(完整word版)重金属检测方法汇总
食品中重金属铅的检测方法
食品中重金属铅的检测方法
1、原子吸收光谱法:该方法是目前最常用的检测铅的方法之一。
先取样品并转化成滴定液,再通过原子吸收光谱仪读取吸收光谱,最后据此推算出样品中的铅含量。
2、电感耦合等离子体质谱法:该方法是目前最常用的检测多种重金属的方法之一。
此种方法通过转化成高温等离子体状态使样品中的铅离子产生电荷,再经过质谱进行检测。
3、X射线荧光光谱法:该方法目前在实验室中已被广泛运用,通过样品中铅离子和X射线进行相互作用,并引起荧光辐射,最后通过检测荧光光谱确定样品中铅的含量。
4、常规分析法:常规分析法包括色谱法、显微分析法、化学分析法等等,通过这些方法分析铅化合物,定量分析样品中的铅含量。
注意:食品中铅含量的检测不仅仅需要全面而严格的检测,同时要贯穿检测的始终,确保食品的安全和健康。
重金属 检测方法
2、氨试液:取浓氨溶液400mL,加水使成1000mL,即得。
3、pH3.5醋酸盐缓冲液:准确称取25.0g醋酸铵置100 mL容量瓶中加25mL水溶解后,加7mol/L的盐酸溶液38.0mL,摇匀。用2mol/L的盐酸溶液或5mol/L的氨溶液调pH为3.5(电位法指示),用水稀释至刻度。
4、甘油溶液:甘油20mL,水5.0mL及1mol/LNaOH溶液15mL混合。5、硫代乙酰铵试液:准确称取4.0g硫代乙酰胺,置100mL容量瓶中,用水稀释至刻度(冰箱中保存),临用前取甘油溶液5.0mL,加上硫代乙酰胺溶液1.0mL混合后沸腾20秒,冷却,立即使用。
标准溶液
取硫酸0.5~1mL,硝酸0.5mL,蒸干,至氧化氮蒸气除尽后,放冷,加盐酸2mL,置瓷坩埚中蒸干后,加水15mL,滴加氨试液至对酚酞指示液微粉色,再加醋酸盐缓冲液(pH3.5)2mL,移至纳氏比色管中,移取2.0mL标准铅溶液用水稀释至25mL。摇匀。
重25mL/50mL纳氏比色管;马弗炉;蒸汽浴;瓷坩埚(带盖);干燥器;电子天平;计时器。
试剂和材料
1、标准铅溶液的贮备液(100g/mL):加0.1599g硝酸铅,置1000mL的量筒中,加5.0mL硝酸与50mL水溶解后,然后用水稀释至刻度,摇匀。(此溶液必须在玻璃容器中配制和贮存避免可溶性铅盐。)
计算
如果样品溶液的颜色比标准溶液的颜色浅,得出铅小于20ppm。
如果样品溶液的颜色比标准溶液的颜色深,得出铅超过20ppm。
如果样品溶液的颜色和标准溶液的颜色等同,得出铅为20ppm。
备注
标准溶液现配现用;
附灼烧残渣方法:
食品中重金属元素的检测方法
食品中重金属元素的检测方法随着社会的发展,人们的生活质量越来越高,食品安全也受到越来越多的关注,食品中的重金属元素也引起了人们的高度重视。
重金属元素是指化学性质稳定的元素,通常指金属元素,如铅、锌、铬、铜、镍、钛、钡等,它们也可以通过大气、土壤和水体等向植物和动物体内转移,以及加工制作食品时也可能污染我们食用的食品,危害人体健康。
重金属元素也可以通过植物和动物体内的生物吸收而进入食品中,由于重金属元素不易分解,当重金属元素超标时,会对人体造成健康损害,因此检测食品中的重金属元素的浓度变化以及监测他们的污染变化非常重要。
食品中重金属元素的检测一般有以下三种方法:第一种是离子色谱方法。
离子色谱法是一种依托丰富的仪器依据,可以直接测量重金属元素的检测方法,只要样品解决后进行极化色谱测量,就可以快速、准确、灵敏地检测重金属元素。
第二种是原子吸收光谱法,原子吸收光谱法是一种利用原子吸收原理来检测食品中重金属元素的一种常用检测方法,它能够检测出食品中的各种重金属元素的浓度分布,为评估食品中重金属元素的污染程度提供客观的数据。
第三种是X射线荧光光谱法,X射线荧光光谱法是一种利用X射线原子吸收原理来测定食品中重金属元素的检测方法,能够对低浓度重金属元素进行准确有效的检测,并且具有高灵敏度,为评估食品中重金属元素污染提供客观的数据。
重金属元素的检测方法是在食品安全检测中不可或缺的重要环节,检测必须具备良好的准确性和灵敏度,这需要我们做好食品中重金属元素的检测工作,以确保食品的安全质量。
因此,食品安全检测机构应积极组织科学研究,开发出能够准确检测食品中重金属元素的检测方法,提高检测的灵敏度,以有效地控制食品安全的质量。
国家应针对不同的食品,监管部门应提出严格的标准,以确保食品安全及其质量。
综上所述,食品安全检测中的重金属元素的检测方法是不可忽视的,以确保食品的安全质量,有效控制食品安全问题,提高人们的生活水平。
必须积极开展科学研究和应用,以满足不断发展的社会对食品安全的日益高涨的需求。
中药中重金属检测方法
重金属总量常用硫代乙酰胺或硫化钠显色反应比色法测定。
有害元素砷常用古蔡法或二乙基二硫代氨基甲酸银法测定。
单个重金属和有害元素测定方法有原子吸收光谱法和电感耦合等离子体质谱法。
《中国药典》( 2005 年版)附录对这些测定方法进行了规范化。
另外文献还有紫外分光光度法、荧光分光光度法和高效液相色谱法。
(一)原子吸收分光光度法 (atomic absorption spectrophotometry, AAS)此法适用于测定中药中重金属及有害元素铅、镉、砷、汞、铜。
原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,系由待测元素灯发出的特征谱线通过供试品经原子化产生原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。
原子吸收一般遵循分光光度法的吸收定律,通常通过比较标准品溶液和供试品溶液的吸光度,求得供试品中待测元素的含量。
1. 对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器和检测系统等组成,另有背景校正系统、自动进样系统等。
( 1 )光源常用待测元素作为阴极的空心阴极灯。
( 2 )原子化器主要有四种类型:火焰原子化器、石墨炉原子化器、氢化物发生原子化器及冷蒸气发生原子化器。
①火焰原子化器由雾化器和燃烧灯头等主要部件组成。
其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥、蒸发、离解供试品,使待测元素形成基态原子。
燃烧火焰由不同种类的气体混合物产生,常用乙炔—空气火焰。
改变燃气和助燃气的种类及比例可以控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度。
②石墨炉原子化器由电热石墨炉和电源等部件组成。
其功能是将供试品溶液干燥、灰化,再通过高温原子化阶段使待测元素形成基态原子。
一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送供试品蒸气。
③氢化物发生原子化器由氢化物发生器和原子吸收池组成,可用于砷、硒、锡、锑等元素的测定。
重金属检测方法
重金属检测方法一、原子吸收光谱法。
原子吸收光谱法是一种常用的重金属检测方法,其原理是利用金属原子对特定波长的光的吸收来确定样品中金属元素的含量。
该方法具有高灵敏度、高准确性和高选择性的特点,适用于各种类型的样品,包括水、土壤、植物和动物组织等。
二、电感耦合等离子体质谱法。
电感耦合等离子体质谱法是一种高灵敏度的重金属检测方法,其原理是利用高温等离子体对样品中的金属元素进行离子化,然后通过质谱仪进行分析和检测。
该方法具有极高的检测灵敏度和准确性,适用于微量重金属元素的检测。
三、荧光光谱法。
荧光光谱法是一种快速、高灵敏度的重金属检测方法,其原理是利用金属离子与荧光试剂结合形成荧光物质,然后通过荧光光谱仪进行检测。
该方法具有操作简便、检测速度快的特点,适用于大批量样品的快速检测。
四、原子荧光光谱法。
原子荧光光谱法是一种高灵敏度、高选择性的重金属检测方法,其原理是利用金属原子在光激发下产生特定波长的荧光来确定样品中金属元素的含量。
该方法具有低检出限、高分辨率的特点,适用于微量重金属元素的检测。
五、电化学方法。
电化学方法是一种常用的重金属检测方法,包括阳极溶出法、阴极溶出法和恒电位法等。
这些方法利用电化学原理对样品中的金属元素进行溶出和测定,具有操作简便、灵敏度高的特点,适用于各种类型的样品。
综上所述,重金属检测方法涵盖了多种原子吸收光谱法、电感耦合等离子体质谱法、荧光光谱法、原子荧光光谱法和电化学方法等,每种方法都具有其独特的优点和适用范围。
在实际应用中,可以根据样品的性质和检测要求选择合适的方法进行重金属检测,以保障人体健康和生态环境的安全。
重金属检测方法汇总
重金属检测方法汇总重金属检测方法及应用一、重金属的危害特性从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。
我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。
(一)自然性:长期生活在自然环境中的人类,对于自然物质有较强的适应能力。
有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。
但是,人类对人工合成的化学物质,其耐受力则要小得多。
所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。
铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。
(二)毒性:决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。
例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。
在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。
(三)时空分布性:污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。
(四)活性和持久性:活性和持久性表明污染物在环境中的稳定程度。
活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。
如汞可转化成甲基汞,毒性很强。
与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。
(五)生物可分解性:有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。
重金属检测方法
选择合适的化合物与 重金属离子结合,获 得一定的空间结构, 产生反应原性;
将与重金属离子结 合的化合物连接到 载体蛋白上,产生 免疫原性。
其中选择适合与重金属离子结合的化合物是 能否制备出特异性抗体的关键。
2.新型方法
2.1 酶分析方法 2.2 免疫分析方法 2.3 生物传感器
二、 具体应用
土壤 • 重金属检测具体方法 水体 • 重金属检测技术现状 大气 • 颗粒物中重金属的检测方法 固废 • 监测方法的现状
1.1原子吸收光谱法(AAS)
这种方法根据蒸气相中被测元素的基态原子对 其原子共振辐射的吸收强度来测定试样中被测元素 的含量。AAS具有检出限低,灵敏度高。火焰原子 吸收法的检出限可达到ppb级,石墨炉原子吸收法 的检出限可达到μg/L,甚至更低。此外还有分析精 度好、分析速度快、应用范围广(可测定的元素达 70多个)、仪器较简单,操作方便等优点,原子吸 收光谱法的不足之处是多元素同时测定尚有困难。
HNO3、HCl、HF、HClO4
优级纯
2.1 土壤中重金属监测
(4) 消解方法
称取样品 加酸微波消解 加高氯酸,加热赶酸 冷却、过滤,ICP-AES分析
2.2 水体重金属检测技术现状
小结
重金属的分析检测是水体重金属污染监督和治 理的前提和依据。水体重金属检测面临的情况:
(1) 需要及时知道污染情况,以便迅速制定相应 的处理对策,因此人们越来越迫切需要在线、实时 、现场的分析手段。
可以
可以
七十多种
八十多种
几十种
几到几十
几十到几百 几到十几
中药中重金属检测方法
重金属总量常用硫代乙酰胺或硫化钠显色反应比色法测定。
有害元素砷常用古蔡法或二乙基二硫代氨基甲酸银法测定。
单个重金属和有害元素测定方法有原子吸收光谱法和电感耦合等离子体质谱法。
《中国药典》( 2005 年版)附录对这些测定方法进行了规范化。
另外文献还有紫外分光光度法、荧光分光光度法和高效液相色谱法。
(一)原子吸收分光光度法 (atomic absorption spectrophotometry, AAS)此法适用于测定中药中重金属及有害元素铅、镉、砷、汞、铜。
原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,系由待测元素灯发出的特征谱线通过供试品经原子化产生原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。
原子吸收一般遵循分光光度法的吸收定律,通常通过比较标准品溶液和供试品溶液的吸光度,求得供试品中待测元素的含量。
1. 对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器和检测系统等组成,另有背景校正系统、自动进样系统等。
( 1 )光源常用待测元素作为阴极的空心阴极灯。
( 2 )原子化器主要有四种类型:火焰原子化器、石墨炉原子化器、氢化物发生原子化器及冷蒸气发生原子化器。
①火焰原子化器由雾化器和燃烧灯头等主要部件组成。
其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥、蒸发、离解供试品,使待测元素形成基态原子。
燃烧火焰由不同种类的气体混合物产生,常用乙炔—空气火焰。
改变燃气和助燃气的种类及比例可以控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度。
②石墨炉原子化器由电热石墨炉和电源等部件组成。
其功能是将供试品溶液干燥、灰化,再通过高温原子化阶段使待测元素形成基态原子。
一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送供试品蒸气。
③氢化物发生原子化器由氢化物发生器和原子吸收池组成,可用于砷、硒、锡、锑等元素的测定。
重金属检测原理
重金属检测原理一、引言重金属是指相对密度大于5g/cm³的金属元素,如铅、汞、镉、铬等。
由于它们在自然界中的广泛分布以及工业、农业等活动的影响,重金属污染已成为一个全球性的环境问题。
重金属的长期暴露会对人体健康和生态系统造成严重危害,因此开发一种准确、快速、可靠的重金属检测方法显得尤为重要。
二、重金属检测方法2.1 传统检测方法传统的重金属检测方法主要包括化学分析、光谱分析、电化学方法等。
化学分析是一种较为常用的方法,它通过反应生成的特定物质的沉淀、溶液的颜色变化等来判断样品中重金属的含量。
光谱分析则是利用重金属元素在特定波长下的吸收或发射特性来进行分析。
电化学方法是利用重金属元素溶液与电极之间的电荷转移过程来进行分析。
这些传统的检测方法已经具备一定的准确性和灵敏度,但是其操作步骤较为繁琐,需要专业的实验条件和设备,并且需要较长的检测时间。
2.2 基于仪器设备的检测方法随着技术的不断发展,基于仪器设备的重金属检测方法逐渐成为主流。
其中,常见的方法包括原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体质谱法(ICP-MS)等。
这些方法融合了化学分析、光谱分析和电化学方法的优点,具有快速、准确、灵敏的特点。
例如,AAS可以通过测量样品中重金属元素的吸收能力来确定其含量,具有较高的准确性和灵敏度。
AFS利用重金属元素激发后发出的荧光光谱来进行分析,具有更高的灵敏度和选择性。
ICP-MS则可以同时检测多种重金属元素,并且具有更高的分辨率。
三、重金属检测原理3.1 基于化学反应的原理化学分析法中常用的重金属检测原理是基于化学反应。
例如,针对铅元素的检测,可以利用铬酸钠、硫代乙酸钠等试剂来与铅形成沉淀或发生颜色反应,通过比色、沉淀重量等方式来确定铅的含量。
这种方法的原理是根据重金属与特定试剂之间的化学反应特性进行判断和测量。
3.2 基于光谱吸收的原理原子吸收光谱法(AAS)是一种基于光谱吸收原理的重金属检测方法。
食品中的重金属检测方法
食品中的重金属检测方法食品安全一直是人们关注的焦点之一,而其中一个重要的方面就是重金属的检测。
重金属是指相对密度较大、毒性较强、生物积累性较强的金属元素,如铅、汞、镉等。
它们存在于环境中,通过食物链进入人体会对健康造成潜在威胁。
因此,科学准确地检测食品中的重金属含量对于保护消费者的权益至关重要。
本文将介绍几种常用的食品中重金属检测方法。
一、原子吸收光谱法(AAS)原子吸收光谱法是一种广泛应用于食品检测的方法。
它基于原子吸收光谱技术,通过分析样品中重金属元素对特定波长的光的吸收情况,来确定其浓度。
该方法具有灵敏度高、准确度高的优点,可以同时检测多种重金属元素。
然而,它需要较复杂的仪器设备,并且有一定的样品前处理要求。
二、电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是目前常用的重金属检测方法之一。
它利用高能离子束撞击样品中的重金属元素,使其产生离子化,然后用质谱仪进行检测。
该方法具有极高的灵敏度和选择性,可以同时检测多个元素,并且对样品的前处理要求相对较低。
然而,ICP-MS设备和维护成本较高,限制了其在一些实验室中的广泛应用。
三、荧光法荧光法是一种简便、经济的重金属检测方法。
它利用某些物质在受激发后会放出可见光的特性,通过测量样品产生的荧光强度来确定重金属元素的含量。
该方法操作简单快捷,并且可以在较低成本的仪器上进行检测。
但是,由于荧光法对样品的前处理要求较高,同时也受到干扰物的影响,可能会对结果的准确性产生一定影响。
四、电化学法电化学法是通过测定电极在与被检测样品接触时的电信号变化来确定重金属元素含量的方法。
这种方法具有灵敏度高、准确度高的特点,同时也可以在较简单的仪器设备上进行检测。
电化学法的前处理相对简单,不需要较复杂的样品制备步骤。
然而,不同重金属元素在电化学测定中所需电位和电流范围不同,因此在具体检测过程中需要根据被检测元素的特点进行相应参数的调整。
综上所述,食品中的重金属检测方法包括原子吸收光谱法、电感耦合等离子体质谱法、荧光法和电化学法等。
2.4.8(重金属)检测方法
空白溶液:10ml的水,加2ml待测液,2mlpH3.5的缓冲溶液,混合。加1.2ml的硫代乙酰胺试液,立即混合。同空白溶液比较,对照溶液显浅棕色。
测试液:12ml待测液,2mlpH为3.5的缓冲溶液,混合后加1.2ml的硫代乙酰胺试液,立即混合。
对照溶液:10ml的标准铅溶液(1ppmor 2ppmPb),2mlpH为3.5的缓冲溶液,2ml的待测液,混合后加1.2ml的硫代乙酰胺试液,立即混合。
空白溶液:10ml的水,2ml pH为3.5的缓冲溶液,2ml的测试溶液。混合后加
取规定重量或体积的待测样品置于100ml干燥的洁净的长颈烧瓶中(如果反应的泡沫较多,可以使用300ml的烧瓶。用卡子卡住烧瓶呈45度倾斜。
如果待测物是固体,加入足量体积的混合液(8ml硫酸和10ml硝酸的混合液)彻底润湿样品;如果待测样是液体,加入少量混合液(8ml硫酸和10ml硝酸的混合液)。缓慢加热直到反应开始,等反应稳定后再加入部分剩下的混酸,加热直到将18ml混酸加完为止。升温微沸直到溶液变黑。冷却,加入2ml硝酸,再加热,直到溶液变黑。边加硝酸边加热,直到不再变黑,然后剧烈加热,直到白色浓烟产生。冷却,小心加入5ml水,微沸,直到产生白色浓烟,继续加热,直到溶液体积减少为2~3ml。冷却,小心加入5ml水,观察溶液的颜色。如果颜色是黄色,小心加入1ml浓过氧化氢溶液直到溶液变为无色。冷却,小心用水稀释,冲洗入50ml比色管,确保总体积不超过25ml。用精密pH试纸指示,调节pH至3.0~4.0,加入浓氨水(在接近范围内,也可以用稀氨水),用水稀释至40ml,混合。加入2mlpH3.5的缓冲液和1.2ml硫代乙酰胺,立即混合。用水稀释至50ml,混匀。
(完整版)土壤重金属检测.doc
土壤重金属检测第一部分:样品的采集一个完整的环境样品的分析,包括从采样开始到出报告,样品分析流程为:采样→样品处理→分析测定→整理报告,大致可分为这四个阶段。
这四个阶段所需时间及劳动强度为:样品采集 6.0%,样品处理61.0%,分析测试 6.0%,数据处理及报告27.0%。
1土壤样品的采集采集土样时务必要注意所采样品的代表性,即所采集的样品对所研究的对象应具有最大的代表性。
采样要贯彻“随机”、“等量”和“多点混合”的原则进行采样2采样器具工具类:不锈钢土钻、铁锹或锄头、土刀、取土器、竹片以及适合特殊采样要求的工具,分样盘、塑料布或塑料盆等用于野外现场缩分样品的工具。
器材类: GPS、照相机、卷尺、铝盒、样品袋、样品箱等。
文具类:样品标签、采样记录表、现场调查表、铅笔、资料夹等;安全防护用品:雨具、工作鞋、药品箱等。
3 采样单元的划分由于土壤的不均一性,导致同一研究区域各土壤具有差异性,同一块土壤中不同点也具有差异,故在实地采样前,应先根据现场勘察和所搜集的有关资料,将研究范围划分为若干个采样单元。
采样单元的划分,采样单元以土类和成土母质类型为主,其次根据地形、地貌、土上设施状况、土壤类型、农田等级等因素确定,原则上应使所采土样能使所研究的间题在分析数据中得到全面的反应。
在一个采样单元中,如果用多个样点的样品分别进行分析,其平均值或其他统计值(如标准差或置信区间等)的可靠性,无疑要比单独取一个样品的分析结果更大,但这样做的工作量比较大。
如果把多个样点的土样等量地混合均匀,组成一个“混合样品”进行测定,工作量就可大为减少,而其测定值也可得到相近的代表性,因为混合样品的测定值,实际上相当于各个样点分别测定的平均值。
总体要遵循“同一单元内的差异性尽可能地小,不同单元之间的差异性尽可能的要大”。
4确定采样的布点原则应根据任务的性质、复杂程度、区域规模的大小和所要求的精度统筹设计,实行科学、优化布点。
布点原则是布设采样点的依据。
重金属镍比色法检测方法
重金属镍比色法检测方法
重金属镍的比色法检测方法是一种常用的分析方法。
以下是关于重金属镍比色法检测方法的综合方法:
重金属镍的比色法检测方法是通过使用丁二酮肟比色法来测定镍的含量。
具体步骤如下:
1. 样品消化:将供试样品用水溶解后,加入2ml稀醋酸进行消化处理。
2. 加入试剂:在消化后的样品中滴加硫化钠试液,形成镍的硫化物沉淀。
3. 比色测定:根据沉淀的颜色来判断镍的含量。
比色的测定可以使用目视比较或使用比色分光光度法进行定量测定。
需要注意的是,在弱酸条件下测定时,应严格控制pH值在3.0~3.5,以确保硫化物沉淀完全。
同时,测定时应注意微量高铁离子的存在可能会对结果判定产生影响。
此外,根据提供的搜索结果,还可以使用其他方法进行重金属镍的检测,如紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)等。
总的来说,重金属镍的比色法检测方法是一种简便、快捷的方法,常用于环境分析领域和水质分析中,可以通过比色测定来确定镍的含量。
1。
食品重金属检测常用的4种方法
上海千测认证网提供食品重金属检测常用的4种方法食品中重金属元素限量的检测方法有比色法、比浊法、色谱法、光谱法、电化学分析法、中子活化分析等。
有关国家标准均详细规定了食品中重金属元素的含量测定方法。
以下列出的是食品中的铅、镉、汞和砷的国家标准检测方法。
1.食品中铅的常用检测方法石墨炉原子吸收光谱法,它的原子化器为石墨炉原子化器,是将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温从而实现原子化,其检出限为Sug/kg。
火焰原子吸收光谱法,该法采用火焰原子化器,火焰原子化器由喷雾器、预混合室、燃烧器三部分组成,检出限为0.Img/kg。
单扫描极谱法,它是一种控制电位的极谱法,电极电位是时间的线性函数,因用示波器观察电流.电位曲线,故又称线性变位示波极谱法,该法检出限为0.085mg/kg。
二硫腙比色法,该法用二硫腙做显色剂,通过比较或测量溶液颜色深度来确定待测组分含量,检出限为0.25mg/kg。
氢化物原子荧光光谱法,原子荧光光谱法是介于原子发射光谱法和原子吸收光谱法之间的光谱分析技术,它的基本原理就是:基态原子(一般为蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后,激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,因为氢化物可以在氩氢焰中得到很好的原子化,而氩氢焰本身又具有很高的荧光效率以及较低的背景,这些因素的结合使得采用简单的仪器装置即可得到很好的检出限,其检出限为Sug/kg。
2.食品中镉的常用检测方法石墨炉原子吸收光谱法,其检出限为O.lug/kg;火焰原子吸收光谱法,检出限为Sug/kg;比色法,检出限为50ug/kg;原子荧光法,检出限为1.2ug/kg。
3.食品中总汞的常用检测方法原子荧光光谱分析法,检出限为o.15ug/kg;二硫腙比色法,检出限为25ug/kg。
甲基汞的分析常常先用酸提取巯基棉吸附分离,然后用气相色谱法或冷原子吸收光谱法进行测定。
重金属检测方法
重金属检测方法
重金属是一类对人体健康和环境造成严重危害的物质,因此对
重金属的检测显得尤为重要。
本文将介绍几种常用的重金属检测方法,希望能对相关领域的研究人员和实践工作者有所帮助。
首先,常见的重金属检测方法之一是原子吸收光谱法。
原子吸
收光谱法是一种利用原子对特定波长的光进行吸收来测定样品中某
种元素含量的方法。
它具有高灵敏度、高准确性和高选择性的特点,可以对多种重金属元素进行准确检测。
其次,电感耦合等离子体质谱法也是一种常用的重金属检测方法。
该方法利用高温等离子体将样品中的金属离子分解成原子态,
然后通过质谱仪进行检测和分析。
这种方法具有高灵敏度、高分辨
率和高通量的特点,适用于对微量重金属元素进行快速准确的检测。
另外,X射线荧光光谱法也是一种常见的重金属检测方法。
该
方法利用样品受到X射线激发后产生的荧光来分析样品中的元素成分,具有非破坏性、高灵敏度和多元素同时测定的特点,适用于对
各种类型的样品进行重金属元素的快速分析。
最后,还有一种常用的重金属检测方法是原子荧光光谱法。
该方法利用样品受到紫外光或X射线激发后产生的荧光来进行元素分析,具有快速、准确和多元素同时测定的特点,适用于对各种类型的样品进行重金属元素的定量和定性分析。
总的来说,重金属检测是环境监测和食品安全等领域中的重要内容,选择合适的检测方法对于准确评估重金属污染的程度和影响具有重要意义。
上述介绍的几种重金属检测方法各有特点,可以根据具体情况选择合适的方法进行应用,以确保检测结果的准确性和可靠性。
希望本文能对相关领域的研究和实践工作提供一定的参考价值。
重金属检测原理(一)
重金属检测原理(一)重金属检测什么是重金属重金属是指相对密度较大,具有较高的原子序数和离子价的金属元素。
常见的重金属包括铜、锌、铅、镉、汞等。
重金属对人体健康的影响重金属对人体健康有害,能够累积在人体内,长期积累还能引起多种病变,导致中毒甚至死亡。
常见的病变包括神经系统、造血系统、肝肾功能等。
重金属检测原理重金属检测基于原子吸收光谱仪的原理。
该仪器通过加热样品,使其转化为气态。
通过引入特定的元素分析化合物并用一定波长的光照射,再测定该光在样品中的吸收强度,从而得出样品中特定元素的浓度。
重金属检测方法目前常见的重金属检测方法包括原子吸收光谱法、电感耦合等离子体质谱法、电感耦合等离子体发射光谱法等。
其中,原子吸收光谱法是最常用的方法。
重金属检测应用领域重金属检测在食品、饮用水、土壤、空气等领域应用广泛。
对于食品和饮用水的检测尤为重要,可以保障人们的健康和生命安全。
重金属检测的标准和限值各国对重金属的限制标准不尽相同。
例如,中国的《食品安全国家标准食品中重金属限量》规定了食品中不同重金属的限量标准。
在检测过程中,若超出限值,则需要採取相应的措施予以纠正和处理。
以上是关于重金属检测的一些基本知识,希望能够对大家有所帮助。
重金属检测的注意事项1.为了保证检测的准确性和可靠性,进行重金属检测需要严格遵守标准化操作规程。
2.在取样过程中,应注意样品的真实性和代表性,避免取样不均匀而导致检测结果失真。
3.不同的重金属检测方法具有不同的检测灵敏度和限度,要根据具体情况选择合适的方法。
4.在检测过程中要注意器材的清洗、容器的消毒等多项细节,以避免污染导致的检测结果不准确。
5.各种重金属检测方法都有其局限性,不能检测所有的重金属,因此在具体操作时需仔细阅读检测方法的说明和注意事项。
总结重金属检测是保障公共安全和健康的重要手段,能够帮助我们及时了解环境中重金属的含量和安全水平。
随着科技的不断发展,各种新的检测方法和装置不断涌现,重金属检测的准确性和范围也越来越广,将为我们提供更加整体、精确的重金属检测服务。
产品质量检测中的重金属含量检测方法
产品质量检测中的重金属含量检测方法在现代社会中,随着环境污染和食品安全问题的日益凸显,产品质量的重要性也越来越受到关注。
其中,产品中的重金属含量是一个特别需要重视的指标,因为它们对人体健康有直接的影响。
因此,开发和使用一种准确可靠的重金属含量检测方法变得至关重要。
重金属是指密度较高、相对原子质量大的金属元素,如铅、镉、汞等。
它们能够在环境中长时间存在,并且对人体健康造成危害。
比如,铅和镉可以导致中毒,对大脑和神经系统产生不可逆转的损害;汞则影响人体的肝脏、肾脏和中枢神经系统。
因此,对于各种产品,如食品、药品、化妆品和日常用品等进行重金属含量检测尤为重要。
目前,常见的重金属含量检测方法主要包括原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)和分子荧光光谱法(MFS)等。
其中,AAS是一种经典的定量分析技术,能够通过测量吸收光的强度来测定样品中重金属的浓度。
它具有准确度高、检测限低等优点,并且适用于多种样品类型。
然而,AAS需要样品的预处理步骤,并且测定速度相对较慢。
ICP-MS是一种高灵敏度和高选择性的分析方法,可以在短时间内同时测量多种元素的含量。
但是,它的设备和运行成本较高,需要经过专业人员的操作。
MFS是一种新型的检测方法,它基于光学和电化学技术,通过分子荧光信号的变化来间接测定重金属的含量。
相比于传统的仪器方法,它具有快速、简便、灵敏度高的优点,特别适用于高通量的分析需求。
除了仪器方法外,还有一些基于生物学的方法用于重金属含量的检测。
比如,蛋白质微阵列技术(Protein Microarray)可以通过识别蛋白质与重金属的结合来定量分析重金属的含量。
这种方法的优点是具有高灵敏度和高通量性能,可以同时检测多种重金属元素的含量。
另外,还有一些基于细胞的检测方法,比如生物传感器和细胞毒性测定等,通过细胞对重金属的反应来间接测定其含量。
在实际应用中,根据待测样品的类型和检测要求,选择合适的重金属含量检测方法至关重要。
重金属检查法
2021/3/11
12
2.1 纳氏比色管 应选玻璃质量好、无色(尤其管底)、配对、刻 度标线高度一致的纳氏比色管。
2.2 滤器 见中国药典2005年版二部附录Ⅶ H重金属检查法第四法 附图,由具有螺纹丝扣并能密封的上、下两部分以及垫圈、滤膜 和辅助滤板组成。
2021/3/11
9
重金属是指在规定实验条件下能与显色
剂作用显色的金属杂质。中国药典2005 年版二部附录Ⅷ H采用硫代乙酰胺试液 或硫化钠试液作显色剂,以铅(Pb)的 限量表示
2021/3/11
10
:1.2 由于实验条件不同,分为4种检查方法
第一法适用于供试品不经有机破坏,在酸性溶液中进行显色的重金属 限度检查;
3.2 硫代乙酰胺试液、硫化钠试液、醋酸盐缓 冲液(pH3.5)与抗坏血酸等均按药典附录XV 的规定。
3.3 稀焦糖溶液 取蔗糖或葡萄糖约5g,置磁坩 埚中,在玻璃棒不断搅拌下,加热至呈棕色糊 状,放冷,用水溶解成约25ml,滤过,贮于滴 瓶中备用。临用时,根据供试液色泽深浅,取 适当量调节使用。
2021/3/11
14
4 操作方法 4.1 第一法
4.1.1 取25ml纳氏比色管两支,编号为甲、乙。 4.1.2 甲管中加标准铅溶液一定量与醋酸盐缓冲液(pH3.5)2ml,加水或各品种项下规定的
溶剂稀释成25ml。 4.1.3 乙管中加入按该品种项下规定的方法制成的供试液25ml。 4.1.4 如供试液带颜色,可在甲管中滴加稀焦糖溶液少量或其它无干扰的有色溶液,使其色泽
重金属检查法
定义:重金属系指在实验条件下能与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重金属检测方法汇总重金属检测方法及应用一、重金属的危害特性从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。
我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。
(一)自然性:长期生活在自然环境中的人类,对于自然物质有较强的适应能力。
有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。
但是,人类对人工合成的化学物质,其耐受力则要小得多。
所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。
铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。
(二)毒性:决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。
例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。
在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。
(三)时空分布性:污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。
(四)活性和持久性:活性和持久性表明污染物在环境中的稳定程度。
活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。
如汞可转化成甲基汞,毒性很强。
与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。
(五)生物可分解性:有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。
大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。
(六)生物累积性:生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。
二是污染物在人体某些器官组织中由于长期摄入的累积。
如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。
又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。
(七)对生物体作用的加和性:多种污染物质同时存在,对生物体相互作用。
污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。
二、重金属的定量检测技术通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。
日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。
也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。
最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。
(一)原子吸收光谱法(AAS)原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。
原子吸收分析过程如下:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。
现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。
用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。
现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。
(二)紫外可见分光光度法(UV)其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。
在特定波长下,比色检测。
分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。
虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。
加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。
显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。
大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。
显色反应的选择性和灵敏度都较高。
有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。
近年来形成多元配合物的显色体系受到关注。
多元配合物的指三个或三个以上组分形成的配合物。
利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性。
显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题。
(三)原子荧光法(AFS)原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。
原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足。
原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定。
原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素。
现已广泛用环境监测、医药、地质、农业、饮用水等领域。
在国标中,食品中砷、汞等元素的测定标准中已将原子荧光光谱法定为第一法。
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能态会跃迁到高能态,同时发射出与原激发波长相同或不同的能量辐射,即原子荧光。
原子荧光的发射强度If与原子化器中单位体积中该元素的基态原子数N成正比。
当原子化效率和荧光量子效率固定时,原子荧光强度与试样浓度成正比。
现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化。
多元素分析系统以ICP原子化器为中心,在周围安装多个检测单元,与空心阴极灯一一成直角对应,产生的荧光用光电倍增管检测。
光电转换后的电信号经放大后,由计算机处理就获得各元素分析结果。
(四)电化学法—阳极溶出伏安法电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等方法。
电化学法的检测限较低,测试灵敏度较高,值得推广应用。
如国标中铅的测定方法中的第五法和铬的测定方法的第二法均为示波极谱法。
阳极溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析方法。
这种方法一次可连续测定多种金属离子,而且灵敏度很高,能测定10-7-10-9mol/L的金属离子。
此法所用仪器比较简单,操作方便,是一种很好的痕量分析手段。
我国已经颁布了适用于化学试剂中金属杂质测定的阳极溶出伏安法国家标准。
阳极溶出伏安法测定分两个步骤。
第一步为“电析”,即在一个恒电位下,将被测离子电解沉积,富集在工作电极上与电极上汞生成汞齐。
对给定的金属离子来说,如果搅拌速度恒定,预电解时间固定,则m=Kc,即电积的金属量与被测金属离了的浓度成正比。
第二步为“溶出”,即在富集结束后,一般静止30s或60s后,在工作电极上施加一个反向电压,由负向正扫描,将汞齐中金属重新氧化为离子回归溶液中,产生氧化电流,记录电压-电流曲线,即伏安曲线。
曲线呈峰形,峰值电流与溶液中被测离了的浓度成正比,可作为定量分析的依据,峰值电位可作为定性分析的依据。
示波极谱法又称“单扫描极谱分析法”。
一种极谱分析新力一法。
它是一种快速加入电解电压的极谱法。
常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图,为了快速记录极谱图,通常用示波管的荧光屏作显示工具,因此称为示波极谱法。
其优点:快速、灵敏。
(五)X射线荧光光谱法(XRF)X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法。
它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点。
它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6。
与分离、富集等手段相结合,可达10-8。
测量的元素范围包括周期表中从F-U的所有元素。
多道分析仪,在几分钟之内可同时测定20多种元素的含量。
x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析。
当试样受到x射线,高能粒子束,紫外光等照射时,由于高能粒子或光子与试样原子碰撞,将原子内层电子逐出形成空穴,使原子处于激发态,这种激发态离子寿命很短,当外层电子向内层空穴跃迁时,多余的能量即以x射线的形式放出,并在教外层产生新的空穴和产生新的x射线发射,这样便产生一系列的特征x射线。
特征x射线是各种元素固有的,它与元素的原子系数有关。
所以只要测出了特征x射线的波长λ,就可以求出产生该波长的元素。
即可做定性分析。
在样品组成均匀,表面光滑平整,元素间无相互激发的条件下,当用x射线(一次x射线)做激发原照射试样,使试样中元素产生特征x射线(荧光x射线)时,若元素和实验条件一样,荧光x射线强度与分析元素含量之间存在线性关系。
根据谱线的强度可以进行定量分析(六)电感耦合等离子体质谱法(ICP-MS)ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。
必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、Ca、Fe 、K、Se)在ICP-MS 中有严重的干扰,也将恶化其检出限。
ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。
ICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。