高中数学重要公式定理总结——解析几何

合集下载

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。

在高中数学中,解析几何是一个重要的学习内容。

本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。

一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。

平面直角坐标系由x轴和y轴组成,它们相交于原点O。

在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。

二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。

1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。

2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。

3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。

三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。

常见的有点斜式、斜截式和一般式。

1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。

〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。

〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。

3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。

- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。

- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。

2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。

- 点法式方程:通过平面上一点和法向量来确定平面方程。

- 一般式方程:由平面的法向量和一个常数项确定平面方程。

3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。

- 点向式方程:通过直线上一点和方向向量来确定直线方程。

- 一般式方程:由直线的法向量和一个常数项确定直线方程。

4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。

5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。

6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。

- 空间中的球面与圆的方程可以通过中心点和半径来确定。

7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。

- 二次曲线的方程可以通过焦点、直径等要素来确定。

以上是高中数学解析几何的一些主要知识点。

通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。

高三备考:数学解析几何公式大全

高三备考:数学解析几何公式大全

高三备考:数学解析几何公式大全
高三备考:数学解析几何公式大全【】:高三第一轮备考已如期而至,紧张而又忙碌的复习阶段你是否已经掌握了相关的知识点呢?以下是查字典数学网小编为大家整理的高考数学解析几何公式大全,希望能对大家的复习有所帮助,相信认真复习的你一定能够在不就的考试中取得优异的成绩。

高考数学解析几何公式大全如下:
1、直线
两点距离、定比分点直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2,且b1b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1k2
l2l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p0)
焦点F
准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。

【总结】高考数学解析几何公式大全一文到这里就为您介绍完毕了,怎么样,看了之后是不是受益良多呢?想要了解更多高三备考指导,请继续关注查字典数学网高中频道。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

: . x - x高中数学解析几何知识点大总结第一部分 直线一、直线的倾斜角与斜率 1.倾斜角α(1)定义:直线 l 向上的方向与 x 轴正向所成的角叫做直线的倾斜角。

(2)范围:0︒ ≤ α < 180︒2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.k = tan α(1).倾斜角为 90︒ 的直线没有斜率。

(2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于 x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在 这两种情况,否则会产生漏解。

(3)设经过 A( x , y ) 和 B( x , y ) 两点的直线的斜率为 k ,11 2 2则当 x ≠ x 时, k = tan α = y 1 - y2 ;当 x 1 2 x - x1 12= x 时, α = 90o ;斜率不存在;2二、直线的方程1.点斜式:已知直线上一点 P (x 0,y 0)及直线的斜率 k (倾斜角α)求直线的方程用点斜式: y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为 x = x ;2.斜截式:若已知直线在 y 轴上的截距(直线与 y 轴焦点的纵坐标)为b ,斜率为 k ,则直线方程: y = kx + b ;特别地,斜率存在且经过坐标原点的直线方程为: y = kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过 ( x , y ) 和 ( x , y ) 两点,且( x ≠ x , y ≠ y 则直线的方程:11 2 2 1 2 1 2y - y 1 =y - y 21x - x1 ;2 1注意:①不能表示与 x 轴和 y 轴垂直的直线;②当两点式方程写成如下形式 ( x 2 - x 1 )( y - y 1 ) - ( y 2 - y 1 )( x - x 1 ) = 0 时,方程可以适应在于任何一条直线。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。

范围:倾斜角的范围为0°到180°。

特殊情况:当直线垂直于x轴时,斜率不存在。

直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。

注意,当斜率不存在时,此形式不适用。

斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。

圆:圆的标准方程:描述圆的基本形式。

圆心与半径:定义圆的中心和大小。

切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。

二次曲线:椭圆:定义、标准方程、焦点、准线等性质。

双曲线:定义、标准方程、焦点、准线等性质。

抛物线:定义、标准方程、焦点、准线等性质。

向量:向量的运算:包括向量的加减、数量积、向量积等。

向量的性质:如向量的模、方向余弦等。

向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。

空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。

空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。

平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。

以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。

在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结在高中数学的学习中,平面解析几何是一个重要的板块,它将代数与几何巧妙地结合在一起,为我们解决各种几何问题提供了有力的工具。

下面就让我们来详细总结一下这部分的知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π) 。

倾斜角为 0 时,直线与 x 轴平行或重合;倾斜角为π/2 时,直线与 x 轴垂直。

2、直线的斜率过两点 P(x₁, y₁),Q(x₂, y₂)(x₁ ≠ x₂)的直线的斜率 k =(y₂y₁) /(x₂ x₁) 。

当直线与 x 轴垂直时,斜率不存在。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上两点。

(4)截距式:x / a + y / b = 1 ,其中 a ,b 分别是直线在 x 轴和 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A,B 不同时为 0)。

4、两条直线的位置关系(1)平行:两条直线斜率相等且截距不同。

(2)垂直:两条直线斜率的乘积为-1 (当其中一条直线斜率为0 ,另一条直线斜率不存在时也垂直)。

5、点到直线的距离公式点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。

2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0 ),圆心坐标为(D/2, E/2) ,半径 r =√(D²+ E² 4F) / 2 。

解析几何中的基本公式

解析几何中的基本公式

解析几何中的基本公式解析几何是高中数学中的一门重要学科,它研究几何图形的坐标表示方法和相关性质。

在解析几何中,使用了一系列经典的基本公式,本文将对这些公式进行详细解析。

一、两点间距离公式在解析几何中,经常需要计算两点之间的距离。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们之间的距离可以用以下公式表示:$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$其中 $d$ 表示两点之间的距离。

这个公式的计算方法非常简单,只需要将两点横、纵坐标的差值平方相加,再开方即可。

二、两点间中点公式在解析几何中,还需要计算两点间的中点。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们的中点可以用以下公式表示:$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$这个公式的计算方法也非常简单,只需要将两点横、纵坐标分别求出平均值,即可得到中点的坐标。

三、点到直线距离公式在解析几何中,还需要计算一个点到一条直线的距离。

对于一条直线 $ax+by+c=0$ 和一个点 $P(x_0,y_0)$,它们之间的距离可以用以下公式表示:$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$其中 $d$ 表示点 $P$ 到直线的距离。

这个公式的计算方法稍微有些复杂,但是可以通过向量的方法来简化计算。

四、直线的斜截式方程公式在解析几何中,我们经常需要用一条直线的方程表示它的位置关系。

在平面直角坐标系中,如果直线的斜率为$k$,截距为$b$,则这条直线的方程可以用以下公式表示:$$y=kx+b$$这个公式非常简单明了,如果已知一条直线的斜率和截距,则可以用这个公式求出它的方程。

五、两条直线的交点公式在解析几何中,我们经常需要求出两条直线的交点,以确定它们的位置关系。

对于一条直线 $y=k_1x+b_1$ 和另一条直线$y=k_2x+b_2$,它们的交点可以用以下公式表示:$$(\frac{b_2-b_1}{k_1-k_2},\frac{k_1b_2-k_2b_1}{k_1-k_2})$$这个公式的计算方法稍微有些复杂,需要将两条直线的方程联立后,解出它们的交点坐标。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)与直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+byax; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

高中数学解析几何总结非常全

高中数学解析几何总结非常全

高中数学解析几何第一部分:直线一、直线的倾斜角及斜率1.倾斜角α(1)定义:直线l 向上的方向及x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在及不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,;当21x x =时,o90=α;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线及y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,及“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:;注意:①不能表示及x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:;注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

2).横截距及纵截距相等的直线方程可设为x+y=a;横截距及纵截距互为相反数的直线方程可设为x-y=a5一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);反之,任何一个二元一次方程都表示一条直线。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αt a n =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。

2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。

1)倾斜角为90度的直线没有斜率。

2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。

当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。

二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。

需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。

特别地,斜率存在且经过坐标原点的直线方程为y=kx。

需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

需要注意的是,不能表示与x轴和y轴垂直的直线。

4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。

反之,任何一个二元一次方程都表示一条直线。

首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。

解析几何公式大全

解析几何公式大全

解析几何公式大全一份付出一分耕耘圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k yy -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -==3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y xa b a b+=>> 第一定义 到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 222.双曲线焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=> 范围 或x a ≤-x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 实轴的长2a = 虚轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==+离心率 22222221(1)c c a b b e e a a a a+====+>准线方程 2a x c=±2a y c=±渐近线方 程b y x a=±a y x b=±焦半径0,0()M x y M 在右支1020MF ex aMF ex a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 在左支1020MF ex a MF ex a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:M 上支1020MF ey aMF ey a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 下支1020MF ey aMF ey a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:焦点三角形面积 12212cot()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径:ab 22【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201 由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y k y y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=3.抛物线图形五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y=kx+b与椭圆x2a2+y2b2=1 (a>b>0)的位置关系:直线与椭圆相交?⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P +=。

(解析几何)基础知识点总结

(解析几何)基础知识点总结

《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。

高中数学函数的基本概念与应用解析几何的重要定理总结

高中数学函数的基本概念与应用解析几何的重要定理总结

高中数学函数的基本概念与应用解析几何的重要定理总结数学是一门广泛应用于各个领域的学科,而高中数学作为学生学习的一部分,其中包括了函数的基本概念与应用以及解析几何的重要定理。

本文将对高中数学中函数的基本概念与应用以及解析几何的重要定理进行总结。

一、函数的基本概念与应用函数是数学中的一个重要概念,以及在现实生活中具有广泛应用的数学工具。

函数表示了两个变量之间的关系,其中一个变量的值确定时,另一个变量的值也会相应确定。

在函数的定义中,关键要素包括定义域、值域、自变量和因变量。

定义域指的是自变量的取值范围,值域指的是因变量的取值范围。

函数可以通过各种形式的函数表达式表示,如一次函数、二次函数、指数函数、对数函数等。

在实际应用中,函数可以用来描述各种变化的规律。

例如,一次函数可以用来表示线性变化关系,二次函数可以用来表示抛物线的形状,指数函数可以用来描述指数增长等。

除了基本的函数概念外,函数还有一些常见的应用场景。

例如,函数可以用来表示物体的运动轨迹,用来模拟经济增长和衰退的趋势,用来描述自然界中的各种规律等。

函数还可以通过求导和积分等数学工具进行分析,从而得到更多的信息。

二、解析几何的重要定理解析几何是数学中的一个重要分支,将几何问题转化为代数问题,并通过代数的方法解决几何问题。

在解析几何中,有一些重要的定理,对于高中数学的学习和理解具有重要的意义。

1. 直线的方程:直线可以通过点斜式、截距式、一般式等多种方式表示。

点斜式表示直线的斜率和一个点,截距式表示直线与坐标轴的交点,一般式表示直线的一般形式。

2. 圆的方程:圆可以通过圆心和半径表示,也可以通过圆心和与圆相切的直线表示。

3. 直线与圆的位置关系:直线与圆的位置关系有相离、相切和相交三种情况。

可以通过判别式的正负来确定直线与圆的位置关系。

4. 曲线与坐标轴的交点:曲线与坐标轴的交点可以通过方程求解得到,通过求解方程可以得到曲线与坐标轴的交点坐标。

5. 弧长与扇形面积:弧长和扇形面积是解析几何中的重要概念。

高考数学解析几何公式总结

高考数学解析几何公式总结

高考数学解析几何公式总结
查字典数学网小编为您整理了2021高考数学解析几何公式总结,希望对您有所协助!
1、直线
两点距离、定比分点直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2,且b1b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1k2
l2l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆椭圆
规范方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
普通方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判别或用判别式判别直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判别椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p0)
焦点F
准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。

2021高考数学解析几何公式总结就分享到这里了,更多相关信息请继续关注高考数学知识点栏目!。

解析几何公式大全

解析几何公式大全

解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=2、平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。

3、点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆ 若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+= 5、若A ),(),,(2211y x B y x ,P (x ,y )。

P 在直线AB 上,且P 分有向线段AB所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x变形后:yy y y x x x x --=λ--=λ2121或 6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=2π。

(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、(1)倾斜角α,),0(π∈α;(2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 8、直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k ,则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+by a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档