计算方法课后题答案之习题二
计算方法_课后习题答案
(4.5)(0.01172)
0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848
1
e2
则根据二次Lagrange插值公式得:
L2 (x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
y0
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
y1
(x ( x2
x0 )(x x1) x0 )(x2 x1)
y2
2(x 1)(x 0.5) 2x(x 0.5)e1 4x(x 1)e0.5
8. 求作 f x xn1 关于节点 xi i 0,1, , n 的 Lagrange 插值多项式,并利用
插值余项定理证明
n
n
xin1li 0 1n xi
i0
i0
式中 li x 为关于节点 xi i 0,1, , n 的 Lagrange 插值基函数。
2 02 12 4 23 4 04 14 2 3
1 x2 3x 2 x 4 3x x2 6x 8 23 x x2 5x 4 1 x x2 3x 2
8
4
8
计算方法课后习题集规范标准答案
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
数值计算方法习题答案(第二版)(绪论)
数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。
计算方法第二版课后练习题含答案
计算方法第二版课后练习题含答案前言本文将为大家提供计算方法第二版课后练习题的答案,旨在帮助读者更好地学习和掌握计算方法的知识。
本文全部内容均为作者整理,尽可能保证每一题的答案正确性。
读者可以借助本文的答案,检验自己的练习成果,加强对计算方法知识的理解和掌握程度。
同时,读者也应该注意切勿直接复制答案,本文的答案仅供参考,希望读者能够通过自己的思考和探索,获得更深层次的学习感悟。
第一章引论1.1 计算方法的基本概念和思想练习题 1写出计算方法的三要素,并分别简要解释。
答案计算方法的三要素为:模型、算法、误差分析。
•模型:计算方法所涉及的实际问题所对应的数学模型,是解决问题的基础;•算法:根据模型,构造相应的计算程序,即算法;•误差分析:计算结果与实际应用中所需的精度之间的差异,称为误差。
误差分析是对计算结果质量的保障。
1.2 算法的误差练习题 2写出二分法算法,并解释其误差。
答案算法:function binarySearch(a, target) {let low = 0;let high = a.length - 1;while (low <= high) {let midIndex = Math.floor((low + high) / 2);let midValue = a[midIndex];if (midValue === target) {return midIndex;} else if (midValue < target) {low = midIndex + 1;} else {high = midIndex - 1;}}return -1;}误差:二分法算法的误差上界为O(2−k),其中k为迭代次数。
在二分法被成功应用时,k取决于与目标值x的距离,即 $k=\\log _{2}(\\frac{b-a}{\\epsilon})$,其中[a,b]是区间,$\\epsilon$ 是目标值的精度。
计算方法的课后答案
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
计算方法_习题第一、二章答案
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101101|*||)(|1211*=⨯≤⨯≤-=+-+-n rx x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10110113%3.0)(--⨯≤⨯=<=x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
5 计算76017591-,视已知数为精确值,用4位浮点数计算。
数值计算课后习题答--石瑞民
数值计算课后习题答--石瑞民习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
计算方法教程(第2版)习题答案
《计算方法教程(第二版)》习题答案第一章 习题答案1、浮点数系),,,(U L t F β共有 1)1()1(21++---L U t ββ 个数。
3、a .4097b .62211101110.0,211101000.0⨯⨯c .6211111101.0⨯4、设实数R x ∈,则按β进制可表达为:,1,,,3,2,011)11221(+=<≤<≤⨯++++++±=t t j jd d lt t d t t d dd x βββββββ按四舍五入的原则,当它进入浮点数系),,,(U L t F β时,若β211<+t d ,则 l tt d dd x fl ββββ⨯++±=)221()(若 β211≥+t d ,则 l tt d d d x fl ββββ⨯+++±=)1221()(对第一种情况:t l lt l t t d x fl x -++=⨯≤⨯+=-βββββ21)21(1)()(11对第二种情况:t l ltl t t d x fl x -++=⨯≤⨯--=-ββββββ21)21(1)(11 就是说总有: tl x fl x -≤-β21)( 另一方面,浮点数要求 β<≤11d , 故有l x ββ1≥,将此两者相除,便得t x x fl x -≤-121)(β 5、a . 5960.1 b . 5962.1 后一种准确6、最后一个计算式:00025509.0原因:避免相近数相减,避免大数相乘,减少运算次数7、a .]!3)2(!2)2(2[2132 +++=x x x yb .)21)(1(22x x x y ++=c .)11(222-++=x x x yd . +-+-=!2)2(!6)2(!4)2(!2)2(2642x x x x ye .222qp p q y ++=8、01786.098.5521==x x9、 m )10(m f - 1 233406.0- 3 20757.0- 5 8.07 710计算宜采用:])!42151()!32141()!22131[()(2432+⨯-+⨯-+⨯--=x x x f第二章 习题答案1、a .T x )2,1,3(= b .T x )1,2,1,2(--= c .无法解2、a .与 b .同上, c .T T x )2188.1,3125.0,2188.1,5312.0()39,10,39,17(321---≈---=7、a .⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---14112111473123247212122123211231321213122 b . ⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛----333211212110211221213231532223522121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-=111211212130213221219、T x )3415.46,3659.85,1220.95,1220.95,3659.85,3415.46(1= T x )8293.26,3171.7,4390.2,4390.2,3171.7,8293.26(2= 10、T LDL 分解:)015.0,579.3,9.1,10(diag D =⎪⎪⎪⎪⎪⎭⎫⎝⎛=16030.07895.05.018947.07.019.01L Cholesky 分解⎪⎪⎪⎪⎪⎭⎫⎝⎛=1225.01408.10833.15811.18918.12333.12136.23784.18460.21623.3G 解:)1,1,2,2(--=x 12、16,12,1612111===∞A A A611,4083.1,61122212===∞A A A2)(940)()(12111===∞A Cond A Cond A Cond524)(748)()(22221===∞A C o n d A C o n d A C o n d⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--180.0000180.0000- 30.0000 180.0000- 192.0000 36.0000- 30.0000 36.0000- 9.0000,0.0139 0.1111- 0.0694- 0.1111- 0.0556 0.1111- 0.0694- 0.1111- 0.0139 1211A A1151.372,1666.0212211==--A A15、 1A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 2A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 3A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代收敛;第三章 习题答案1、Lagrange 插值多项式:)80.466.5)(20.366.5)(70.266.5)(00.166.5()80.4)(20.3)(70.2)(00.1(7.51)66.580.4)(20.380.4)(70.280.4)(00.180.4()66.5)(20.3)(70.2)(00.1(3.38)66.520.3)(80.420.3)(70.220.3)(00.120.3()66.5)(80.4)(70.2)(00.1(0.22)66.570.2)(80.470.2)(20.370.2)(00.170.2()66.5)(80.4)(20.3)(00.1(8.17)66.500.1)(80.400.1)(20.300.1)(70.200.1()66.5)(80.4)(20.3)(70.2(2.14)(4--------⨯+--------⨯+--------⨯+--------⨯+--------⨯=x x x x x x x x x x x x x x x x x x x x x L Newton 插值多项式:)80.4)(20.3)(70.2)(00.1(21444779.0)20.3)(70.2)(00.1(527480131.0)70.2)(00.1(855614973.2)00.1(117647059.22.14)(4----+------+-+=x x x x x x x x x x x N2、设)(x y y =,其反函数是以y 为自变量的函数)(y x x =,对)(y x 作插值多项式:)1744.0)(1081.0)(4016.0)(7001.0(01253.0)1081.0)(4016.0)(7001.0(01531.0)4016.0)(7001.0(009640.0)7001.0(3350.01000.0)(----+---+--+--=y y y y y y y y y y y N 3376.0)0(=N 是0)(=x y 在]4.0,3.0[中的近似根。
计算方法 课后习题答案
计算方法课后习题答案计算方法课后习题答案计算方法是一门重要的学科,它涉及到数值计算、算法设计和数据处理等方面的内容。
在学习计算方法的过程中,课后习题是不可或缺的一部分。
通过解答习题,我们可以巩固所学的知识,提高自己的计算能力。
下面是一些计算方法课后习题的答案,希望对大家的学习有所帮助。
1. 矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。
对于一个m×n的矩阵A,它的转置记作A^T。
转置后的矩阵A^T的行数和列数分别为原矩阵A的列数和行数。
例如,对于一个3×2的矩阵A,它的转置A^T是一个2×3的矩阵。
2. 矩阵的加法和减法矩阵的加法和减法是对应位置上的元素进行相加或相减得到的新矩阵。
对于两个相同大小的矩阵A和B,它们的和记作A+B,差记作A-B。
加法和减法的运算规则是相同位置上的元素进行相应的运算。
3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新矩阵的运算。
对于两个矩阵A和B,它们的乘积记作AB。
矩阵乘法的运算规则是矩阵A的行与矩阵B的列进行相乘,并将结果相加得到新矩阵的对应位置上的元素。
4. 矩阵的逆矩阵的逆是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
如果一个矩阵A存在逆矩阵,则称其为可逆矩阵或非奇异矩阵。
求解矩阵的逆可以使用伴随矩阵和行列式的方法。
5. 线性方程组的求解线性方程组是指由一组线性方程组成的方程组。
求解线性方程组的方法有很多,包括高斯消元法、LU分解法、迭代法等。
其中,高斯消元法是一种常用的求解线性方程组的方法,它通过消元和回代的过程,将线性方程组转化为上三角形矩阵或对角矩阵,从而求解出方程组的解。
6. 数值积分的方法数值积分是指通过数值计算的方法来求解定积分的近似值。
常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法则等。
这些方法都是基于将定积分转化为离散求和的形式,通过计算离散点上的函数值来估计定积分的近似值。
计算方法-刘师少版第二章课后习题完整答案
0 < λf ′(x) < 2
− 2 < −λf ′(x) < 0
−1 < 1 − λf ′(x) < 1
1 − λf ′(x) < 1
即 ϕ ′(x) < 1 ,所以 xk+1 = ϕ (xk ) = xk − λf (xk ) 收敛于 f (x) =0 的根。
2.7 试用牛顿迭代法导出下列各式的迭代格式:
应的迭代公式:
(1)x
=1+
1 x2
,迭代公式
xk
+1
=1+
1
x
2 k
(2)x3 = 1 + x 2 ,迭代公式 xk+1 = 3 1 + xk2
(3) x 2
=
x
1 −
1
,迭代公式
xk
+1
=
1 xk −1
(4) x = x3 − 1 ,迭代公式
xk+1 = xk3 − 1
试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似
x8 = 1.4656344
x9 = 1.4656000
x9
− x8
≤ 1 ×10−4 , 2
x9 = 1.4656000
2.5 对于迭代函数ϕ (x) = x + C(x 2 − 2) ,试讨论:
(1) 当 C 取何值时, xk+1 = ϕ (xk ), (k = 0,1,2,L) 产生的序列 {xk }收敛于 2 ;
6 6x2
63
ϕ ′(3 a ) == 5 − a (3 a )−3 = 5 − 1 = 1 ≠ 0
63
计算方法_习题第一、二章答案
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
计算方法课后习题答案
计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。
以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。
首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。
习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。
解答:可以使用梯形法、辛普森法等数值积分方法。
例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。
习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。
解答:使用欧拉法或龙格-库塔法求解。
以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。
计算方法习题及答案
第一章 绪论一.填空题1.*x 为精确值x 的近似值;()**x f y=为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***rx x e x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅ ()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e的近似值,则其有效数字分别有 6 位和 7 位;又取1.73≈(三位有效数字),则-211.73 10 2≤⨯。
4、设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.000021 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 .8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 二、计算题1. 有一个长方形水池,由测量知长为(50±0.01)米,宽为(25±0.01)米,深为(20±0.01)米,试按所给数据求出该水池的容积,并分析所得近似值的绝对误差和相对误差公式,并求出绝对误差限和相对误差限. 解:设长方形水池的长为L ,宽为W,深为H ,则该水池的面积为V=LWH当L=50,W=25,H=20时,有 V=50*25*20=25000(米3) 此时,该近似值的绝对误差可估计为()()()()()()()=V V VV L W H L W HWH L HL W LW H ∂∂∂∆≈∆+∆+∆∂∂∂∆+∆+∆ 相对误差可估计为:()()r V V V∆∆=而已知该水池的长、宽和高的数据的绝对误差满足()()()0.01,0.01,0.01L W H ∆≤∆≤∆≤故求得该水池容积的绝对误差限和相对误差限分别为()()()()()()325*20*0.0150*20*0.0150*25*0.0127.5027.501.1*1025000r V WH L HL W LW H V V V -∆≤∆+∆+∆≤++=∆∆=≤=2.已知测量某长方形场地的长a=110米,宽b=80米.若()()**0.1 0.1a a b b -≤-≤米,米试求其面积的绝对误差限和相对误差限. 解:设长方形的面积为s=ab当a=110,b=80时,有 s==110*80=8800(米2) 此时,该近似值的绝对误差可估计为()()()()()=b s ss a b a ba ab ∂∂∆≈∆+∆∂∂∆+∆ 相对误差可估计为:()()r s s s∆∆=而已知长方形长、宽的数据的绝对误差满足()()0.1,0.1a b ∆≤∆≤故求得该长方形的绝对误差限和相对误差限分别为()()()()() 80*0.1110*0.119.019.00.0021598800r s b a a b s s s ∆≤∆+∆≤+=∆∆=≤= 绝对误差限为19.0;相对误差限为0.002159。
计算方法习题第一、二章答案
第一章 误差1 问,,722分别作为π的近似值各具有几位有效数字分析 利用有效数字的概念可直接得出。
解 π= 592 65… 记x 1=,x 2=,x 3=722.由π- x 1= 59…= 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2= 59…= 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722= 59 … 85…= 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为%,问x*至少有几位有效数字 分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算,问要取几位有效数字才能保证相对误差限不大于%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由=…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a知取n=4即可满足要求。
5 计算76017591-,视已知数为精确值,用4位浮点数计算。
解 =-76017591 8×10-2-0.131 6×10-2=×10-5结果只有一位有效数字,有效数字大量损失,造成相对误差的扩大,若通分后再计算:56101734.0105768.01760759176017591-⨯=⨯=⨯=- 就得到4位有效数字的结果。
计算方法引论徐萃薇课后题答案
计算方法引论徐萃薇课后题答案徐萃薇(Xu Cuiwei)教授向学生们提出了一个有关计算方法的练习题,这里是课后习题的答案:题目一:定义“计算方法”计算方法是一种数值解决问题的方法,用计算机或者类比设备来完成一系列计算过程,以解决由某一特定问题及其变体而产生的一系列更复杂问题。
它是一种能用有限的资源(如时间、空间、技术等)产生正确结果的计算机程序,他可以安排合理的步骤,使用易于操作的方法来解决指定的问题。
题目二:分析计算方法的优缺点优点:1. 计算方法基于数理模型的明确理论,可以更好地解决问题;2. 相较于其他方法,它使用更简单的计算机程序来实现更复杂的功能;3. 它可以把不容易解决的问题转变为容易解决的形式,这将有助于系统更好地管理和管理空间。
缺点:1. 计算方法有一定的局限性,不一定适用于所有的情景;2. 数学建模常常非常耗时,而且可能有很多假设和过程;3. 数学建模的结果可能有很多偏差,可能不切实际。
题目三:对于复杂问题,需要用到哪些计算方法对于复杂问题,可以用到多种方法来解决,如:1. 动态规划法(DP):动态规划法可以用来解决最优化问题,如旅行商问题、背包问题等。
2. 概率法:概率法可以跨越归纳和演绎,在可预期结果和把握风险方面有很大的优势。
3. 机器学习:机器学习可以帮助系统自动从数据中获取规律,从而有效地解决规模复杂的问题。
4. 启发式搜索:启发式搜索可以有效地模拟人类的求解思考方法,通过把问题分解为子问题,再变换为其他问题求解的方法,可以有效解决复杂的问题。
5. 分支定界法:分支定界法是一种能获得全局最优解的解决复杂问题的方法,它被广泛应用于思维密集型最优化问题。
总而言之,复杂问题可以用多种计算方法来解决。
正确使用和选择合适的方法是关键,从而能够获得更好的结果。
计算方法习题二答案
计算方法习题二答案习题二1、利用二分法求方程f(x)=x3-2x-5=0,在2,3内根的近似值,并指出误差。
解:f(2)=-1<0 f(3)=19>0 f(2).f(3)<0f’(x)=3x2-2 在x∈2,3f’(x) >0所以在1,2上必仅有一根x=2 f(2)=-1 -x=3 f(3)=16 +x=2.5 f(2.5)=5.625 +x=2.25 f(2.25)=1.890625 +x=2.125 f(2.125) +x=2.0625 f(2.0625) -x=2.09375 f(2.09375) -x=2.109375 f(2.109375) +x=2.1015625 f(2.1015625) +所以x=2.109375+2010156252=2.097656252、证明方程1-x-sinx=0在0,1内有一个根,使用二分法求误差不大于12×10?4的根。
解:令f(x)=1-x-sinxf(0)=1f(1)=-sin1f(0).f(1)<0f’(x)=-1-cosx<0在0,1恒成立所以1-x-sinx=0在0,1内恒有一个根n≥ln1?0?ln?(12×10?4)ln2-1≈13.289所以n=14n a n b n x n+1f(x n+1)符号0 0 1 0.5 +1 0.5 1 0.75 +2 0.875 1 0.9375 +..143、能不能用迭代法求解下列方程,若不能时,将方程改写成能用迭代法的形式。
(1、)x=(cosx+sinx)/4 (2)x=4-2x解:(1、)f(x)=x=(cosx+sinx)/4f’(x)=?sinx+cosx4<1对x任何数恒成立所以可用迭代法设x0=0,则x1=0.25x2=0.2511x 3=0.2511所以x=0.251(2、)f(x)=4-2xf’(x)=x.2x ?1<0在x 为任意数不恒成立所以不能用迭代法令x=log 2(4?x)x 0=0x 1=2x 2=1x 3= |φ‘(x)|=|-14?x 1ln 2|对x ∈(1,2)<124、为求方程x 3-x 2-1=0在x 0=1.5附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题二1. 证明方程043=-+x x在区间[1,2]内有一个根。
如果用二分法求它具有5位有效数字的根,需要二分多少次。
证明:(1) 不妨令4)(3-+=x x x f ,求得:02)1(<-=f 06)2(>=f又因为4)(3-+=x x x f 在区间[1,2]内是连续的,所以在区间[1,2]内有至少一个根。
又因为13)(2'+=x x f在区间[1,2]内013)(2'>+=x x f ,所以4)(3-+=x x x f 单调。
得证,043=-+x x在区间[1,2]内仅有一个根。
(2)具有5位有效数字的根,说明根可以表示成54321.a a a a a ,所以绝对误差限应该是5a 位上的一半,即:4105.0-⨯=ε。
由公式:ε≤-+12k ab 可得到, 14=k迭代次数为151=+k 次。
----------------------------------------------------------------------------------------------------------------------2. 用二分法求方程0)2(sin )(2=-=xx x f 在区间[1.5,2]内的近似根(精确到10-3)。
解:043499.05625.099749.0)25.1(5.1sin )5.1(2>=-=-=f 009070.0190930.0)22(2sin )2(2<-=-=-=f所以0)2(sin )(2=-=x x x f 在区间[1.5,2]内有根,又x cos )('-=x x f在区间[1.5,2]内0x cos )('<-=x x f所以0)2(sin )(2=-=xx x f 在区间[1.5,2]内有根,且唯一。
符合二分条件,可以用二分法,二分的次数为:31k 105.02a b -+⨯≤- k =9说明似根即为满足用户要求的近9x 。
]b ,a [00即 [1.5,2],2b a 000+=x 75.1=,算得 021836.076563.098399.0)(0>=-=x f因为:0)()(0>x f a f 所以:]b ,a [11即 [1.75,2],2b a 111+=x 875.1=,算得 007518.087891.095409.0)(1>=-=x f……007518.087891.095409.0)(2>=-=x f……1.9342b a 999≈+=x ---------------------------------------------------------------------------------------------------------------------- 3.已知方程0123=--x x在5.1=x 附近有根,判断所给出的几个迭代公式是否收敛.并选取一种迭代公式计算近似根。
解:首先求出有根区间:在5.1=x附近有根,0.12541.51.5)1.5(3=-+=f >0 -0.21641.41.4)1.4(3=-+=f <013)('2+=x x f 在区间[1.4,1.5]上单调递增,所以在区间[1.4,1.5]内有唯一根。
(1) 迭代函数为2111)(kk x x x g +==+,可求得:32)('x x g -=在区间[1.4,1.5]上32)('x x g -=<1由定理2-2所以2111)(kk x x x g +==+在1.5附近具有局部收敛性。
-----------------------------------------------------------------------------------------5.用牛顿法求方程0133=--x x 在x =2附近的根。
(精确到10-4)解:已知13)(3--=x x x f ,则33)('2-=x x f ,显然:迭代函数)()(1k k k k x f x f x x '-=+等价于:33132k k 3k 1----=+x x x x x k k3-3122k 3k 1x x x k +=+初始近似根20=x ,888889.1323122231=-⨯+⨯=x888889.11=x ,788671.13888889.131888889.12232=-⨯+⨯=x788671.12=x ,886201.13788671.131788671.12233=-⨯+⨯=x886201.13=x ,879419.13886201.131886201.12234=-⨯+⨯=x 879419.14=x ,879385.13879419.131879419.12235=-⨯+⨯=x 因为: 445105.0000034.0-⨯≤=-x x所以8794.15≈x 既满足要求的近似根。
---------------------------------------------------------------------------------------------------------------------- 7.试用牛顿法导出求3a 的迭代公式,并用此公式求32.1的近似根,精度为10-3。
解: (1) 令3a x =,则03=-a x ,求3a 等价于求方程0a )(3=-=x x f 的正实根。
23)('x x f =所以0a )(3=-=x x f 得牛顿迭代公式)()(1k k k k x f x f x x '-=+等价于: ,2,1,0)2(313a 2231=+=--=+k x a x x x x x kk k k k k(2)并用此公式求32.1的近似根,精度为10-3a =1.2,牛顿迭代公式为: ,2,1,0)2.12(3121=+=+k x x x kk k而且知道32.1在1.1附近有近似根,不妨令初始近似根1.10=x ,063912.11.12.11.123121≈⎪⎭⎫⎝⎛+⨯=x063912.11=x ,062660.1063912.12.1063912.123122≈⎪⎭⎫⎝⎛+⨯=x062660.12=x ,062659.1062660.12.1062660.123123≈⎪⎭⎫⎝⎛+⨯=x 因为: 323101000001.0-⨯≤=-x x所以063.1062659.13≈=x 既满足要求的近似根。
---------------------------------------------------------------------------------------------------------------------- 8.取1.10=x ,用牛顿下山法求方程27.10)(4--=x x x f 在x =2附近的根。
结果为4位有效数字。
解:结果为4位有效数字即:3105.0-⨯=ε。
27.10)(4--=x x x f ,则14)('3-=x x f ,所以迭代公式)()(1k k k k x f x f x x '-=+λ等价于:1427.10341----=+k k k k k x x x x x λ初始近似根20=x , 3.7327.10)(40=--=x x x f8797.112427.10222341≈-⨯---=x ,3343.027.10)(41=--=x x x f因为)()(01x f x f <,所以8797.11=x ,8666.111.8797427.101.87971.87971.8797342≈-⨯---=x ,0030.027.10)(42=--=x x x f因为)()(12x f x f <,所以8666.12=x ,8666.12=x ,8667.118666.1427.108666.18666.18666.1343≈-⨯---=x 因为: 323105.00001.0-⨯≤=-x x所以866.13≈x 既满足要求的近似根。
---------------------------------------------------------------------------------------------------------------------- 9.用弦截法求方程1)(3--=x x x f 在x 0=1.5附近的根。
(x 1=1.4精确到10-3) 解:结果精确到10-3即:3105.0-⨯=ε。
1)(3--=x xx f ,所以弦截法迭代公式())()()(111--+---=k k k k k k k x f x f x x x f x x 等价于:()))1(()1()1(2131231231---------=---+k k k k k k k k k k x x x x x x x x x x初始近似根 5.10=x ,4.11=x ,代入迭代方程,得()4633.10633.04.1)1()1()1(2030213101213112=+=---------=x x x x x x x x x x()4657.1))1(()1()1(2131231233=---------=---k k k k k k k k k x x x x x x x x x x()4656.1))1(()1()1(2131231234=---------=---k k k k k k k k k x x x x x x x x x x因为: 334105.00001.0-⨯≤=-x x所以466.14≈x 既满足要求的近似根。