2S n ++⋯+⋅+⋅=∴ 1211121113121211[2+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n 例5(裂项求和法)已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111解:首先考虑=∑=+ni i i a a 111∑=+-n i i i a a d 11)11(1 则∑=+ni i i a a 111=1111)11(1++=-n n a a n a a d 点评:已知数列{}n a 为等差数列,且公差不为0,首项也不为0,下列求和11nni i ===也可用裂项求和法例6(错位相减法)设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和 解:①若a=0时,S n =0②若a=1,则S n =1+2+3+…+n=)1n (n 21- ③若a ≠1,a ≠0时,S n -aS n =a (1+a+…+a n-1-na n ),S n =]na a )1n (1[)a 1(a 1n n 2+++-- 例7(错位相减法)已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S解:,lg n n n n a a b n a a ==⋅232341(23)lg (23)lg n n n n S a a a na a aS a a a naa +∴=++++=++++……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=-[]nn a na n a a a S )1(1)1(lg 2-+--=∴ 点评:设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法例8(组合化归法)求和:)12)(1(532321++++⋅⋅+⋅⋅=n n n S n解:)1(3)2)(1(2)342)(1(+-++=-++=n n n n n n n n a n而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的 求和问题了213221326122)1(,6)2)(1(++++-=∴=+=++n n n n n C C a C n n C n n n )(6)(12212322323433+++++-+++=∴n n n C C C C C C S3243212333323444612)(6)(12++++-=+++-+++=n n n n CCC C C C C C12(3)(2)(1)6(2)(1)4!3!n n n n n n n nS +++++∴=-2(3)(2)(1)(2)(1)21(1)(2)2n n n nn n nn n n +++=-++=++ 点评:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法当然本题也可以将通项(1)(243)n a n n n =++-展开为n 的多项式,再用分部求和法例9(逆序相加法)设数列{}n a 是公差为d ,且首项为d a =0的等差数列,求和:nnn n n n C a C a C a S +++=+ 11001 解:因为nnn n n n C a C a C a S +++=+ 11001 00111n n n n n n n n C a C a C a S +++=--+ nn n n n n C a C a C a 0110+++=- 01101102()()()nn n n n n n nS a a C a a C a a C +-∴=++++++ 0100()()()2nn n n n n n a a C C C a a =++++=+ 110()2n n n S a a -+∴=+⋅点评:此类问题还可变换为探索题形:已知数列{}n a 的前n 项和n S 12)1(+-=nn ,是否存在等差数列{}n b 使得n n n n n n C b C b C b a +++= 2211对一切自然数n 都成立例10(递推法)已知数列{}n a 的前n 项和n S 与n a 满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S 解:由题意:21(),2n n n S a S =-1n n n a S S -=-11111112(1)221.21n n n n n n S S S S S n -∴-=⇒=+-=-∴=- 点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法小结:1等价转换思想是解决数列问题的基本思想方法,复杂的数列转化为等差、等比数列2 由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想,数学归纳法是这一思想的理论基础3错位相减”、“裂项相消”是数列求和最重要的方法。
完整版)数列知识点归纳
完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。
因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。
特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。
7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。
数列知识点总结
数列的知识点一、数列的概念1.数列的定义.2.数列的表示法:列表法、图象法、解析法(通项公式或递推公式).3.数列的分类:①按数列中项的多少分为有穷数列和无穷数列;②按数列中项的变化情况分为递增数列、递减数列、常数列和摆动数列; ③按任一项的绝对值是否都大于某一正数分为有界数列和无界数列. 4.数列的递推公式. 5.数列的前n 项和.对于任一数列{}n a ,其通项n a 和它的前n 项和n s 之间的关系是⎩⎨⎧≥-==-)2()1(11n s s n s a n n n二、等差数列1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥2、等差数列的通项公式:1(1)n a a n d =+-;3、等差中项的概念:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.其中2a b A +=a ,A ,b 成等差数列⇔2a bA +=. 4、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 5、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (5)在等差数列{}n a 中,若m+n=2p,则p n m a a a 2=+; (6)连续n 项的和仍成等差数列.特殊说明:设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①S奇-S 偶nd =; ②1n n S aS a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1S nS n =-奇偶 6、数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩.三、等比数列1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠. 2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n .说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=. 3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项).4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1 或11n n a a qS q -=-;当q=1时,1na S n =(错位相减法). 说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是nq ,通项公式中是1-n q不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况.5.等比数列的性质①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=;②对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ⋅=⋅.③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++四、数列的通项与求和1.数列求通项①用数学归纳法求通项公式;②用累加法求通项公式:形如()n f a a n n =-+1形成的数列均可利用累加法求通项; ③用累乘法求通项公式:形如()n f a a nn =+1形成的数列可利用累乘法求通项; ④已知递推公式求通项:形如()为常数,q p q pa a n n +=+1的递推式求通项可构造等比数列求解; ⑤已知数列前n 项和n S 与通项n a 的关系求通项:n a =⎩⎨⎧--11s s s n n 12=≥n n ;2、数列前n 项和①重要公式:()21321+=++++n n n ;()()61213213222++=++++n n n n ;()2333321321⎥⎦⎤⎢⎣⎡+=++++n n n ;()212531n n =-++++ ; ()12642+=++++n n n .②等差数列中: ; ③等比数列中: ;④倒序相加法求和:如果一个数列,与首末两端“等距”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法;⑤错位相减法求和:错位相减适用于{}n n b a ⋅型数列,其中{}n a 是等差数列,{}n b 是等比数列; ⑥裂项相消法求和; ⑦分组求和.。
数列基础知识点和方法归纳
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 3.求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S =2n ≥时,1134n n n n a S S --=-==……· (2)叠乘法如:数列{}n a 中,1131n n a na a n +==+,,求n a解3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =.(3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a (()1312nn a =-)(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭(5)倒数法 如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·, ∴21n a n =+( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴[练习]求和:111112123123n+++++++++++………… (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nx S xx -=---,1x =时,()11232n n n S n +=++++=…… (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式 (附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
数列知识点和常用的解题方法归纳
数列知识点和常用的解题方法归纳数列知识点和常用的解题方法归纳 一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n nn+-==+-111()等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n dn n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =--{}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即: 当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27)二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q+=+=(),,……仍为等比数列2232S S S S S n n n n n --三、求数列通项公式的常用方法1、公式法2、nna S 求由;(时,,时,)n aS n a S S n n n ==≥=--12111 3、求差(商)法{}如:满足……a a aa n nnn 121212251122+++=+<>解:n aa ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a nn =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a SS a a a nnn n n+==++111534(注意到代入得:a S S S S n n n n n+++=-=1114{}又,∴是等比数列,S S S n n n144== n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++解:aa a a a a n n a a nn n n 213211122311·……·……,∴-=-=又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a nn n-==-11()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()……∴……a a f f f n n =++++023()()()[练习]{}()数列,,,求a aa a n a nn n n n111132==+≥--()()a n n=-12316、等比型递推公式()a ca d c d c c d nn =+≠≠≠-1010、为常数,,,()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c xn n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习]{}数列满足,,求a aa a a nn n n11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n nn n11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a an为等差数列,,公差为()()∴=+-=+11112121a n n n·,∴an n=+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
数列基础知识点和方法归纳
数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-,推论公式:等差中项:x A y ,,成等差数列2A x y ⇔=+,等差数列前n 项和:()()11122n na a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(下标和定理) 注意:要求等式左右两边项数相等 (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,,; (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=; (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.推论公式:等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy=±.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(下标和定理) 注意:要求等式左右两边项数相等。
常见的数列知识点总结归纳
常见的数列知识点总结归纳数列是数学中重要的概念之一,它是由一系列有序的数按照一定规律排列而成的。
掌握数列的相关知识点对于数学学习和解题都具有重要意义。
本文将对常见的数列知识点进行总结和归纳,帮助读者更好地理解和应用数列。
一、等差数列等差数列是指数列中相邻两项之间的差值恒为常数的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则有以下重要性质:1. 通项公式:aₙ = a₁ + (n-1)d,表示第n项与首项之间的关系;2. 前n项和公式:Sₙ = n/2(a₁ + aₙ),表示前n项和的计算公式;3. 公差与项数的关系:d = (aₙ - a₁)/(n-1),用于求解公差或项数;4. 任意三项之间的关系:设第m项为aₙ,则有aₙ = aₙ + (n-m)d。
二、等比数列等比数列是指数列中相邻两项之间的比值恒为常数的数列。
设等比数列的首项为a₁,公比为q,第n项为aₙ,则有以下重要性质:1. 通项公式:aₙ = a₁q^(n-1),表示第n项与首项之间的关系;2. 前n项和公式:Sₙ = a₁(q^n - 1)/(q - 1),表示前n项和的计算公式;3. 公比与项数的关系:q = (aₙ/a₁)^(1/(n-1)),用于求解公比或项数;4. 任意三项之间的关系:设第m项为aₙ,则有aₙ = aₙ(q^(n-m))。
三、等差-等比数列等差-等比数列是指既满足等差数列的性质,又满足等比数列的性质的数列。
设等差-等比数列的首项为a₁,公差为d,公比为q,第n项为aₙ,则有以下重要性质:1. 通项公式:aₙ = a₁q^(n-1) + (n-1)da₁(q^(n-2) - 1),表示第n项与首项之间的关系;2. 前n项和公式:Sₙ = (a₁(q^n - 1))/(q - 1) + (d(q^(n-1) - 1))/(q - 1),表示前n项和的计算公式。
四、算数平均数与几何平均数在数列中,算数平均数与几何平均数是常见的概念。
数列知识点归纳总结笔记
数列知识点归纳总结笔记一、数列的概念1. 数列的定义数列是由一系列有序的数按照一定的规律排列而成的。
我们通常用{n}来表示一个数列,其中n为自然数。
2. 数列的常见表示方式(1)通项公式表示:数列的一般形式为a₁,a₂,a₃,......,aₙ,其中aₙ是第n项的值。
数列的通项公式通常是一种算式,可以用来表示数列的第n项。
(2)递推关系表示:数列的第n项与它的前几项之间存在某种关系,这种关系称为数列的递推关系,通常用递归的方式表示。
3. 数列的分类(1)等差数列:数列中任意两项之间的差是常数,这种数列称为等差数列。
(2)等比数列:数列中任意两项之间的比是常数,这种数列称为等比数列。
(3)等差-等比混合数列:数列中既存在等差关系,又存在等比关系,这种数列称为等差-等比混合数列。
(4)等差-等比-等比差混合数列:数列中既存在等差关系,又存在等比关系,同时等差项间的差也构成等差数列,这种数列称为等差-等比-等比差混合数列。
二、数列的性质1. 数列的有界性(1)有界数列:如果一个数列存在一个上界和一个下界,那么该数列称为有界数列。
(2)无界数列:如果一个数列不存在上界或下界,那么该数列称为无界数列。
2. 数列的单调性(1)单调递增数列:如果数列的每一项都大于等于前一项,那么该数列称为单调递增数列。
(2)单调递减数列:如果数列的每一项都小于等于前一项,那么该数列称为单调递减数列。
3. 数列的极限(1)数列的极限定义:对于一个数列{aₙ},如果对于任意给定的ε>0,存在N∈N,对于所有n>N,有|aₙ-L|<ε成立,则称数列{aₙ}的极限为L,记为lim(n→∞) aₙ=L。
(2)数列的极限存在性:一个数列未必存在极限,但只要该数列有上界和下界,则该数列一定存在极限。
4. 数列的和(1)数列的部分和:对于数列{aₙ},它的前n项的和称为数列的部分和,用Sₙ表示。
(2)数列的无穷和:如果lim(n→∞) Sₙ=L,那么L称为数列{aₙ}的无穷和,即∑ aₙ=L。
数列知识点与常用解题方法归纳总结
数列知识点及常用解题方法归纳总结一、等差数列的定义与性质定义: a n 1 a n d ( d为常数 ) , an a1n 1 d等差中项: x,A , y成等差数列2A x ya1a n n n n1前 n项和 S n na12d2性质:a n是等差数列(1)若 m n p q,则 a m a n a p a q;( 2)数列a2 n 1, a2 n, ka n b 仍为等差数列;S n,S2 n S n,S3n S2n⋯⋯仍为等差数列;( 3)若三个数成等差数列,可设为 a d,a,a d;( 4)若 a n, b n是等差数列 S n, T n为前 n项和,则amS2m1;b mT2 m1( 5) a n为等差数列S n an2bn( a, b为常数,是关于n的常数项为0的二次函数)S n的最值可求二次函数S n an2bn的最值;或者求出 a n中的正、负分界项,即:当a10, da n00,解不等式组可得 S n达到最大值时的 n值。
a n10当a10, d0,由a n0可得 S n达到最小值时的 n值。
a n10如:等差数列 a n, S n18,a n an 1an 23,S31,则 n(由 a n an 1an 2 3 3a n 13,∴ a n 11又 S a1a3 · 3 3a2,∴a21313 211 na 1a n n a 2an 1· n318n 27)∴ S n222二、等比数列的定义与性质定义: an1q ( q 为常数, q0), a n a 1 q n 1a n等比中项: x 、G 、 y 成等比数列G 2 xy ,或 Gxyna 1 (q 1)前n 项和: S na 1 1q n 1)(要注意 ! )1(qq性质: a n 是等比数列(1)若 m n p q ,则 a m · a na p ·a q( 2)S n ,S 2n S n , S 3 n S 2 n ⋯⋯仍为等比数列三、求数列通项公式的常用方法1、公式法2、 由S n 求a n ;(n1时, a 1 S 1 ,n2时, a nS n S n 1)3、求差(商)法如: a n 满足 1a 112 a 2⋯⋯1n a n2n 512 221解: n1时, 2a12 1 5,∴ a 114n 2 时,11 a 2⋯⋯1an 12n 1 522a1222 n 112 得:1a n 2 , ∴ a n2n 1, ∴ a n14 (n 1)2n 1(n2)2 n[练习]数列 a n 满足 S nS n 15a n 1 , a 14,求 a n3(注意到 a n 1S n 1 S n 代入得:S n 14S n又 S 1 4,∴ S n 是等比数列, S n4 n24、叠乘法例如:数列 a n 中, a 1an 1n3,a nn ,求 a n1解: a 2 · a 3 ⋯⋯ a n1 ·2 ⋯⋯ n 1 ,∴ a n1a 1a 2an 123na 1 n又 a 13,∴ a n3 n5、等差型递推公式由a na n 1 f (n) ,a 1 a 0 ,求 a n ,用迭加法n 2时, a 2a 1 f (2)a 3 a 2f (3) 两边相加,得:⋯⋯⋯⋯a na n1f (n)a n a 1 f (2) f ( 3) ⋯⋯ f ( n)∴a na 0f (2) f (3) ⋯⋯f (n)[练习]数列 a n , a 1 1, a n 3n 1a n 1 n 2 ,求 a n( a n13n1 )26、等比型递推公式a n ca n 1d c 、 d 为常数, c0, c 1, d 0可转化为等比数列,设 a n xc a n 1xa n ca n 1 c 1 x令 (c 1)xd ,∴ xdc 1∴ a ndd1是首项为 a 1, c 为公比的等比数列cc 1∴ a nd a 1c d · c n 1c 11∴ a na 1d c n 1d[练习]数列 a n 满足 a 19, 3a n 1a n 4,求 a n4n 1(a n81)37、倒数法例如: a 11, a n 12a n,求 a n1a n 2 1 1 a n, 由已知得:2 a n2a n 12a n11 1 ,1为等差数列,1,公差为1a n2a na 12an 11 1 n 1 ·1 1n 1, ∴ a n2n1a n2 2 三、 求数列前 n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
数列常见方法总结
数列常见方法总结一、考点、热点回顾1 数列通项公式的求法1.1. 累加法 1.2. 累乘法 1.3. 取倒数法 1.4. 待定系数法1.5. 构造等差、等比数列法 2 数列求和的基本方法和技巧2.1 错位相减法求和 2.2 倒序相加法求和 2.3 分组法求和 2.4 裂项法求和二、典型例题1. 数列通项公式的求法 1.1. 公式法①;②{}n a 等差、等比数列{}n a 公式.例 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
1.2. 累加法例 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
例 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出⎩⎨⎧≥-==-)2()111n S S n S a n nn (11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式。
1.3. 累乘法例 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
数列全部知识点归纳总结
数列全部知识点归纳总结数列是高中数学中的一个重要概念,广泛应用于数学和其他学科的问题中。
它是由一组按照特定规律排列的数所组成的序列。
在数列中,每一个数被称为序列的项,而序列中的规律则被称为递推公式。
本文将对数列的基本概念、常见数列类型、性质及应用进行全面的知识点归纳和总结。
一、基本概念数列是由一组按特定顺序排列的数所组成的序列。
数列的每个数被称为序列的项,通常用字母表示,如a1, a2, a3等。
数列中每个项的位置被称为项号,通常用下标表示,如a1, a2, a3的项号分别为1, 2, 3。
数列也可以用函数来表示,即f(n),其中n表示项号。
二、常见数列类型1.等差数列:等差数列是指数列中相邻两项之差都相等的数列。
它的递推公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是指数列中相邻两项之比都相等的数列。
它的递推公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
3.等差数列的前n项和:等差数列的前n项和可以用求和公式Sn = (n/2)(a1+an)来表示,其中n为项数,a1为首项,an为第n项。
4.等比数列的前n项和:等比数列的前n项和可以用求和公式Sn = (a1(r^n-1))/(r-1)来表示,其中n为项数,a1为首项,r为公比。
三、数列的性质1.有界性:数列可以是有界的,也可以是无界的。
有界数列是指数列的所有项都在一定范围内,无界数列则相反。
2.单调性:数列可以是单调递增的、单调递减的或者既不递增也不递减的。
3.周期性:有些数列具有周期性,即数列中的项按照一定的规律循环出现。
4.递推关系:数列中的每一项可以通过前一项和递推公式来推导得到。
四、数列的应用1.数学问题:数列广泛应用于数学问题的求解中,如求解等差数列、等差数列的前n项和等。
2.物理问题:数列也常常用于物理问题的建模与求解中,如描述物体运动的规律等。
3.计算机科学:数列在计算机科学中有着重要的应用,如算法设计、数据压缩等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础知识点和方法归纳
一.等差数列的定义与性质
定义:1n n a a d +-=(d 为常数),()11n a a n d =+-
等差中项:x A y ,,成等差数列2A x y ⇔=+
前n 项和()()11122
n n a a n n n S na d +-==+ 性质:{}n a 是等差数列
(1)若m n p q +=+,则m n p q a a a a +=+;
(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;
(3)项数为偶数n 2的等差数列{}n a ,有
),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ
(4)项数为奇数12-n 的等差数列{}
n a ,有)()12(12为中间项n n n a a n S -=-
练习题: 1.已知}{n a 为等差数列,135246105,99a a a a a a ++=++=,则20a 等于( )
A. -1
B. 1
C. 3
D.7
2.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )
A .13
B .35
C .49
D . 63
3.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =
A.-2
B.-12
C.12
D.2 4.在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于( )
A .18
B 27
C 36
D 9
5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )
A .63
B .45
C .36
D .27
6.设等差数列{}n a 的前n 项和为n S ,若535a a =则95
S S = 7.设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=
8.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =
9、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:}{n a 的通项公式a n
及前n项的和S n ;
10.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .
二.等比数列的定义与性质 定义:1n n
a q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=
,或G =
前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩
(要注意!) 性质:{}n a 是等比数列
(1)若m n p q +=+,则m
n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?
1n =时,11a S =;
2n ≥时,1n n n a S S -=-.
练习题
1.已知a ,b ,c ,d 是公比为2的等比数列,则
d
c b a ++22等于( ) A .1 B .21 C .41 D .81 2.已知}{n a 是等比数列,且0>n a ,243546225a a a a a a ⋅+⋅+⋅=,那么53a a + 的值是( )
A .5
B .6
C .7
D .25
3.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于( )
A .1023
B .1024
C .511
D .512
4.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则4
1a a 的值是( ) A .1 B .2 C .3 D .4
5.等比数列}{n a 中,首项81=a ,公比2
1=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2
37 6.已知等比数列}{n a 中,102=a ,203=a ,那么它的前5项和5S =__________。
7.等比数列}{n a 的通项公式是n n a -=42,则5S =__________。
8.在等比数列}{n a 中,已知5127=•a a ,则111098a a a a •••=__________。
9.设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数。
三.求数列通项公式的常用方法
(1)求差(商)法
如:数列{}n a ,12211125222
n n a a a n +++=+……,求n a
[练习]数列{}n a 满足111543
n n n S S a a +++==,,求n a
(2)叠乘法(累乘法)【形如()1
n n a f n a -=】 如:数列{}n a 中,1131
n n a n a a n +==+,,求n a
[练习]数列{}n a 满足()1111,2n n n a a a n n
--==
≥,求n a
(3)累加法【形如()1n n a a f n --=】
如:数列{}n a 满足1132,2n n a a n a -=++=,求n a
[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a
(4)等比型递推公式【形如1n n a ca d -=+】
如:111,32n n a a a +==+,求n a
[练习]数列{}n a 中,111,69n n a a a +==+,求n a
(5)倒数法(难,可不掌握) 如:11212
n n n a a a a +==+,,求n a
四.求数列前n 项和的常用方法
(1) 裂项法
把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111n
k k k a a =+∑
解:由
()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭· ∴11111223111111111111n n k k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭
[练习]求和:111112123123n +
++++++++++…………
(2)错位相减法
若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.
如:2311234n n S x x x nx -=+++++……
[练习]设数列{}n a 中,21123333,3
n n n a a a a n Z -++++=∈L ,求 (1)n a 的通项公式;(2)设n n n b a =,求数列n b 的通项公式。